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Abstract

In recent years, there has been increasing interest in the advancement of micro-

robotic systems in micro-engineering, micro-fabrication, biological research and

biomedical applications. Untethered magnetic-based microrobotic systems are

one of the most widely developing groups of microrobotic systems that have been

extensively explored for biological and biomedical micro-manipulations. These

systems show promise in resolving problems related to on-board power supply

limitations as well as mechanical contact sealing and lubrication. In this the-

sis, a high precision magnetic untethered microrobotic system is demonstrated

for micro-handling tasks. A key aspect of the proposed platform concerns the

integration of magnetic levitation technology and bilateral macro-micro teleoper-

ation for human intervention to avoid imperceptible failures in poorly observed

micro-domain environments.

The developed platform has three basic subsystems: a magnetic untethered

microrobotic system (MUMS), a haptic device, and a scaled bilateral teleopera-

tion system. The MUMS produces and regulates a magnetic field for non-contact

propelling of a microrobot. In order to achieve a controlled motion of the magnet-

ically levitated microrobot, a mathematical force model of the magnetic propul-

sion mechanism is developed and used to design various control systems. In

the workspace of 30×32×32 mm3, both PID and LQG\LTR controllers perform

similarly the position accuracy of 10 µm in a vertical direction and 2 µm in a

horizontal motion.

The MUMS is equipped with an eddy-current damper to enhance its inherent

damping factor in the microrobot’s horizontal motions. This paper deals with the

modeling and analysis of an eddy-current damper that is formed by a conduc-

tive plate placed below the levitated microrobot to overcome inherent dynamical

vibrations and improve motion precision. The modeling of eddy-current distribu-

tion in the conductive plate is investigated by solving the diffusion equation for

vector magnetic potential, and an analytical expression for the horizontal damp-

ing force is presented and experimentally validated. It is demonstrated that eddy-

current damping is a crucial technique for increasing the damping coefficient in a

non-contact way and for improving levitation performance. The damping can be

iii



widely used in applications of magnetic actuation systems in micro-manipulation

and micro-fabrication.

To determine the position of the microrobot in a workspace, the MUMS uses

high-accuracy laser sensors. However, laser positioning techniques can only be

used in highly transparent environments. A novel technique based on real-time

magnetic flux measurement has been proposed for the position estimation of the

microrobot in case of laser beam blockage, whereby a combination of Hall-effect

sensors is employed to find the microrobot’s position in free motion by using the

produced magnetic flux. In free motion, the microrobot tends to move toward the

horizontally zero magnetic field gradient, Bmax location. As another key feature

of the magnetic flux measurement, it was realized that the applied force from the

environment to the microrobot can be estimated as linearly proportional to the

distance of the microrobot from the Bmax location. The developed micro-domain

force estimation method is verified experimentally with an accuracy of 1.27 µN.

A bilateral macro-micro teleoperation technique is employed in the MUMS for

the telepresence of a human operator in the task environment. A gain-switching

position-position teleoperation scheme is employed and a human operator con-

trols the motion of the microrobot via a master manipulator for dexterous micro-

manipulation tasks. The operator can sense a strong force during micro-domain

tasks if the microrobot encounters a stiff environment, and the effect of hard con-

tact is fed back to the operator’s hand. The position-position method works for

both free motion and hard contact. However, to enhance the feeling of a micro-

domain environment in the human operator, the scaled force must be transferred

to a human, thereby realizing a direct-force-reflection bilateral teleoperation. Ad-

ditionally, a human-assisted virtual reality interface is developed to improve a

human operator’s skills in using the haptic-enabled platform, before carrying out

an actual dexterous task.
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Chapter 1

Introduction

The past decade has seen the rapid development of micro- and nano-based systems

across various disciplines, such as microsurgery, biological/biomedical manipula-

tions, optics, and micro-devices. However, the development of high precision

devices for machining, assembly and manipulation present some challenges in the

development of microsystem tools. Although intense research has been under-

taken on the fabrication of MEMS1 and MOEMS2, few studies have explored

the field of micro-assembly, micro-manipulation and bio-micromanipulation. The

first generation of micro-manipulation systems involves semiconductor manufac-

turing techniques that offer promising results for mass production. However,

these costly systems have not been well adapted (low flexibility) for human hand-

operated tasks, such as cell micro-manipulation, microsurgery or micro-assembly

of small series micro-products. In comparison with manipulation in the macro-

world, the main research in micromanipulations is focused on: 1) the design and

manufacturing of miniaturized parts, and 2) the modeling complexities of scaling

effect phenomena in micro- and nano-domain environments3.

The miniaturization of macro-world manipulation techniques incorporates

the advancement of the micro-domain actuators, sensors, electrical circuits, and

power supplies. However, these modules have not been well modified for minia-

11micro-electro-mechanical-systems
2micro-opto-electro-mechanical systems
3The insignificant un-modeled forces in the macro-world such as friction and adhesion act

as dominant sources of force in the micro-world [95]
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turized applications, and their integration restricts the construction of micro- and

nano-based manipulation platforms.

In addition, the generally poor understating of micro-domain physical prop-

erties causes dilemmas in the design of micro-manipulation systems, as the ac-

curate mathematical modeling of systems for automatic micro-manipulation is

indispensable. A substantial and growing body of literature has reported solu-

tions consisting either of accurate mathematical models of micro-mechanics and

micro-mechanisms or human interventions to enhance the performance of micro-

manipulation tasks.

In order to satisfy the need for low cost, high accuracy, high flexibility and

bio-compatibility, a novel research-made micro-manipulation platform was de-

veloped from scratch at the Maglev Microrobotics Lab, University of Waterloo.

This thesis addresses micro-manipulation challenges by a non-contact-actuated

mechanism using a controlled magnetic field. A magnetic drive unit is designed to

produce and regulate the magnetic field for the non-contact propelling of a micro-

robot, which consists of a magnetic head, electronic circuits, and an end-effector.

By integrating this magnetic-based mechanism with a haptic interface, the hu-

man operator intervenes in dexterous micro-manipulations or micro-assemblies

to compensate the lack of information from the micro-task’s environment

1.1 Microrobotic Platform Literature Review 1

This research deals with numerous challenges across various disciplines. The

present section starts with a comprehensive literature review discussing the ad-

vantages, limitations and drawbacks of various micro-manipulation techniques. A

general overview of magnetic-based actuation technology is subsequently carried

out, followed by a literature review of human intervention importance and pro-

posed solutions for reliable micro-manipulation follows in Section 1.1.3. As a final

1Portions of this section are published by Moein Mehrtash and Mir Behrad Khamesee, De-
sign and Implementation of LQG/LTR Controller for a Magnetic Tele-manipulation System-
Performance Evaluation and Energy Saving, Microsystem Technologies, 17(5-7), pp. 1145-1152
and Moein Mehrtash, Noaoki Tsuda, and Mir Behrad Khamesee, Bilateral Macro-Micro Tele-
operation Using Magnetic Levitation, Mechatronics, IEEE/ASME Transactions on, 16(3),pp.
459-469
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point in this chapter, the research objective statement and outline are provided.

1.1.1 Review of Micro-manipulation

A considerable amount of research has been devoted to micro-to-nano-sized object

manipulation with micron or sub-micron precision. Based on the overall review

of these studies, the micro-manipulation techniques can be categorized in sev-

eral different ways, depending on the application and manipulation environment.

According to the interaction mechanism between the tool and the manipulated

object, the micro-manipulation can generally be classified into “non-contact” and

“contact” types.

Non-contact Methods

The currently developed non-contact micro-manipulation techniques are optical

trapping [4], magnetic tweezers [44; 108], and electric trapping [5]. Addition-

ally, there are numerous contact micro-manipulation methods that have been

developed based on microrobotic technologies such as atomic force microscopy

(AFM), probe-based micro-manipulators, micro-positioners, and micro-grippers.

All of these techniques provide manipulation in various scales and applications

(Fig. 1.1). Figure 1.1 presents some examples of manipulated objects and re-

quired precision for various tasks.

Non-contact micro-manipulation methods have been recently applied to re-

alize the manipulation of particles and biological cells. Despite their promise,

these techniques nonetheless lack the dexterity to undertake complex tasks that

involve maneuvering in relatively unreachable environments. Such a non-contact

method is called optical trapping. In this method, a laser beam is focused on a

dielectric object, which has higher refractive index than the surrounding environ-

ment, and a polarizing force is applied to the manipulated object in the direction

of the laser beam’s focal point. By changing the focal point of the laser beam,

the manipulated object can then be moved.

However, there are some major drawbacks of this method. First of all, the

produced trapping force is in the sub-pN range, so that it can be used for gen-

tle movement of small particles, single DNA molecule [105] or cells [104; 117].
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Figure 1.1: The operational working envelopes and applications of micromanip-
ulation techniques [32; 66; 88]

Secondly, a polarizing force can be applied to dielectric materials only. Thus,

for the manipulation of conductive objects, a dielectric micro-bead must be at-

tached to the object, which is a labor-intensive task. A third drawback is that

a high intensity light source can cause photo-damage to the living objects for

bio-micromanipulation applications [24].

In addition, dielectrophoresis (DEP) and electrorotation are two other non-

contact techniques have been proposed for micro/nano manipulation. These

techniques involve the manipulation of dielectric particles using electric fields.

The gas bubbling formation (electrolytic process) in aqueous environments and

the increase of the environment’s temperature are two main restrictions of us-

ing an electric field for micro-manipulation in bio-applications, as these restric-

tions can also damage living cells, bacteria, and DNA [24].Nonetheless, mag-

netic micro-manipulation shows enormous potential in micro-assembly and bio-

micromanipulation, whereby ferromagnetic objects can be manipulated with an

external source magnetic field [64; 109]. The magnetic manipulation is preferred

over optical and electric methods for bi-micromanipulation, since the magnetic

field causes no physical damage to living cells and the growth rate of living cells
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Figure 1.2: Manipulated objects and the precision of contact-based manipulations
[18; 114; 127; 128]

is also not affected [108; 109].

Contact Methods

The most common and reliable method of micro-manipulation involves using

contact-based techniques. The literature validates several unindustrialized mi-

crorobotic systems for contact-based micro-manipulation applications as well

for mass production and small series productions. Figure 1.2 summarizes the

accuracy-versus-object-size for various contact-based micro-manipulation plat-

forms. Performing dexterous tasks with a higher order of flexibility is a significant

target of micro-manipulation platforms, but most research explores fundamental

subsystems such as locomotion mechanism, end-effectors, and sensors [18]. The

locomotion mechanism permits end-effector motions to be produced for micro-

object manipulation. Based on the applications and constraints of the workspace,

many locomotion mechanisms have been proposed, such as:

1. High precision macro-domain robots [62; 90; 114; 127; 128]

2. Micro-domain robots [59]

3. Mobile microrobots [38; 96]
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Figure 1.3: Macro-domain robots for micromanipulation and microassembly

A large body of literature addresses the micro-domain pick-and-place by em-

ploying a MEMS end-effector attached to a high precision macro-domain robot.

Perhaps the most serious drawback of these bulky macro-domain robots as lo-

comotion mechanisms is that the arms and connections of macro-domain robots

constrain the working envelope of end-effectors, Fig. 1.3 shows some examples of

macro-domain robots that have been used in micro-manipulation stations [The

Carl Zeiss Corp. [12] constructed SteREO Discovery V20 for manipulation of

living cells and genetic material by using a macro-domain robotic platform with

micro-sized end-effectors. In a similar way, a research-made micro-assembly sta-

tion [120] is constructed for MEMS integration by using a macro-domain robot.].

Furthermore, although macro-domain robots provide micro- and nano-ordered

position accuracy, they are not designed to apply micro-domain forces and may

even destroy manipulated objects by applying high order force/torque.

Numerous research has proposed the miniaturization of macro-domain robots

for performing micro-domain tasks. These micro-domain robots are generally

composed of elementary micro-domain units such as piezoelectric/ultrasonic ac-

tuator and DC miniaturized step motors [23]. Electric motors promptly lose

their efficiency once downsized, as the torque required to turn an object around

increases exponentially according to size [42; 97] ( whereas the force produced

by an electromagnet cuts down at the cube of its length [42; 97]).Although some

provide sub-micron resolution, limitations such as slow response time and high
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nonlinearity in dynamics cause control issues with this kind of locomotion mech-

anism [125].Piezoelectric-based actuation mechanisms show promise for micro-

and nano-scale robotic systems, but their small working range and high voltage

requirements make them unfeasible for the current scale of connectors, power

supply, and controllers [11].

Mobile microrobots offer the desired capability, versatility, and flexibility

in micromanipulation and micro-assembly fields. These microrobots use nu-

merous locomotion techniques such as swimming [46; 68; 68; 129], paddling

[57; 81; 103], walking [1], and flying [8]. Figure 1.4 illustrates some mobile-

microrobotic stations. Although the literature reports consequential advances in

the design and implementation of this type of microrobotic system, integrating

the on-board miniaturized power supply (which significantly increases the size

of microrobots) remains a considerable challenge. However, untethered micro-

robotic systems show excellent potential in accommodating power supply con-

straints. These systems use off-board power sources through various methods

such as electrostatic, photo-thermal, and magnetic transformation and carry out

the required power transfers to mobile microrobots without direct hardware con-

nections. Moreover, the magnetic actuation provides a cell-friendly environment

for bio-micromanipulations. In [34], a magnetic untethered microrobotic system

(MUMS) has been developed for micro-manipulation applications. This platform

shows promise for extensive biological/biomedical applications, as the power re-

quired for the manipulation of a micro-gripper, shown in Fig. 1.4 (c) , is produced

by an external magnetic drive unit.

Table 1.1 compares and summarizes the advantages and drawbacks of various

locomotion strategies for contact-based micro-manipulation stations. As we can

see, the micro-mobile robot provides superior locomotion mechanism such that

their major drawbacks and on-board power supply and connection can be covered

up by using untethered techniques.

Micro-sized end-effectors and sensors

The end-effectors of micro-manipulation platforms have also been investigated

and proposed for various applications. The most widespread of these mechanisms
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Figure 1.4: Mobile microrobots for micro-manipulation and micro-assembly

are MEMS-based grippers, vacuum grippers, and needles. MEMS-based grippers

have been proposed based on piezoelectric elements, shape memory alloys, fluidic

actuated systems, and electrostatic actuators. The main advantage of MEMS-

based grippers is that they enable the control of the grasp-and-release position

with limited rotation of micro-objects. Vacuum grippers are generally flexible

and simple mechanism tools for micro-manipulation of any shape micro-objects.

The promising usefulness of these kinds of grippers is that they guarantee the

deposition in spite of a large adhesion effect in a micro-domain environment [75].

Needles are also simple devices for pushing and pulling micro-objects, but their

use is limited in pick-and-place tasks. To pick up a micro-object with needles,

an adhesion force acting between the tool and the micro-object must be larger

than forces between the micro-object and environment. On the other hand, the

reverse action has to be performed to guarantee the deposition. The literature

reports numerous investigations toward resolving these conflicting requirements,
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Table 1.1: Comparison of various locomotion mechanisms

Locomotion Pros Cons

Macro-domain Robot
•High precision
•Commercialized

•Damage to micro-objects
•Arms and connections constraints

Micro-domain Robot •Sub-micron resolutions

•Slow time response
•High nonlinearity in dynamics
•High voltage required

Micro-mobile Robot
•Sub-micron resolutions
•High flexibility

•On-board power supply constraints
•Connection constraints

Object size 
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End-effector

technique
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MEMS micro 
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Micro needle 

Other 

 = one end-effector developed by research team 

Figure 1.5: End-effector mechanism Vs. size of manipulated objects, each point
presents one developed end-effector technique [15; 17; 18; 127]

such as: 1) using two tools [61], 2) using rotation techniques [52], and 3)using a

specific tool trajectory [92]. The specific application has led to the development

of a particular end-effector. To select one strategy for end-effector development,

the size of the manipulated objects, the physical properties of the manipulation

environment, and the geometry of the micro-objects all need to be considered,

Fig. 1.5 references various developed end-effector techniques contrasted to the

size of manipulated objects, from 1 µm to 1 mm.

Sensors are essential components of micro-manipulation platforms. These

highly sensitive components provide feedback from physical properties of a micro-

domain environment, which is significantly complex and poorly understood. To
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perform micro-manipulation tasks, the precise measurement of force and position

is a great challenge in providing accurate feedback to the control system, par-

ticularly in teleoperated and automatic mode. In particular, force sensing can

be used to prevent damaging fragile micro-parts and to identify the characteriza-

tion of micro-domain forces. Strain gages [52; 58], capacitance sensors [123], and

PVDF (piezoelectric polymer) [41; 70; 100]have been investigated as force sensors,

with resolutions ranging from 1 nN to 400 µN. For position feedback, numerous

techniques have been proposed, such as optical microscopes, high resolution laser

sensors, and scanning electron microscopes. An appropriate technique can be

chosen based on the size of micro-parts and the required accuracy.

Concluding remarks

This dissertation will focus on developing a precise untethered magnetic-based

locomotion mechanism for contact-based microrobotic platforms. A controlled

magnetic field is used for non-contact manipulation of a microrobot that carries

the end-effector. Advancing the end-effector technique and micro-sensors are not

the key aspect of this research; instead, a simple end-effector will be used for ex-

perimental verification. Nonetheless, the proposed locomotion mechanism has the

potential to be equipped with sophisticated end-effectors. A novel micro-domain

force sensing method will also be introduced that does not require attaching force

sensors to the end-effector.

1.1.2 Review of Magnetic Propulsion Mechanisms

Magnetic-based actuation mechanisms show great potential for non-contact en-

ergy transmission, (the untethered method) in microrobotic systems. These sys-

tems generally consist of a magnetic drive unit (the manipulator) which generates

a magnetic field to provide the actuation energy for a ferromagnetic object (the

manipulated object or an end-effector). Such a system is described in [40], in

which a giant magnetostrictive alloy (GMA) is designed to provide actuation en-

ergy for an in-pipe micro mobile robot. The primary benefit of this mechanism is

that the operating life time of the microrobot would last as long as power is pro-

vided to the drive unit. Thus, it will always be possible to generate enough force
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to overcome surface forces for micro-domain applications, with no need to increase

the on-board power supply size. The non-contact nature of a magnetic actuation

mechanism makes it suitable for use in out-of-reach and hard-to-reach locations,

such as hazardous environments and inside the human body [13; 14; 94; 102; 124].

In [71; 115], a clinical MRI platform is proposed for the navigation of a ferromag-

netic bead inside the human body. This system has been validated in vivo in

the artery of a living animal [71]. In [13; 14; 94; 102; 124], various endoscopic

capsules have also been developed by using magnetic maneuvering concepts with

robotic navigation systems. Eliminating the need for moving parts during the

energy transfer not only reduces the maintenance and servicing expenses but

also provides a dust-free environment for clean operation applications such as

semiconductor manufacturing [130] and biological manipulations.

A considerable amount of literature has been published on magnetic actuation

mechanisms that contain a small magnetic gap between the manipulator and

manipulated objects [60; 130]. In a general small gap system, a magnetically

floated stage is moved without problems caused by contact friction, and extra-high

resolution position control can be achieved. These systems can typically produce

a large horizontal working envelope, but the vertical working range is generally

small. Therefore, the manipulated object cannot be sufficiently separated from

the manipulator for remote applications, like in the workspace of a floating plate

in [130] is 2×2×2 mm3. In [60],a multi-axis maglev stage with a horizontal

operating range of 5×5 mm2 and vertical operating range of 500 µm is presented.

A contact-free planner system in [51] provides a horizontal workspace of 32×32

mm2 and a vertical range of 1.5 µm.

Difficulties arise, however, when an attempt involves the large magnetic gap

needed for telemanipulation applications [15; 21; 34; 55; 78; 115].To achieve a

desired magnetic field in large magnetic gap systems, a proper magnetic circuit

has to be designed. In [76], the concept of the pole-piece is introduced to augment

the magnetic field for large gap systems. This concept has been investigated

extensively in [55].Achieving motion control of manipulated objects in large gap

systems means that the system has sufficient potential to operate in a remote or

an enclosed environment.

A large and growing body of literature on large gap systems has investigated
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one-DOF motions with a one-axis manipulator. Perhaps the most serious dis-

advantage of these approaches is that a three-axis manipulator is required to

achieve the 3-D manipulation. Due to the limited space, the three-axis manipu-

lator interferes with access to the manipulated object. In [76], a novel prototype

mechanism is introduced for the 3-D motion of a small permanent magnet (PM)

with a one-axis manipulator. In this system, the regulation of magnetic field for

3-D motion is intensely related to the geometric design of the pole-piece [55]. The

combination of the electromagnets and the pole-piece configures the flux leakages

in such a way as to produce 3-D actuation energy in the device workspace. In this

system, a permanent magnet with a mass of 1 g is manipulated within a volume

of 28×28×30 mm3. This large gap system is developed in [54] to manipulate a

microrobot with a mass of 8.1 g in a volume of 29×29×26 mm3. The microrobot

consists of a magnetic head, electronic circuits and fingers. A shape memory

alloy (SMA) actuator activates the fingers to grasp or release the micro-objects.

Based on the design in [54], a large gap system was developed at the University of

Waterloo [21]. This system has the potential to manipulate a 11.19 g microrobot

in working envelope of 30×22×20 mm3.

In this study, a large gap system based on Craig ’s research [21] has been

developed with the purpose of improving the 3-D motion control for a magnetic

untethered microrobotic system (MUMS).

1.1.3 Review of Teleoperation

One of the most important challenges in the design of micro-manipulation systems

is the scaling effect phenomenon that changes the dominance of physical phenom-

ena in micro-domain [95]. The insignificant unmodeled forces in the macro-world

such as friction and adhesion act as dominant sources of force in the micro-world.

Therefore, the better these forces are modeled in the design process of micro-

robotic systems, the more reliable are the micro-object interactions are achieved.

However, these complicated forces have been weakly observed, so human inter-

vention can significantly enhance the micro-manipulation tasks with avoiding of

imperceptible failures. In addition, a tactile or haptic feedback to the human

operator shows a great promise for improving the dexterity and accuracy of task
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suck as a robot-assisted minimally invasive surgery.

In such a system [3], the “Haptic Loupe” was developed to perform micro-

manipulations by a human operator without stress and tension. Similar haptic

micro-manipulation systems were proposed for micro-manufacturing and micro-

assembly [36; 56; 118]. Moreover, haptic microrobotic systems show a significant

promise in biological/biomedical applications that professional human operators

perform dexterous micromanipulations, such systems as da vinci telerobotic surgi-

cal system in conjunction with tension measuring device [7], haptic-enabled tumor

localization system [113], cell injection platforms [6; 101; 126], and cell/scaffold

force-feedback manipulator [127]. Therefore, to advance our research-made pro-

totype for bio-micromanipulation and medical applications, a “Haptic Loupe” is

integrated with our magnetic untethered microrobotic system.

Moreover, using haptic interface coupled with a robotic platform in the biolog-

ical and biomedical intervention can offer advantages including high resolution

manipulation capability, good repeatability, high reliability, and fatigue reduc-

tion. Most of the interventions are either accurate procedure (cell manipulation,

micro-surgery, and etc) or a minimal access to task environment (hazardous ma-

nipulation environment, inter vascular surgery, and etc). In teleoperated tools,

the operational motion of a manipulator (slave robotic platform) is controlled by

a human operator’s interface (master platform). This master-slave robotic sys-

tem enables human operators to handle complications in terms of dexterity, fine

manipulation, and force-feedback capability.

