270 research outputs found

    A High Sensitivity Three-Dimensional-Shape Sensing Patch Prepared by Lithography and Inkjet Printing

    Get PDF
    A process combining conventional photolithography and a novel inkjet printing method for the manufacture of high sensitivity three-dimensional-shape (3DS) sensing patches was proposed and demonstrated. The supporting curvature ranges from 1.41 to 6.24 ร— 10โˆ’2 mmโˆ’1 and the sensing patch has a thickness of less than 130 ฮผm and 20 ร— 20 mm2 dimensions. A complete finite element method (FEM) model with simulation results was calculated and performed based on the buckling of columns and the deflection equation. The results show high compatibility of the drop-on-demand (DOD) inkjet printing with photolithography and the interferometer design also supports bi-directional detection of deformation. The 3DS sensing patch can be operated remotely without any power consumption. It provides a novel and alternative option compared with other optical curvature sensors

    ์†Œํ”„ํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ๋ฅผ ํ†ตํ•œ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๋ณตํ•ฉ์ฒด์˜ ๋‹ค๋ชฉ์  ๋ฐ ์ €๋น„์šฉ์˜ ๊ณ ํ•ด์ƒ๋„ ํŒจํ„ฐ๋‹ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(๋‚˜๋…ธ์œตํ•ฉ์ „๊ณต), 2023. 2. ์†ก์œค๊ทœ.Carbon nanotube (CNT) is a promising electronic material with superior properties such as high electrical conductance, mechanical strength, and environmental friendliness. Accordingly, studies for commercialization are being actively conducted for applying CNTs to various practical fields. Despite these excellent properties and the effort to use them, however, the commercialization of CNTs has been slow, and one of the reasons is the difficulty in patterning them. Numerous methods for patterning CNTs have been developed to overcome the problem, and many studies have been reported to implement devices using them. This dissertation deals with developing and applying the CNT patterning method. The developed method not only solves the problems of the conventional methods but also has differentiated advantages. CNT is prepared in composite by mixing with paraffin, an organic material, and patterned via soft-lithography techniques. Therefore, the first chapter will explain the background of the two materials, CNT and paraffin, and their significance in this study. It also describes soft-lithography and related techniques, the patterning methods used. Moreover, It introduces challenges to be solved simultaneously with the conventional CNT patterning method and presents future directions. The CNT patterning method and results are presented in detail in the second chapter. The employment of paraffin and soft-lithography offers several advantages in terms of cost and accessibility, as well as process and pattern properties. Significantly, the two most critical advantages are that high-resolution (<10 ฮผm) patterning is possible and printing on various substrates. In addition, optical, electrical, thermal, and mechanical analyses introduce multiple characteristics of CNT composite patterns. Meanwhile, the remaining CNT residues and paraffin in the pattern can have a negative effect, such as a short circuit. In addition, the transfer process could be difficult on substrates with very low surface energy. Thus, the following chapter discusses these issues and describes additional processes to improve the quality and properties of the CNT composite pattern. In the end, a high-performance, flexible, and miniaturized touch sensor and energy harvesting device were fabricated using the printed CNT composite pattern. By utilizing the advantages of high-resolution patterning and no restriction on the substrate, it was possible to manufacture devices with improved performance. It suggests that the CNT composite pattern can be applied to various fields. The fabrication and results of the device will be introduced in the last chapter.ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋Š” ๋†’์€ ์ „๊ธฐ ์ „๋„๋„ ๋ฐ ๊ธฐ๊ณ„์  ๊ฐ•๋„ ๋“ฑ์˜ ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ๋“ค์„ ๊ฐ€์ง„ ์œ ๋งํ•œ ์ „์ž ์žฌ๋ฃŒ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ƒ์šฉํ™” ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰์ค‘์ด๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ์šฐ์ˆ˜ํ•œ ๋ฌผ์„ฑ๊ณผ ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ์˜ ์ƒ์šฉํ™”๋Š” ๋”๋”˜๋ฐ, ๊ทธ ์ด์œ  ์ค‘ ํ•˜๋‚˜๋กœ ํŒจํ„ดํ™”์˜ ์–ด๋ ค์›€์„ ๋“ค ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ํŒจํ„ฐ๋‹ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋“ค์ด ๊ฐœ๋ฐœ๋˜์–ด ์™”์œผ๋ฉฐ, ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์†Œ์ž๋ฅผ ๊ตฌํ˜„ํ•˜๋Š” ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ํŒจํ„ฐ๋‹ ๋ฐฉ๋ฒ•์˜ ๊ฐœ๋ฐœ๊ณผ ์‘์šฉ์— ๋Œ€ํ•ด ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๊ฐœ๋ฐœ๋œ ํŒจํ„ฐ๋‹ ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด ๋ฐฉ์‹์˜ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ฐจ๋ณ„ํ™”๋œ ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ๋ฅผ ์œ ๊ธฐ๋ฌผ์ธ ํŒŒ๋ผํ•€๊ณผ ํ˜ผํ•ฉํ•˜์—ฌ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๋ณตํ•ฉ์ฒด๋ฅผ ์ œ์กฐํ•˜์˜€์œผ๋ฉฐ, ์†Œํ”„ํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๊ธฐ์ˆ ์„ ํ†ตํ•ด ํŒจํ„ฐ๋‹ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ์™€ ํŒŒ๋ผํ•€ ๋‘ ๋ฌผ์งˆ์˜ ๋ฐฐ๊ฒฝ๊ณผ ๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ์˜์˜๋ฅผ ์„ค๋ช…ํ•˜๋ฉฐ, ์‚ฌ์šฉ๋œ ํŒจํ„ฐ๋‹ ๋ฐฉ๋ฒ•์ธ ์†Œํ”„ํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ ๋ฐ ๊ด€๋ จ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด์„œ๋„ ์„ค๋ช…ํ•œ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ๊ธฐ์กด์˜ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ํŒจํ„ฐ๋‹ ๋ฐฉ๋ฒ•์„ ์†Œ๊ฐœํ•จ๊ณผ ๋™์‹œ์— ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๋ฌธ์ œ์ ์„ ์„ค๋ช…ํ•˜๊ณ  ํ–ฅํ›„ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ํŒจํ„ฐ๋‹์˜ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ์˜ ํŒจํ„ฐ๋‹ ๋ฐฉ๋ฒ•๊ณผ ๊ฒฐ๊ณผ๋ฅผ ์ž์„ธํžˆ ๋ณด์—ฌ์ค€๋‹ค. ํŒŒ๋ผํ•€๊ณผ ์†Œํ”„ํŠธ ๋ฆฌ์†Œ๊ทธ๋ž˜ํ”ผ์˜ ์‚ฌ์šฉ์€ ๋น„์šฉ ๋ฐ ์ ‘๊ทผ์„ฑ์„ ์šฐ์ˆ˜ํ•˜๊ฒŒ ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ณต์ •๊ณผ ํŒจํ„ด์˜ ํŠน์„ฑ ๋ฉด์—์„œ ์—ฌ๋Ÿฌ ์ด์ ๋“ค์„ ์ œ๊ณตํ•œ๋‹ค. ํŠนํžˆ, ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์žฅ์ ๋“ค ์ค‘ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋‘ ๊ฐ€์ง€๋Š” ๊ณ ํ•ด์ƒ๋„(<10 ฮผm)์˜ ํŒจํ„ฐ๋‹์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ๊ณผ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ๊ธฐํŒ์— ์ธ์‡„๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด ์™ธ์—๋„ ๊ด‘ํ•™์ , ์ „๊ธฐ์ , ์—ด์ , ๊ธฐ๊ณ„์  ๋ถ„์„ ๋“ฑ์„ ํ†ตํ•ด ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๋ณตํ•ฉ์ฒด ํŒจํ„ด์˜ ๋‹ค์–‘ํ•œ ํŠน์„ฑ๋“ค์„ ์†Œ๊ฐœํ•œ๋‹ค. ํ•œํŽธ, ํŒจํ„ด์— ๋‚จ์•„์žˆ๋Š” ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ์ž”๋ฅ˜๋ฌผ ๋ฐ ํŒŒ๋ผํ•€์€ ํšŒ๋กœ ๋‹จ๋ฝ๊ณผ ๊ฐ™์€ ๋ถ€์ •์ ์ธ ๊ฒฐ๊ณผ๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ํ‘œ๋ฉด ์—๋„ˆ์ง€๊ฐ€ ๋งค์šฐ ๋‚ฎ์€ ๊ธฐํŒ์—์„œ๋Š” ์ „์‚ฌ ๊ณต์ •์ด ์–ด๋ ค์šธ ์ˆ˜๋„ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์„ธ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํŒจํ„ด๊ณผ ๊ณต์ •๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•ด ๋…ผ์˜ํ•˜๊ณ , ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ํŒจํ„ด์˜ ํ’ˆ์งˆ ๋ฐ ํŠน์„ฑ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์ถ”๊ฐ€ ํ”„๋กœ์„ธ์Šค์— ๋Œ€ํ•ด ๊ธฐ์ˆ ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ธ์‡„๋œ ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๋ณตํ•ฉ์ฒด ํŒจํ„ด์„ ์ด์šฉํ•˜์—ฌ ๊ณ ์„ฑ๋Šฅ์˜ ์œ ์—ฐํ•˜๊ณ  ์†Œํ˜•ํ™”๋œ ํ„ฐ์น˜ ์„ผ์„œ์™€ ์—๋„ˆ์ง€ ํ•˜๋ฒ ์ŠคํŒ… ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์•ž์„œ ๊ธฐ์ˆ ํ•œ ๊ณ ํ•ด์ƒ๋„์˜ ํŒจํ„ฐ๋‹์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ๊ณผ ๊ธฐํŒ์— ์ œ์•ฝ์ด ์—†๋‹ค๋Š” ๋‘ ์žฅ์ ์„ ํ™œ์šฉํ•˜์—ฌ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์˜ ์†Œ์ž๋“ค์„ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Š” ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ ๋ณตํ•ฉ์ฒด ํŒจํ„ด์ด ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํƒ„์†Œ๋‚˜๋…ธํŠœ๋ธŒ์˜ ์ƒ์—…ํ™”์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์‹œ์‚ฌํ•œ๋‹ค. ์†Œ์ž์˜ ์ œ์ž‘ ๋ฐ ๊ฒฐ๊ณผ๋Š” ๋งˆ์ง€๋ง‰ ์žฅ์—์„œ ์†Œ๊ฐœ๋  ๊ฒƒ์ด๋‹ค.Chapter 1. Introduction 1 1.1. Characteristics of carbon nanotube (CNT) 1 1.2. Properties of paraffin wax 4 1.3. Soft-lithography and transfer printing 7 1.4. Patterning method of CNT 18 Chapter 2. Patterning of CNT/paraffin composite via soft-lithography 22 2.1. Introduction 22 2.2. Experiments 25 2.2.1. Sample preparation 25 2.2.2. Patterning process of the CNT/paraffin composite 29 2.2.3. Characterization of the composite 30 2.3. Results 35 2.3.1. Optical measurements 35 2.3.2. Electrical measurement 40 2.3.3. Thermogravimetric analysis (TGA) 43 2.3.4. Mechanical & healing properties measurement 45 2.4. Summary 54 Chapter 3. Improving the CNT/paraffin pattern 56 3.1. Paraffin cleaning process for residue removing 56 3.2. Minimize bending radius peeling method 61 3.3. Paraffin removal process 68 3.4. Summary 75 Chapter 4. Applications 76 4.1. Capacitive touch sensor 76 4.1.1. Introduction 76 4.1.2. Device fabrication 79 4.1.3. Results 82 4.2. Water-drop energy harvesting 87 4.2.1. Introduction 87 4.2.2. Device fabrication 94 4.2.3. Results 96 4.3. E-textile for wearable electronics 102 4.3.1. Introduction 102 4.3.2. Device fabrication 108 4.3.3. Results 110 4.4. Summary 130 Chapter 5. Conclusion 132 Bibliography 135 ๊ตญ๋ฌธ ์ดˆ๋ก 146๋ฐ•

