14 research outputs found

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Ultra-low Quiescent Current NMOS Low Dropout Regulator With Fast Transient response for Always-On Internet-of-Things Applications

    Get PDF
    abstract: The increased adoption of Internet-of-Things (IoT) for various applications like smart home, industrial automation, connected vehicles, medical instrumentation, etc. has resulted in a large scale distributed network of sensors, accompanied by their power supply regulator modules, control and data transfer circuitry. Depending on the application, the sensor location can be virtually anywhere and therefore they are typically powered by a localized battery. To ensure long battery-life without replacement, the power consumption of the sensor nodes, the supply regulator and, control and data transmission unit, needs to be very low. Reduction in power consumption in the sensor, control and data transmission is typically done by duty-cycled operation such that they are on periodically only for short bursts of time or turn on only based on a trigger event and are otherwise powered down. These approaches reduce their power consumption significantly and therefore the overall system power is dominated by the consumption in the always-on supply regulator. Besides having low power consumption, supply regulators for such IoT systems also need to have fast transient response to load current changes during a duty-cycled operation. Supply regulation using low quiescent current low dropout (LDO) regulators helps in extending the battery life of such power aware always-on applications with very long standby time. To serve as a supply regulator for such applications, a 1.24 µA quiescent current NMOS low dropout (LDO) is presented in this dissertation. This LDO uses a hybrid bias current generator (HBCG) to boost its bias current and improve the transient response. A scalable bias-current error amplifier with an on-demand buffer drives the NMOS pass device. The error amplifier is powered with an integrated dynamic frequency charge pump to ensure low dropout voltage. A low-power relaxation oscillator (LPRO) generates the charge pump clocks. Switched-capacitor pole tracking (SCPT) compensation scheme is proposed to ensure stability up to maximum load current of 150 mA for a low-ESR output capacitor range of 1 - 47µF. Designed in a 0.25 µm CMOS process, the LDO has an output voltage range of 1V – 3V, a dropout voltage of 240 mV, and a core area of 0.11 mm2.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Bluetooth/WLAN receiver design methodology and IC implementations

    Get PDF
    Emerging technologies such as Bluetooth and 802.11b (Wi-Fi) have fuelled the growth of the short-range communication industry. Bluetooth, the leading WPAN (wireless personal area network) technology, was designed primarily for cable replacement applications. The first generation Bluetooth products are focused on providing low-cost radio connections among personal electronic devices. In the WLAN (wireless local area network) arena, Wi-Fi appears to be the superior product. Wi-Fi is designed for high speed internet access, with higher radio power and longer distances. Both technologies use the same 2.4GHz ISM band. The differences between Bluetooth and Wi-Fi standard features lead to a natural partitioning of applications. Nowadays, many electronics devices such as laptops and PDAs, support both Bluetooth and Wi-Fi standards to cover a wider range of applications. The cost of supporting both standards, however, is a major concern. Therefore, a dual-mode transceiver is essential to keep the size and cost of such system transceivers at a minimum. A fully integrated low-IF Bluetooth receiver is designed and implemented in a low cost, main stream 0.35um CMOS technology. The system includes the RF front end, frequency synthesizer and baseband blocks. It has -82dBm sensitivity and draws 65mA current. This project involved 6 Ph.D. students and I was in charge of the design of the channel selection complex filter is designed. In the Bluetooth transmitter, a frequency modulator with fine frequency steps is needed to generate the GFSK signal that has +/-160kHz frequency deviation. A low power ROM-less direct digital frequency synthesizer (DDFS) is designed to implement the frequency modulation. The DDFS can be used for any frequency or phase modulation communication systems that require fast frequency switching with fine frequency steps. Another contribution is the implementation of a dual-mode 802.11b/Bluetooth receiver in IBM 0.25um BiCMOS process. Direct-conversion architecture was used for both standards to achieve maximum level of integration and block sharing. I was honored to lead the efforts of 7 Ph.D. students in this project. I was responsible for system level design as well as the design of the variable gain amplifier. The receiver chip consumes 45.6/41.3mA and the sensitivity is -86/-91dBm

    Integrated Circuits for Ultrasound Harmonic Imaging:Modelling, Design, and In-Vitro Experiments

    Get PDF

    High Performance RF and Basdband Analog-to-Digital Interface for Multi-standard/Wideband Applications