The strategy of adjusting the master and slave controllers in a bilateral tech-

nique has been applied in some research on teleoperations. Salcudean et al. [93]

presents “matched impedance” method, which uses the contact forces and ve-

locities to adjust the master and slave target impedances to match high or low

impedance environments. The variable damping impedance control has been

proposed in a similar concept [29]. Various teleoperation control architecture

proposed in literature can be classified as [116]

• 2-channel architecture [Position-error-based (PEB)]: the master and slave

controller does not use force measurements and merely tries to minimize

the difference between master and salve position. Thus, the reflecting force

is proportional to this difference.
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• 2-channel architecture [direct-force-reflection (DFR)]: This method uses di-

rect force measurements to transfer the interaction between the slave and

the environment.

• 4-channel architecture: This method uses a combination of direct position

and force measurement for implementing the bilateral teleoperation.

The DFR and 4-channel architecture control schemes for bilateral teleoper-

ation assume that the contact information is measured by force/torque sensors

directly. However, force/torque sensors are expensive, sensitive to temperature

variations, and noise-prone. An alternative approach is PEB bilateral teleopera-

tion. Lawrence [63] showed that, with linear time-invariant controllers, the PEB

architecture provides poor transparency. To improve the transparency, the po-

sition controllers are needed to be re-adjusted when the dynamics at the slave

site changes, such as hitting a hard object [77]. In our study, the gain-switching

control scheme for PEB bilateral teleoperation proposed by Ni [77] is employed

as a strategy of the scaled bilateral teleoperation system (SBTS).

This study introduces a novel micro-domain force estimation method for ap-

plications in the magnetic untethered microrobotic system (MUMS). Due to the

size restriction, attaching force sensors to our microrobot is impractical. A com-

bination of Hall-effect sensor is used in the structure of the MUMS to estimate

a single-axis environmental force with no need of attaching force sensors to the

MUMS’s microrobot. Thus, the measured force can be fedback to human opera-

tor’s hand for higher transparency by a 2-channel DFR or 4-channel architecture.

1.2 Problem statement and objectives

Previous sections review various microrobotics system and challenges for micro-

domain manipulation. Based on the reviewed literature, various micro-manipulation

techniques have been investigated and compared. This study finally introduces a

novel magnetic-haptic micro-manipulation platform (MHMP) with promising po-

tential for extensive biological and biomedical applications. The platform includes

three basic subsystems: a magnetic untethered microrobotic system (MUMS),

14



Problem Statement Research Objective

Requirements for locomotion mechanism
- On-Board power supply
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- Bio-comptibility
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Figure 1.6: Problem statement and research objectives in brief

a haptic device , and a scaled bilateral teleoperation system (SBTS). There-

fore, many challenges in different research fields are addressed as demonstrated

schematically in Fig. 1.6.

As explained in Section 1.1, the magnetic untethered microrobotic technol-

ogy presents a great deal of promise for bio-compatible micromanipulations. This

technology transfers the actuation energy to the end-effector with no need of con-

nections and moving parts, as well as creating a dust-free working environment.

Thus, the inconvenience and restriction of arms and wires of macro-domain robots

can be completely eliminated by magnetic-based actuation mechanism. More-

over, the magnetic-based actuation mechanism can be employed for operation in

hazardous and hard-to-reach working environments.

The next big challenge in magnetic-based micro-manipulation is accomplish-

ing a dexterous task in a roughly known environment. A human-assisted interface

with professional user intervention can accommodate some large uncertainties

of working environments. In the developed haptic interface, the human opera-

tor performs from and receives the force feedback via a haptic device while the

magnetic untethered microrobotic system mimics the operator’s hand motion on
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the working space. There is possibility to reflect environment interaction forces

to the operator’s hand based on the difference between the operator’s position

command and the real position of the end-effector and without measuring the

environment contact force, Position-error-based (PEB) technique. However, the

transparency and reliability of the haptic interface can be advanced by feeding

the environmental forces to the scaled bilateral teleoperation system (SBTS). Our

micro-manipulation platform is equipped with a novel force measurement method

to feedback the environmental forces to the operator’s hand through the SBTS.

A key aspect of this research concerns the integration of magnetic levitation tech-

nology and bilateral macro-micro control system challenges that leads to design

and construct a “Magnetic-Haptic Micro-manipulation Platform (MHMP)”. This

platform is not only addressed the mentioned problems in Fig. 1.6, but also ad-

vanced exclusive aspect as dust-free working space and functioning in enclosed

environments.

1.3 Thesis outline

This thesis will focus on design and implementation a novel haptic magnetic

levitation device. This platform allows a human operator to control the macro

slave robot through manipulating the macro master haptic robot. This thesis is

structured around published or accepted manuscripts.

• Chapter 1 has already introduced the research objectives of this disserta-

tion. Furthermore, a comprehensive literature review on the recent research

conducted on the micro-manipulation platforms has been carried out.

• Chapter 2 describes the principle of magnetic levitation and demonstrates

the overall structure of a haptic equipped micro-manipulation platform. By

the end of this chapter, the background of the thesis will be finished and

the original study will be initiated by Chapter 3.

• Chapter 3 formulates the produced magnetic forces for motion control pur-

poses. In addition, the dynamical model and experimental motion control

of the magnetic untethered microrobotic system (MUMS) will be discussed

in this chapter.
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• Chapter 4 demonstrates the analytical modeling of eddy-current damping

mechanism to achieve higher position accuracy. The experimental measure-

ments validate the correctness of the modeling and the proposed mathemat-

ical relation.

• Chapter 5 introduces two novel concepts for position determination and

environmental micro-domain force sensing. Using the magnetic flux mea-

surement, the microrobot’s position can be determined in non-transparent

environment that the optical devices cannot be used. Furthermore, the

value of magnetic flux can be used to estimate the environmental micro-

domain force applied to the microrobot with no need of attaching force

sensors to the microrobot.

• Chapter 6 demonstrates the bilateral teleoperation control system design

which is integrated with the MUMS. In addition, a human-assisted virtual

reality platform is also presented that can be used for visualization and

training purposes.

• Chapter 7 presents the conclusions and recommendations of this disser-

tation. This research has resulted in the numerous journal and conference

publications listed in Appendix C.
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Chapter 2

Principle of Magnetic Levitation

and Platform Description

This chapter first introduces the principle of magnetic levitation mechanism and

the magnetic manipulation platform developed at the Maglev Microrobotic Lab-

oratory, University of Waterloo. Then, to demonstrate the capability of the

magnetic drive unit (MDU) to generate a controllable large gap magnetic field,

details on the MDU (the backbone of the magnetic-untethered microrobotic sys-

tem [MUMS]) are provided, along with optimal design parameter selection and

numerical analyses. The intensive magneto-static design analysis of MDU plays

a significant role in enhancing the performance of the MUMS, including its work-

ing envelope, motion stability, and motion accuracy. Magnetic circuit model-

ing is another analysis that demonstrates the importance of physical parameters

such as geometry and material properties in an MDU’S design. In addition, the

magneto-static numerical analysis, coupled with experimental verification in the

design/analysis process, provides a good approximation of magnetic field mathe-

matical modeling produced by the MDU. Finally, this chapter presents the basic

components of the magnetic-haptic manipulation platform (MHMP), including

two separate sites (a master site and a slave site) that can communicate with

each other via analog and/or Ethernet connections. The Ethernet/UDP1 com-

munication enables the human operator to accomplish a task from a remote site

1User datagram protocol
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connected to Internet.

This chapter is organized as follows. Section 2.1 presents the principle of

magnetic force calculation for a magneto-static condition. Section 2.2 presents

the concept of a stable 3D motion by controlling the magnetic field. Section 2.3

introduces the basic components of the developed MDU’s structure. In Section

2.4, the 2D analyses of the MDU is explained including the magnetic reluctance

model and numerical simulation. Section 2.5 describes the constructed platform

for experimental measurement of magnetic flux produced by the MDU. Section

2.6 explains in detail the structure of the MUMS and the MHMP.

2.1 Magnetostatic Fields

It is crucial to have a basic understanding of magnetic field-related problems to

initiate magnetic levitation-based manipulation. Maxwell’s four field equations

and three medium-dependent equations cover the entire theory of electromagnet-

ics (EM). The classification of a magnetic problem is an important concept for

selecting appropriate and simplified types of EM equations and is generally based

on factors such as load, boundary conditions and solution region. According to

these characteristics, the magnetic levitation is classified as a magneto-static type

[99]. The magneto-static formulation is also an approximation even when the cur-

rent is not static [99]. The equations satisfied by a stationary field are obtained

by placing the time-varying terms in Maxwell’s equation equal to zero as

∇×H = J (2.1)

∇ ·B = 0 (2.2)

where H is the magnetic field intensity, J is the electric current density and B is

the magnetic flux density. In terms of magnetic vector potential A

B = ∇×A (2.3)
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applying Lagrange’s formula of vector cross-product identity

∇× (∇× F) = ∇ (∇ · F)−∇2F (2.4)

to Eqs. 2.2 and 2.3 leads to Poisson’s equation for magneto-static fields as

∇2A = −µJ (2.5)

where µ = B/H is the permeability of the medium. In the absence of a current,

magnetic flux can be calculated by Laplace’s equation. The magnetic field will

be used in the calculation of the magnetic force experienced by a magnetic body

in magnetic-based actuators. In most of these actuators, permanent magnets

are used to increase the magnetic force in the magnetic field. The magnetic

force experienced by a permanent magnet in a magnetic field can be calculated

as “potential energy” and “magnetic dipole” methods. Using these methods,

the calculation of the magnetic force experienced by a permanent magnet in an

external magnetic field is presented in sections 2.1.1 and 2.1.2.

2.1.1 Potential Energy Method

Analyzing the energy in material bodies in a magnetic field is difficult when the

bodies are permanently magnetized, since there is residual field due to inherent

magnetization. The relation of the residual field can be expressed as [111],

B0 = µ0 (H0 +M0) (2.6)

where B0, H0, and M0 are residual magnetic field, residual flux intensity and

magnetization of a permanent magnet, respectively in the absence of an external

magnetic field. There will be induced magnetization (M) in the presence of

external source that depends primarily on the resultant field (H). The B-H

relation can be presented as [111],

B = µ0 (H+M0 +M (H+M0)) (2.7)
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To obtain a simple derivation of the potential energy, common assumptions indi-

cate that the inherent magnetization (M0) is rigid and the induced magnetization

(M) is negligible in comparison with M0. These assumptions are frequently used

and fulfilled in practice. The permanent magnet can be modeled with the equiva-

lent current distribution in a body of volume (V ) bounded by a surface (S). The

volume and surface current densities of an equivalent permanent magnet are

J = ∇×M0 (2.8)

K = M0 × n (2.9)

where n is the unit outward vector normal to S. The potential energy of a

permanent magnet is defined as

U = −
∫

V

J ·Adv −
∫

S

K ·Ada (2.10)

by substituting Eqs. 2.9 and 2.9 in Eq. 2.10,

U =

∫

V

(∇×M0) ·Adv −
∫

S

(M0 × n) ·Ada (2.11)

To simplify Eq. 2.11 the following relation are used [111]:

A · ∇ ×M0 = ∇ · (M0 ×A) +M · ∇ ×A (2.12)

(M0 ×A) · n = (n×M0) ·A = − (M0 × n) ·A (2.13)

By applying the divergence theorem and using vector potential relation, the total

potential energy of a permanent magnet inside external magnetic field (B) can

be calculated as

U = −
∫

V

M0 ·Bdv (2.14)

This relation introduces the work necessary for a permanent magnet as a rigid

body from infinity to a position with external magnetic field (B). By using the

virtual displacement method and the total potential energy relation, the exerted
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force on the unit volume of a permanent magnet can be defined as

f = +∇ (M0 ·B) (2.15)

In this study, we use a single dipole permanent magnet (it is assumed that M0 =

[0 0 M0]); therefore, the induced magnetic force due to the external magnetic field

can be represented by

f = +∇ (M0 · Bz) (2.16)

where Bz is the z-component of the external magnetic field (B). For a small

permanent magnet, the magnetization M0
1 can be taken practically as a constant

and uniformly distributed throughout the volume. This approach simplifies the

induced magnetic force on the permanent magnet as

F = M (∇Bz) v (2.17)

Considering the magnetic dipole moment as P = M0 v, the force components

applied by the external magnetic field on the permanent magnet are

Fx = P
∂Bz

∂x
(2.18)

Fy = P
∂Bz

∂y
(2.19)

Fz = P
∂Bz

∂z
(2.20)

As shown, the magnetic forces for 3D motions can be produced and controlled

by the z-component gradients of the external magnetic field.

2.1.2 Magnetic Dipole Method

A small permanent magnet with a finite dimension can be represented by a single

magnetic dipole moment by defining frequently used assumptions as: 1) the mag-

1the M0 equals to
(

Bs

µ0

)
, where Bs and µ0 and are the magnetic fields at the magnet surface,

and the permeability of the vacuum, respectively.
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netic dipole moment is assumed to be uniformly distributed in the permanent

magnet; and 2) the magnet is assumed to be lumped in the center of the magnet.

The magnetic dipole of the magnet can be represented by its equivalent electrical

loop circuit C with current i, area S , and normal vector n as follows:

P = iSn (2.21)

The induced magnetic force experienced by a magnetic dipole in the external

magnetic field can be calculated by

F = i

∫
(dl×B) (2.22)

where l is a line element carrying the current i. The force F on the dipole (the

loop C) is then calculated as follows:

Fx = i

∮

C

(dS×B)x = iS

(
∂Bz

∂x

)
= P

(
∂Bz

∂x

)
(2.23)

Fy = i

∮

C

(dS×B)y = iS

(
∂Bz

∂y

)
= P

(
∂Bz

∂y

)
(2.24)

Fz = i

∮

C

(dS×B)z = −P

[(
∂Bx

∂x

)
+

(
∂By

∂y

)]
(2.25)

where S is the total vector area enclosed by the current. According to Maxwells

equations, ∇ ·B = 0, and so we can write (∂Bx/∂x) + (∂By/∂y) = − (∂Bz/∂z)

and magnetic force in z-direction becomes

Fz = P

(
∂Bz

∂z

)
(2.26)

The permanent magnet experienced force inside an external magnetic field has

been derived by two methods: “potential energy” and “ magnetic dipole”. Both

methods present the same relations for the calculation of the magnetic force. The

external magnetic field also applies magnetic toque τ = P × B to the magnetic

dipole. This magnetic torque makes the magnetic dipole parallel to the mag-

netic field. Therefore, changing the magnetic field in a single direction results in

changing forces in three dimensions and changing the torque in one dimension.
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2.2 Magnetic Levitation Principles and Opera-

tions

Previous sections [2.1.1 and 2.1.2] demonstrated that, to have a force in a certain

direction on a single dipole permanent magnet, the magnetic flux densityB should

be non-uniform along that direction. This is because the non-uniform magnetic

field causes a magnetic gradient that produces a magnetic force. Physically,

within the external magnetic field, the permanent magnet tends to move toward

the minimum total potential energy location. At this position, the maximum

of the magnetic field, Bmax, is acquired. This is an important criterion for the

design of a magnetic drive unit (MDU) that produces an external magnetic field to

apply forces and moment to a permanent magnet. Figure 2.1 shows the vertical

magnetic field and the Bmax position generated by a single electromagnet. In

steady state, the vertical force balances the gravitational force and the horizontal

force equals zero, i.e., the magnet is steady at the location of Bmax, since no

external force exists in the horizontal direction. Thus, the position of the magnet

can be controlled by regulating the gradient of B and the Bmax position. Figure

2.1 demonstrates that a single electromagnet is able to change the gradient of B

but cannot change the Bmax position in the horizontal plane, and so the Bmax

is fixed at the centerline of the electromagnets. Hence, a single electromagnet

can control the vertical position of a permanent magnet by changing the coil’s

electromagnetic current.

Khamesee [54] has employed multiple electromagnets to control the motion of

the Bmax in the horizontal plane. Multiple electromagnets produce multiple Bmax

positions, making horizontal motion unpredictable. Khamesee [55] has proposed

a specially designed pole-piece to connect the poles of electromagnets and achieve

a unique Bmax in the horizontal plane. Figure 2.2 qualitatively demonstrates the

pole-piece performance of an MDU with two identical electromagnets. As shown,

the combination of the pole-piece and the electromagnets configures the vertical

magnetic field in such a way that only one Bmax appears in the horizontal plane

below the pole-piece. In a 2-D demonstration, the position of the Bmax can be

controlled by tuning the coil’s current of electromagnets.

As shown in Fig. 2.2(a), when the electromagnets are equally loaded, the
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Figure 2.1: Generated Bmax position by a single electromagnet

distribution of the magnetic field in the vertical direction has multiple Bmax

positions. In same the way, the pole-piece configures the magnetic field for unique

Bmax, as shown in Fig. 2.2(b), and the permanent magnet is levitated bellow the

center of the pole-piece.

Electromagnets that are unequally loaded cause changes in Bmax positions, as

shown in Figs 2.2(c) and (d). Much like equally loaded electromagnets, the pole-

piece plays an important role in configuring the magnetic field into a focal point

for a unique Bmax in horizontal motion. In fact, in the presence of the pole-piece

for a 2D demonstration, increasing the current in one electromagnet shifts the

Bmax toward that electromagnet. In the same way, the 3D motion of a levitated

object can be achieved with a 3D arrangement of vertical electromagnets and a

pole-piece.

Khamesee [55] investigated various geometric designs for pole-pieces in paral-

lel with numerous arrangements of electromagnets, showing that each pole-piece

has a specific operation working envelope. As well, he developed a combination

of four vertical electromagnets and a disk pole-piece for the 3D motion control

of a small permanent magnet, demonstrating that the summation of the electro-

magnet currents determines the vertical position, while the ratio of the currents

placed across the center determines the horizontal location.

The following section introduces an MDU based on the design in [54]. The

proposed MDU is constructed at the University of Waterloo with the intent
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I           =          I1 2

I           =          I1 2

(a) Without Pole-piece, equally loaded (b) With Pole-piece, equally loaded

I           >          I1 2

I           >          I1 2

(c) Without Pole-piece, unequally loaded (d) With Pole-piece, unequally loaded

Figure 2.2: Demonstration of the qualitative performance of pole-piece

to develop a micromanipulation platform towards practical biomedical and mi-

croassembly applications.

2.3 Magnetic Drive Unit (MDU) Structure

The magnetic drive unit (MDU) is the heart of the MUMS in the sense that

it produces the required magnetic field for the motion control of a microrobot.

The MDU consists of three basic components: electromagnets (six pairs, the

six-circular pattern of the electromagnets provides uniform magnetic gradient

distribution in the horizontal working space, and also the pair configuration has

smaller coil inductance that results in faster dynamical response of the MDU),

a pole-piece, and a yoke, as shown in Fig. 2.3. The electromagnets provide the

source for generating a magnetic field from an external source of electric energy.

As described in section 2.2, a single electromagnet can be used for one-dimensional

(vertical) magnetic levitation but cannot control the distribution of the magnetic
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field on the horizontal plane. Thus, for 3D levitated movement of objects, an

arrangement of multiple electromagnets is required. Figure 2.3 illustrates such

an arrangement of electromagnets, the outer diameter,length, and turns of each

electromagnets are 42 mm, 40 mm, and 840 turns respectively. The geometrical

properties of the electromagnets were determined based on the MDU’s required

working envelope.

Soft-Iron Yoke

Electromagnets

Pole-Piece

Workspace

Z

450 mm

8
3
0
 m

m

y

x

1
2

3

4
5

6

(Top View)

Yoke

Pole-piece
Electromagnet

(a) Schematic view of the MDU (b) Arrangement of electromagnets

Figure 2.3: Basic components of the magnetic drive unit

A pole-piece can connect individual poles of electromagnets to eliminate the

appearance of multiple poles and produce a focal point of maximum magnetic

field in the horizontal plane. Khamesee [55] investigated the effects of various

pole-piece profiles in controlling the Bmax through finite-element simulations, as

well as experimental measurements and profiles such as flat plate, disk, cylinder,

cross, cylinder-plate, and cylinder-cross. Based on Khamesee’s research, a disk

pole-piece has been chosen in the present research to achieve an appropriate

magnetic flux control.

A soft iron yoke is used to generate a closed loop magnetic circuit and increase
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Figure 2.4: Magnetic flux streamlines in the MDU by COMSOL, two electromag-
nets are equally loaded

the magnetic field intensity in the working space. The yoke aligns the magnetic

field in the vertical direction inside the workspace. Since the gravity force is in a

vertical direction, the alignment of the magnetic field streamlines with the vertical

direction, resulting in a higher magnetic force to levitate larger object with less

energy consumption. Shameli [99] demonstrated that in situations where the

currents fed to the electromagnets are unequal, the yoke increases the horizontal

gradient of the magnetic field, which eventually increases the magnitude of the

horizontal force of the levitated object.

Figure 2.3 demonstrates the finite element analysis (FEA) of the MDU by

the COMSOL’s magneto-static module. This figure shows that at distances too

close to the pole-piece, the magnetic field is uneven and has multiple maximum

points. Hence, in a small region of the MDU’s large gap, the magnetic field’s

streamlines are parallel in the vertical direction (x, y ∈ [15, 15] mm, reference axes

are presented in Fig. 2.3) and also have a unique Bmax in the horizontal plane. In

the vertical direction, the magnetic gradient is drastically reduced by increasing

the vertical distance from the pole-piece. Since the current in each electromagnet
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Figure 2.5: The equivalent magnetic reluctance demonstration of the MDU

can be varied between 0 to 3A, the weight of the microrobot determines the

working envelope in the vertical direction. In the following section, the physical

parameters of the MDU will be investigated by the magnetic reluctance concept.

2.4 Magnetic Reluctance Model of The MDU

A basic approach in the estimation of an MDU’s performance can be carried out

by the application of the magnetic reluctance model (MRM) [49]. This concept

is used in the analysis of magnetic circuits and is analogous to a resistance model

in electrical circuit analyses. However, rather than dissipating magnetic energy,

it stores it. Similar to the way an electric field causes an electric current to follow

the path of least resistance, a magnetic field causes a magnetic flux to follow the

path of the least magnetic reluctance.

An MRM can give a good estimation of the magnetic flux produced inside the

air-gap (workspace), pole-piece and yoke. This approximation provides useful

information about the magnetic saturation of an MDU’s parts and also enables
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Figure 2.6: Magnetic reluctant model of the MDU

us to approximate the magnetic short-circuit of the MDU. A magnetic short-

circuit occurs when the magnetic streamline does not go through the working

envelope, a phenomenon which decrease the operational magnetic field in the

working envelope and thus increases power consumption.