    Recent Advances on 2D Materials towards 3D Printing

    Get PDF
    In recent years, 2D materials have been implemented in several applications due to their unique and unprecedented properties. Several examples can be named, from the very first, graphene, to transition-metal dichalcogenides (TMDs, e.g., MoS2), two-dimensional inorganic compounds (MXenes), hexagonal boron nitride (h-BN), or black phosphorus (BP). On the other hand, the accessible and low-cost 3D printers and design software converted the 3D printing methods into affordable fabrication tools worldwide. The implementation of this technique for the preparation of new composites based on 2D materials provides an excellent platform for next-generation technologies. This review focuses on the recent advances of 3D printing of the 2D materials family and its applications; the newly created printed materials demonstrated significant advances in sensors, biomedical, and electrical applications.Financial support from Operational Program Research, Development and Education-Project โ€œMSCAfellow4@MUNIโ€ (CZ.02.2.69/0.0/0.0/20_079/0017045) is acknowledged

    Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    Get PDF
    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/ฮผl) with 10 times lower solution volume (3 ฮผl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.Portuguese Science Foundation - (SFRH/BD/44258/2008), โ€œSMART-ECโ€ projec

    Flexible and Stretchable Electronics

    Get PDF
    Flexible and stretchable electronics are receiving tremendous attention as future electronics due to their flexibility and light weight, especially as applications in wearable electronics. Flexible electronics are usually fabricated on heat sensitive flexible substrates such as plastic, fabric or even paper, while stretchable electronics are usually fabricated from an elastomeric substrate to survive large deformation in their practical application. Therefore, successful fabrication of flexible electronics needs low temperature processable novel materials and a particular processing development because traditional materials and processes are not compatible with flexible/stretchable electronics. Huge technical challenges and opportunities surround these dramatic changes from the perspective of new material design and processing, new fabrication techniques, large deformation mechanics, new application development and so on. Here, we invited talented researchers to join us in this new vital field that holds the potential to reshape our future life, by contributing their words of wisdom from their particular perspective

