616 research outputs found

    A Constraint-directed Local Search Approach to Nurse Rostering Problems

    Full text link
    In this paper, we investigate the hybridization of constraint programming and local search techniques within a large neighbourhood search scheme for solving highly constrained nurse rostering problems. As identified by the research, a crucial part of the large neighbourhood search is the selection of the fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The success of the large neighbourhood search depends on the adequacy of this identified neighbourhood with regard to the problematic part of the solution assignment and the choice of the neighbourhood size. We investigate three strategies to choose the fragment of different sizes within the large neighbourhood search scheme. The first two strategies are tailored concerning the problem properties. The third strategy is more general, using the information of the cost from the soft constraint violations and their propagation as the indicator to choose the variables added into the fragment. The three strategies are analyzed and compared upon a benchmark nurse rostering problem. Promising results demonstrate the possibility of future work in the hybrid approach

    Fairness in nurse rostering

    Get PDF

    A Component Based Heuristic Search Method with Evolutionary Eliminations

    Get PDF
    Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with evolutionary eliminations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to implement two evolutionary elimination strategies mimicking natural selection and natural mutation process on these components respectively to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs an evaluation function which evaluates how well each component contributes towards the final objective. Two elimination steps are then applied: the first elimination eliminates a number of components that are deemed not worthy to stay in the current schedule; the second elimination may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure

    A hybrid constraint integer programming approach to solve nurse scheduling problems

    Get PDF
    The Nurse Scheduling Problem can be simply defined as assigning a series of shift sequences (schedules) to several nurses over a planning horizon according to some constraints and preferences. The inherent benefits of having higher-quality and more flexible schedules are a reduction in outsourcing costs and an increase of job satisfaction in health organizations. In this paper, we present a novel systematic hybrid algorithm, which combines Integer Programming (IP) and Constraint Programming (CP) to efficiently solve highly-constrained Nurse Scheduling Problems. Our focus is to exploit the problem-specific information to improve the performance of the algorithm, and therefore obtain high-quality solutions as well as strong lower bounds. We test our algorithm based on some real-world benchmark instances. Very competitive results are reported compared to the state-of-the-art algorithms from the recent literature, showing that the proposed algorithm is able to solve a wide variety of real-world instances with different complex structures

    A survey on constructing rosters for air traffic controllers

    Get PDF
    In this survey the state-of-the-art technology and the literature to date are discussed. In particular, we will discuss the gap in the literature concerning rostering staff to tasks by qualifications, with the inclusion of restrictions on a measure of task familiarity, which is a unique consequence of the structure of ATC operations

    A Constraint Programming and Hybrid Approach to Nurse Rostering Problems

    Get PDF
    This paper describes a decision support methodologies for nurse rostering problem in a modern hospital environment. In particular, it is very important to efficiently utilise time and effort, to evenly balance the workload among people and to attempt to satisfy personnel preference. We presented a complete model to formulate all the complex real-world constraints, solution approach and Hybrid approaches to nurse rostering problem. DOI: 10.17762/ijritcc2321-8169.15037

    A time predefined variable depth search for nurse rostering

    Get PDF
    This paper presents a variable depth search for the nurse rostering problem. The algorithm works by chaining together single neighbourhood swaps into more effective compound moves. It achieves this by using heuristics to decide whether to continue extending a chain and which candidates to examine as the next potential link in the chain. Because end users vary in how long they are willing to wait for solutions, a particular goal of this research was to create an algorithm that accepts a user specified computational time limit and uses it effectively. When compared against previously published approaches the results show that the algorithm is very competitive

    A harmony search algorithm for nurse rostering problems

    Get PDF
    Harmony search algorithm (HSA) is a relatively new nature-inspired algorithm. It evolves solutions in the problem search space by mimicking the musical improvisation process in seeking agreeable harmony measured by aesthetic standards. The nurse rostering problem (NRP) is a well-known NP-hard scheduling problem that aims at allocating the required workload to the available staff nurses at healthcare organizations to meet the operational requirements and a range of preferences. This work investigates research issues of the parameter settings in HSA and application of HSA to effectively solve complex NRPs. Due to the well-known fact that most NRPs algorithms are highly problem (or even instance) dependent, the performance of our proposed HSA is evaluated on two sets of very different nurse rostering problems. The first set represents a real world dataset obtained from a large hospital in Malaysia. Experimental results show that our proposed HSA produces better quality rosters for all considered instances than a genetic algorithm (implemented herein). The second is a set of well-known benchmark NRPs which are widely used by researchers in the literature. The proposed HSA obtains good results (and new lower bound for a few instances) when compared to the current state of the art of meta-heuristic algorithms in recent literature
    • …
    corecore