Figures 2.6 and 2.5 demonstrate the MRM of the MDU. As shown, Rws and

Rms represent the magnetic reluctance of the air-gap between the two yokes’ ends

and the magnetic reluctance of the air-gap between the pole-piece and the yoke’s

internal surface, respectively. The yoke’s magnetic reluctance has five parts (Ry1,

Ry2, Ry3, Ry4), as shown in Figs. 2.6 and 2.5. In these two figures, N is the total

number of electromagnets with a coil current of I. The magnetic flux leakages

inside the workspace and the yoke are demonstrated by φws and φy, respectively,

with the φms showing an approximation of the magnetic flux short-circuit. Thus,

the optimal design for an MDU results in a high ratio of φws/φms. The values of

magnetic reluctances are approximated as [49],
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Rws =
lyh

µ0 Ay

(2.27)

Rms =
lws

µ0 Aws

(2.28)

Ry1 = Ry3 =
lyh

µ0 µr a2
(2.29)

Ry2 = Ry5 =
ly

µ0 µr a2
(2.30)

Ry4 =
lyv − ly
µ0 µr a2

(2.31)

where µ0 and µr refer to the permeability of the air and relative permeability

of the yoke’s structure, respectively (the yoke is made out of soft iron with µr

equals to 4000). Ay and Aws represent the flux penetration surfaces that can be

approximated as

Ay = (le + tp) a (2.32)

Aws = πr2p (2.33)

Using the circuit analysis, the magnetic flux in yoke is calculated as,

φy =
NI (Rms +Rws +Ry5 +Ry4)

(Ry1 +Ry2 +Ry3) (Rms +Rws +Ry5 +Ry4) +Rms (Rws +Ry5 +Ry4)
(2.34)

To investigated the magnetic saturation of the yoke the following numerical values

are used: a = 0.0635 m, N=12×840, and I=3.5 A. The Bymax
is estimated as

Bymax
=

φy

a× a
=

0.0035

0.0635× 0.0635
= 0.86 (T ) (2.35)

Since the soft iron reaches magnetic saturation at approximately 2.2 T, the ge-

ometry of the yoke ensures that under no condition will magnetic saturation be

experienced. The ratio of φws/φws is obtained as

φws

φms

=
Rms

Rws +Ry5 +Ry4

= 6.2 (2.36)
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Therefore, the undesired flux leakage to the internal yoke parts magnetic short-

circuit will measure approximately 15% of the magnetic flux produced by the

yoke’s electromagnets. Figure 2.7 shows these undesired flux leakage streamlines

produced when all electromagnets are equally loaded. The electromagnets closer

to the inner part of the yoke produce more undesired flux leakages, since the

produced magnetic flux by these electromagnets experience lower Rms. This

phenomenon shifts the Bmax position away from the inner part of the yoke, a shift

that is especially significant in the yoke structure xz-plane. Figure 2.8 presents a

numerical simulation by COMSOL that verifies this phenomenon, demonstrating

a Bmax shift across the vertical distance from the center of the pole-piece when all

of the electromagnets are equally loaded. Increasing the distance from the pole-

piece causes additional Bmax shifts in the horizontal plane. The experimental

measurements also verify the Bmax’s shifting away from the yoke structure. While

a permanent magnet is levitated with equally loaded MDUS’s electromagnets,

the horizontal steady-state position of the permanent magnet changes with its

vertical distance from the yoke. Because the portion of undesired flux leakage

to the inner part of the yoke is varied by the distance from the pole-piece, a 3D

position control strategy needs to be employed to achieve high accuracy magnetic

manipulation.

2.5 Automated Magnetic Field Scanner (AMFS)

Magnetic force modeling is the first step in controlling the motion of a microrobot.

As explained in section 2.1, magnetic force determination requires an accurate

magnetic field model. Section 2.4 presents a numerical analysis of the MDU by

COMSOL commercial software. Due to the geometrical complexity of the MDU,

experimental measurements coupled with FEA results in a more accurate model

of the produced magnetic field model. An automated magnetic field scanner

(AMFS) has been developed to measure the magnetic flux inside the working

envelope of an MDU. The AMFS consists of three components: an Epson robot,

a gaussmeter, and a real-time controller. Figure 2.9 shows a schematic diagram

of the AMFS and its data flow.

The current for each electromagnet and workspace region are passed to a real-
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Figure 2.7: Undesired magnetic flux leakage

time computer, which then sends a current command to the MDU and position

commands to the Epson robot. The magnetic field inside the air gap has been

measured with a gaussmeter probe (Lakeshore 421). The probe is moved inside

the workspace by the Epson robot while the z-component of the magnetic field

is measured and sent to a real-time computer. The surface and contour plot in

Fig. 2.10 illustrate the measured z-component of the magnetic field when the

electromagnet number one is loaded with a 1A current. To demonstrate the

uniqueness of the Bmax in the horizontal plane and controlling the position, Fig.

2.11 presents the measured z-component of the magnetic field in different current

ratios for the electromagnets (numbers 2 and 5). By decreasing the current ratio

of I2/I5, the Bmax shifts its position from the positive side of the y-axis to the

negative side. Based on an experimental measurement, the next chapter explains

the derived mathematical model of a magnetic field produced by an MDU
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Figure 2.8: Bmax position shifts away from the yoke while all electromagnets are
equally loaded

2.6 Magnetic Untethered Microrobotic System

(MUMS)

The magnetic untethered microrobotic system (MUMS) is the heart of the the

magnetic-haptic micromanipulation platform (MHMP) in the sense that it pro-

duces a non-contact motion actuation mechanism. The MUMS consists of three

main components: the MDU, the real-time controller, and a microrobot. The

schematic data flow and experimental setup are shown in Fig. 2.12. The MDU

structure and its performance analyses have already been explained in previous

sections.

A dSPACE real-time controller and “Control Desk”, commercial software de-

veloped by dSPACE Inc., are used to develop the control system and a user

interface, respectively. The “Control Desk” provides an intuitive graphical user

interface to visualized the selected real-time parameters. The dSPACE real-time

controller has a DS-1006 processor board that uses a quad-core AMD opteron
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tained by experimental measurement,at z=75 mm and electromagnet number one
current equals 1A

processor1, which is a high computing power for processing-intensive real-time

models. This board is fully programmable in Matlab/Simulink. The processor

board is connected by a Bus cable to the DS-2004 A/D2 board and DS-2103 D/A3

board. Each of the DS2004’s 16 channels has an independent A/D converter with

a resolution of 16 bits and differential inputs ranging of ±10 volts and ±5 volts.

The DS-2103 board provides 32 channels with a resolution of 16 bits within

1x86-compatible 64-bit server multi-core processor. It provides 512 kB L2 cache per core
and 6 MB shared L3 cache. The DS1006 also has 1 GB local memory for executing real-time
models, 128 MB global memory per core for exchanging data with the host PC, and 2 MB
on-board boot flash memory [28]

2Analog to digital
3Digital to analog
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Figure 2.11: The measured magnetic field at 8 cm below the pole-piece, Bmax

position vs. current ratio

a range of ±10 volts and ±5 volts. All of the real-time parameters can be ac-

cessed or modified via a host computer that connects to the dSPACE real-time

controller by an optical fiber and DS 814 link board. A custom-built amplifier

with two Sorensen DCS40- 30E DC (more detailed information is provided at

[99]) are combined with the dSPACE real-time controller to supply power for the

electromagnets, based on the dSPACE real-time computation.

The MUMS’s microrobot is basically comprised of a microgripper, electronic

circuits, and a very small permanent magnet (PM). In experimental measure-

ments, an uncomplicated microrobot, which consists of a permanent magnet and
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Figure 2.12: Schematic representation of the magnetic untethered microrobotic
system (MUMS)

a needle-based end-effector, is used to verify the performance of the proposed

platform, Fig. 2.13 presents the structure of the microrobot. However, a more

sophisticated robot equipped with various micro-grippers can be used in real

applications. The detailed design and development of the microrobot is not con-

sidered to be one of the key aspects of this research.

Permanent Magnet

End-effector (Needle)

(a) (b)

Figure 2.13: The MUMS’s microrobot structure: (a) levitated inside the
workspace , (b) placed beside a ruler

Three Keyence LS-5000 scanning laser sensors are employed to measure the

3-D positions of the microrobot. These sensors are mounted on a specific frame

that surrounds the working envelope. Figure 2.14 shows the accuracy of each
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laser sensor vs. the location of the object in the scanning range. The laser sensors

typically provide accuracy of around 2-8 µm (the highest accuracy being at the

center region of micrometer’s working space, and the lowest at the boundaries

[53]). Analog outputs from the laser sensors are used to feed the microrobot’s

position back to the dSPACE real-time controller. Since the microrobot’s radius is

pre-determined, the position measurement of the microrobot can be determined.

The analog output range of the laser micrometer is ±10 volts, captured by the

DS-2004 board that triggers a 0.6 µm capturing resolution.

Laser Transmitter Laser Reciever

80 20 mm±

±8µm 30 mm x 40 mm

±4µm 20 mm x 30 mm

±2µm 10 mm x 20 mm

4
0
 m

m

working range

Location of -10 V

Location of +10 V

Figure 2.14: Accuracy mapping of the Keyence laser sensor [53]

2.7 Magnetic-Haptic Micromanipulation Platform

(MHMP)

This section provides an in-depth introduction to the magnetic-haptic manipula-

tion platform (MHMP), with Figure 2.15 presenting a schematic diagram. The

platform includes a master site and a slave site that can communicate with each

other via analog and/or Ethernet connections. The Ethernet/UDP1 communi-

cation enables the human operator to accomplish a task from a remote site con-

nected to the Internet. In the UDP communication demonstrated in Fig. 2.15.a,

the master site communicates with a server computer in the slave site. This server

computer updates the real-time parameters on the dSPACE real-time controller.

1User datagram protocol
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In the analogue comunication presented in Fig. 2.15.b, the master site uses DAQ

system to communicate directly with the dSPACE real-time controller.

The slave site consists of two basic systems: a magnetic untethered micro-

robotic system (MUMS) and a scaled bilateral teleoperation system (SBTS). The

MUMS provides motion control and interaction with the environment, while the

SBTS implements macro-micro scaling for both position and force, making a

micro-domain task more comfortable for the human operator.

The master site consists of two major systems: the haptic-PhanTom omni

device (HPOD) and a server computer. The human operator can control the

microrobot’s position by moving the HPOD’s stylus. In addition, the HPOD

provides force-feedback on the human operator’s hand. A Linux server computer

is employed to communicate with the slave site. The server sends position com-

mands from the master site to the slave site and also receives the calculated

force-feedback from the slave site through analog and/or Ethernet/UDP. The

C++ and Matlab source programs for communication are printed in Appendix

A.

The haptic PhanTom Omni device (HPOD), which is often used in haptic and

telerobotic research, is an inexpensive portable six degree of freedom positional

sensing haptic device made by SensAble Technologies [98] (see Fig. 2.16). The

nominal resolution for this device is 0.55 mm and can cover the motion range

of hand movements pivoting at the wrist. The maximum exertable force at its

nominal position is 3.3 N. Table2.1 represents the technical specification of the

HPOD used in this research. The Phantom is connected to a Linux computer

by a Firewire IEEE1394 port. To program the PhanTom Omni, C++ language

programming was used; however, an HPOD analysis, including DH1 parameter,

forward kinematics, inverse kinematics and controller design, is not a key aspect

of this research. SensAble Technologies provides a package in C++ that includes

the controllers. To enable communication with a slave site, a general communi-

cation package has been developed in C++. This package can send/receive in six

separate channels via UDP/IP or analogue inputs/outputs.

1Denavit-Hartenberg
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Figure 2.16: PhanTom Omni device by SensAble Technologies [98]

Table 2.1: Haptic PhanTom Omni Device Technical Specification [98]

Force feedback workspace ≻ 160 W × 120 H × 70 D mm
Range of motion Hand movement pivoting at wrist
Nominal position resolution ≻ 450 dpi≈0.055 mm.
Back drive friction ≺ 1 oz (0.26 N)
Maximum exertable force
at nominal (orthogonal
arms)position

0.75 lbf. (3.3 N)

Continuous exertable force ≻ 0.2 lbf. (0.88 N)
Stiffness x-axis ≻ 7.3 lbs./in. (1.26 N/mm.)

y-axis ≻ 13.4 lbs./in. (2.31 N/mm.)
z-axis ≻ 5.9 lbs./in. (1.02 N/mm.)

Inertia (apparent mass at tip) ≈0.101 lbm. (45 g)
Force feedback x, y, z
Position sensing [Stylus gimbal] x, y, z (digital encoders) [Pitch, roll, yaw

(∓5% linearity potentiometers)
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2.8 Summary

Magnetic levitation can be achieved through the interaction between the magnetic

flux density field and the magnetic dipole moment of the levitated object. The

source of the magnetic flux is a set of electromagnets, each of which is supplied

with an external current source. Problems surrounding magnetic levitation can

be classified as magneto-static types; hence, based on magneto-static equations,

the magnetic force experienced by a magnetic dipole moment can be calculated

in the external magnetic flux.

The magnetic drive unit (MDU) is responsible for generating a controllable

magnetic flux distribution within the air gap. The MDU consists of an arrange-

ment of multiple electromagnets, a pole-piece, and a soft iron yoke. The pole-

piece connects the poles of the electromagnets to increase the controllability and

stability of the system regarding the distribution of the magnetic flux, and the

C-shaped yoke is used to generate a closed-loop magnetic circuit that results in

a uniform magnetic flux with larger gradients.

In our research, the magnetic reluctant model (MRM) and magneto-static fi-

nite element analysis of the MDU revealed a magnetic short-circuit in the MDU.

The MRM demonstrated that undesired flux leakages within the internal yoke

parts (a magnetic short-circuit) measured 15% of the magnetic flux produced by

the yokes’ electromagnets. Furthermore, a finite element analysis demonstrated

that undesired flux leakages result in horizontal shifts of the Bmax. For exper-

imental analyses of the produced magnetic flux, an automated magnetic field

scanner was built to determine the profile of the magnetic gradient.

The magnetic untethered microrobotic system (MUMS) is the heart of the

magnetic-haptic micro-manipulation platform (MHMP) in the sense that it pro-

duces a non-contact motion actuation mechanism. The MUMS consists of three

main components: the MDU, the real-time controller, and a microrobot. The

MHMP includes a master site and a slave site that can communicate with each

other via analog and/or Ethernet connections. The slave site consists of two basic

systems (the MUMS and a scaled bilateral teleoperation system [SBTS]) and the

master site also consists of two systems, namely the haptic-PhanTom omni device

(HPOD) and a Linux server computer.
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Chapter 3

Analytical Modeling and Position

Control1

3.1 Introduction

Magnetic force modeling is the first step to achieving high precision motion con-

trol. Accordingly, this chapter first demonstrates a mathematical model for the

magnetic field gradients produced by the MDU, after which the dynamics of the

MUMS is presented, based on the developed magnetic force model, and various

control systems are designed and implemented to enhance the performance of the

MUMS with regards to motion control and accuracy. Next, a control allocation

method as the key concept for over-actuated systems is employed in the control

system design for optimal and proper distribution of control inputs. Finally, a

pre-magnetized pole-piece acting as a “proof-of-concept” is proposed to reduce

the operational energy consumption of the MDU.

1Portions of this section are published by Moein Mehrtash and Mir Behrad Khamesee, 2011,
Design and Implementation of LQG\LTR Controller for a Magnetic Telemanipulation System-
Performance Evaluation and Energy Saving, Microsystem Technologies, 17(5-7), pp. 1145-1152,
Saman Hosseini, Moein Mehrtash and Mir Behrad Khamesee, 2011, Design, Fabrication and
Control of a Magnetic Capsule Robot for the Human Esophagus, Microsystem Technologies,
17(5-7), pp. 1135-1143, and Moein Mehrtash, Noaoki Tsuda, and Mir Behrad Khamesee, 2011,
Bilateral Macro-Micro Teleoperation Using Magnetic Levitation, Mechatronics, IEEE/ASME
Transactions on, 16(3),pp. 459-469
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3.2 Magnetic Force Model Calculation

A substantial number of studies on magnetic actuation mechanism have focused

on the development of accurate mathematical models for magnetic forces. The

proposed models generally assume that magnetic force is directly proportional to

the squared coil’s current and inversely proportional to the squared distance be-

tween the electromagnet and a ferromagnetic object [37; 50; 85; 86]. Lin et al [67]

introduced a mathematical model whose magnetic force is linearly proportional

to the current and inversely proportional to the fourth power of distance.

In the reviewed literature, the magnetic force models have approximately

calculated the magnetic force on the axis of an individual electromagnet. For

3-D magnetic force calculation, Craig et al [22] proposed a magnetic force model

based on the numerical analysis of two electromagnets with parallel axes. Craig ’s

study [22] showed: 1) the magnetic force parallel to the axis of the electromagnet

is linearly proportional to current and distance, and 2) in the plane which is

perpendicular to axis of the electromagnet, the magnetic force is proportional

to the current and inversely proportional to the squared distance. Shameli [99]

investigated experimental frequency response identifications to derive a dynamic

magnetic force model, addressing a time lag between the current and the magnetic

field and proposing a magnetic force model that is linearly proportional to current

and distance.

Due to the geometrical complexities of the MDU (i.e., that it includes six-pair

of electromagnets connected by a pole-piece), the mathematical models found in

the literature cannot be fitted to our special case of the MDU. The following

sections describe some basic methods to simplify the magnetic field modeling

process of the MDU and proposing a novel magnetic forces model based on the

experimental system identifications.

3.2.1 Horizontal magnetic gradients

Section 2.1 demonstrated that a horizontal force is generated by the gradient

of the z-component of a magnetic field (Bz) produced by the MDU. Thus, this

section investigates, both numerically and experimentally, the z-component of

the produced magnetic field to derive a mathematical model for the magnetic
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Load One Electromagnet
of The MDU

Scan The Working Space
By The AMFS

Find  Mathematical Model
of Magnetic Gradient

Using Geometric Transformation
To Find All Electromagnets’

Magnetic Gradient

Using Summation Effect To Find
The Total Magnetic Gradient

Figure 3.1: The schematic process of the MDU’s magnetic gradient identification

force. The experimental measurements are carried out using the developed AMFS

discussed in Section 2.5. In the experimental magnetic field measurement, the

scanning range is defined as x, y ∈ [−50, 50] mm and z ∈ [−65, 95] mm.The

AMFS measures the z-component of the magnetic field with 10 mm step in x,

y, and z direction. Experimental measurements validates the numerical analyses

by the COMSOL software that the magnitude of magnetic field produced in the

z-direction is changed linearly with the uniform current of the electromagnets.

The MDU has six pairs of electromagnets, so labor-intensive system identi-

fication with six inputs must be carried out to find an accurate model for the

z-component of the magnetic field (Bz). To reduce the experimental measure-

ments for magnetic field identification, one electromagnet can be loaded and the

produced magnetic field model inside the workspace can be modeled. Then, the

MDU magnetic model can be derived by using the geometry transformation and

the summation effect. Fig. 3.1 demonstrates this process schematically.

Inside the MDU’s workspace, experimental measurements of the magnetic field

produced by an individual electromagnet (electromagnet number two) demon-

strate the horizontal gradient ∂Bz/∂x, which varies mainly by x and also some-

what by y, at a constant vertical position, as shown in Fig. 3.2. Figure 3.4 shows

that the horizontal gradient ∂Bz/∂y varies mainly by y and much less signifi-
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Figure 3.2: variation of horizontal magnetic field gradients (∂Bz/∂x) Vs. position

cantly by x. To obtain mathematical relations for the magnetic gradients, curve

fitting technique is used. Based on experimental measurements, the magnetic

gradients can be properly estimated by linear functions, as shown in Fig. 3.5.

The mathematical relation for magnetic gradients can be defined as

∂Bz

∂x
= (αxx+ βx) I2 (3.1)

∂Bz

∂y
= (αyy + βy) I2 (3.2)

where I2 presents electromagnet number two’s coil current. Parameters αx, βx

αy, and βy and are magnetic gradients parameters determined by experimental

measurements and the linear least square curve fitting . Due to geometrical con-

strains, the parameter βx can be assumed as zero. Figure 3.5 represents the linear

46



trend-lines of magnetic gradients by vertical positions. As shown in Fig. 3.6, the

magnetic gradient’s coefficients (αx, βx, αy, and βy) can be linearly approximated

with respect to the vertical position [the magnetic gradient’s coefficients changes

less than 10 percent over the entire vertical working space, so selecting the average

of magnetic gradient’s coefficients (αx, βx, αy, and βy) over vertical distance can

reduce the complexity of the Eq. 3.3 and 3.4]. Thus, the full horizontal magnetic

gradients can be stated as (βx ≈ 0),

∂Bz

∂x
= (γx,xzxz + γx,xx) I2 (3.3)

∂Bz

∂y
= (γy,yzyz + γy,yy + γy,zz + γy,0) I2 (3.4)

where γs are parameters of the horizontal magnetic gradients which are deter-

mined by experimental measurements. By geometry transformation, magnetic

gradients of each electromagnets can be presented by

∂Bz

∂x n=i
= [(γx,xzz + γx,x − γy,yzz − γy,y) x cos2 θi + (γx,xzz + γx,x) x+

(γy,yzz + γy,y − γx,xzz − γx,x)
y

2
sin 2θi + (γy,z + γy,0) sin θi]Ii(3.5)

∂Bz

∂y n=i

= [(γx,xzz + γx,x − γy,yzz − γy,y)
(
y sin2 θi −

x

2
sin 2θi

)
+

(γy,yzz + γy,y) y + (γy,z + γy,0) cos θi]Ii (3.6)

where θi and Ii are the geometrical angle (Fig. 3.3) and coil current of ith elec-

tromagnet (θ = [−π
3
, 0, π

3
, 2π

3
, π,−2π

3
] are geometrical angles for electromagnet

number one to six), respectively. Using the magnetic field summation effect, the

produced horizontal magnetic gradients by the MDU can be derived as

∂Bz

∂x
=

6∑

i=1

∂Bz

∂x n=i
(3.7)

∂Bz

∂y
=

6∑

i=1

∂Bz

∂y n=i

(3.8)
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Figure 3.3: geometrical angle and coil current

Furthermore, by substituting the geometrical angles, the horizontal magnetic

gradients of the MDU are represented as

∂Bz

∂x
=

x

4
(γx,xzz + γx,x + 3 (γy,yzz + γy,y)) (I1 + I3 + I4 + I6) +

x (γx,xzz + γx,x) (I2 + I5) +√
3y

4
(γx,xzz + γx,x − γy,yzz − γy,y) (I1 − I3 + I4 − I6) +

−
√
3

2
(γy,zz + γy,0) (I1 − I3 − I4 + I6) (3.9)

∂Bz

∂y
=

y

4
(γy,yzz + γy,y + 3 (γx,xzz + γx,x)) (I1 + I3 + I4 + I6) +

y (γy,yzz + γy,y) (I2 + I5) +√
3x

4
(γx,xzz + γx,x − γy,yzz − γy,y) (I1 − I3 + I4 − I6) +

1

2
(γy,zz + γy,0) (I1 + 2I2 + I3 − I4 − 2I5 − I6) (3.10)

To validate the estimated model obtained through geometric transformation

and magnetic field summation, an experimental measurement was carried out.

Figure 3.8presents the measured magnetic field when two electromagnets (num-

bers one and two) are equally loaded. Figure 3.7 presents the estimated magnetic

field by geometric transformation and magnetic field summation when electro-

magnets one and two are equally loaded. The contour plots in Fig 3.8 and 3.7

demonstrate that the estimated model can predict the Bmax position with good

accuracy. Figure 3.9 shows that the linear summation modeling and electromag-
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Figure 3.4: variation of horizontal magnetic field gradients (∂Bz/∂y) by position
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Figure 3.6: Variation of horizontal magnetic gradients by vertical position

nets‘ magnetic field interaction on each other produce a maximum 15% error in

the range of 50×50 mm2 , in our smaller working envelope this error is less than

12%. Therefore, the magnetic field summation effect presented an acceptable

performance by simplifying the process of magnetic field estimation

3.2.2 Vertical magnetic gradients

This section presents a mathematical model for the vertical magnetic gradient

which producing the vertical magnetic force model. Shameli [99] followed an

experimental method to derive a mathematical model for the levitation force.His

experimental measurements demonstrated that increasing the distance from the

pole-piece will drastically decrease the magnetic gradient (see Fig. 3.10). In a

small vertical range of our working envelope, z ∈ [65, 95]mm, the vertical gradient

can be represented as

∂Bz

∂z
= (αzz + βz)

6∑

i=1

Ii (3.11)

where αz and βz are fitting constants determined by magnetic field measure-

ment. Experimental analyses demonstrate that Eq. 3.11 provides an accurate
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Figure 3.7: Surface and contour plot of magnetic flux density z-component ob-
tained by the geometric transformation and magnetic field summation effect at
z=75 mm and electromagnet number one and two are equally loaded with 1A
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Figure 3.8: Surface and contour plot of magnetic flux density z-component ob-
tained by experimental measurement, at z=7.5 mm and electromagnet number
one and two are equally loaded with 1A current
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Figure 3.9: Error of estimating magnetic flux density z-component by the ge-
ometric transformation and magnetic field summation effect, at z=75 mm and
electromagnet number one and two are equally loaded with 1A current
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Figure 3.10: Experimental data for vertical gradient of the MDU

model with regards to the small horizontal distance from the center of the pole-

piece, dxy =
√

x2 + y2. By levitating a small permanent magnet in 30 random

positions inside the workspace, the vertical magnetic gradient can be validated,

since the vertical magnetic force equals the weight of the permanent magnet.

