1,806 research outputs found

    A Holistic Investigation on Terahertz Propagation and Channel Modeling Toward Vertical Heterogeneous Networks

    Full text link
    User-centric and low latency communications can be enabled not only by small cells but also through ubiquitous connectivity. Recently, the vertical heterogeneous network (V-HetNet) architecture is proposed to backhaul/fronthaul a large number of small cells. Like an orchestra, the V-HetNet is a polyphony of different communication ensembles, including geostationary orbit (GEO), and low-earth orbit (LEO) satellites (e.g., CubeSats), and networked flying platforms (NFPs) along with terrestrial communication links. In this study, we propose the Terahertz (THz) communications to enable the elements of V-HetNets to function in harmony. As THz links offer a large bandwidth, leading to ultra-high data rates, it is suitable for backhauling and fronthauling small cells. Furthermore, THz communications can support numerous applications from inter-satellite links to in-vivo nanonetworks. However, to savor this harmony, we need accurate channel models. In this paper, the insights obtained through our measurement campaigns are highlighted, to reveal the true potential of THz communications in V-HetNets.Comment: It has been accepted for the publication in IEEE Communications Magazin

    Bi-material terahertz sensors using metamaterial structures

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1364/OE.21.013256In this paper we report on the design, fabrication and characterization of terahertz (THz) bi-material sensors with metamaterial absorbers. MEMS fabrication-friendly SiOx and Al are used to maximize the bimetallic effect and metamaterial absorption at 3.8 THz, the frequency of a quantum cascade laser illumination source. Sensors with different configurations were fabricated and the measured absorption is near 100% and responsivity is around 1.2 degrees which agree well with finite element simulations. The results indicate the potential of using these detectors to fabricate focal plane arrays for real time THz imaging.ONR and NR

    Polymer-Based Low-Cost Micromachining of Gap Waveguide Components

    Get PDF
    The millimeter-wave (mmWave) and sub-millimeter-wave (sub-mmWave) frequency bands have gained significant attention over the past few years due to the growth of commercial wireless applications. As the operating frequency approaches these higher frequencies, the dimensions of the waveguide-based components continue to decrease. The decreasing feature size of those waveguide components makes the traditional machine-based (computer numerical control, CNC) fabrication method increasingly challenging in terms of time and cost, especially above 100 GHz. Additionally, this method is a serial process and cost will not scale with volume production. Micromachining has the potential of addressing the manufacturing issues of mmWave components. However, the existing microfabrication techniques either suffer from technological immaturity, are time-consuming, or lack sufficient cost-efficiency. A straightforward, fast, and low-cost fabrication method that can offer batch fabrication of waveguide components operating at mmWave and sub-mmWave frequency range is desirable to address the needs for hardware on the growing market of mmWave and sub-mmWave wireless systems.Conventional metal waveguides have very strict fabrication requirements in terms of mechanical assembly and integration of RF electronics. In comparison, gap waveguide technology not only offers competitive loss performance but also provides several benefits in terms of assembly and integration of active components. A gap waveguide is a planar waveguide technology which does not suffer from the dielectric loss in planar waveguides and which does not require any electrical connections between the metal walls, in contrast to hollow waveguides. This thesis aims to realize gap waveguide components operating at mmWave and sub-mmWave frequency range, in a low-cost and time-efficient way by developing new polymer-based fabrication methods.A template-based injection molding process has been designed to realize a high gain antenna operating at D band (110 -170 GHz). We can confirm that injection molding of OSTEMER is a straightforward and fast device fabrication method. In the proposed method, the time-consuming and complicated parts need to be fabricated only once and can later be reused.A dry film photoresist-based method is also presented in this thesis to fabricate waveguide components operating between 220 - 320 GHz. Dry film photoresist offers rapid fabrication of waveguide components without using sophisticated tools. The measurement results presented in the thesis indicate that this dry film-based method is a promising method for fabricating waveguide components operating in mmWave and sub- mmWave frequency ranges