    Get PDF
    The prevalence of wireless standards and the introduction of dynamic standards/applications, such as software-defined radio, necessitate the next generation wireless devices that integrate multiple standards in a single chip-set to support a variety of services. To reduce the cost and area of such multi-standard handheld devices, reconfigurability is desirable, and the hardware should be shared/reused as much as possible. This research proposes several novel circuit topologies that can meet various specifications with minimum cost, which are suited for multi-standard applications. This doctoral study has two separate contributions: 1. The low noise amplifier (LNA) for the RF front-end; and 2. The analog-to-digital converter (ADC). The first part of this dissertation focuses on LNA noise reduction and linearization techniques where two novel LNAs are designed, taped out, and measured. The first LNA, implemented in TSMC (Taiwan Semiconductor Manufacturing Company) 0.35Cm CMOS (Complementary metal-oxide-semiconductor) process, strategically combined an inductor connected at the gate of the cascode transistor and the capacitive cross-coupling to reduce the noise and nonlinearity contributions of the cascode transistors. The proposed technique reduces LNA NF by 0.35 dB at 2.2 GHz and increases its IIP3 and voltage gain by 2.35 dBm and 2dB respectively, without a compromise on power consumption. The second LNA, implemented in UMC (United Microelectronics Corporation) 0.13Cm CMOS process, features a practical linearization technique for high-frequency wideband applications using an active nonlinear resistor, which obtains a robust linearity improvement over process and temperature variations. The proposed linearization method is experimentally demonstrated to improve the IIP3 by 3.5 to 9 dB over a 2.5–10 GHz frequency range. A comparison of measurement results with the prior published state-of-art Ultra-Wideband (UWB) LNAs shows that the proposed linearized UWB LNA achieves excellent linearity with much less power than previously published works. The second part of this dissertation developed a reconfigurable ADC for multistandard receiver and video processors. Typical ADCs are power optimized for only one operating speed, while a reconfigurable ADC can scale its power at different speeds, enabling minimal power consumption over a broad range of sampling rates. A novel ADC architecture is proposed for programming the sampling rate with constant biasing current and single clock. The ADC was designed and fabricated using UMC 90nm CMOS process and featured good power scalability and simplified system design. The programmable speed range covers all the video formats and most of the wireless communication standards, while achieving comparable Figure-of-Merit with customized ADCs at each performance node. Since bias current is kept constant, the reconfigurable ADC is more robust and reliable than the previous published works

    On-Chip Integrated Functional Near Infra-Red Spectroscopy (fNIRS) Photoreceiver for Portable Brain Imaging