Figure 3.11.(a) presents the accuracy of Eq. 3.11 versus random horizontal po-

sitions. The figure demonstrates that for a small dxy, Eq. 3.11 shows good

accuracy. However, increasing dxy can cause up to 60% error in the model. A

novel mathematical vertical gradient has been proposed as

∂Bz

∂z
=

(αzz + βz)

1 + γzdxy

6∑

i=1

Ii (3.12)

where γz is a magnetic field parameter and is determined by experimentation. As

shown in Fig. 3.11.(b), for the modified model, the error is less than 9% in the

MDU’s workspace.
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Figure 3.11: modeling error of vertical magnetic field gradient

3.2.3 Reducing the operational energy consumption

The introduced pole-piece can be replaced by a pre-magnetized pole-piece to

generate vertical magnetic field gradients with lower energy consumption. The

pre-magnetized pole-piece has a vertical magnetization vector that magnifies the

magnetic field in the z-direction produced by the MDU’s electromagnets. To ver-

ify the capability of the pre-magnetized pole-piece, the z-component of magnetic

field in the air-gap was measured experimentally. As presented in Fig. 3.12, the

vertical gradients of magnetic field induced by the pre-magnetized pole-piece are

approximately uniform over the entire MDU’s workspace. Inside the working en-

velop, vertical gradients can be estimated as an average value of 5×10−4T/cm, as

Fig. 3.12 shows, this can lead to a uniform weight compensation. Thus, applied

vertical force due to integrating the pre-magnetized pole-piece can be calculated

as

fz = M
∂Bz

∂z
=

(
Br

µ0

)
∂Bz

∂z
(3.13)

where Br is the residual flux density of the permanent magnet. To present

the effectiveness of the pre-magnetized pole-piece, a weight compensation fac-

tor (WCF ) is introduced as the ratio of compensated weight to real-physical
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weight. Hence, the WCF of the MDU is

WCF =
∂fz
∂mg

=

(
Br

ρgµ0

)
∂Bz

∂z
=

(
1.2

7400× 9.8× 4π × 10−7

)
× 5× 10−2 = 0.66

(3.14)

where ρ is the density of NdFeB. Here, an NdFeB permanent magnet was used

as the head of the microrobot. The parameter WCF shows that 66% of the mi-

crorobot’s head (permanent magnet) can be compensated by the pre-magnetized

pole-piece magnetic field, meaning that the same amount of operational energy

can be saved for levitating the microrobot’s head in the workspace. Experimental

analysis shows that increasing the magnetization of the pole-piece increases not

only the vertical gradient but also the horizontal gradient. The induced horizon-

tal gradient of the pre-magnetized pole-piece tends to move the microrobot to the

center of the workspace. In cases where the pole-piece is highly magnetized, the

horizontal gradients produced by electromagnets cannot overcome the horizontal

gradients of the pole-piece. Hence, there is trade-off to keep the maneuverability

of the microrobot on the horizontal plane and to reduce energy consumption. In

this study, the pre-magnetized pole-piece produces negligible horizontal gradi-

ents, and therefore the pre-magnetized pole-piece does not change the proposed

magnetic force model in the horizontal plane. Adding a constant term to the

proposed vertical magnetic force model presents the effect of the pre-magnetized

pole-piece.

3.3 Dynamics and Control

This part firstly presents the linearized dynamical model of the MUMS based on

the proposed magnetic force model, and a control allocation method is used to

simplify the obtained dynamical model. Various linear strategy control systems

are then employed to enhance the performance of the MUMS in motion control

and accuracy. To verify the proposed magnetic force model and effectiveness

of the control systems, this section also discusses experiments using the MUMS

prototype for 3-D motion control. The primary purpose of this prototype is

to investigate the MUMS’s performance in positioning the microrobot, not the
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Figure 3.12: Produced constant vertical gradient by the pre-magnetized pole-
piece

detailed design of the microrobot. The microrobot prototype is a 10mm×10mm

NdFeB cylinder. The residual flux density of the microrobot is 1.2 T and its

total mass is 11.2 g. To achieve high accuracy, an aluminum disk is placed

at the bottom of the workspace to generate eddy-current damping (the eddy-

current damping effect will fully be discussed in Chapter 4). Previous findings

([35] and [33]) on the development of the MUMS have noted a lack of inherent

dynamical damping, which causes precision and stability problems. To obtain a

more precise motion control of the microrobot, a conductive plate is placed below

the microrobot. In [35] and [33], an analytical model of eddy-current damping in

the vertical motion of the microrobot was presented. In the next chapter, a new

model of eddy-current damping in the horizontal motion will be introduced.

3.3.1 Linearized Dynamical Model

In general, a dynamical model of the MUMS can be obtained from the applica-

tion of Newton’s second law. In this study, the magnetic and gravity forces are

considered as the source of external forces applied to the microrobot, and the
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drag effect and eddy current damping are neglected. Thus, the dynamic of the

motion can be defined by

mẍ = M
∂Bz

∂x
(3.15)

mÿ = M
∂Bz

∂y
(3.16)

mz̈ = M
∂Bz

∂z
+mg +M

∂Bz

∂z 0
(3.17)

where m, g, M , and ∂Bz

∂z 0
are microrobot’s mass, gravity effect, magnetization

of permanent magnet as the microrobot’s head, and the vertical gradient of pre-

magnetized pole-piece, respectively. By substituting the magnetic gradients from

section 3.2, the dynamical model of the microrobot’s motion can be derived. Since

the proposed force models for magnetic gradients are all nonlinear, the dynamical

model of the MUMS needs to be defined by non-linear relations. To design motion

control system for the MUMS, we first consider the linearized model and evaluate

the performance of the linear control strategy. Based on the derived non-linear

dynamical model, the linearized dynamic of the microrobot at the center point

of the workspace, [xc yc zc] = [0 0 z0] and I1 = I2 = I3 = I4 = I5 = I6 = I0, can

be represented as

mẍ− 3x ((γx,xz + γy,yz) z0 + γx,x + γy,y) I0 =

−
√
3

2
(γy,zz0 + γy,0) (i1 − i3 + i6 − i4) (3.18)

mÿ − 3y ((γx,xz + γy,yz) z0 + γx,x + γy,y) I0 =

1

2
(γy,zz0 + γy,0) (i1 + 2i2 + i3 − i4 − 2i5 − i6) (3.19)

mz̈ − αzI0z = (αzz0 + βz) (i1 + i2 + i3 + i4 + i5 + i6) (3.20)

where ij is the perturbed current for the jth electromagnet (j = 1, · · · , 6) and I0

can be determined from the following relation,

Stable levitation condition at center point ⇒
∑

Fz = 0 ⇒
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(αzzc + βz)

1 + γz
√
x2
c + y2c

6∑

i=1

Ii −mg = 0 ⇒ I0 =
mg

6M (αzz0 + βz)
(3.21)

To simplify the obtained linearized dynamical model, the next section introduces

a “control allocation” method.

3.3.2 Control Allocation Method

The control allocation problem concerns distributing a desired total control effort

among a redundant set of actuators. In the MUMS’ motion control, the total

control effort corresponds to the magnetic forces are the available electromagnets’

currents. The total control effort is defined as virtual control input, ν (t), and

the electromagnet currents constitute the true control input, u (t). Based on

the linearized dynamical model, the virtual and true control inputs can have the

following relations:

mẍ− 3x ((γx,xz + γy,yz) z0 + γx,x + γy,y) I0 =

−
√
3

2
(γy,zz0 + γy,0) (i1 − i3 + i6 − i4)︸ ︷︷ ︸

νx

mÿ − 3y ((γx,xz + γy,yz) z0 + γx,x + γy,y) I0 =

1

2
(γy,zz0 + γy,0) (i1 + 2i2 + i3 − i4 − 2i5 − i6)︸ ︷︷ ︸

νy

mz̈ − αzI0z = (αzz0 + βz) (i1 + i2 + i3 + i4 + i5 + i6)︸ ︷︷ ︸
νz

(3.22)

and,
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

νx

νy

νz




︸ ︷︷ ︸
ν

=



1 0 −1 −1 0 1

1 2 1 −1 −2 −1

1 1 1 1 1 1




︸ ︷︷ ︸
B




i1

i2

i3

i4

i5

i6




︸︷︷︸
u

(3.23)

Due to the over-actuation of the control inputs, the B matrix is a non-square.

Thus, a constrained optimization need to be employed for the inverse of the ma-

trix B. The ‘pseudo-inverse’ method is a constrained optimization technique that

defines an inversion of the generally non-square matrix. The ‘pseudo inverse’ solu-

tion is the norm solution for the control allocation problem and can be formulated

as

min J = min
1

2
(u)T W (u) (3.24)

subject to

ν = Bu (3.25)

where W is a weighting matrix. In the MUMS, all of the control inputs have

similar importance since the horizontal motion capability must be uniform in all

the workspace. Thus, the weighting matrix is assumed as a square eye matrix.

The control allocation matrix (CAM) is finally calculated by the “pseudo inverse”
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method as [79]




i1

i2

i3

i4

i5

i6




︸︷︷︸
u

=




0.25 0.0833 0.1667

0 0.1667 0.1667

−0.25 0.0833 0.1667

−0.25 −0.0833 0.1667

0 −0.1667 0.1667

0.25 −0.0833 0.1667




︸ ︷︷ ︸
CAM



νx

νy

νz




︸ ︷︷ ︸
ν

(3.26)

Therefore, the CAM modifies the dynamical model to a decoupled three inputs-

three outputs dynamics. In the following sections, various linear control strategies

will be implemented based on the derived linearized model.

3.3.3 Control System Design

In this section, vertical and horizontal controls of the microrobot is discussed. The

dynamic of a levitated object is inherently unstable, and the closed-loop control

strategies must be employed to stabilize the motion dynamics. Based on the

linearized dynamics obtained in the previous section, the dynamic of the micro-

robot is unstable in vertical motion but stable in horizontal motion. Two control

strategies, a linear quadratic Gaussian (LQG) controller and a PID method, are

implemented in this study. The PID controller is well-tunned by numerous exper-

imental measurements and will be used for the MHMP in this study. The LQG

strategy has also been developed to compensate the low frequency cross-coupling

uncertainties in the microrobot dynamics.

A proportional-integral-derivative (PID) controller is an effective control strat-

egy widely used in industrial control systems. The PID controller’s performance

can be adjusted by tuning its gains. In practice, trial and error adjustment can be

very useful in achieving a desired performance. Figure 3.13 presents the schematic

diagram of the MUMS with PID controllers. The feed-forward signal has been
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Figure 3.13: The schematic diagram of PID controller for the MUMS

calculated as,

uFF =
mg

(
1 + γz

√
x2
r + y2r

)

6M (αzzr + βz)
(3.27)

The feed-forward controller can produce a major portion of the controller

output. The PID controller provides the compensation signal for minimizing the

set-point tracking error. Figure 3.14 and table 3.1 illustrate the PID controller

performance after several trial and error adjustments. Although this technique

does not provide the optimal gains for the PID controller, it nonetheless high-

lights the importance of each gain in performance analyses. The horizontal mo-

tion dynamic is inherently stable based on the Bmax concept. Thus, increasing

the horizontal gain causes faster response in the horizontal motion but produces

high cross-coupling error in the vertical motion. The horizontal commands cause

vertical displacement of the microrobot, which is not desirable for motion con-

trol. Since the pattern of the electromagnet does not have the same distribution

for x- and y-axes, the command in the x-axis induces different coupling errors in

the z-axis compared with the command in the y-axis. The horizontal commands

generate negligible cross-couplings in the horizontal plane. This finding verifies

the proposed horizontal magnetic force model, showing that horizontal dynamics

have the least effect on each other.

The PID controller presents robustness in handling cross-coupling errors and

model uncertainties in the working envelope, Fig. 3.14 demonstrate the cross-

coupling error compensation in vertical motion. In addition, the PID’s gains

can easily be re-tuned to achieve the desired performance. The PID’s gains
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Table 3.1: Performance criteria for the PID controller
Parameter Vertical Horizontal

Rise time(s) 0.08 2.5
Settling time(s) 1.6 2.4
Overshoot(P.M.O) % 35 0
Undershoot (P.M.U)% 0 0

tunning strategy and performance sensitivities were extensively investigated by

Craig [20] for the employed MUMS in this research. In the following section,

to accomplish high precision manipulation, a linear quadratic Gaussian (LQG)

observer/controller pair is synthesized to cope with model uncertainties due to

the dynamic cross-couplings.

3.3.4 Cross-coupling Compensation By LQG Design

In the LQG approach, the feedback gain is selected by solving the linear quadratic

regulator (LQR) algebraic riccati equation, and compensator dynamics is given

in terms of the observer gain designed by using the Kalman filter (KF) strategy

[27]. The separation principle reduces the problem to two sub-problems. The first

is the state estimation addressed by the Kalman filter theory, and the second is

to find the LQR solution. Unfortunately, although the LQG compensator does

not guarantee the robustness of both LQR and KF (as demonstrated in [19]),

there is a way of designing LQR and KF such that the robustness properties can

be recovered [26]. Specifically, as the weight matrices of LQR and KF are design

parameters, the loop transfer recovery (LTR) approach for selecting these design

matrices guarantees robustness in the closed-loop system. Fig. 3.15 presents the

schematic diagram of the LQG controller.

In this section, the recovery of robust loop gain at the output will be imple-

mented as a strategy for an LQG\LTR controller design (the mathematic proof

and concept of this method are referenced in [65]). In the LQG\LTR method,

the bounds on the loop-gain Bode magnitude plot guarantee robustness of the

closed-loop to disturbance, measurement noise and unmodeled high frequency

(HF) dynamics. For the high-frequency bound, assuming that the proposed mag-
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netic levitation dynamics is accurate to within 5% up to a frequency of 80 rad/sec.

Thereafter, the uncertainty grows without bounds at the rate of 20 dB/decade.

In order to make the steady-state error equal zero for the LF performance,

there is an integrator in each axis, as shown in Fig. 3.16. To recover loop-gain

at the output, the KF firstly is designed based on HF and LF bounds. Figure

3.17 represents the LQG\LTR’s step response. Experimental tests demonstrate

that the LQG\LTR controller provides outstanding capabilities to overcome the

cross coupling of axes more effectively than the PID controller, Tables 3.3 and 3.2

presents the LQG\LTR’s performance. In general, the vertical motion is faster

than the horizontal motion, since the vertical forces acting on the microrobot are

greater than the horizontal forces.

Comparing the two performance’s vertical motion, the transient response of

the MUMS is significantly improved by the LQG\LTR controller. The settling

times for LQG\LTR and PID controllers in vertical motion are 0.22 and 1.6

seconds, respectively. In addition, the RMS cross-coupling error of the LQG\LTR
strategy is nine times smaller in the vertical motion. Moreover in the vertical

motion, the RMS cross coupling error is 18 µm with LQG\LTR, while the PID

provides 170 µm. The RMS error and the overshoot of the vertical motion are in

a similar range for both types of controllers. The RMS error in steady state for

the LQG\LTR is 10.1 µm and 9.2 µm for the PID controller for motion in the

vertical plane.

Several experiments show that while the vertical motion RMS error is in the

order of 10 µm for both controllers, the LQG\LTR provides more robustness

against system noise. Table 3.1 and Table 3.3 demonstrate that the two types of

controllers provide similar performance for the MUMS in the horizontal motion,

achieving an RMS error in the order of 2 µm. The rise time for LQG\LTR and

PID controllers in horizontal motion is 2.2 and 2.5 seconds, respectively.

3.4 Summary

This chapter presents numerous advantages in using large gap magnetic suspen-

sion systems (the MUMS) in microrobotic applications. The system has the

potential to generate and control magnetic fields for propelling a microrobot in
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Table 3.2: LQG\LTR vertical performance evaluation

Parameter LQG\LTR
Peak time(s) 0.06
Rise time(s) 0.05
Settling time(s) 0.22
Overshoot % OS 42
RMS error at steady state(µm) 10.1
RMS cross coupling error(µm) 18
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Table 3.3: LQG\LTR horizontal performance evaluation

Parameter LQG\LTR
Rise time(s) 2.2
Overshoot % OS 42
RMS error at steady state(µm) 2.1

strictly enclosed environments within a workspace of 30×32×32 mm3. Based on

the experimental measurements and numerical analysis, a magnetic force model

was proposed for the MUMS. In experimental investigation, the 3-D motion of an

11.2 g microrobot prototype was demonstrated with a PID control system strat-

egy. This investigation shows that the RMS error at a steady-state position is in

the order of 9.2 µm in a vertical direction and 1.9 µm in a horizontal direction.

The second major finding presented here concerns the axes’ cross-coupling errors.

Horizontal motion produces an RMS error cross-coupling in the order of 170 µm

in the vertical direction, while vertical motion causes insignificant cross-coupling

in the horizontal direction. These findings enhanced our understanding of system

dynamics and prompted the development of the LQG\LTR-based control system.

The LQG\LTR controller reduces to 18 µm the RMS error cross-coupling from

the previous best of 170 µm with the PID controller. The LQG\LTR control sys-

tem also provides high resolution position control, and the RMS errors of steady

state in horizontal and vertical motion are 10.1 µm and 2.1 µm, respectively.

Such an achievement allows for greater potential to manipulate micro-objects

and perform complex micro-domain tasks.

Our investigation of a proposed pre-magnetized pole-piece has led to a “proof-

of-concept” system that is capable of 66% enrgey consumption reduction. This

pole-piece generates uniform vertical magnetic gradients inside the system workspace

to compensate for a portion of the microrobot weight.
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Chapter 4

Modeling and Analysis of

Eddy-Current Damping Effect1

4.1 Introduction

The previous findings [33; 35] on the development of the MUMS have noted a

lack of inherent dynamical damping, which causes precision and stability prob-

lems. To obtain a more precise motion control of the microrobot by the MUMS,

a conductive plate is placed below the microrobot to produce an eddy-current

damping [33; 35], shown schematically in Fig. 4.1. In [35] and [33], an ana-

lytical model of eddy-current damping in the vertical motion of the microrobot

was presented. Building on that research, here, the experimental measurements

reveal that the eddy-current damping produced by the conductive plate in the

horizontal motion of the microrobot plays a key role in the performance of the

microrobot’s horizontal motions, the focus of this chapter. In this study, we in-

vestigate the eddy-current damping force in the horizontal motion and then an

analytical relation for this damping force is introduced. Since the only source of

dynamical damping in magnetic-based mechanisms is eddy-current damping, the

proposed analytical model for this damping force can be used in the design cycle

for developing magnetic-based mechanisms. The eddy-current phenomena have

1Portions of this section are published by Moein Mehrtash and Mir Behrad Khamesee,
Modeling and Analysis of Eddy Current Damping for High Precision Magnetic Microrobotic
Platform, Magnetics, IEEE Transactions on, 10.1109/TMAG.2013.2245675
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Figure 4.1: Schematic view of the magnetic drive unit (MDU) and the conductive
plate location [74]

theoretically been understood since the late 1800s [115]. However, our interest in

the understanding of the eddy-current damping is the result of the MUMS’s mag-

netic modeling and experimental validations. Towards the goal of increasing the

damping force using the eddy-current technique, Plissi et al [87] investigated the

use of eddy-current damping for a multi-stage pendulum suspension. A particu-

lar approach was addressed that uses eddy-current damping as a replacement or

supplement to an active damping for modes of the pendulums, which results in a

practical alternative to the development of very low noise sensors for active damp-

ing of a trio of pendulums. Sodano and Bae [107] extensively reviewed the use

of eddy-current damping for suppression of vibrations and magnetic braking in

many areas, such as vibration control of bearings and rotors [15; 112; 119], high

accuracy motion control for microfabrication devices [33; 35; 45], eddy-current

brakes [16; 43; 110], and magnetic shock absorbers [31].

This chapter is organized to firstly demonstrate the analytical relations for the

distribution of eddy-current density inside the conductive plate and eddy-current

damping force. Finally, the validity of the analytical eddy-current damping force

in the horizontal plane are discussed by experimental investigations.
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4.2 Eddy-Current Modeling

Previous studies [33; 35] at the MagLev Microrobotic Lab, University of Water-

loo have demonstrated that placing a circular aluminum plate below the working

space of the microrobot increases the dynamical damping for vertical motions

of the microrobot. The eddy-currents induced in the aluminum plate generate

considerable eddy-current damping, which suppresses the microrobot’s motion

vibrations and results in higher stability and precision for vertical motions. More-

over, experimental investigations indicate that the aluminum plate enhances the

horizontal motion accuracy, which allows the horizontal eddy-current damping to

be generated by this plate.

In the reference frame of the aluminum plate, the magnetic field changes cause

the microrobot’s motion; this changing of the magnetic field induces eddy-currents

in the above mentioned plate. The direction of these currents opposes the change

in the magnetic field itself. A Lorentz force acts on the eddy-currents, which

causes a damping effect. In the MUMS, the time-varying magnetic field of the

MDU and the magnetic field of the microrobot’s head cause the total change of

magnetic field passed through the plate. Figure 4.2 demonstrates the performance

comparison of controlling the microrobot’s horizontal position with/without of

the eddy-current damping produced by placing an Aluminum plate under the

workspace. As shown in this figure, the eddy-current damping increases the dy-

namical damping of the systems and results in overcoming the vibration and im-

proving the motion precision. This section introduces our proposed mathematical

model for the calculating the horizontal eddy-current damping that occurs when

a circular aluminum plate is placed below the working space of the microrobot.

4.2.1 Eddy-current distribution

This section presents the analytical solution for the eddy-current distribution

inside the conductive plate placed below the working space of the microrobot.

The changing magnetic field is taken to be generated by alternating the current

of the carrying wire loop. The wire is placed horizontally, with its center at the

origin point (Fig. 4.3) with horizontal velocity (v). Two loops of current are

used to model the magnetic field produced by the MDU (loop no. 2 with the
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Figure 4.3: Modeling representation of the MDU and the microrobot with loops
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current I2 and radius r2) and the PM of the microrobot’s head (loop no. 1 with

the current I1 and radius r1), shown in Fig. 4.3. There is a conductive plate at

a distance of d2 from loop number two. The plate is assumed to be of infinite

extent in the horizontal plane. It has a thickness of δp, relative permeability of

µr, and conductivity of σ. Three regions have been used for the modeling as the

Region 1: the air gap between the microrobot and the Aluminum plate, Region

2: the Aluminum plate, and Region3: the air gap between the Aluminum plate

and the MDU’s yoke.