    Review of LTCC technology for millimeter waves and photonics

    Get PDF
    VTT Technical Research Centre of Finland Ltd. has developed and utilized Low Temperature Co-fired Ceramic (LTCC) technology for about 25 years. This paper presents our activities related to photonics and millimetre-waves, including also a relevant literature survey. First a short summary of the technology is given. Especially, the unique features of LTCC technology are described in more details. In addition, several examples have been given to show the validity of LTCC technology in these high-performance fields

    Development of tunable terahertz quantum cascade wire lasers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 179-188).For a long time, terahertz (THz) radiation has been of great interest to scientific community because of its spectroscopic and imaging applications based on its unique properties, such as the capabilities to penetrate many materials which are opaque in other frequency range (e.g. packaging, plastics, paints and semiconductors), and spectroscopic signatures of many important materials. In this thesis, a continuously tunable THz wire QC laser, which comprises a QC laser with deep sub-wavelength transverse dimensions, and a movable side object, termed as "plunger", is demonstrated. This deep sub-wavelength cross-section results in a large fraction of mode propagating outside of the laser core (GaAs/A1₀.₁₅Ga₀.₈₅As material system). The frequency tuning is achieved by changing the transverse wave vector, using a plunger made by metal (metal plunger) or silicon (dielectric plunger). When nudged close to the wire laser core, the metal plunger can push modes to the opposite side of the waveguide. Confined by a metal-metal waveguide, the mode is squeezed and the transverse wave vector is increased, resulting in a blue-shifted frequency. In contrast, a silicon plunger can suck the mode out due to its similar refractive index to GaAs/Al₀.₁₅Ga₀.₈₅As material system of laser core. Thus a decreased transverse wave vector results in a redshifted frequency. Although a tuning record of 138GHz (3.6%) was achieved, a discontinuous tuning resulted from a jittering movement of the plungers due to its friction with the guiding system. To solve this problem, an improved plunger based on micro-mechanical system (MEMS) was implemented. This MEMS plunger uses a two-stage folded-beam flexure to isolate the misaligned external actuation. The plunger is attached with the flexure which suspends above a silicon substrate to eliminate friction. Eventually, this MEMS flexure was actuated by a mechanical system which comprised a lever to de-amplify the displacement of a linear mechanical feedthrough. This MEMS plunger enabled a restorable and frictionless movement which led to a continuous tuning range of 330GHz (8.6%) centered at ~3.85 THz. The challenges posted by the weak mode discrimination led to the development of comb-shape connectors which electrically connect the top metal of wire lasers and the side bonding pad. This design can significantly increase the mode discrimination by selectively guiding undesired mode into the lossy bonding pad. This robust design of single mode operation enables the initial lasing at a frequency far below the gain peak, which can potentially increase the tuning range significantly.by Qi Qin.Ph.D

    Review of LTCC technology for millimeter waves and photonics

    Get PDF
    VTT Technical Research Centre of Finland Ltd. has developed and utilized Low Temperature Co-fired Ceramic (LTCC) technology for about 25 years. This paper presents our activities related to photonics and millimetre-waves, including also a relevant literature survey. First a short summary of the technology is given. Especially, the unique features of LTCC technology are described in more details. In addition, several examples have been given to show the validity of LTCC technology in these high-performance fields

    Review of LTCC Technology for Millimeter Waves and Photonics

    Get PDF
    VTT Technical Research Centre of Finland Ltd. has developed and utilized Low Temperature Co-fired Ceramic (LTCC) technology for about 25 years. This paper presents our activities related to photonics and millimetre-waves, including also a relevant literature survey. First a short summary of the technology is given. Especially, the unique features of LTCC technology are described in more details. In addition, several examples have been given to show the validity of LTCC technology in these high-performance fields

    Wireless Terahertz Communications: Optoelectronic Devices and Signal Processing

    Get PDF
    Novel THz device concepts and signal processing schemes are introduced and experimentally confirmed. Record-high data rates are achieved with a simple envelope detector at the receiver. Moreover, a THz communication system using an optoelectronic receiver and a photonic local oscillator is shown for the first time, and a new class of devices for THz transmitters and receivers is investigated which enables a monolithic co-integration of THz components with advanced silicon photonic circuits
    corecore