672 research outputs found

    ISM-Band Energy Harvesting Wireless Sensor Node

    Get PDF
    In recent years, the interest in remote wireless sensor networks has grown significantly, particularly with the rapid advancements in Internet of Things (IoT) technology. These networks find diverse applications, from inventory tracking to environmental monitoring. In remote areas where grid access is unavailable, wireless sensors are commonly powered by batteries, which imposes a constraint on their lifespan. However, with the emergence of wireless energy harvesting technologies, there is a transformative potential in addressing the power challenges faced by these sensors. By harnessing energy from the surrounding environment, such as solar, thermal, vibrational, or RF sources, these sensors can potentially operate autonomously for extended periods. This innovation not only enhances the sustainability of wireless sensor networks but also paves the way for a more energy-efficient and environmentally conscious approach to data collection and monitoring in various applications. This work explores the development of an RF-powered wireless sensor node in 22nm FDSOI technology working in the ISM band for energy harvesting and wireless data transmission. The sensor node encompasses power-efficient circuits, including an RF energy harvesting module equipped with a multi-stage RF Dickson rectifier, a robust power management unit, a DLL and XOR-based frequency synthesizer for RF carrier generation, and a class E power amplifier. To ensure the reliability of the WSN, a dedicated wireless RF source powers up the WSN. Additionally, the RF signal from this dedicated source serves as the reference frequency input signal for synthesizing the RF carrier for wireless data transmission, eliminating the need for an on-chip local oscillator. This approach achieves high integration and proves to be a cost-effective implementation of efficient wireless sensor nodes. The receiver and energy harvester operate at 915 MHz Frequency, while the transmitter functions at 2.45 GHz, employing On-Off Keying (OOK) for data modulation. The WSN utilizes an efficient RF rectifier design featuring a remarkable power conversion efficiency, reaching 55% at an input power of -14 dBm. Thus, the sensor node can operate effectively even with an extremely low RF input power of -25 dBm. The work demonstrates the integration of the wireless sensor node with an ultra-low-power temperature sensor, designed using 65 nm CMOS technology. This temperature sensor features an ultra-low power consumption of 60 nW and a Figure of Merit (FOM) of 0.022 [nJ.K-2]. The WSN demonstrated 55% power efficiency at a TX output power of -3.8 dBm utilizing a class E power amplifier

    Insights into tunnel FET-based charge pumps and rectifiers for energy harvesting applications

    Get PDF
    In this paper, the electrical characteristics of tunnel field-effect transistor (TFET) devices are explored for energy harvesting front-end circuits with ultralow power consumption. Compared with conventional thermionic technologies, the improved electrical characteristics of TFET devices are expected to increase the power conversion efficiency of front-end charge pumps and rectifiers powered at sub-µW power levels. However, under reverse bias conditions the TFET device presents particular electrical characteristics due to its different carrier injection mechanism. In this paper, it is shown that reverse losses in TFET-based circuits can be attenuated by changing the gate-to-source voltage of reverse-biased TFETs. Therefore, in order to take full advantage of the TFETs in front-end energy harvesting circuits, different circuit approaches are required. In this paper, we propose and discuss different topologies for TFET-based charge pumps and rectifiers for energy harvesting applications.Peer ReviewedPostprint (author's final draft

    Architecture of Micro Energy Harvesting Using Hybrid Input of RF, Thermal and Vibration for Semi-Active RFID Tag

    Get PDF
    This research work presents a novel architecture of Hybrid Input Energy Harvester (HIEH) system for semi-active Radio Frequency Identification (RFID) tags. The proposed architecture consists of three input sources of energy which are radio frequency signal, thermal and vibration. The main purpose is to solve the semi-active RFID tags limited lifespan issues due to the need for batteries to power their circuitries. The focus will be on the rectifiers and DC-DC converter circuits with an ultra-low power design to ensure low power consumption in the system. The design architecture will be modelled and simulated using PSpice software, Verilog coding using Mentor Graphics and real-time verification using field-programmable gate array board before being implemented in a 0.13 µm CMOS technology. Our expectations of the results from this architecture are it can deliver 3.3 V of output voltage, 6.5 mW of output power and 90% of efficiency when all input sources are simultaneously harvested. The contribution of this work is it able to extend the lifetime of semi-active tag by supplying electrical energy continuously to the device. Thus, this will indirectly  reduce the energy limitation problem, eliminate the dependency on batteries and make it possible to achieve a batteryless device.This research work presents a novel architecture of Hybrid Input Energy Harvester (HIEH) system for semi-active Radio Frequency Identification (RFID) tags. The proposed architecture consists of three input sources of energy which are radio frequency signal, thermal and vibration. The main purpose is to solve the semi-active RFID tags limited lifespan issues due to the need for batteries to power their circuitries. The focus will be on the rectifiers and DC-DC converter circuits with an ultra-low power design to ensure low power consumption in the system. The design architecture will be modelled and simulated using PSpice software, Verilog coding using Mentor Graphics and real-time verification using field-programmable gate array board before being implemented in a 0.13 µm CMOS technology. Our expectations of the results from this architecture are it can deliver 3.3 V of output voltage, 6.5 mW of output power and 90% of efficiency when all input sources are simultaneously harvested. The contribution of this work is it able to extend the lifetime of semi-active tag by supplying electrical energy continuously to the device. Thus, this will indirectly  reduce the energy limitation problem, eliminate the dependency on batteries and make it possible to achieve a batteryless device