The time-varying currents passing through loops of wire produce changing

magnetic field (B). This changing generates the electric field (E) that can be

defined by a fundamental equation

∇× E =
∂B

∂t
(4.1)

the generated electric field results in induced eddy-currents in the aluminum plate

(region 2). The current density (J) of formed eddy-currents can be represented

by the following basic mathematical relation

J = σE (4.2)

where the curl of current density is defined as

∇× J = −σ
∂B

∂t
(4.3)

where E [V/m] is the electric field, J [A/m ] is the current density, and B [T]

is the magnetic field. Expressing magnetic field as the curl of vector magnetic

potential, B = ∇×A, the current density is represented as

J = −σ
∂A

∂t
(4.4)

In our modeling, the magnetic field generated by two loops of current can be rep-

resented by vector potentials ALoop1 and ALoop2, and the resulted excited field in

the aluminum plate can be demonstrated by a vector potential AP late. The mag-

netic vector potential for a current of loop with radius r and current I (assumed
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clockwise current) is calculated by the real part in [80]

A (x′, y′, z′, t) =
µ0Ir

4π
[x̂

∫ +∞

−∞

∫ +∞

−∞

β

k2
J1[kr]e

iαx′

sin (βy′)

e−k|z′−d|dαdβ + iŷ

∫ +∞

−∞

∫ +∞

−∞

α

k2
J1[kr]e

iαx′

cos (βy′)

e−k|z′−d|dαdβ] (4.5)

where k =
√
α2 + β2, α is the attenuation constant, β is the phase constant, J1

is the Bessel function of the first order, and ǫ0 is the vacuum permittivity. In this

relation, the center of the loop is located at a height of ź = d and at the origin

in the (x́, ý) plane. If the loop has motion in x-direction, in the reference frame

of the plate, we can replace x́ = x− vt, ý = y, and ź = z, where v is the velocity

of loop in x-direction. In our modeling strategy, two loops of current with equal

velocity are used and have a similar role in forming the eddy-current induced in

the conducting plane. Thus, we can find the current density induced by one loop

of current and then combine that density with another loop’s effect.

The conducting plate’s magnetic vector potential, occurring in response to

changes in the position of the loop of current, can be derived by a mathematical

approach that originally developed by Maxwell [72] and Reitz [91] and more

recently applied by Palmer [80]. In this approach, the continuous motion of loop

is discretized to infinite instantaneous steps, and then the effect of continuous

motion of the loop can be obtained by using the limit of summation over the

infinite steps. Palmer [80] has shown that the instantaneous magnetic vector

potential of plate Aplate in the plane of plate (z = 0) at t = 0 equal to the

magnetic vector potential of the loop at x = δt minus at x = −δt

AP late (x, y) =
µ0Ir

4π
[x̂

∫ +∞

−∞

∫ +∞

−∞

β

k2
J1[kr]e

iαx(eiαvδt−

e−iαvδt) sin (βy) e−kddαdβ + iŷ

∫ +∞

−∞

∫ +∞

−∞

α

k2
J1[kr]

eiαx
(
eiαvδt − e−iαvδt

)
cos (βy) e−kddαdβ] (4.6)

The vector potential relation of moving a loop of current above a conducting
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plate with the thickness δp satisfies the following boundary equation [80; 106]

∂ (ALoop +AP late)

∂t
|z=0 = w

∂ALoop

∂z
|ǫz=−ǫ (4.7)

where w = 2/σµ0δp has the dimension of the velocity. Based on the initial

condition defined by Eq. 4.6 and the boundary condition described by Eq. 4.7,

the exact instantaneous solution of AP late can be derived for t > 0 as [80]

AP late (x, y, z, t) =
µ0Ir

4π
[x̂

∫ +∞

−∞

∫ +∞

−∞

β

k2
J1[kr]2i sin(αv

δt) sin (βy) eiαxe−kwte−k|w|−bdαdβ + iŷ

∫ +∞

−∞

∫ +∞

−∞
α

k2
J1[kr]2i sin (αvδt) cos (βy) e

iαxe−kwte−k|w|−b

dαdβ] (4.8)

This equation defines only one discrete step in the exciting magnetic field. To

calculate the eddy-current distribution in the plate, the summation of the discrete

steps is calculated followed by the limit over the summation [80]. Therefore,

AP late can be derived as

AP late (x, y, z, t)
t=0
=

µ0Ir

4π
[x̂

∫ +∞

−∞

∫ +∞

−∞

β

k2
J1[kr]iαv sin(

βy)eiαxe−k|z|−b kw + iαv

(αv)2 + (kw)2
dαdβ + iŷ

∫ +∞

−∞

∫ +∞

−∞
α

k2
J1[kr]iαv cos (βy) e

iαxe−k|z|−b kw + iαv

(αv)2 + (kw)2
dαdβ]

(4.9)

In this equation, for t > 0, x is replaced by x− vt. In the quasi-static condition
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v ≪ w, Eq. 4.9 becomes

AP late (x, y, z, t) =
µ0Ir

4π
[ix̂

∫ +∞

−∞

∫ +∞

−∞

β

k2
J1[kr] sin (βy)

eiα(x−vt)e−k|z|−b αv

kw
dαdβ − ŷ

∫ +∞

−∞

∫ +∞

−∞

α

k2
J1[kr]

cos (βy) eiα(x−vt)e−k|z|−b αv

kw
dαdβ] (4.10)

In quasi-static condition, AP late is v/w smaller than ALoop; therefore, ATotal =

AP late + ALoop ≈ ALoop. The total current density in the plate is given by Eq.

4.4 at z = 0 is

J(x, y)
t=0
=

µ0Irσδp
4π

v[−x̂

∫ +∞

−∞

∫ +∞

−∞

αβ

k2
J1[kr] sin (αx)

sin (βy) e−kddαdβ − ŷ

∫ +∞

−∞

∫ +∞

−∞

α2

k2
J1[kr] cos (αx)

cos (βy) e−kddαdβ] (4.11)

The dimensionality of this integral can be reduced by switching the α and β

integrals to polar components [80]. Finally, the mathematical current density in

plate becomes

J(x, y)
t=0
=

µ0Irσδp
4π

v[−x̂
2πxy

ρ

∫ ∞

0

kJ1[kr]J2[kρ]e
−kddk

−ŷ

∫ ∞

0

kJ1[kr]

(
J0[kρ] +

y2 − x2

ρ2
J2[kρ]

)
e−kddk]

(4.12)

where ρ =
√
x2 + y2. Equation 4.12 represents the current density induced in

the plate in response to the horizontal motion of the loop of current (For t 6= 0

and motion in x-direction with the velocity of v, x is replaced by x− vt).

4.2.2 Eddy-current Horizontal Damping Force

The eddy-current force on the loop of current will be the result of the magnetic

field due to the distribution of the eddy-current in the plate. Based on New-
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ton’s third law, stating that every action is accompanied by a reaction of equal

magnitude but opposite direction, we can calculate the eddy-current force act-

ing on the conductive plate which is equal but opposite in direction to the force

applied to the loop of current. The differential force at a point r on the plate

is given by dF = J(r) × BLoop(r)ds. Thus, the horizontal eddy-current force

in x-direction can be calculate by dFx = (JyBz − JzBy) ds. Because the conduc-

tive plate is thin, we can assume that Jz ≈ 0; therefore, the differential horizontal

force becomes dFx = JyBzds. Based on our modeling approach, the motion of two

loops of current generates the two eddy-currents on the conductive plate where

Jy = JyLoop1 + JyLoop2. Using Eq. 4.12, the y-component of the eddy-current in

response to the motion of each loop of current is

JyLoop1(x, y)
t=0
=

µ0I1r1σδp
4π

v

∫ +∞

0

kJ1[kr1]e
−kd1

(
J0[kρ] +

y2 − x2

ρ2
J2[kρ]

)
dk (4.13)

JyLoop2(x, y)
t=0
=

µ0I2r2σδp
4π

v

∫ +∞

0

kJ1[kr2]e
−kd2

(
J0[kρ] +

y2 − x2

ρ2
J2[kρ]

)
dk (4.14)

To calculate the eddy-current force applied to the conductive plate from the

Loop1, the z-component of magnetic field of this loop is also required. This

z-component in the plane of plate z = 0 can be obtained as

BzLoop1
t=0
= 0.5I1r1µ0

∫ +∞

0

kJ1[kr1]J0[kρ]e
−kd1dk

(4.15)

Using Eqs. 4.13, 4.14, and 4.15, the eddy-current force can now be calculated by

dFx = JyBzds. The mathematical relation of current-density in y-direction (Jy)

for each loop has two components; the first term has polar symmetry, whereas

the second term depends on x and y. In the process of calculating the total force,

the second term becomes zero because the z-component of the magnetic field has
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a polar symmetry. Thus, the eddy-current damping force acting on the plate can

be derived as

Fx =

∫ ∞

0

2π (JyLoop1 + JyLoop2)BzLoop1ρdρ =

µ0v

2w
(I1r1) [I1r1

∫ +∞

0

kJ2
1 [kr1]e

−2kd1dk +

I2r2

∫ +∞

0

kJ1[kr1]J1[kr2]e
−k(d1+d2)dk] (4.16)

Equation (4.16) enables the numerical calculation of the eddy-current damping

force acting on moving Loop1. To calculate the eddy-current force applied to the

Loop1 (Eq. 4.16), we start with dFx = JyBzds and then use Eqs. 4.13, 4.14, and

4.15 as

Fx =

∫ ∞

0

2π [JyLoop1 + JyLoop2]BzLoop1ρdρ =

∫ ∞

0

2πv [

µ0I1r1σδp
4π

∫ ∞

0

kJ1[kr1]

(
J0[kρ] +

y2 − x2

ρ2
J2[kρ]

)
e−kd1

dk +
µ0I1r1σδp

4π

∫ ∞

0

kJ1[kr2]

(
J0[kρ] + J2[kρ]

y2 − x2

ρ2

)

e−kd2dk ]
I1r1µ0

2

∫ ∞

0

kJ1[kr1]J0[kρ]e
−kd1dkρdρ (4.17)

expanding this equation and interchanging the integrals results as

Fx =
I1r1µ

2
0σδpv

4
[I1r1 (C1 + C2) + I2r2 (C3 + C4)] (4.18)

where,

C1 =

∫ ∞

0

∫ ∞

0

∫ ∞

0

kk′J1[kr1]J1[k
′r1]J0[kρ]J0[k

′ρ]

e−(k+k′)d1dkdk′ρdρ (4.19)
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C2 =

∫ ∞

0

∫ ∞

0

∫ ∞

0

kk′J1[kr1]J1[k
′r1]J2[kρ]J0[k

′ρ]
y2 − x2

ρ2

e−(k+k′)d1dkdk′ρdρ (4.20)

C3 =

∫ ∞

0

∫ ∞

0

∫ ∞

0

kk′J1[kr2]J1[k
′r1]J0[kρ]J0[k

′ρ]

e−(kd2+k′d1)dkdk′ρdρ (4.21)

C4 =

∫ ∞

0

∫ ∞

0

∫ ∞

0

kk′J1[kr2]J1[k
′r1]J2[kρ]J0[k

′ρ]
y2 − x2

ρ2

e−(kd2+k′d1)dkdk′ρdρ (4.22)

In Eq. 4.17, the term C2 and C4 depend equally on x and y, represented

by Eqs. 4.20 and 4.22. Thus, when integrating over the entire surface of the

aluminum plate, these terms go to zero. Hence, the force model can be represented

as

Fx =
I1r1µ

2
0σδpv

4
[I1r1C1 + I2r2C3] (4.23)

using closure relation for the Bessel function (
∫∞
0

ρJ0[k
′ρ]J0[kρ]dρ = 1

k′
δ (k′ − k))

in Eq. 4.19 and 4.21, the force equation can be represented as

Fx=
I1r1µ

2
0σδpv

4

[
I1r1

∫ ∞

0

∫ ∞

0

kδ (k′ − k) J1[kr1]J1[k
′r1]

e−(k+k′)d1dkdk′ + I2r2

∫ ∞

0

∫ ∞

0

kδ (k′ − k) J1[kr2]

J1[k
′r1]e

−(kd2+k′d1)dkdk′ ] (4.24)

using the property of Dirac delta function
∫
f(t)δ(t− T ) = f(T ), the force equa-

tion can be defined by

Fx=
I1r1µ

2
0σδpv

4

[
I1r1

∫ ∞

0

kJ2
1 [kr1]e

−2kd1dk + I2r2

∫ ∞

0

k

J1[kr1]J1[kr2]e
−k(d2+d1)dk ] (4.25)
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replacing w = 2/σµ0δp in this equation results in the force equation as

Fx=
µ0v

2w
(I1r1)

[
I1r1

∫ ∞

0

kJ2
1 [kr1]e

−2kd1dk + I2r2

∫ ∞

0

k

J1[kr1]J1[kr2]e
−k(d1+d2)dk ] (4.26)

Although the integral upper limit is infinity, the force equation converges by

the Bessel function, J1. The eddy-current damping coefficient in x-direction can

then be defined as

ce,x=
Fx

v
=

µ0

2w
(I1r1) [I1r1

∫ +∞

0

kJ2
1 [kr1]e

−2kd1dk +

I2r2

∫ +∞

0

kJ1[kr1]J1[kr2]e
−k(d1+d2)dk] (4.27)

4.3 The Analogy of Eddy-current Force

Eddy-currents are formed by a changing magnetic field. There are two sources of

the changes: 1) the magnetic field of the microrobot’s head, which is a permanent

magnet. 2) the magnetic field of electromagnets. This section introduces an

analogy between the sources of magnetic field changes in the MUMS and coil

model described in the previous section. Thus, the change of the flux penetrating

into the conductive plate can provide an analogical approach to determine the

parameters of the coil model based on the MUMS structure [35]. The magnetic

field of the permanent magnet can be written as

B =
µ0

4π
p0

(
r̂
2 cos θ

r3
+ θ̂

sin θ

r3

)
(4.28)

where p0 is the dipole moment of the magnet and θ is the angle from the central

axis (Fig. 4.4). The magnetic flux going through the plate is equal to the flux

going through the outer surface of the semi-sphere as shown in Fig. 4.4. Then
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Figure 4.4: Permanent magnet (PM) above a circular plate [35].

passing flux can be derived as

φpm=

∫
B · ds =

∫

sphere

B · r̂ds =
∫ cos−1 z√

z2+b2

0

∫ 2π

0

Brr
2 sin θdφdθ =

µ0

2
p0

b2

(b2 + z2)3/2
(4.29)

where the subscript pm denotes that the flux belongs to the permanent magnet

as the head of the microrobot. In an analogy between the coil (loop of current)

and the permanent magnet, the coil (Loop1) is placed above the circular plate.

The flux passing through the plate can be found in a similar way

φcoil =
µ0

2
I1πr

2
1

b2

(b2 + d21)
3/2

(4.30)

In the previous section, the eddy force is derived for a loop of current with three

parameters I1, r1, and d1. Equating the magnetic flux of the coil and permanent

magnet, the equivalent loop of current can then be found. The magnetic flux of

electromagnets is considerably influenced by the pole-piece and the soft iron yoke,

shown in Fig. 4.1. Therefore, the magnetic field formed by the electromagnets
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cannot be determined analytically. Alternatively, an experimental method has

been followed. The magnetic flux of the MDU is measured by a gaussmeter probe.

The probe was moved inside the workspace by a high precision robot while the

z-component of the magnetic field was recorded. Measurements demonstrated

that the magnetic field [Tesla] in that area can be approximated as [74]

Bz,em =
c0
|z|I (4.31)

where c0 is a magnetic field parameter for the MDU, determined by experimental

measurements, and the em subscript denotes the electromagnets. The parameters

z and I are the vertical distance from the pole-piece, and the summation of

currents in electromagnets, respectively. Thus, the flux passing through the plate

can be calculated as

φem=

∫ b

0

2πBz,emρdρ =
πc0b

2

|z| I (4.32)

Equating Eqs. 4.30 and 4.32, equivalent coils for the electromagnets can be found.

The parameters of two equivalent coils that generate the same flux change are

determined, so the induced eddy-current damping can be calculated numerically

using Eq. 4.16.

Implementing this method, the eddy-current damping force formed by the

electromagnets and the microrobot’s head was calculated as a function of the

microrobot’s position, as shown in Fig. 4.5. This figure presents the horizontal

eddy-current damping coefficient that results from placing a 50 mm radius, 5

mm thick aluminum circular plate at a 100 mm distance from the pole-piece [at

the working frequency of 1000 Hz, the skin depth can be calculated as 2.95 mm,

therefore, a 5 mm thickness Aluminum plate has been used in the experiment.

Thicker plate has no further improvement on the damping.]. The velocity w

equals 9 m/s; the microrobot velocity is much smaller than this velocity. Thus,

the assumption of motion in quasi-static condition is very reasonable for this

application. As shown in Fig. 4.5, the total eddy force was the summation of

these two parameters: 1) the eddy-current induced in the plate in response to

the electromagnets’ change of current, and 2) the eddy-current induced in the
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Figure 4.5: Eddy-current damping coefficient formed by the microrobot’s head
and electromagnets. The plate is located at d2 = 0.1 m from the pole-piece

plate in response to the motion of the microrobot. As expected, the eddy force

increases significantly when the microrobot moves close to the plate.

4.4 Experimental Verification of Eddy-current

Damping Force Model

In order to validate the eddy force found by Eq. 4.16, we have investigated the

horizontal motion of the microrobot. The dynamical model of the microrobot

can be defined by the application of Newton’s second law as

mẍ = P
∂Bz

∂x
+ ce,xẋ+ fenv,x (4.33)

mÿ = P
∂Bz

∂y
+ ce,yẏ + fenv,y (4.34)

mz̈ = P
∂Bz

∂z
+ ce,z ż −mg + fenv,z (4.35)
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where g is the acceleration of gravity, m is the mass of the microrobot, P is

the magnetic dipole moment of the microrobot’s head, ce is the eddy-current

damping factor, and fenv is environmental forces. The environmental forces are

negligible; meanwhile the microrobot motion takes place in free motion and a low

viscous environment (fenv ≈ 0). Hence, the magnetic gradient in z-direction is

a significant factor in the microrobot’s motion control. We previously reported

the non-linear mathematical relations for magnetic gradients in [73; 74], which

were obtained by extensive numerical analysis coupled with the experimental

measurements.

Since the eddy-current damping force is not a static force, the dynamical sys-

tem identification is required. For dynamical response analyses in the horizontal

plane, the nonlinear model represented by Eqs. 4.33 and 4.34 is linearized at the

center of the working space of the microrobot as

mẍ+ ce,xẋ− 3x (αx + αy) I0 =
−
√
3

2
βy (i1 − i3 + i6 − i4)︸ ︷︷ ︸

vx

(4.36)

mÿ + ce,yẏ − 3y (αx + αy) I0 =
1

2
βy (i1 + 2i2 + i3 − i4 − 2i5 − i6)︸ ︷︷ ︸

vy

(4.37)

where ij is the perturbed current for the jth electromagnet (j = 1, · · · , 6). The

virtual commands for motion in the x-direction and y-direction are defined as vx

and vy, respectively [74]. The current I0 is the uniform current of electromagnets

while the microrobot is levitated at the center of the working space. Therefore,

the input-output transfer function in the Laplace domain for horizontal motion,

Eq. 4.36 and 4.37, can then be presented as

X (s)

Vx (s)
=

−
√
3/2βy

ms2 + ce,xs− 3 (αx + αy) I0
(4.38)

Y (s)

Vy (s)
=

1/2βy

ms2 + ce,ys− 3 (αx + αy) I0
(4.39)

Thus, the horizontal eddy-current damping parameters (ce) can then be estimated
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by an experimental step response in the x-direction or y-direction. Based on the

characteristic of the second order system, the eddy-current damping coefficients

ce,x and ce,y can be determined by using input-output system identification of the

experimental measurements.

To identify the effect of the eddy-current damping formed by the aluminum

plate, we have conducted experiments capturing the microrobot motions at vari-

ous distances from the aluminum plate. The circular aluminum plate, with radius

50 mm and thickness of 5 mm, was located 100 mm below the MDU’s pole-piece.

Figure 4.6 demonstrates the horizontal response of the microrobot at several ver-

tical distances from the aluminum plate. As shown in this figure, increasing the

vertical distance of the microrobot from the aluminum plate raises the horizontal

vibration of the microrobot inside the working space. It was observed that the

produced eddy-current damping suppresses the horizontal vibration caused by

the inherent underdamped nature of the system. Moreover, this damping effect

guarantees stable stepwise motions.

To verify quantitatively the effect of the eddy-current damping, our experi-

mental measurements were coupled with the linear system identification. Since

the linear structure of the system model is known from Eqs. 4.38 and 4.39, we em-

ployed process model of Matlab’s system identification toolbox [69] to determine

the eddy-current damping coefficient based on the off-line identification analyses.

(The process model system identification is an iterative process that uses nonlin-

ear least-squares algorithm that minimizes the weighted sum of the squares of the

errors of the estimated data.) For comparing the identified model performance

with real dynamics, Figure 4.7 illustrates the performance of both the identified

process model and the experimental measurements for two different case studies.

As shown in this figure, the identified model can predict the system dynamics

with high accuracy. In this case study, the eddy-current damping coefficient, ce,x,

has been identified as 0.575 NSec/m or 0.171 NSec/m, depending on whether

the vertical distances of the microrobot from the aluminum plate is 4.3 mm or

9.3 mm, respectively. Figure 4.8 demonstrates how eddy-current damping coeffi-

cients vary in response to changes in the vertical distance of the microrobot from

the aluminum plate. As shown in this figure, the damping coefficient is intensely

proportional to the inverse of the microrobot’s distance from the aluminum plate.
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Figure 4.6: Dynamical responses in horizontal motion (x-direction) vs. the verti-
cal distance (d1) of the microrobot from the the aluminum plate, (a) d1 = 4.3mm,
(b) d1 = 7.3mm, (c) d1 = 9.3mm, and (d) d1 = 10.3mm
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Thus, the inverse of the damping coefficient versus the distance of the microrobot

from the aluminum plate has been used to obtain a linear mathematical relation,

shown in Fig. 4.9. The linearly fitted mathematical relation is defined by

1

ce,x
= 567.73d1 + 0.62826 ⇒ ce,x =

1

567.73d1 + 0.62826
(4.40)

Figure 4.10 demonstrates the comparison of the eddy-current damping coef-

ficient obtained by the theoretical method (using Eq. 4.27) and experimental

measurements (using Eq. 4.40). This figure shows the high consistency between

the proposed theoretical relation and the experimental measurements in deter-

mining the horizontal eddy-current damping coefficient.

4.5 Eddy-Current Damping Torque

In the horizontal motion, the eddy-current damping force is larger at the bottom

of the levitated permanent magnet that can generates a torque for the permanent

magnet; however, the magnetic torque applied to the permanent magnet to make

it parallel to magnetic field direction is considerably larger than the Eddy-current

torque. The following steps demonstrate the order-of-magnitude of magnetic

torque applied to the permanent magnet in comparison with the Eddy-current

damping torque.

