16 research outputs found

    Integrated Control of Microfluidics – Application in Fluid Routing, Sensor Synchronization, and Real-Time Feedback Control

    Get PDF
    Microfluidic applications range from combinatorial chemical synthesis to high-throughput screening, with platforms integrating analog perfusion components, digitally controlled microvalves, and a range of sensors that demand a variety of communication protocols. A comprehensive solution for microfluidic control has to support an arbitrary combination of microfluidic components and to meet the demand for easy-to-operate system as it arises from the growing community of unspecialized microfluidics users. It should also be an easy to modify and extendable platform, which offer an adequate computational resources, preferably without a need for a local computer terminal for increased mobility. Here we will describe several implementation of microfluidics control technologies and propose a microprocessor-based unit that unifies them. Integrated control can streamline the generation process of complex perfusion sequences required for sensor-integrated microfluidic platforms that demand iterative operation procedures such as calibration, sensing, data acquisition, and decision making. It also enables the implementation of intricate optimization protocols, which often require significant computational resources. System integration is an imperative developmental milestone for the field of microfluidics, both in terms of the scalability of increasingly complex platforms that still lack standardization, and the incorporation and adoption of emerging technologies in biomedical research. Here we describe a modular integration and synchronization of a complex multicomponent microfluidic platform

    Micromachines for Dielectrophoresis

    Get PDF
    An outstanding compilation that reflects the state-of-the art on Dielectrophoresis (DEP) in 2020. Contributions include: - A novel mathematical framework to analyze particle dynamics inside a circular arc microchannel using computational modeling. - A fundamental study of the passive focusing of particles in ratchet microchannels using direct-current DEP. - A novel molecular version of the Clausius-Mossotti factor that bridges the gap between theory and experiments in DEP of proteins. - The use of titanium electrodes to rapidly enrich T. brucei parasites towards a diagnostic assay. - Leveraging induced-charge electrophoresis (ICEP) to control the direction and speed of Janus particles. - An integrated device for the isolation, retrieval, and off-chip recovery of single cells. - Feasibility of using well-established CMOS processes to fabricate DEP devices. - The use of an exponential function to drive electrowetting displays to reduce flicker and improve the static display performance. - A novel waveform to drive electrophoretic displays with improved display quality and reduced flicker intensity. - Review of how combining electrode structures, single or multiple field magnitudes and/or frequencies, as well as variations in the media suspending the particles can improve the sensitivity of DEP-based particle separations. - Improvement of dielectrophoretic particle chromatography (DPC) of latex particles by exploiting differences in both their DEP mobility and their crossover frequencies

    ELECTRIC FIELD INDUCED DROPLET MANIPULATION

    Get PDF
    In this thesis, we explore several droplet manipulation concepts on different length scales for a surface cleaning application. The design evolution to transfer these techniques from laboratory conditions to a chaotic environment, such as on the road, is an evolving engineering challenge where reliability and performance are equally important. Electrowetting and liquid dielectrophoresis are techniques by which an electromechanical response from an applied electric field enables precise droplet manipulation. This thesis presents several contributions to these technologies, focusing primarily on scalability, simplicity, and reliability. The control of surface wettability using the electric methods attracts much attention due to their fast response (milliseconds), exceptional durability (hundreds of thousands of switching cycles) and low energy consumption (hundreds of microwatts). Furthermore, their superior performance and reliable nature have prompted a vast amount of literature to expand their application. They are widely used in several scientific and industrial fields, including microfluidics, optical devices, inject printing, energy harvesting, display technologies, and microfabrication. Droplet actuation using electric methods has been a long-standing interest in microfluidics, and most often, it is limited by high operating voltages. The first actuation method explored in this thesis is based on interdigitated electrodes to generate a dielectrophoretic response. In order to apply an effective electrostatic force for droplet manipulation, the geometry of the electrodes must be optimised, which similarly leads to a lower operating voltage (as low as 30 V). Furthermore, microscale electrodes can be iteratively combined to realise larger arrays to move larger droplets. The iterative approach was developed for a large-scale device to manipulate droplets of varying sizes while keeping the actuation process simple. In the second actuation method, a pair of microelectrodes separated by a variable gap distance generated an electrostatic gradient to produce a continuous droplet motion along the length of the electrode pad. The novel actuation method transported droplets of different sizes without active control. The droplet actuation was demonstrated on a larger scale using several platforms, including radial-symmetric, linear, and bilateral-symmetric droplet motion. An automated self-cleaning platform was tested in laboratory conditions and on the road. The technology has significant potential in the automotive sector to clean body parts, camera covers, and scanning sensors. The electrostatic force applied across the droplet was calculated by placing a continuously moving droplet on a tilted platform and measuring the critical angle at which the droplet’s gravity overcomes the opposing applied electric force. Several electrode designs were also considered to evaluate the effect of electrode geometry on the actuation force. The droplet actuation was also modelled using an analytical approach to estimate the critical signal frequency, maximum electrostatic energy, and maximum electrostatic force. Lastly, a tilting micromirror platform investigated the dielectrophoretic response without measuring the droplet contact angle. The mirror platform is also suitable for other optical applications as it provides three axes of movement for beam steering. The tilting platform enabled an angular coverage of up to 0.9° (± 0.02°), with a maximum displacement of 120 μm. We also explored the feasibility of using a microhydraulic actuator based on liquid dielectrophoresis for a microfluidic application. The actuation method opens new possibilities for positioning and manipulating particles and components. These could be hazardous medical materials or even radioactive substances, where direct contact should be avoided

    A Modular design framework for Lab-On-a-Chips

    Full text link
    This research discusses the modular design framework for designing Lab-On-a-Chip (LoC) devices. This work will help researchers to be able to focus on their research strengths, without needing to learn details of LoCs design, and they can reuse existing LoC designs