    Get PDF
    RÉSUMÉ L'imagerie cérébrale fonctionnelle utilisant la Spectroscopie Fonctionnelle Proche-Infrarouge (SFPI) propose un outil portatif et non invasif de surveillance de l'oxygénation du sang. SFPI est une technique de haute résolution temporelle non invasive, sûr, peu intrusive en temps réel et pour l'imagerie cérébrale à long terme. Il permet de détecter des signaux hémodynamiques à la fois rapides et neuronaux ou lents. Outre les avantages importants des systèmes SFPI, ils souffrent encore de quelques inconvénients, notamment d’une faible résolution spatiale, d’un bruit de niveau modérément élevé et d’une grande sensibilité au mouvement. Afin de surmonter les limites des systèmes actuellement disponibles de SFPI non-portables, dans cette thèse, nous en avons introduit une nouvelle de faible puissance, miniaturisée sur une puce photodétecteur frontal destinée à des systèmes de SFPI portables. Elle contient du silicium photodiode à avalanche (SiAPD), un amplificateur de transimpédance (TIA), et « Quench-Reset », circuits mis en oeuvre en utilisant les technologies CMOS standards pour fonctionner dans les deux modes : linéaire et Geiger. Ainsi, elle peut être appliquée pour les deux fNIRS : en onde continue (CW- SFPI) et pour des applications de comptage de photon unique. Plusieurs SiAPDs ont été mises en oeuvre dans de nouvelles structures et formes (rectangulaires, octogonales, double APDs, imbriquées, netted, quadratiques et hexadecagonal) en utilisant différentes techniques de prévention de la dégradation de bord prématurée. Les principales caractéristiques des SiAPDs sont validées et l'impact de chaque paramètre ainsi que les simulateurs de l'appareil (TCAD, COMSOL, etc) ont été étudiés sur la base de la simulation et de mesure des résultats. Proposées SiAPDs techniques d'exposition avec un gain de grande avalanche, tension faible ventilation et une grande efficacité de détection des photons dans plus de faibles taux de comptage sombres. Trois nouveaux produits à haut gain, bande passante (GBW) et à faible bruit TIA sont introduits basés sur le concept de gain distribué, d’amplificateur logarithmique et sur le rejet automatique du bruit pour être appliqué en mode de fonctionnement linéaire. Le TIA proposé offre une faible consommation, un gain de haute transimpédance, une bande passante ajustable et un très faible bruit d'entrée et de sortie. Le nouveau circuit mixte trempe-reset (MQC) et un MQC contrôlable (CMQC) frontaux offrent une faible puissance, une haute vitesse de comptage de photons avec un commandable de temps de hold-off et temps de réinitialiser. La première intégration sur puce de SiAPDs avec TIA et Photon circuit de comptage a été démontrée et montre une amélioration de l'efficacité de la photodétection, spécialement en ce qui concerne la sensibilité, la consommation d'énergie et le rapport signal sur bruit.----------ABSTRACT Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a direct and noninvasive tool for monitoring of blood oxygenation. fNIRS is a noninvasive, safe, minimally intrusive, and high temporal-resolution technique for real-time and long-term brain imaging. It allows detecting both fast-neuronal and slow-hemodynamic signals. Besides the significant advantages of fNIRS systems, they still suffer from few drawbacks including low spatial- resolution, moderately high-level noise and high-sensitivity to movement. In order to overcome the limitations of currently available non-portable fNIRS systems, we have introduced a new low-power, miniaturized on-chip photodetector front-end intended for portable fNIRS systems. It includes silicon avalanche photodiode (SiAPD), Transimpedance amplifier (TIA), and Quench- Reset circuitry implemented using standard CMOS technologies to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting applications. Several SiAPDs have been implemented in novel structures and shapes (Rectangular, Octagonal, Dual, Nested, Netted, Quadratic and Hexadecagonal) using different premature edge breakdown prevention techniques. The main characteristics of the SiAPDs are validated and the impact of each parameter and the device simulators (TCAD, COMSOL, etc.) have been studied based on the simulation and measurement results. Proposed techniques exhibit SiAPDs with high avalanche-gain (up to 119), low breakdown-voltage (around 12V) and high photon-detection efficiency (up to 72% in NIR region) in additional to a low dark- count rate (down to 30Hz at 1V excess bias voltage). Three new high gain-bandwidth product (GBW) and low-noise TIAs are introduced and implemented based on distributed-gain concept, logarithmic-amplification and automatic noise-rejection and have been applied in linear-mode of operation. The implemented TIAs offer a power-consumption around 0.4 mW, transimpedance gain of 169 dBΩ, and input-output current/voltage noises in fA/pV range accompanied with ability to tune the gain, bandwidth and power-consumption in a wide range. The implemented mixed quench-reset circuit (MQC) and controllable MQC (CMQC) front-ends offer a quenchtime of 10ns, a maximum power-consumption of 0.4 mW, with a controllable hold-off and resettimes. The on-chip integration of SiAPDs with TIA and photon-counting circuitries has been demonstrated showing improvement of the photodetection-efficiency, specially regarding to the sensitivity, power-consumption and signal-to-noise ratio (SNR) characteristics