The applied magnetic torque τ can be calculated as τ = P × B, where P

and B are magnetic dipole moment and magnetic field vector produced by the

MDU, respectively. In this study, the magnetic dipole moment vector has z-

component, P=[0 0 P ]. The magnitude of magnetic dipole moment equals to

Brv/µ0, where Br is the residual flux density of permanent magnet, 0 is the

vacuum permeability,and v is the volume of the permanent magnet. The magnetic

field in the working space of our system is mainly in the z-direction. Thus, we

can realistically assume B = Bz. Measurements demonstrated that the magnetic

field [Tesla] in that area can be approximated as [33]

Bz,em =
c0
|z|I (4.41)
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Figure 4.7: The performance of identified model (−−) Vs. the experimental
measurements (−) in the horizontal motion (x-direction); the vertical distance
(d1) of the microrobot from the the aluminum plate is : (a) d1 = 4.3mm and (b)
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Figure 4.9: Linear curve fitting of the inverse damping coefficient versus the
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where c0 is a magnetic field parameter for the MDU, determined by experimental

measurements, and the em subscript denotes the electromagnets. The parameters

z and I are the vertical distance from the pole-piece, and the summation of

currents in electromagnets, respectively. The permanent magnet is levitate at

the distance z0 form the pole-piece, so the magnetic force in z-direction can be

calculated as

Fz = P
∂Bz

∂z
=

c0P

|z|2
I (4.42)

In the vertical position of the z0 , the magnetic force in z-direction equals to the

weight of the permanent magnet, so the current summation Ilev for the levitation

can be calculated as

Fz = mg ⇒ c0P

|z|2
Ilev = mg ⇒ Ilev =

mg |z|2
c0P

(4.43)

Thus, the magnetic torque applied to the levitated permanent magnet can be

estimated as

τ = P×B = P
c0
|z|Ilev = P

c0
|z|

mg |z|2
c0P

= mg |z| (4.44)

Thus, the magnetic torque is linearly proportion to the weight of the microrobot

and the distance from the pole-piece. In our experimental measurement the

permanent magnet has the mass of the 10 gr and the maximum distance from the

pole-piece is 10 cm. Therefore the estimate magnetic torque can be calculated as

τ = 0.01 N.m. However, the maximum eddy-current torque can be calculated, if

we assume that all the applied eddy-current damping force applied to the bottom

of the permanent magnet as

τeddy = ce,xẋ
l

2
(4.45)

where ẋ and l are the velocity and length of permanent magnet, respectively.

Assuming the maximum velocity of 1 mm/sec, the damping coefficient in the

range of 0.1 ≤ ce,x ≤ 0.6, and the length of 10 mm for the permanent magnet,

the maximum eddy-current damping torque can be calculated as 0.5 × 106 ≤

88



τeddy ≤ 3 × 106. This maximum damping torque range is considerably smaller,

roughly 3000 times, than the torque applied by the magnetic field which is in the

order of 0.01 N.m. Therefore, the eddy torque effect is negligible and the levitated

magnet stays vertically due to existence of large magnetic torque of 0.01 N.m;

the magnetic field produced by the MDU passively controls the orientation of the

microrobot.

4.6 Summary

In this chapter, a horizontal eddy-current damping mechanism and its mathe-

matical modeling have been developed to improve the precision and stability of

a magnetic untethered microrobotic system (MUMS). In this method, a circular

aluminum plate was placed below the working space of the MUMS’s microrobot.

In order to calculate eddy-current force, a method based on a coil (loop of current)

representation model was employed. In this simplified model, the magnetic vector

potential of the model was derived for any point in space. Eddy-current density

due to the change of magnetic field in the circular plate was calculated. For the

described MUMS, representing the change in magnetic field with equivalent coils,

the eddy-current force applied to the aluminum plate was obtained. Since the

aluminum plate’s position is fixed, equal but opposite in direction force is applied

to the microrobot. The experimental measurements coupled with process model

system identification validated the proposed analytical relation for the horizontal

eddy-current damping. The experiments also verified that placing a conductive

plate underneath the the microrobot, effectively dissipated the excessive portion

of levitation force that caused vibrations.
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Chapter 5

Position determination and Force

Sensing Using Flux

Measurement1

This Chapter is organized to firstly present a novel technique for the microrobot’s

position determination in non-transparent environments and then introduce an

innovative approach for sensing the environmental micro-domain force for haptic

application of the platform. Chapter two has already reported that the MUMS

should be equipped with high accuracy laser sensors for the position determina-

tion of the microrobot in the workspace. However, the laser positioning tech-

niques can be used only in highly transparent environments. The first part of

this chapter seeks to address microrobot position estimation in non-transparent

environments. A novel technique based on real-time magnetic flux measurement

has been proposed for position estimation of the microrobot in the case of the

laser beam blockage. A combination of Hall-effect sensors is employed in the

structure of the magnetic drive unit to find the microrobot’s position using the

produced magnetic flux.

1Portions of this section are published by Moein Mehrtash, Mir Behrad Khamesee, Naoaki
Tsuda,Jen-Yuan Chang, 2012, Motion Control of a Magnetically Levitated Microrobot Using
Magnetic Flux Measurement;, Microsystem Technologies,18(9-10), pp. 1417-1424, and Moein
Mehrtash, and Mir Behrad Khamesee, 2013, Micro-domain Force Estimation Using Hall-effect
Sensors For A Magnetic Microrobotic Station, Journal of Advanced Mechanical Design, Sys-
tems, And Manufacturing , 7(1). pp. 1-13
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To preserve a high feeling of a micro-domain environment for a human op-

erator, the applied force/torque from the environment to the microrobot are

required to be directly measured by specific sensors. Many methods for measur-

ing force from the micro-Newton to milli-Newton range have been developed,

such as atomic force microscopes [10], micro-scales, piezoresistive cantilevers

[25; 30; 82; 83; 84; 122] and capacitive force sensors [48]. These force measure-

ment systems have been employed in the research field of microsystem and mi-

croassembely, as well as biomedical/biological research. However, attaching such

measurement systems to the MHMP’s microrobot is impracticable due to: 1)

micro-scaled sensors is needed to be integrated with the microrobot for measur-

ing forces; thus, the overall size and weight of the microrobot is largely increased,

2) to maintain free levitation, the microrobot needs to be equipped with an on-

board wireless communication device to transfer the sensors’ measurements, 3)

the micro-sized force sensors are expensive and very sensitive to the physical pa-

rameters of an environment. The second part of this chapter has introduced a

novel micro-domain force estimation method eliminating the need of mounting a

force sensor to the microrobot. The non-contact force estimation is carried out

based on the measured magnetic flux and real-position of the microrobot, those

are determined by Hall-effect sensors and laser sensors, respectively.

5.1 Horizontal Position Estimation and Control

By Measuring Magnetic Flux

5.1.1 Principle of Microrobot Position Estimation

Nakamura [76] has used numerical analyses coupled with experiments to investi-

gate the Bmax position control in a 2-D case. Figure 5.1 demonstrates schemati-

cally the magnetic field produced by two electromagnets connected with a pole-

piece. As shown in this figure, the combination of pole-piece and electromagnets

configures the vertical magnetic field in such a way that only one Bmax appears in

the horizontal plane below the pole-piece. In a 2-D demonstration, the position of

Bmax can be controlled by tunning the electromagnets’ produced magnetic fluxes
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Figure 5.1: Demonstration of the qualitative Bmax position produced by two
electromagnets connected by a pole-piece,(a) equally loaded,(b)unequally loaded

[changing the electromagnets’ coil current (I) alters its produced magnetic flux].

If the relation is reversed, the Bmax horizontal position can be estimated by mea-

suring the flux difference generated by two electromagnets. This reverse concept

will be used in this study as the backbone of determining the microrobot position

without laser sensors measurements. A combination of Hall-effect sensors can be

installed on the MDU’s structure to estimate the Bmax position.

The installation position of Hall-effect sensors is key aspect to accomplish a

high accuracy Bmax position determination. Since the generated magnetic flux

of electromagnets penetrates to the MMS’s workspace through the pole-piece,

Hall-sensor can be attached to the pole-piece to measure the produced magnetic

flux. In this study, one-axis Bmax position determination has been carried out as

a “proof-of-concept” for our contribution.

5.1.2 Installation Position of Hall-effect Sensors

In this section, an effective arrangement of Hall-effect sensors is investigated for a

single-axis Bmax position determination. In order to estimate the Bmax position

in one axis, it was thought that at least two hall sensors should be installed on

the specified axis on the pole-piece. The difference of magnetic flux measured by

these two sensors can be mapped to the Bmax position. Figure 5.2 demonstrates

the installation position of two Hall-effect sensors on the y-axis.
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The installation positions of Hall-effect sensors relative to the center of the

pole-piece play an important factor in the accuracy of Bmax position estimation.

Thus, these sensors are attached to an aluminum measuring stick to find effec-

tive arrangement of Hall-effect sensors by experimental sensitivity analyses. An

experimental measurement setup has been developed to investigate the effective

mathematical relation between Hall-effect sensor’s voltage output and Bmax po-

sition; Fig. 5.4 presents the measurement setup schematically. In this setup, the

MMS has been used to manipulate the microrobot along the y-axis; meanwhile

the magnetic flux is measured by the Hall-effect sensors and is recorded on the

dSPACE controller.

To determine the effective position of Hall-effect sensors, three configurations-

“inner”, “mid”, and “outer”-have been experimentally investigated, Fig. 5.3

shows these configurations schematically. The distance between the two Hall-

effect sensors on the y-axis in the “inner”, “mid”, and “outer” configurations is

40 mm, 88 mm, and 120 mm, respectively. Figure 5.5 presents the measured flux

differential versus the microrobot’s position on the y-direction. Since determining

the instantaneous position of the Bmax location requires a real-time magnetic field

scanning, the steady-state position of the microrobot is assumed as a reasonable

approximation of the Bmax location. The steady-state condition of the microrobot

is used, because in non-steady condition, there is a discrepancy between the Bmax

location and the microrobot position. The relation between flux differential and

the Bmax location can be used for instantaneous conditions, since the dynamic

magnetic field is faster than the microrobot.

Figure 5.5 also shows the best fitted curves to experimental measurements

for determining the optimal configuration of the Hall-effect sensors. In “inner”

and “outer” arrangement of the Hall-effect sensors, a linear function can be fit-

ted; however, a third-order polynomial defines a good approximation for “mid”

configuration. The fitted mathematical equations can be defined as,

• Inner Configuration:

vd = 23.97y − 0.1370 (5.1)

• Mid Configuration:
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Table 5.1: The comparison of estimation error factor (EEF) for three arrange-
ments

Configuration of Hall-effect Sensors EEF [m]

Inner 0.002003
Mid 0.002147
Outer 0.002700

vd = −498495.78y3 + 1975.53y2 + 129.38y − 0.38 (5.2)

• Outer Configuration:

vd = 34.46y − 0.06 (5.3)

where vd is the flux differential in voltage measured by the Hall-effect sensors

(Two hall sensors’ outputs have been amplified via operational amplifier). The

y-position of the microrobot measured by laser sensor is denoted by y in SI

units. To select the arrangement of Hall-effect sensors for high accuracy position

estimation, the norm of the residual (the difference between the experimental

value and the value predicted by the correlation equation) has been calculated

as an estimation error factor (EEF); this factor is presented in Table 5.1 for each

arrangement. The accuracy of position estimation is proportional to the inverse

of the EEF. Based on the calculated EEF in Table 5.1, the “inner” configuration

provides higher position accuracy. Thus, Bmax position estimation with “inner”

configuration, using Eq. 5.1, can finally be determined by

y = 0.004492vd + 0.0056843 (5.4)

In this study, the “Inner” configuration has been implemented on the real-time

controller to provide position feedback for the control system.
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Figure 5.2: The Hall-effect sensors are attached to a measurement stick and
installed on the bottom of pole-piece
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Figure 5.3: Three arrangements of Hall-effect sensors used in experimental mea-
surements
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Figure 5.4: Schematic diagram of experimental setup to investigate Hall-effect
sensors position estimation method
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Figure 5.5: Hall sensor arrangement investigation, position-voltage relation

5.1.3 Position Control Using Hall-effect Sensors

The proposed method for the position estimation has been validated by the ex-

perimental measurements. The laser sensor in the y-direction has been replaced

with the Hall-effect sensors in the “Inner” configuration. The filtered differential

voltage of the Hall-effect sensors are fedback to the real-time controller. The con-

troller computes the Bmax position using Eq. 5.4. Figure 5.6 demonstrates the

schematic diagram of the proposed control system. The control system design

is not the main contribution of this study; thus, we have used the previously

developed control system with our new position estimation method.

The performance of the proposed estimation method in y-axis controller has

been presented in Fig. 5.7. As shown in this figure, the Hall-effect sensors

provide accurate position estimation when the microrobot is close to the center

of the working envelope. Increasing the horizontal distance from the center of the

workspace reduces the accuracy of both position estimation and position tracking;

Fig. 5.8 demonstrates the root-mean-square (RMS) of estimated position error

at a steady-state condition in y-axis motions. This figure demonstrates that
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Figure 5.6: Schematic diagram of the MUMS using Hall-effect sensor for position
estimation in y-axis. The λ and µ are coefficients of Eq. 5.4

for the horizontal distance less than 7 mm the RMS of position error is smaller

than 0.3 mm. However, by selecting a more accurate mathematical function for

the position estimation relation, Eq. 5.4, more accurate position control can be

achieved. This type of position control can be operated in a coupled way with

high precision laser sensor while there is a laser beam blockage.

5.2 Environmental Force Sensing

5.2.1 Principle of Force Measurement

Chapter 3 discussed the principle of microrobot’s free levitation and the math-

ematical force model experienced by the microrobot inside the magnetic field

produced by the MDU. In a condition that the microrobot is in contact with

an environment that applies force (fe) to the microrobot, the microrobot is not

stabilized at the Bmax location. The magnetic field produced by the MDU exerts

force to the microrobot to move it toward the Bmax location, meanwhile the envi-

ronment applies equal and opposite direction force (fe) to the microrobot. Thus,

the microrobot becomes stable at a location that the magnetic field gradient is

not equal to zero in the horizontal motion plane, shown schematically in Fig. 5.9

[This study focuses on the investigation of environmental force measurement in

y-direction; however, the motion study in x- and z-direction can be performed in

the similar way, the reference axis is shown in Fig. 2.3]. In the steady state con-
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Figure 5.9: The schematic representation of the force estimation concept

dition, the magnetic force applies to the microrobot equals to the environmental

force that can be estimated by using Eq. 3.10 as

fy=yr/4 (3αx + αy) (I1 + I3 + I4 + I6) + yrαy (I2 + I5)−
√
3/4xr (αx − αy)

(I1 − I3 + I4 − I6)− 1/2βy (I1 + 2I2 + I3 − I4 − 2I5 − I6) = fe (5.5)

where xr and yr determine the position of the microrobot in the horizontal plane

relative to the reference coordinate defined in Fig. 2.3. The coefficients [αx αy βy]

are determine by multiplication of microrobot’s head magnetization, M , and the

average magnetic field coefficients
[
αx αy βy

]
introduced in Section 3.2.1. Since, it

is a single-axis force estimation, y-direction, we assumed the xr = 0 and keep the

vertical position of the microrobot zr equals to z0. The microrobot real position

can be represents as yr = yBmax+∆y, Fig. 5.9. This relation can then be replaced

in Eq. 5.5 as

fy=(yBmax +∆y)/4 (3αx + αy) (I1 + I3 + I4 + I6) + (yBmax +∆y)αy (I2 + I5)

−1/2βy (I1 + 2I2 + I3 − I4 − 2I5 − I6) = fe (5.6)
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re-arranging this equation as

fy=fe =

A1 6=0︷ ︸︸ ︷
[∆y/4 (3αx + αy) (I1 + I3 + I4 + I6) + ∆yαy (I2 + I5)] +

[yBmax/4 (3αx + αy) (I1 + I3 + I4 + I6) + yBmaxαy (I2 + I5)−
1/2βy (I1 + 2I2 + I3 − I4 − 2I5 − I6)] (5.7)

the term A1 is the non-zero part of this force equation, since the magnetic force

at the Bmax location is zero. Therefore, the force equation can then be derived

as

fy = fe = ∆y/4 (3αx + αy) (I1 + I3 + I4 + I6) + ∆yαy (I2 + I5) (5.8)

We assume that the environmental forces apply to the microrobot in y-direction

and keep xr = 0, zr = z0 [environmental force in the x-direction is zero, fx = 0,

and the microrobot’s weight is the only force in the z-direction]. Therefore, using

Eq. 3 and 5 results in

I1 + I2 + I3 + I4 + I5 + I6 = C1 (5.9)

I1 + I4 − I3 − I6 = 0 =⇒ I1 + I4 = I3 + I6 = C2 (5.10)

where C1 and C2 are constants for motions in the y-direction; replacing these two

relation in Eq. 5.8 re-presents the force model as

fy = fe = ∆y

[
3

2
αxC2 +

1

2
αy (2C1 − 3C2)

]

︸ ︷︷ ︸
C

= C∆y (5.11)

This equation demonstrates that the magnetic force applies to the microrobot is

linearly proportional to the distance of the microrobot from the Bmax location.

Thus, by determining the Bmax location and the constant C in Eq. 5.11, the en-

vironmental force in the steady-state condition can be estimated. Using magnetic

flux measurement technique introduced in Section 5.1, the Bmax location can be

determined.
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5.2.2 Experimental Validation And Force Calibration

Section 5.2.1 discussed the environmental force model -equals to the magnetic

force in the steady-state condition-, which is linearly the function of the distance

of the microrobot from the Bmax location, Eq. 5.11. Section 5.1.1 discussed the

technique for estimating the Bmax location in the y-direction, Eq. 5.1. Replacing

the Bmax location, Eq. 5.1, in the force model relation, Eq. 5.11, results in the

following derivation of the force

fy = fe=C∆y = C (yr − yBmax) = C (yr − 0.044vd − 0.0069) =

Cryr + Cvvd + C0 (5.12)

where Cr, Cv, and C0 are constant coefficients that can be determined by a

series of experimental measurements. Since Eq. 5.12 has three coefficients, these

coefficients can be determined by defining at least three equations. Depending

on the number of calibration points, the coefficients of the Eq. 5.12 can then be

determined as



Cr

Cv

C0


 =




yr1 vd1 1

yr2 vd2 1
...

... 1

yrn−1
vdn−1

1

yrn vdn 1




† 


fy1

fy2
...

fyn−1

fyn




(5.13)

where the subscript i denotes the number of the calibration point, and † is the

generalized inverse or pseudo-inverse operation of a matrix. To obtain calibration

points, a high precision force measurement setup has been designed based on the

tip deflection of a cantilever, Fig. 5.10 shows this setup. The microrobot used for

this study includes a cylindrical permanent magnet, the radius of 5 mm and the

height of 10 mm, as the head of the microrobot with a needle-base end-effector.

The weight of this microrobot is 11 gr. The aluminum cantilever is 50×5×0.05

mm3 and made by Aluminum alloy 1100. The laser sensor measures the tip

deflection of the cantilever with the accuracy. The force applied to the tip of the
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Figure 5.10: Force measurement setup-using cantilever tip deflection

cantilever can be obtained by

P =
3EIδ

l3
(5.14)

where E, I, l, and δ are modulus of elasticity, area moment of inertia, length,

and elastic deflection, respectively. The accuracy analyses demonstrated that the

cantilever-based force measurement method provides the error of less than 0.64

µN in measuring the applied force to the cantilever’s tip, in Appendix B the

accuracy analysis is presented. However, this error can be reduced by increasing

the accuracy of deflection measurement and physical properties of the cantilever.

In the experimental measurement, the cantilever is placed with zero distance from

the microrobot, and the microrobot is then commanded toward the cantilever’s

tip in several steps and then moved backward to detach from the cantilever’s tip.

As shown in Fig. 5.11, the microrobot starts pushing moderately the cantilever’s

tip at the time of 32.3 second by increasing the magnetic flux differential [the

flux differential changes in voltage (vd) versus the real position of the microrobot

(yr) is presented in Fig. 5.11.b], and the deflection measurement records first
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Figure 5.11: The microrobot is commanded toward the cantilever’s tip: a) real
position of the microrobot b) flux differential in voltage

displacement of the cantilever’s tip at time of the 32.7 second. The microrobot

is detached form the cantilever’s tip at the time 321 second, since the microrobot

is commanded to move to the position -0.5 mm. Although the releasing process

has softly taken place, a small vibration occurs in the cantilever as seen in Fig.

5.12 which presents the deflection of the cantilever’s tip and the measured force

by Eq. 5.14.

To calculate the force by using Eq. 5.12, the flux differential in voltage and

the real position of the microrobot are instantaneously recorded during the exper-

imental measurements, previously demonstrated by Fig. 5.11.b. Using Eq. 5.13

and the obtained calibration points, the unknown coefficients of Eq. 5.12 can then

be determined as Cr = −5.47 × 10−3, Cv = 2.42 × 10−5, and C0 = 4.09 × 10−6.

The force applied to the cantilever’s tip can be calculated by the Hall-effect sen-

sors method by replacing the derived coefficients in Eq. 5.12, shown in Fig.

5.13 the comparison of the two force measurement methods: measuring the de-

flection of the cantilever and the Hall-effect-based measurement. As shown in

this figure, the Hall-effect-based method can accurately estimate the deflection

force. To validate the performance of Hall-effect-based method corresponding

to the cantilever-based technique, the root-mean-square (RMS) of the force er-

ror, calculated force obtained by Hall-effect-based method minus the measure

force obtained by the cantilever-based technique, has been calculated as 0.63 µN.
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Figure 5.12: The microrobot is commanded toward the cantilever’s tip: a) can-
tilever’s tip deflection b) force estimated based on the measured deflection

Thus, the non-contact force estimation technique, Hall-effect-based method, pro-

vides high accuracy relative to the measured force by the cantilever-based routine.

Since the cantilever-based technique has the accuracy of 0.64 µN, the accuracy

of Hall-effect-based method can be calculated as 1.27 µN.

The concept of Hall-effect-based force measurement, in Section 5.2.1, is based

on the distance of real position of the microrobot and the estimated Bmax location,

Fig. 5.14 demonstrates the change of Bmax location versus the microrobot’s real

position, when the microrobot pushes the cantilever. As expected, by increasing

the cantilever’s deflection, the distance of the microrobot’s position from the Bmax

location becomes larger. As shown, when the microrobot is in contact with can-

tilever, there is discrepancy between the microrobot’s position and the estimated

Bmax location, and whenever the microrobot is detached from the cantilever, the

microrobot’s position and the estimated Bmax are very closed to each other, Fig.

5.15 presents the linear relation of applied force to the microrobot by measuring

the distance of the microrobot from the estimated Bmax.
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by the deflection of the cantilever and calculated by the Hall-effect-based method
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Figure 5.15: Changes of force in respect to the distance of the microrobot from
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5.3 Summary

This chapter introduced a new position estimation technique for a magnetic un-

tethered microrobotic system (MUMS). In our previous studies, a combination

of laser sensors was used to determine the microrobot’s position in the MUMS’s

structure. However, laser sensors cannot be used in an opaque/blocked environ-

ment. A Hall-effect-based position estimation technique is originated to estimate

the microrobot’s position in free levitation status when the laser signal is un-

available. We defined a relation between the position of the microrobot and the

produced magnetic flux. The magnetic flux was measured by an arrangement of

Hall-effect sensors. Various arrangements of Hall-effect sensors were investigated

to find an effective configuration for high accuracy position estimation. Based on

the selection of the most effective configuration, the microrobot’s motion perfor-

mance was evaluated through experiment. The experimental investigations led to

the “proof-of-concept” of substituting the laser sensors with Hall-effect sensors.

The proposed position estimation technique provided 0.3 mm accuracy in most
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of MUMS’s working envelope. Future works need to establish a more effective

arrangement of Hall-effect sensors to achieve higher position estimation. Fur-

thermore, a three dimension (3-D) position estimation with Hall-effect sensors

can be developed for full operation of the microrobot inside a non-transparent

environment.