    Analysis of relevant technical issues and deficiencies of the existing sensors and related initiatives currently set and working in marine environment. New generation technologies for cost-effective sensors

    Get PDF
    The last decade has seen significant growth in the field of sensor networks, which are currently collecting large amounts of environmental data. This data needs to be collected, processed, stored and made available for analysis and interpretation in a manner which is meaningful and accessible to end users and stakeholders with a range of requirements, including government agencies, environmental agencies, the research community, industry users and the public. The COMMONSENSE project aims to develop and provide cost-effective, multi-functional innovative sensors to perform reliable in-situ measurements in the marine environment. The sensors will be easily usable across several platforms, and will focus on key parameters including eutrophication, heavy metal contaminants, marine litter (microplastics) and underwater noise descriptors of the MSFD. The aims of Tasks 2.1 and 2.2 which comprise the work of this deliverable are: • To obtain a comprehensive understanding and an up-to-date state of the art of existing sensors. • To provide a working basis on “new generation” technologies in order to develop cost-effective sensors suitable for large-scale production. This deliverable will consist of an analysis of state-of-the-art solutions for the different sensors and data platforms related with COMMONSENSE project. An analysis of relevant technical issues and deficiencies of existing sensors and related initiatives currently set and working in marine environment will be performed. Existing solutions will be studied to determine the main limitations to be considered during novel sensor developments in further WP’s. Objectives & Rationale The objectives of deliverable 2.1 are: • To create a solid and robust basis for finding cheaper and innovative ways of gathering data. This is preparatory for the activities in other WPs: for WP4 (Transversal Sensor development and Sensor Integration), for WP(5-8) (Novel Sensors) to develop cost-effective sensors suitable for large-scale production, reducing costs of data collection (compared to commercially available sensors), increasing data access availability for WP9 (Field testing) when the deployment of new sensors will be drawn and then realized

    Rapport annuel 2011-2012

    Get PDF

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Bilateral Macro-Micro Teleoperation Using A Magnetic Actuation Mechanism

    Get PDF
    In recent years, there has been increasing interest in the advancement of microrobotic systems in micro-engineering, micro-fabrication, biological research and biomedical applications. Untethered magnetic-based microrobotic systems are one of the most widely developing groups of microrobotic systems that have been extensively explored for biological and biomedical micro-manipulations. These systems show promise in resolving problems related to on-board power supply limitations as well as mechanical contact sealing and lubrication. In this thesis, a high precision magnetic untethered microrobotic system is demonstrated for micro-handling tasks. A key aspect of the proposed platform concerns the integration of magnetic levitation technology and bilateral macro-micro teleoperation for human intervention to avoid imperceptible failures in poorly observed micro-domain environments. The developed platform has three basic subsystems: a magnetic untethered microrobotic system (MUMS), a haptic device, and a scaled bilateral teleoperation system. The MUMS produces and regulates a magnetic field for non-contact propelling of a microrobot. In order to achieve a controlled motion of the magnetically levitated microrobot, a mathematical force model of the magnetic propulsion mechanism is developed and used to design various control systems. In the workspace of 30 × 32 × 32 mm 3, both PID and LQG\LTR controllers perform similarly the position accuracy of 10 µ m in a vertical direction and 2 µ m in a horizontal motion. The MUMS is equipped with an eddy-current damper to enhance its inherent damping factor in the microrobot's horizontal motions. This paper deals with the modeling and analysis of an eddy-current damper that is formed by a conductive plate placed below the levitated microrobot to overcome inherent dynamical vibrations and improve motion precision. The modeling of eddy-current distribution in the conductive plate is investigated by solving the diffusion equation for vector magnetic potential, and an analytical expression for the horizontal damping force is presented and experimentally validated. It is demonstrated that eddy-current damping is a crucial technique for increasing the damping coefficient in a non-contact way and for improving levitation performance. The damping can be widely used in applications of magnetic actuation systems in micro-manipulation and micro-fabrication. To determine the position of the microrobot in a workspace, the MUMS uses high-accuracy laser sensors. However, laser positioning techniques can only be used in highly transparent environments. A novel technique based on real-time magnetic flux measurement has been proposed for the position estimation of the microrobot in case of laser beam blockage, whereby a combination of Hall-effect sensors is employed to find the microrobot's position in free motion by using the produced magnetic flux. In free motion, the microrobot tends to move toward the horizontally zero magnetic field gradient, Bmax location. As another key feature of the magnetic flux measurement, it was realized that the applied force from the environment to the microrobot can be estimated as linearly proportional to the distance of the microrobot from the Bmax location. The developed micro-domain force estimation method is verified experimentally with an accuracy of 1.27 µ N. A bilateral macro-micro teleoperation technique is employed in the MUMS for the telepresence of a human operator in the task environment. A gain-switching position-position teleoperation scheme is employed and a human operator controls the motion of the microrobot via a master manipulator for dexterous micro-manipulation tasks. The operator can sense a strong force during micro-domain tasks if the microrobot encounters a stiff environment, and the effect of hard contact is fed back to the operator's hand. The position-position method works for both free motion and hard contact. However, to enhance the feeling of a micro-domain environment in the human operator, the scaled force must be transferred to a human, thereby realizing a direct-force-reflection bilateral teleoperation. Additionally, a human-assisted virtual reality interface is developed to improve a human operator's skills in using the haptic-enabled platform, before carrying out an actual dexterous task.1 yea

    EUROSENSORS XVII : book of abstracts

    Get PDF
    Fundação Calouste Gulbenkien (FCG).Fundação para a Ciência e a Tecnologia (FCT)
    corecore