4 research outputs found

    An energy aware scheme for layered chain in underwater wireless sensor networks using genetic algorithm

    Get PDF
    Extending the network lifetime is a very challenging problem that needs to be taken into account during routing data in wireless sensor networks in general and particularly in underwater wireless sensor networks (UWSN). For this purpose, the present paper proposes a multilayer chain based on genetic algorithm routing (MCGA) for routing data from nodes to the sink. This algorithm consists to create a limited number of local chains constructed by using genetic algorithm in order to obtain the shortest path between nodes; furthermore, a leader node (LN) is elected in each chain followed by constructing a global chain containing LNs. The selection of the LN in the closest chain to the sink is as follows: Initially, the closest node to sink is elected LN in this latter because all nodes have initially the same energy value; then the future selection of the LN is based on the residual energy of the nodes. LNs in the other chains are selected based on the proximity to the previous LNs. Data transmission is performed in two steps: intra-chain transmission and inter-chain transmission. Furthermore, MCGA is simulated for different scenarios of mobility and density of nodes in the networks. The performance evaluation of the proposed technique shows a considerable reduction in terms of energy consumption and network lifespan

    Improved fuzzy c-means algorithm based on a novel mechanism for the formation of balanced clusters in WSNs

    Get PDF
    The clustering approach is considered as a vital method for many fields suchas machine learning, pattern recognition, image processing, information retrieval, data compression, computer graphics, and others.Similarly, it hasgreat significance in wireless sensor networks (WSNs) by organizing thesensor nodes into specific clusters. Consequently, saving energy and prolonging network lifetime, which is totally dependent on the sensor’s battery, that is considered asa major challenge in the WSNs. Fuzzyc-means (FCM) is one of classification algorithm, which is widely used in literature for this purpose in WSNs. However, according to the nature of random nodes deployment manner, on certain occasions, this situation forces this algorithm to produce unbalanced clusters, which adversely affects the lifetime of the network.To overcome this problem, a new clustering method called FCM-CMhas been proposed by improving the FCM algorithm to form balanced clustersfor random nodes deployment. The improvement is conductedby integrating the FCM with a centralized mechanism(CM).The proposed method will be evaluated based on four new parameters. Simulation result shows that our proposed algorithm is more superior to FCM by producing balanced clustersin addition to increasing the balancing of the intra-distances of the clusters, which leads to energy conservation and prolonging network lifespan

    Evaluate the performance of K-Means and the fuzzy C-Means algorithms to formation balanced clusters in wireless sensor networks

    Get PDF
    The clustering approach is considered as a vital method for wireless sensor networks (WSNs) by organizing the sensor nodes into specific clusters. Consequently, saving the energy and prolonging network lifetime which is totally dependent on the sensors battery, that is considered as a major challenge in the WSNs. Classification algorithms such as K-means (KM) and Fuzzy C-means (FCM), which are two of the most used algorithms in literature for this purpose in WSNs. However, according to the nature of random nodes deployment manner, on certain occasions, this situation forces these algorithms to produce unbalanced clusters, which adversely affects the lifetime of the network. Based for our knowledge, there is no study has analyzed the performance of these algorithms in terms clusters construction in WSNs. In this study, we investigate in KM and FCM performance and which of them has better ability to construct balanced clusters, in order to enable the researchers to choose the appropriate algorithm for the purpose of improving network lifespan. In this study, we utilize new parameters to evaluate the performance of clusters formation in multi-scenarios. Simulation result shows that our FCM is more superior than KM by producing balanced clusters with the random distribution manner for sensor nodes

    A Hybrid Cluster and Chain-Based Routing Protocol for Lifetime Improvement in WSN

    No full text
    corecore