Furthermore, a novel micro-domain force measurement methodology is pro-

posed in this chapter for a magnetic-haptic micromanipulation platform (MHMP).

The MHMP enables a human operator to control the micro slave robot by ma-

noeuvring the macro-master haptic robot. To allow the human operator the feel-

ing of a micro-domain task, the micro-domain force estimation method is devel-

oped to measure the environmental force in a single-axis direction. This method

uses magnetic flux measurement and the microrobot’s position information to

calculate the environmental force. No force sensor is attached to the microrobot

to measure the force, that keeps the microrobot’s size restriction and makes the

microrobot inexpensive and disposable for widespread biological applications.
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Chapter 6

Bilateral Teleoperation and

Graphical Interface1

6.1 Introduction

To overcome the current lack of knowledge within the micro-domain environ-

ment, bilateral teleoperation technology is employed to allow a human operator

to “feel” the micro-domain environment and intervene in tasks such as cell ma-

nipulation/injection, palpation, and controlled micro-assembly. The extent of

preserving the “feel” of an environment is characterized by the “transparency”

of the system. To achieve high transparency, most of the bilateral teleopera-

tion strategies assume that the applied force/torque from the environment can

be directly measured by sensors. However, attaching force/torque sensors to our

microrobot is impracticable because:

• micro-scaled sensors must be attached to the microrobot for measuring

forces/torques; hence, the size and weight of the floating microrobot is

largely increased.

1Portions of this section are published by Moein Mehrtash, Mir Behrad Khame-
see, Susumu Tarao, Naoaki Tsuda, Jen-Yuan Chang, 2012, Human-Assisted Virtual Re-
ality for a Magnetic-Haptic Micromanipulation Platform, Microsystem Technologies, 18(9-
10), pp. 1407-1415, Springer, DOI: 10.1007/s00542-012-1560-7, and Moein Mehrtash,
Noaoki Tsuda, and Mir Behrad Khamesee, 2011, Bilateral Macro-Micro Teleoperation Us-
ing Magnetic Levitation, Mechatronics, IEEE/ASME Transactions on, 16(3),pp. 459-469,
DOI:10.1109/TMECH.2011.2121090.
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• an on-board wireless communication device is required to access the sensors’

measurements, since the microrobot is controlled without contact by the

magnetic field.

• micro-scaled force/torque sensors are expensive and highly sensitive to the

physical parameters of an environment.

An alternative approach is position-error-based (PEB) bilateral teleoperation,

in which both the master and slave are controlled by using position measurements.

The microrobot position can be measured by external laser micrometer beams

with no need for contact. Lawrence [63] showed that PEB with linear time-

invariant controllers provides poor transparency. A gain-switching control scheme

was proposed by Ni [77] to improve the PEB architecture’s transparency. It

succeeded in providing good transparency for two extreme cases: 1) the slave in

free motion, to improve the transparency of PEB architecture, and 2) the slave in

hard contact. In our study, the gain-switching PEB control scheme is employed

as one of the strategies of the scaled-bilateral teleoperation system (SBTS) for

the MHMP.

Furthermore, compared to this PEB method, the fidelity and reliability of the

SBTS can be enhanced if the SBTS is fed with the measurements of master and/or

slave-side forces. Therefore, by using the previously developed force measurement

technique, the SBTS is fed with the slave’s (the microrobot’s) environmental

force. In the experiment, which is performed using a haptic-enabled MUMS test

bed, two-channel bilateral control architecture known as Direct-force-reflection

(DFR) is implemented for the MHMP.

In addition, this chapter deals with the development of a virtual reality in-

terface (VRI) for the MHMP. We report a VRI that enables human operators

to improve their skills in using the MHMP before carrying out an actual task.

The VRI also provides promising capability in the creation of multiple viewports

of a real scene, resulting in increased task reliability and comfort for the human

operator.
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Figure 6.1: Schematic of symmetric PEB teleoperation

6.2 Gain-Switching Control Strategy (PEB-based

Teleoperation

In this section, the concept of transparency analysis is firstly presented for a

symmetric bilateral PEB system. The concept of the gain-switching scheme for

transparency improvement is then reviewed based on the proposed method by Ni

[77], the stability of the gain-switching scheme in contact, free motion, and tran-

sition conditions is briefly discussed. In this part of our study, we implemented a

previously proposed PEB method, hence, the proof of theorems and lemmas are

not mentioned directly in this report, but can be followed in the original reference

by Ni [77].

6.2.1 Transparency Analysis

A bilateral teleoperation interface provides the human operator with information

about the task environments. To obtain such a system, combinations of force

and position measurements from the slave side can be utilized. In particular, in

the PEB scheme, the reflected force to the human operator is proportional to the

position error. Figure 6.1 presents such a symmetric PEB system. In this figure,

Fh and Fe denote hand/master and slave/environment interaction respectively.

F ∗
h and F ∗

e are respectively the operator’s and environment’s exogenous input

forces, and both are independent of teleoperation system behavior. Generally,

it is assumed that the environment and operator are passive (F ∗
h = F ∗

e ). The
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velocity of the master and slave are respectively defined by ẋm and ẋs. The

impedances Zm and Zs represent the dynamic characteristic of master and slave

respectively; both impedances include inner-loop controllers. Additionally, Cm

and Cs are the impedance form of PD controllers for master and slave sides as

Cm (s) = Kdm +
Kpm

s
(6.1)

Cs (s) = Kds +
Kps

s
(6.2)

The master and slave may have different workspaces; hence, K1 and K2 are the

scaling factors for the mapping of workspaces. To make two workspaces overlap

each other virtually, K1 and K2 must satisfy K1 ×K2 = 1.

To evaluate the transparency of PEB teleoperation, the two-port network

model of teleoperation, shown in Fig. 6.2, can be represented by a hybrid

impedance matrix as

[
Fh

Fe

]
= Z

[
ẋm

−ẋs

]
(6.3)

where the hybrid impedance matrix for the symmetric PEB teleoperation can be

derived as

Z (s) =

[
Zm (s) + Cm (s) K2Cm (s)

K1Cs (s) Zs (s) + Cs (s)

]
(6.4)

Perfect transparency [63] is achieved with and only with a perfect match of

the environment impedance Ze = Fe/ẋs to the impedance transmitted to the

operator’s hand Zh = Fh/ẋm. In practice, a perfectly transparent teleoperation
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will not be possible with PEB architecture, so it makes sense to investigate the

transparency in specific cases: a slave in free motion (Ze −→ 0) and a slave in

hard contact (Ze −→ ∞). For the PEB architecture, the transmitted impedance

to the operator’s hand can be obtained from the hybrid impedance matrix as

Zh = Zm + Cm − CmZs

Ze + Zs + Cs

(6.5)

when the slave in free motion, Ze −→ 0; Zh becomes

Zh = Zm + Cm − CmZs

Zs + Cs

(6.6)

Achieving complete transparency in free motion requires Zh −→ 0 . Since all

the impedances have positive values, the transmitted impedance cannot be zero

(Zh ≻ Zm). If the master PD controller has very low gains and the slave PD

controller has very high gains, the impedance of the master is transmitted to the

operator’s hand. Furthermore, the high gain of the slave PD controller causes

good position tracking in free motion. When the slave in hard contact, Ze −→ ∞;

Zh becomes

Zh −→ Zm + Cm (6.7)

This equation represents that the dynamic of the master and its controller is

transmitted to the operator’s hand. However, if the master controller has very

high gain and the slave controller has very low gain, the feel of hard contact can be

transmitted to the operator’s hand by high impedance. In addition, the low gain

of slave PD controller avoids hard collision with the hard contact. Therefore a

gain-switching control scheme will enhance transparency of the PEB teleoperation

in free motion and hard contact cases.

6.2.2 Stability of PEB teleoperation

The stability of a teleoperation system depends on the human operator knowl-

edge and environment dynamics. Human operator dynamics is highly adaptive,

and the environment impedance is also usually unknown. Therefore, it is nec-
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essary to find stability conditions, absolute stability, which depends only on the

teleoperator. Based on Llewellyn’s criteria, the PEB teleoperation system is ab-

solutely stable if all the gains of master and slave PD controllers are positive

and Kpm/Kps = Kdm/Kds, Theorem I in [77]. Therefore, the absolute stability

only depends on the controller gains. It does not require any parameters of the

master or slave dynamics, which usually contain modeling uncertainty. However,

the condition given by Llewellyn’s criteria guarantee absolute stability only of a

liner time-invariant (LTI) system. In our case, this dynamic applies when the

teleoperation system is well inside either the free motion or hard contact. How-

ever, the dynamic of the system is time-varying in the contact transition.

During the contact transition, the system dynamic is switching between un-

constrained space and constrained space. Physically, the slave manipulator is

kicked back by the contact surface for a few times, a situation called transition

mode. Absolute stability is necessary, but not a sufficient condition for teleoper-

ation stability. Ni [77] investigated the asymptotic stability of the PEB teleop-

eration system in a constrained space, unconstrained space and transition mode.

The gain-switching to achieve better transparency makes the contact transition

stability more complicated.

To investigate the absolute stability of gain-switching, two sets of controllers

are presented. The PD controller gains for free motion are defined as [K l
pm,

K l
dm, K

h
ps, K

h
ds] and for hard contact as [Kh

pm, K
h
dm, K

l
ps, K

l
ds]. Ni [77] showed

the asymptotic stability of asynchronous gain-switching in the following cases:

unconstrained motion with unconstrained gains, constrained motion with uncon-

strained gains, unconstrained motion with constrained gains, and constrained

motion with constrained gains [77].

6.2.3 Design of Gain-Switching rules

Achieving transparency requires the gain-switching between high and low for

master and slave controllers. Since two extreme cases, free motion and hard

contact, are considered in this study, the gain-switching can be triggered by
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filtered position error, δ, of the system as

δ =

∥∥∥∥kp + ki

∫
edt

∣∣∣∣ (6.8)

where e is the position error, the difference between the scaled position of the

master and the real position of the slave. Two parameters kp and ki were de-

termined by experiments. The parameter δ was measured in both free motion

and contact cases, and then two parameters δfree and δcontact were tuned for the

following gain-switching rules

• If the master PD controller is low and the slave PD controller is high and

δ ≻ δcontact then the master should be switched to high and the slave to

low.

• If the master PD controller is high and the slave PD controller is low and

δ ≺ δfree, then the master should be switched to low and the slave to high.

• Otherwise the controller gains are not switched.

Figure 6.3 presents the block diagram of the gain-switching teleoperation system.

All the switching parameters, γ = [kp ki δfree δcontact], were tuned experimentally

and change any of them can change the sensitivity of switching.

6.2.4 Tuning the gain-switching parameters

Finding proper gain-switching parameters, γ, influences the MHMP performance.

Hence a considerable experimental analysis is required to tune these parameters.

The position errors are first recorded for a series of random motions inside the

workspace, with no presence of hard contact. Therefore, a bound of the filtered

position errors can be determined for the free motion tasks. The parameter δfree

can then be selected as the upper range of the filtered position errors. Choosing

the parameter δcontact significantly depends on the sensitivity of task. Generally,

this parameter is larger than δfree. For slow and very sensitive tasks, δcontact is

selected close to the δfree to reduce the risk of damage for the manipulated object,
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but if these two parameters are selected very close to each other, that possibly

causes undesirable high frequency switching in contact transition mode. To avoid

switching, a relatively larger value is selected for δcontact, so the sensitivity in en-

countering hard contact is reduced.

Choosing suitable kp and ki can compensate for the sensitivity of contact

detection if a large δcontact.is used. If the integral part of the filtered error has a

larger value relative to the proportional part, by increasing the gain ki, the gain-

switching provides an acceptable switching time in contact detection. Therefore,

based on the tasks, there is trade-off for selecting the gain-switching parameters.

In our study, several sets of gain-switching parameters of different sensitivities

were considered. The following section discusses experimental analysis of MHMP.

6.2.5 Experimental investigation of the MHMP

The proposed MHMP has been tested on the experimental setup described in

Chapter 2. The microrobot II has been used in this experiment, Fig. 6.4 shows

the levitated microrobot II. To have stiff environment (hard contact) in the ex-

periment, a sheet of plexiglass was used. The lasers detect microrobot through

plexiglass.

The switching parameters γ = [kp ki δfree δcontact] are selected by trial-

and-error as γ = [0.9 0.1 0.0007 .001]. The δfree and δcontact should be se-

lected to make asynchronous switching [77]. The gain-switching is defined as,

when the gain switch to 1 the PD controllers gains are [Kh
pm = 200, Kh

dm = 2,

K l
ps = 0.2, K l

ds = 0.002] and when the gain switch to 0 the PD controller gains
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Figure 6.4: The levitated microrobot II

are [K l
pm = 0.1, K l

dm = 0.001, Kh
ps = 1, Kh

ds = 0.01]. The superscript l and h

denote low and high, respectively. The gains are tuned by trial and error, subject

to the stability conditions Kh
pm/K

l
ps = Kh

dm/K
l
ds, K

l
pm/K

h
ps = K l

dm/K
h
ds.

The experimental results were shown in Fig. 6.5. This figure shows the

vertical motion of the microrobot relative to the center of the workspace. The

phantom motion is in the range [−40 40] mm and mapped to [−65 95] mm as

the microrobot motion range. A hard contact was placed in z-direction at 4.72

mm from the center of workspace. The switching occurred with 150 msec delay,

which is acceptable for this application. Figure 6.6 presents the teleoperation

position tracking error; it shows the RMS of tracking error in free motion is 40

µm . In a small range of motion, the laser sensor can provide ultra high accuracy

position feedbacks. Hence, several experiments have been investigated in a small

range to enhance the motion resolutions. Figure 6.7 presents the teleoperation

performance in controlling the microrobot performance in free motions. In the

motion range of 2 mm at center of laser workspace, the RMS of the position

tracking error is 20 µm.

In another set of experiment, the microrobot is moved in unknown viscous

liquid. Since the dynamic of environment is not considered in the design process,

the RMS of position tracking error becomes as large as 30 µm, shown in Fig.

6.8. This experiment shows a promising capability of the MHMP in maintaining
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Figure 6.5: Experimental results of gain-switching control in z-direction motions:
(a) scaled master position (. . .) and slave position (−) b) Haptic force C) gain-
switching

the system’s accuracy in various environments. Human operator cannot enhance

the MHMP’s accuracy by adapting to environment. However, the human opera-

tor can plan a micro-manipulation task in a way that a degraded manipulation

can be accomplished. For example, the human operator can feel roughly the

environment’s physical properties by comparing the slave and master positions.

The human operator can modify the trajectory of slave-microrobot for a micro-

manipulation task based on observations in various accomplished experiments.

Hence, this investigation presents performance robustness and the importance of

haptic application, where the human operator wants to manipulate object with

no knowledge of environment physical properties.
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Figure 6.6: Position tracking error in z-direction motion with wide range of op-
eration

6.3 Direct-force-reflection Teleoperation

In this section, the transparency and stability of DFR teleoperation is first pre-

sented. Next, the concept of a viable DFR control system is reviewed based on

conventional impedance control [116] and the transparency and control rules of

this method are then briefly discussed. Finally, we implement a previously pro-

posed DFR method. Although the proof of the theorems and lemmas are not

mentioned directly in this report, they can be followed in the references [116].

6.3.1 Transparency of DFR teleoperation

The overall architecture of Direct-force-reflection (DFR) bilateral teleoperation

system is presented in Fig. 6.9. As mentioned in the introduction of this chapter,

the DFR requires a force sensor to measure the interaction force between the
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Figure 6.7: Free motion of a microrobot in small range task, a) scaled master
position (. . .) and slave position (−) b) tracking error in z-direction

119



0 10 20 30 40 50 60 70 80 90 100
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10-3

Time(Sec)

P
o
s
it
io

n
(m

)

a)

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

4
x 10 -4

Time(Sec)

P
o
s
it
io

n
tr

a
c
k
in

g
e
rr

o
r 

in
z
-d

ir
e
c
ti
o
n

b)

Figure 6.8: Free motion of a microrobot in small range task in a viscous fluid, a)
scaled master position (. . .) and slave position (−) b) tracking error in z-direction
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slave (the microrobot) and the environment. The hybrid parameters for the DFR

architecture are defined as,

[
Fh

−ẋs

]
=

[
Zm 1

− Cs

Zts

1
Zts

]

︸ ︷︷ ︸
H

[
ẋm

Fe

]
(6.9)

Accordingly, the perception of free-motion is less than the ideal case, since the

h11 = Zm 6= 1; however, the perfect force transferring can be realized due to the

h12 = 1. The DFR teleoperation system introduced in Fig. 6.9 is absolutely stable

if kds,kps > 0 and |Cs| >> |Zs|, based on Llewellyn’s criteria [116]. To simplify

the discussion about the impedance control, and pointing out its dexterity, a

one-DOF model is described as

Mms
2xm +Dmsxm = τm + Fh (6.10)

Mss
2xm +Dmsxm = τs − Fe (6.11)

where τm and τs are master driving force and slave driving force, respectively. The

force Fe can be presented by the environment impedance (Ze) and environment

position (xe) as Fs = Ze (xs − xe). In this study, we consider force and position

scaling in the teleoperation. Therefore, an ideal response in teleoperation between

a differently-scaled world can be defined by Fh = K1Fe and xs = K2xm. The

bilateral control can be realized as

τm = −K1Fe (6.12)

τs = kp (K2xm − xs)− kvsxs (6.13)

In this study, we are not focusing on the force controller design for the master

side, since the haptic device has no force sensors on it [an observer-based method

can be used to estimate the force for force control]. Substituting the control

equation, Eq. 6.13 to the model relation, Eq. 6.11, and re-arranging them with

the assumption of the environment position xe = 0, the dynamics from the master
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Figure 6.9: Schematic of Direct-force-reflection (DFR) teleoperation

force to the master position can be written as

xm

Fh

=
Mss

2 + (Ds + kv) s+ kp + Ze

Mms2 +Dms (Mss2 + (Ds + kv) s+ kp + Ze) +K1K2kpZe

(6.14)

To improve the dexterity of the system, the gains of the position controller

(kp and kv) are usually designed to be as high as possible while retaining sta-

bility. Thus, if the the cut-off frequency of the position controller is selected as

being higher than the dynamic range of the human operator, Eq. 6.14 can be

approximated by

xm

Fh

=
1

Mms2 +Dms+K1K2kpZe

, kp >> 0, kv >> 0 (6.15)

According to this relation, the human operator feels the virtual environment

impedance K1K2Ze, through the suppressed master dynamics, Mms
2 +Dms .

6.3.2 Tuning the DFR and measurements

The proposed MHMP, equipped with DFR-scaled bilateral teleoperation, has

been tested on the experimental setup described in Chapter 2, with Microrobot

II being used in this experiment. To create a micro-domain environment with

stiffness in the y-direction, an Aluminum cantilever measuring 50×5×0.05 mm3

and made from Aluminum alloy 1100 is placed in the working space (see Fig.

6.10). As the figure shows, a laser sensor is used to measure the deflection of the

cantilever’s tip.
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Figure 6.10: Force measurement setup-using cantilever tip deflection

The previous section demonstrated that the DFR teleoperation requires the

design of a PD controller for the slave site. To place the slave closed-loop poles

for a quick response, (kp kv) = (1600 80) were chosen. This results in the position

error characteristic equation (ëx + 80ẋ+ 1600ex = 0), where ex = xm−xs for the

slave side, thus moving the closed-loop poles of the slave to (−40 − 40).

Figure 6.11 demonstrates the experimental horizontal motion of the micro-

robot with respect to the phantom stylus position in free and contact conditions.

Fig. 6.12 shows free and contact conditions (the PhanTom stylus motion is in

the range [−35 35] mm and mapped to [−3.5 3.5] mm for the microrobot motion

range). It can be seen from the position tracking in Fig. 6.11 that the microrobot

follows the master commands with the RMS of tracking error 0.2 mm. However,

this position tracking error can be improved by designing a fast-response DFR

controller. Figure 6.12 shows the microrobot’s initial contact with the cantilever

(at the 5.8 sec mark), where it starts pushing the cantilever and then releasing it

at 23.8 sec. The results obtained from the force-sensing analysis of the Hall-effect

method and the cantilever-based measurements are shown in Fig. 6.13 for the

demonstrated task in Fig 6.11.
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6.4 Human-assisted Virtual Reality

This section deals with the development of a virtual reality interface (VRI) for

the MHMP. The VRI enables human operators to improve their skills in using

the MHMP, before carrying out an actual dexterous task. A large number of

VR-assisted micromanipulation platforms for various applications have been de-

veloped over the past few years [2; 9; 47; 89; 131]. Such a platform is described in

[39], in which the proposed VR can help in overcoming problems related to poor

visual feedback as well as allowing the operator to learn using the simulations

of planned tasks. In [47], the authors have developed the concept of a physi-

cally behaved microrobotic workcell in virtual environments for microassembly

teaching. It is reported that the workcell provides significant understanding for

microassembly task teaching. As well, its effectiveness can be greatly enhanced

with supporting from the microphysic-based models of the contact and elastic

robotic interactions. In [2], it has also been demonstrated that the visualization

of path planning in a virtual environment can effectively decrease the number of
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collisions and failures; thus, enhancing the human operators’ skill with higher-

order task reliability in a micro-domain.

The developed VRI is made up of three main components: a haptic station, a

simulation engine, and a display unit. The haptic station provides the operator

with the force/torque information from virtual or remote environments, and is

also used to recognize the operator’s hand motion command. Dynamical com-

putation and control system modeling have been carried out on the simulation

engine. Based on the real-time computation, this engine, as the heart of the

system, provides force applied to the operator’s hand and the microrobot’s po-

sition for the haptic station and the display unit, respectively. The display unit

employs 3D computer graphics to demonstrate the micromanipulation tasks and

environments. The VRI is also developed in such a way that it can be sepa-

rately used in parallel with the MHMP for the 3D visualization of a real task by

providing multiple virtual viewports. This section introduces the configuration

of the proposed VRI, and reports the result of a preliminary experiment using

micro-manipulation investigation for validation.

6.4.1 The description of the VRI

This interface has been developed for two principle purposes: the 3D virtual

visualization of a real task and micro-manipulation task training in virtual micro-

domain environments. Figure 6.4.a schematically demonstrates the MHMP and

the VRI in “3D visualization mode”. The VRI’s simulation engine communicates

with the magnetic microrobotic station (MMS) via the Ethernet. The display unit

produces a 3D computer graphic visualization based on the information received

from the simulation engine. This interface provides the 3D virtual visualization

for the MHMP that comprehensively enhances an operator’s vision of the micro-

world. Figure 6.4.b provides a schematic digram of the VRI in the “simulation

mode” that can be used for human operators skill improvement. As shown in

this figure, the numerical model of the MMS has been realized on the simulation

engine. The simulation engine is enabled to communicate with the haptic station

via the Ethernet.
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Simulation engine

This section introduces the dynamic model of the MHMP and real-time sim-

ulation. The dynamical model of the MUMS can be presented based on the

developed magnetic gradients presented in Chapter 3. The dynamical model is

merely obtained from the application of Newton’s second law as

mẍ = M
∂Bz

∂x
+ ce,xẋ+ fenv,x (6.16)

mÿ = M
∂Bz

∂y
+ ce,yẏ + fenv,y (6.17)

mz̈ = M
∂Bz

∂z
+ ce,z ż −mg + fenv,z (6.18)

where g is the acceleration of gravity, m is the mass of the MUMS’s microrobot,

M is the magnetization of the microrobot’s head, ce is the eddy current damping

factor, and fenv is environmental force. The environmental forces are negligible;

meanwhile the microrobot motion takes place in free motion and in a low viscous

environment (fenv ≈ 0). Hence, the magnetic force is a significant factor in the

microrobot’s motion control. Developing an accurate model of magnetic force

results in valid system dynamics simulation. Chapter 3 has already introduced

the mathematical model of magnetic force produced by the MDU. The presented

model includes some important parameters such as αx, αy, αz, βy, and βz that

need to be precisely determined. Furthermore, the magnetization of microrobot’s

head which is hard to measure is required for the magnetic force calculation.