    Stratégie d'alimentation pour les SoCs RF très faible consommation

    Get PDF
    Les réseaux de capteurs sans fil nécessitent des fonctions de calcul et de transmissionradio associées à chaque capteur. Les SoCs RF intégrant ces fonctions doivent avoir uneautonomie la plus grande possible et donc une très faible consommation. Aujourd'hui, leursperformances énergétiques pourraient être fortement améliorées par des systèmes d'alimentationinnovants. En effet, les circuits d'alimentation remplissent leur fonction classique de conversiond'énergie mais aussi des fonctions d'isolation des blocs RF et digitaux. Leurs performancess'évaluent donc en termes d'efficacité énergétique et de réponse transitoire mais aussi d'isolationentre blocs et de réjection de bruit.Ce travail de thèse concerne l'intégration du système de gestion et de distribution del énergie aux différents blocs RF d un émetteur/récepteur en élaborant une méthodologie topdown pour déterminer la sensibilité de chaque bloc à son alimentation et en construisant unearchitecture innovante et dynamique de gestion/distribution de l'énergie sur le SoC. Cetteméthodologie repose sur la disponibilité de régulateurs de tension présentant des performancesadaptées. Un deuxième volet du travail de thèse a donc été de réaliser un régulateur linéaire detype LDO à forte réjection sur une bande passante relativement large et bien adapté àl'alimentation de blocs RF très sensibles aux bruits de l'alimentation.Wireless sensor networks require calculation functions and radiofrequencytransmission modules within each sensor. RF SoCs integrating these functions must have thebiggest battery life and so a very small consumption. Today, innovative power managementsystems could highly enhance the energy performances of this type of RF SoC. Indeed, thesepower systems perform energy conversion and also the isolation functions of RF and digitalblocks. Their features are thus estimated in terms of energy efficiency, transient response and alsoisolation between blocks and noise rejection.This thesis work concerns the integration of the power management systems and itsdistribution channels into different ultra-low-power SoCs. This was achieved mainly thanks to thedevelopment of a new top-down approach. This new methodology consists of determining thesensibility of every block to its power supply and of designing an innovative and dynamicarchitecture of power management circuits on the SoC. This study ends up in the implementationof a very efficient low dropout (LDO) regulator for noise-sensitive low-current RF blocks inmixed SoC applications. The fabricated prototype achieves a high power supply rejection for awide range of frequencies.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Innovative Concepts for the Electronic Interface of Massively Parallel MRI Phased Imaging Arrays

    Get PDF
    In Magnetic Resonance Imaging (MRI), the concept of parallel imaging shows significant enhancements in boosting the signal-to-noise ratio, reducing the imaging time, and enlarging the imaging field of view. However, this concept necessitates increased size, cost, and complexity of the MR system. This thesis introduces an innovative solution for the electronics of the MRI system that allows parallel imaging with massive number of channels while avoiding, at the same time, the associated drawback

    Analog and Mixed Signal Design towards a Miniaturized Sleep Apnea Monitoring Device

    Get PDF
    Sleep apnea is a sleep-induced breathing disorder with symptoms of momentary and often repetitive cessations in breathing rhythm or sustained reductions in breathing amplitude. The phenomenon is known to occur with varying degrees of severity in literally millions of people around the world and cause a range of chronicle health issues. In spite of its high prevalence and serious consequences, nearly 80% of people with sleep apnea condition remain undiagnosed. The current standard diagnosis technique, termed polysomnography or PSG, requires the patient to schedule and undergo a complex full-night sleep study in a specially-equipped sleep lab. Due to both high cost and substantial inconvenience, millions of apnea patients are still undiagnosed and thus untreated. This research work aims at a simple, reliable, and miniaturized solution for in-home sleep apnea diagnosis purposes. The proposed solution bears high-level integration and minimal interference with sleeping patients, allowing them to monitor their apnea conditions at the comfort of their homes. Based on a MEMS sensor and an effective apnea detection algorithm, a low-cost single-channel apnea screening solution is proposed. A custom designed IC chip implements the apnea detection algorithm using time-domain signal processing techniques. The chip performs autonomous apnea detection and scoring based on the patient’s airflow signals detected by the MEMS sensor. Variable sensitivity is enabled to accommodate different breathing signal amplitudes. The IC chip was fabricated in standard 0.5-μm CMOS technology. A prototype device was designed and assembled including a MEMS sensor, the apnea detection IC chip, a PSoC platform, and wireless transceiver for data transmission. The prototype device demonstrates a valuable screening solution with great potential to reach the broader public with undiagnosed apnea conditions. In a battery-operated miniaturized medical device, an energy-efficient analog-to-digital converter is an integral part linking the analog world of biomedical signals and the digital domain with powerful signal processing capabilities. This dissertation includes the detailed design of a successive approximation register (SAR) ADC for ultra-low power applications. The ADC adopts an asynchronous 2b/step scheme that halves both conversion time and DAC/digital circuit’s switching activities to reduce static and dynamic energy consumption. A low-power sleep mode is engaged at the end of all conversion steps during each clock period. The technical contributions of this ADC design include an innovative 2b/step reference scheme based on a hybrid R-2R/C-3C DAC, an interpolation-assisted time-domain 2b comparison scheme, and a TDC with dual-edge-comparison mechanism. The prototype ADC was fabricated in 0.18μm CMOS process with an active area of 0.103 mm^(2), and achieves an ENoB of 9.2 bits and an FoM of 6.7 fJ/conversion-step at 100-kS/s

    Studies on Mobile Terminal Energy Consumption for LTE and Future 5G

    Get PDF
    corecore