    A battery-less, self-sustaining RF energy harvesting circuit with TFETs for µW power applications

    Get PDF
    This paper proposes a Tunnel FET (TFET) power management circuit for RF energy harvesting applications. In contrast with conventional MOSFET technologies, the improved electrical characteristics of TFETs promise a better behavior in the process of rectification and conversion at ultra-low power (µW) and voltage (sub-0.25 V) levels. RF powered systems can not only benefit from TFETs in front-end rectifiers by harvesting the surrounding energy at levels where conventional technologies cannot operate but also in the minimization of energy required by the power management circuit. In this work we present an energy harvesting circuit for RF sources designed with TFETs. The TFET controller emulates an adequate impedance at the output of the rectifier in order to allow maximum transfer of power from the RF source to the input of the boost converter. The output load is activated once the output capacitor reaches a voltage value of 0.5 V. The results show an efficiency boost of 89 % for an output load consuming 1 µW with an available RF power of -25 dBm.Postprint (published version

    RF energy harvesters for wireless sensors, state of the art, future prospects and challenges: a review

    Get PDF
    The power consumption of portable gadgets, implantable medical devices (IMDs) and wireless sensor nodes (WSNs) has reduced significantly with the ongoing progression in low-power electronics and the swift advancement in nano and microfabrication. Energy harvesting techniques that extract and convert ambient energy into electrical power have been favored to operate such low-power devices as an alternative to batteries. Due to the expanded availability of radio frequency (RF) energy residue in the surroundings, radio frequency energy harvesters (RFEHs) for low-power devices have garnered notable attention in recent times. This work establishes a review study of RFEHs developed for the utilization of low-power devices. From the modest single band to the complex multiband circuitry, the work reviews state of the art of required circuitry for RFEH that contains a receiving antenna, impedance matching circuit, and an AC-DC rectifier. Furthermore, the advantages and disadvantages associated with various circuit architectures are comprehensively discussed. Moreover, the reported receiving antenna, impedance matching circuit, and an AC-DC rectifier are also compared to draw conclusions towards their implementations in RFEHs for sensors and biomedical devices applications

    TFET-Based power management circuit for RF energy harvesting

    Get PDF
    This paper proposes a Tunnel FET (TFET)-based power management circuit (PMC) for ultra-low power RF energy harvesting applications. In contrast with conventional thermionic devices, the band-to-band tunneling mechanism of TFETs allows a better switching performance at sub-0.2 V operation. As a result, improved efficiencies in RF-powered circuits are achieved, thanks to increased rectification performance at low power levels and to the reduced energy required for a proper PMC operation. It is shown by simulations that heterojunction TFET devices designed with III-V materials can improve the rectification process at received power levels below -20 dBm (915 MHz) when compared to the application of homojunction III-V TFETs and Si FinFETs. For an available power of -25 dBm, the proposed converter is able to deliver 1.1 µW of average power (with 0.5 V) to the output load with a boost efficiency of 86%.Postprint (author's final draft

    3.3V DC Output At-16dBm Sensitivity And 77% PCE Rectifier For RF Energy Harvesting

    Get PDF
    This paper presents a high voltage conversion at high sensitivity RF energy harvesting system for IoT applications. The harvesting system comprises bulk-to-source (BTMOS) differential-drive based rectifier to produce a high efficiency RF energy harvesting system. Low-pass upward impedance matching network is applied at the rectifier input to increase the sensitivity and output voltage. Dual-oxide-thickness transistors are used in the rectifier circuit to maintain the power efficiency at each stage of the rectifier. The system is designed using 0.18μm Silterra RF in deep n-well process technology and achieves 4.07V output at -16dBm sensitivity without the need of complex auxiliary control circuit and DC-DC charge-pump circuit. The system is targeted for urban environment

    Integrated cmos rectifier for rf-powered wireless sensor network nodes

    Get PDF
    This article presents a review of the CMOS rectifier for radio frequency energy harvesting application. The on-chip rectifier converts the ambient low-power radio frequency signal coming to antenna to useable DC voltage that recharges energy to wireless sensor network (WSN) nodes and radiofrequency identification (RFID) tags, therefore the rectifier is the most important part of the radio frequency energy harvesting system. The impedance matching network maximizes power transfer from antenna to rectifier. The design and comparison between the simulation results of one- and multi-stage differential drive cross connected rectifier (DDCCR) at the operating frequencies of 2.44GHz, and 28GHz show the output voltage of the multi-stage rectifier doubles at each added stage and power conversion efficiency (PCE) of rectifier at 2.44GHz was higher than 28GHz. The (DDCCR) rectifier is the most efficient rectifier topology to date and is used widely for passive WSN nodes and RFID tags
    corecore