Since the magnetization has a linear direction relation with the magnetic force,

the effect of this parameter can be considered in experimental parameters (for

example αz = Mαz).

To determine the precise values for coefficients αz and βz, a PID feedback

controller was implemented for the MUMS and the microrobot was levitated

at two vertical positions(z1 and z2). Given the fact that at steady state, the

magnetic force is equal to the weight of the microrobot, different sets of equations

were formed and the vertical experimental measurements were determined. The
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coefficients are then calculated by

αz =
mg (I∗2 − I∗1 )

I∗1I
∗
2 (z1 − z2)

(6.19)

βz =
mg (I∗1z1 − I∗2z2)

I∗1I
∗
2 (z1 − z2)

(6.20)

where I∗1 is the summation of current, I∗1 =
6∑

i=1

Ii , at distance z1, and I∗2 is the

summation of currents at distance z2. The variation of these coefficients with

respect to the working envelope is less than 5% (Chapter 3); hence, the mean

values of αz and βz were used as the force coefficients over the entire opera-

tion range of the system (αz = −2.90986 and βz = 0.34864). The experimental

measurements showed that the eddy current damping factor ce,z has insignificant

value in z-direction; therfore, we assumed ce,z equals zero in vertical motion. Fig-

ure 6.15.a compares the simulated dynamic in vertical motion with experimental

measurements in a step response, using a 11.2 gr microrobot.

In contrast to the vertical magnetic force model, the dynamical response anal-

yses of horizontal motion are needed to determine the horizontal magnetic force’s

parameters. There is no specified static force in the horizontal plane while the

levitated microrobot has been move in a free motion. Thus, we have to investi-

gate dynamical motions to determine the horizontal magnetic force parameters.
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For dynamical response analyses, we linearize the nonlinear model as defined by

Eq. 6.16 and Eq. 6.17. The linearized dynamic of the microrobot at the center

point of the workspace, [xc yc zc] = [0 0 z0] and I1 = I2 = I3 = I4 = I5 = I6 = I0,

can be represented as,

mẍ+ ce,xẋ− 3x (αx + αy) I0 =
−
√
3

2
βy (i1 − i3 + i6 − i4)︸ ︷︷ ︸

vx

(6.21)

mÿ + ce,yẏ − 3y (αx + αy) I0 =
1

2
βy (i1 + 2i2 + i3 − i4 − 2i5 − i6)︸ ︷︷ ︸

vy

(6.22)

where ij is the perturbed current for the jth electromagnet (j = 1, · · · , 6). The

virtual command for motion in x- and y-directions are defined as vx and vy,

respectively. The current I0 can be determined from the following relation,

∑
Fz = 0 ⇒

(αzz0 + βz)
6∑

i=1

Ii −mg = 0 ⇒ I0 =
mg

6 (αzz0 + βz)
(6.23)

Therefore, the input-output transfer function in the Laplace domain for the hor-

izontal motion, Eq. 6.21 and 6.22, can then be re-presented as,

X (s)

Vx (s)
=

−
√
3/2βy

ms2 + ce,xs− 3 (αx + αy) I0
(6.24)

Y (s)

Vy (s)
=

1/2βy

ms2 + ce,ys− 3 (αx + αy) I0
(6.25)

Experimental magnetic field measurements and geometrical analyses of elec-

tromagnets’ arrangements show that we can approximate αy ≈
√
3/2αx. Hence,

the horizontal magnetic force’s parameters can then be determine by a simple ex-

perimental step response in x- or y-directions. Based on the characteristic of the

second order system (steady-state gain, damping ratio, and natural frequency),
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the parameters αx, βy, and ce can then be defined.

Using the step response analysis in y-direction with a 11.2 gr microrobot

results in αx = −8.7× 10−2, αy = −7.6× 10−2, βy = 2.3× 10−3, and ce,y = 0.098.

Figure 6.15.b demonstrates the comparison of the simulated dynamic in vertical

motion with the experimental measurements in a unit step response, in the y-

direction motion at x =0= 0 m and z0=0.0775 m. As clearly shown, the obtained

dynamic model of the MUMS’s system provides highly accurate predictions of

the real system performance.

Based on the derived dynamical model, a motion simulator of the MHMP has

been constructed. The elements of the motion simulator are build on Linux OS

as the simulation engine. The software for dynamical calculation of the MHMP

is constructed using C++ programming language. To write the code simply, the

promising C++ framework “odeint [19]” for solving ordinary differential equa-

tions (Eq. 6.16, 6.17, and 6.18) is used. The fourth Runge-Kutta method is used

to update the state-variable X = [x, ẋ, y, ẏ, z, ż] in the stepper process. Similar

state variables have been defined for the control system’s numerical modelings

and calculations. Figure 6.16 presents schematically the block diagram of the

simulation engine, the PEB teleoperation is re-presented, however the DFR can

also be easily implemented. As shown, this engine consists of the following blocks:

• MDU: This block simulates equations of motion (Eq. 6.16, 6.17, and 6.18)

and applies an environment’s constrains to the motion dynamics.

• CAM: A control allocation matrix (CAM) that maps three virtual inputs

(ux, uy, uz) to six real inputs (i1,i2,i3,i4,i5,i6).

• PID: This block simulates the PID controller in the structure of the MUMS.

• FF: This block simulates the feedforward controller in the structure of the

MUMS.

• K1 and K2: These are constant parameter blocks for macro-micro scaling

(K1 ×K2 = 1).

• Cs: This block simulates the slave PD controllers in two modes-free motion

and hard contact.
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• Cm: This block simulates the master PD controllers in two modes-free

motion and hard contact.

• Gain Switching: This block determines switching from the free motion to

the hard contact and vise versa. The output of this block is sent to the Cs

and Cm blocks for switching action.

• Phantom: This block represents the the Phantom Omni haptic device.

In the “simulation mode” of the VRI, the simulation engine sends the posi-

tion of the microrobot and the geometry of environment to the display unit for

demonstration. Furthermore, the simulation engine receives the microrobot’s po-

sition from the dSPACE real-time controller in the “3D visualization mode”, and

sends the microrobot’s position with the environments’s geometry information to

the display unit. In both modes of the VRI, the information of the environment

is implemented on the the simulation engine.

6.4.2 Visualization using 3D computer graphics

The motion simulation corresponding to the above mentioned dynamic calcu-

lations is visualized through 3D computer graphics. The useful C++ graphics

library “Open Inventor [121]” is used to create 3D visualization; the appearance

of the MUMS system visualized through the 3D computer graphics is shown in
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Fig. 6.17. In order to show the motion of the levitated object in an easy-to-

understand way, the z axis of the coordinate system is depicted as a red line, and

an initial stable region for the microrobot is colored in light pink. Additionally,

an appearance of the initial state and the appearances of typical 3D motions

(x-axis motion, y-axis motion and z-axis motion) are shown in Fig. 6.18. The

display unit is equipped with a 3D scene menu bar that affects the way the user

can interact with the scene, as shown in Fig. 9. At the bottom and the right

edge of the display scene, three thumb wheels and eight buttons:

• Rotx and Roty: these thumb wheels allow the user to rotate the scene about

the X and Y axes.

• Dolly: this thumb wheel moves the virtual camera closer to or further from

the scene.

• Pointer: this button changes the cursor to a pointer that allows blocks in

the scene to be selected.

• Hand: This button changes the cursor to a hand that can be used to rotate,

translate, and examine the scene via Dolly, using a combination of mouse

buttons and movement.

• Question mark: This button displays help for the viewer.

• Home: this button changes the scene back to its original position.

• Home pointer: this button sets the new home position of the scene to be

the scene currently in view.

• Eye: this button resizes the scene that it fully fits into the 3D viewing area.

• Cross-hairs: this button moves the scene so that the object under the cursor

is in the center of the viewing area.

• Perspective box: this button switches between perspective and orthogonal

views.

Multiple viewports can be generated from the same scenes by the display unit

to create more the visual feedbacks for the human operators.
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Figure 6.17: 3D computer graphics created by display unit
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Figure 6.18: General 3D visualization of the microrobot motion by the display
unit
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Figure 6.19: Description of the display unit’s menu bar

6.5 Case study of the VRI

In order to demonstrate the virtual reality motion simulator, a preliminary appli-

cation of the developed interface has been performed. A cylindrical microrobot

has been created on the simulation engine as well as a fixed cubic object that

acts as a hard contact in an environment. The human operator uses the Phan-

tom Omni device to command the microrobot on the proposed virtual reality

platform in “simulation mode”. The operator moves the microrobot in free mo-

tion and hard contact with the defined cubic obstacle; Fig. 6.20 demonstrates

the 3D computer graphics generated by the display unit.

The experimental results are shown in Fig. 6.21. This figure shows the vertical

motion of the microrobot relative to the pole-piece. A hard contact was placed

in the z-direction at 0.093 mm from the pole-piece. The gain-switching from

free motion to hard contact takes place, and the haptic device applies force to

the human operator’s hand in the opposite direction. This opposite force allows

the human operator to gain information about the obstacle in the microrobot’s

motion path.
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Figure 6.20: 3D visual display of the microrobot in the interaction with an envi-
ronment

6.6 Summary

The MHMP was firstly equipped with position-position teleoperation for free

and hard contact conditions in z-direction motions. From several experimental

results, it was confirmed that when the slave, microrobot, was in free motion,

the slave tracked the scaled trajectory of the master with RMS of tracking error

20 − 40 µm, and when the slave was in a contact with an object, an operator

could perceive it and keep the contact situation. The robustness of platform

in unknown environments has been investigated in various manipulation tasks.

The levitated microrobot can be remotely manipulated in a 20 × 20 × 30 mm3

workspace.

Direct-force-reflection teleoperation was also employed to transfer the envi-

ronmental force to the human operator’s hand in the horizontal motion. The

Hall-effect based force sensor fedback the applied environmental force to the bi-

lateral control system for the force and position scaling.

This chapter introduced a virtual reality interface (VRI) for a magnetic-haptic

micromanipulation platform (MHMP). This interface was constructed based on

an experimental dynamical modeling of the magnetic-haptic micromanipulation

platform. The VRI enables human operators to improve their skills in using the

MHMP, before carrying out an actual dexterous task. The VRI is made up of

three main components: a haptic station, a simulation engine, and a display unit.

The haptic station provides the operator with the force/torque information from

136



0 20 40 60 80 100

0.075

0.08

0.085

0.09

0.095

Time(Sec)

Z
−

po
si

tio
n 

(m
)

 

 

Microrobot Position

Phantom Stylus Position

Free Motion

Contact

a) Full view

50 60 70 80 90

0.086

0.088

0.09

0.092

0.094

Time(Sec)

Z
−

po
si

tio
n 

(m
)

 

 

Microrobot Position

Phantom Stylus Position

Free Motion

Contact

b) Zoomed-in view for the contact status

Figure 6.21: Using PhanTom haptic in experimental measurement of the virtual
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virtual or remote environments, and is also used to recognize the operator’s hand

motion command. Dynamical computation and control system modeling have

been carried out on the simulation engine. Based on the real-time computation,

this engine, as the heart of the system, provides force applied to the operator’s

hand and the microrobot’s position for the haptic station and the display unit,

respectively. The display unit employs 3D computer graphics to demonstrate

the micromanipulation tasks and environments. The VRI is also developed in

such a way that it can be separately used in parallel with the MHMP for the 3D

visualization of a real task by providing multiple virtual viewports. This paper

introduces the configuration of the proposed VRI, and reports the result
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Chapter 7

Conclusions and
Recommendation

7.1 Conclusions

Large gap magnetic actuation systems have provided promise for use in micro-

robotic applications such as clean room operations, biological manipulations, and

surgical operations. The controlled magnetic field, generated by a series of elec-

tromagnets connected by a pole-piece, is used to manipulate a magnetic-based

microrobot for high precision manipulations. This magnetic-based propulsion

mechanism is integrated with a haptic interface that enables the human operator

to intervene in dexterous micro-manipulations or micro-assemblies to compensate

the lack of information from the micro-task’s environment.

One of the challenges in modeling the dynamics and controlling the system is

determining the magnetic force model produced by the magnetic drive unit.With

the aid of finite element analyses coupled with the experimental measurements

attempts were made to develop mathematical model for the magnetic force. In

contrast with most of the proposed magnetic force models in the literature, a

simplified linear relations between the magnetic forces and and electromagnets’

current are found, these formulas were able to estimate the general trend of the

produced magnetic force by the magnetic drive unit. The model was used for the

designing of control systems, PID and LQG\LTR methods , with the purpose of

the microrobot’s high precision manipulation with using the magnetic drive unit.
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In experimental investigation of the designed controllers, the 3-D motion of

a 11.2 g microrobot prototype was demonstrated in a workspace of 30×32×32

mm3. The PID control system strategy provides the RMS error at a steady

state position is on the order of 9.2 µm in a vertical direction and 1.9 µm in a

horizontal direction. The second major finding was the axes cross coupling errors,

horizontal motion produces an RMS error cross coupling on the order of 170 µm

in the vertical direction. Vertical motion causes insignificant cross coupling in

the horizontal direction. However, the LQG\LTR controller reduces the RMS

error cross coupling from the previous best of 170 µm with the PID controller to

18 µm. The LQG\LTR control system provides high resolution position control

very similar to the PID controller, the RMS errors of steady state in horizontal

and vertical motion are 10.1 µm and 2.1 µm, respectively.

In order to reduce the platform power consumption,a pre-magnetized pole-

piece was used that led to a “proof-of-concept” for the system, which is capable

of 66% enrgey consumption reduction for our specific microrobot. This pole-

piece generates uniform vertical magnetic gradients inside the system workspace

to compensate a portion of the microrobot weight, more pole-peice magnetization

results in more horzontal and vertical magnetic garadients. Experimental analysis

shows that there is trade-off to keep the maneuverability of microrobot on the

horizontal plane and to reduce energy consumption, since the horizontal gradients

produced by electromagnets cannot overcome the horizontal gradients of the pole-

piece in some conditions.

A Higher precision for the horizontal motion of the microrobot was archived

by placing an aluminum disk beneath the microrobot’s workspace. Coil represen-

tation model, loop-of-current equivalent, was employed. to derive the magnetic

vector potential of any point in the space. The change in magnetic field of mag-

netic drive unit was made equivalent with a moving loop of current. Eddy-current

density due to the change of magnetic field in the circular plate was calculated.

The eddy-current force applied to the aluminum plate was obtained. Since the

aluminum plate’s position is fixed, equal but opposite in direction force is applied

to the microrobot. The experimental measurements coupled with process model

system identification validated the proposed analytical relation for the horizontal

eddy-current damping. The experiments also verified that placing a conductive
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plate underneath the the microrobot, effectively dissipated the excessive portion

of levitation force that caused vibrations.

A Hall-effect-based position estimation technique was originated to estimate

the microrobot’s position in free levitation status when the optical positioning

signal was unavailable because of an opaque/blocked environment.A relation was

defined between the position of the microrobot and the produced magnetic flux by

the magnetic drive unit. The magnetic flux was measured by an arrangement of

Hall-effect sensors. Various arrangements of Hall-effect sensors were investigated

to find an effective configuration for high accuracy position estimation. Based on

the selection of the most effective configuration, the microrobot’s motion perfor-

mance was evaluated through experiment. The experimental investigations led

to the “proof-of-concept” of substituting the laser sensors position feedback with

Hall-effect sensors. The proposed position estimation technique provided 0.3 mm

accuracy in most of the platform working envelope.

To allow the human operator the feeling of a micro-domain task, the micro-

domain force estimation method is developed based on the measurement of mag-

netic flux to measure the environmental force in a single-axis direction . The zero

gradient position in the horizontal plane, Bmax location, was determined based

on the magnetic flux measurement. In case that the microrobot is stabilized with

environmental force at a position which is not not Bmax location, the environ-

mental force can be estimated as the function of real-position of the microrobot

and estimated Bmax location. The experimental measurements showed that the

accuracy of 1.27 µN for this novel Hall-effect-based method force estimation. As

the main advantage of this method,no force sensor was attached to the micro-

robot to measure the force, that kept the microrobot’s size restriction and made

the microrobot inexpensive and disposable for widespread biological applications.

The platform was equipped with position-position and direct-force-reflection

teleoperation control systems .Firstly,the position-position teleoperation for free

and hard contact conditions in z-direction motions were demonstrated. From

several experimental results, it was confirmed that when the slave, microrobot,

was in free motion, the slave tracked the scaled trajectory of the master with

RMS of tracking error 20 − 40 µm, and when the slave was in a contact with

an object, an operator could perceive it and keep the contact situation. The

141



robustness of platform in unknown environments has been investigated in various

manipulation tasks. The levitated microrobot can be remotely manipulated in

a 20 × 20 × 30 mm3 workspace. Direct-force-reflection teleoperation was also

employed to transfer the environmental force to the human operator’s hand in

the horizontal motion. The Hall-effect based force sensor fedback the applied

environmental force to the bilateral control system for the force and position

scaling.

A virtual reality interface (VRI) for the MHMP was developed. This interface

was constructed based on an experimental dynamical modeling of the magnetic-

haptic micro-manipulation platform. The VRI enables human operators to im-

prove their skills in using the MHMP, before carrying out an actual dexterous

task. The VRI is made up of three main components: a haptic station, a simula-

tion engine, and a display unit. The haptic station provides the operator with the

force/torque information from virtual or remote environments, and is also used

to recognize the operator’s hand motion command. Dynamical computation and

control system modeling have been carried out on the simulation engine. Based

on the real-time computation, this engine, as the heart of the system, provides

force applied to the operator’s hand and the microrobot’s position for the haptic

station and the display unit, respectively. The display unit employs 3D computer

graphics to demonstrate the micro-manipulation tasks and environments. The

VRI is also developed in such a way that it can be separately used in parallel

with the MHMP for the 3D visualization of a real task by providing multiple

virtual viewports.

7.2 Recommendations

The developed single-axis force sensing method using magnetic flux measurement

serves as suitable starting point for multiple-axes force sensing mechanism. In the

proposed method, two Hall-effect sensors were used for the force sensing in y-axis.

In a similar way, two Hall-effect sensor can be used for x-axis force measurements.

The Bmax location in the horizontal plane can be estimated by using the measured

flux differential for each axis. As explained in the single-axis, the distance of the
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microrobot’s position from the estimated Bmax location can be linearly mapped

to the environmental force applied to the microrobot in the horizontal plane.

Although the position-position and direct-force-reflection methods have shown

promise for bilateral teleoperation, it would be more beneficial to employ a 4-

channel bilateral teleoperation method that provides higher order of transparency.

In the 4-channel bilateral teleoperation, the force and position for both master

and slave are required to be measured. The applied force applied to the haptic

device from the human operator can be measured by attaching a force sensor to

the haptic device or can be estimated by designing an observer.

The microrobot’s position can be precisely controlled by the magnetic drive

unit presented in this thesis. It would be more beneficial to modify the microrobot

and the magnetic drive unit structure for controlling the microrobot orientations.

As initial step toward the orientation control with minimal changes in the cur-

rent platform, the rolling of the microrobot can be controlled by modifying the

microrobot’s magnetic head and the control allocation matrix.
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Appendix A

Matlab Source Programs For

UDP Communication

% Initialize dSPACE MLIB

mlib(’SelectBoard’,’DS1006’);

% check if the application smdtf_1006_sl.x86 is running

DemoApplName = lower([pwd ’Haptic2CH.x86’]);

if mlib(’IsApplRunning’),

ApplInfo = mlib(’GetApplInfo’);

if strcmp(DemoApplName,lower(ApplInfo.name)) ~= 1

err_msg = sprintf(’*** This MLIB demo file needs the

real-time processor application\n*** ’’%s’’ running!’,...

DemoApplName);

error(err_msg);
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end;

else

err_msg = sprintf(’*** This MLIB demo file needs the real-time

processor application*** ’’%s’’ running!’,...

DemoApplName);

error(err_msg);

end;

on_off_while={’Model Root/Boolean_while/Value’};

[onoff_while_desc] = mlib(’GetTrcVar’,on_off_while);

onoff_while = mlib(’Read’,onoff_while_desc);

on_off_UDP={’Model Root/Boolean_UDP/Value’};

[onoff_UDP_desc] = mlib(’GetTrcVar’,on_off_UDP);

Pos = {’Model Root/Com/Value’};

[Pos_desc] = mlib(’GetTrcVar’,Pos);

mlib(’SetVarProperty’,Pos_desc, ’type’,’int16’);

Forc={’Model Root/Data Type Conversion2/Out1’};

[Forc_desc]=mlib(’GetTrcVar’,Forc);

mlib(’SetVarProperty’,Forc_desc, ’type’,’int16’);
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while onoff_while > 0

onoff_UDP = mlib(’Read’,onoff_UDP_desc);

if onoff_UDP > 0

[mssg,sourceHost] = judp(’receive’,9081,8,5000);

Pos_R=str2num(char(mssg)’);

Pos_R=Pos_R*10;

mlib(’Write’,Pos_desc,’Data’,Pos_R);

ForceC = mlib(’Read’,Forc_desc);

ForceC = num2str(double(ForceC)/1000)

Force_R= str2num((sprintf(’%d %d %d %d %d %d’,((ForceC)))));

judp(’send’,9081,’129.97.185.67’,int8(Force_R)) ;

judp(’send’,9081,’129.97.185.71’,int8(Force_R)) ;

end

onoff_while = mlib(’Read’,onoff_while_desc);

end
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Appendix B

Cantilever-based Force

Measurement Accuracy

To investigate the accuracy of the force estimation, firstly the accuracy of force

measurement method, cantilever technique, has been calculated. Based on the

geometry and material properties tolerances and accuracy of the deflection mea-

surement, the accuracy can calculated by using EulerBernoulli beam deflection

and its differential as

P =
3EIδ

l3
(B.1)

where E, I, l, and δ are modulus of elasticity, area moment of inertia ( bh
3

12
),

length, and elastic deflection, respectively. The error of force measurement by

the cantilever method can be derived by differentiating the Eq. 5.14 as,

∂P =
∂P

∂E
dE +

∂P

∂b
db+

∂P

∂h
dh+

∂P

∂l
dl (B.2)

The error for modulus of elasticity is 10 percent (dE = 0.1), for cantilever cross-

section geometrical parameter (b and l) the tolerances is 100µm, for the cantilever

thickness (h) is 5 µm, and for leaser accuracy is 5 µm [Fig. B.1 and Fig. B.2
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Figure B.1: Comparison of the raw with low-passed filtered measurement of the
laser signal

demonstrate the recorded measurement by the laser sensor, the raw and filtered

measurement. The RMS of filtered measurement errors is 4.5 µm. Since a 16 bit

analogue output card in the working range of ±5 volt (V) is used for capturing

laser outputs in the range of ±15 mm, the resolution for capturing the laser

measurements is 0.45 µm. Therefore the highest accuracy for measuring the

cantilever’s tip deflection can be calculated as 5 µm]. Using Eq. B.2, the accuracy

of 0.4 µN for measuring force can be achieved.
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