    Graphene-based flexible sensors towards electronic wearables

    Get PDF
    Flexible electronics and wearable devices have attracted considerable attention because they produce mechanical liberty, in terms of flexibility and stretchability that can enable the possibility of a wide range of new applications. The term โ€œwearable electronicsโ€ can be used to define devices that can be worn or mated with the sensed surface to continuously monitor signals without limitations on mechanical deformability of the devices and electronic performance of the functional materials. The use of polymeric substrates or other nonconventional substrates as base materials brings novel functionalities to sensors and other electronic devices in terms of being flexible and light weight. Conductive nanomaterials, such as carbon nanotubes and graphene have been utilized as functional materials for flexible electronics and wearable devices. Graphene has specifically been considered for producing next-generation sensors due to its impressive electrical and mechanical properties and a result, incorporation of flexible substrates and graphene-based nanomaterials has been widely utilized to form versatile flexible sensors and other wearable devices through use of different fabrication processes. Creation of a large-scale, simple, high-resolution and cost-effective technique that overcomes fabrication limitations and supports production of flexible graphene-based sensors with high flexibility and stretch ability is highly demanding. Soft lithography can be merged with a mechanical exfoliation process using adhesive tape followed by transfer printing to form a graphene sensor on a desired final substrate. In situ microfluidic casting of graphene into channels is another promising platform driving the rapid development of flexible graphene sensors and wearable devices with a wide dynamic detection range. Selective coating of graphene-based nanomaterials (e.g. graphene oxide (GO)) on flexible electrode tapes can, because of its flexibility and adhesive features, be used to track relative humidity (RH) variations at the surface of target surfaces. This thesis describes the design and development of flexible and wearable strain, pressure and humidity sensors based on a novel tape-based cost-effective patterning and transferring technique, an in situ microfluidic casting method, and a novel selective coating technique for graphene-based nanomaterials. First of all, we present a tape-based graphene patterning and transferring approach to production of graphene sensors on elastomeric substrates and adhesive tapes. The method utilizes the work of adhesion at the interface between two contacting materials as determined by their surface energies to pattern graphene on PDMS substrate and transfer it onto a target tape. We have achieved patterning and transferring method with the features of high pattern spatial resolution, thickness control, and process simplicity with respect to functional materials and pattern geometries. We have demonstrated the usage of flexible graphene sensors on tape to realize interaction with structures, humans, and plants for real-time monitoring of important signals. Secondly, we present a helical spring-like piezo resistive graphene sensor formed within a microfluidic channel using a unique and easy in situ microfluidic casting method. Because of its helical shape, the sensor exhibits a wide dynamic detection range as well as mechanical flexibility and stretch ability. Finally, we present a flexible GO-based RH sensor on an adhesive polyimide thin film realized by selectively coating and patterning GO at the surface of Au Interdigitated electrodes (IDEs) and subsequently peeling the device from a temporary PDMS film. Real-time monitoring of the water movement inside the plant has been demonstrated by installing GO-based RH sensor at the surfaces of different plant leaves

    ํƒ„์†Œ/์—ํญ์‹œ ์ˆ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ๋ณตํ•ฉ์žฌ ํ”„๋ฆฐํ„ฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์•ˆ์„ฑํ›ˆ.Carbon-fiber composites are widely used in airplanes, and the development of electric vehicles has spurred demand as interest in light materials has increased concurrently. Thus, researchers have begun to study how users of these products repair them, but the properties of fiber composites make it difficult to measure the level of destruction in repaired areas. The repair process is usually based on hand-lay-up. The success of this method depends on the repairer's proficiency, and it takes much labor and time to cut carbon fibers according to the size and shape of the repair part. Furthermore, the post-curing process also takes a long time, regardless of the size of the repair area. This can lead to a large amount of waste when repairing small components, such as the surfaces of car parts. Another issue is how best to evaluate the repaired area. If monitoring the life cycle or deformation of the component is conducted, even after the repair has been carried it, the user can anticipate and prepare for repairs based on strain sensor data. Studies of large equipment, such as conventional airplanes, and the use of automated tape layering (ATL) to make large carbon composite materials have been actively underway since 2016. However, most previous research has been aimed at producing large carbon-fiber composite materials and reducing the แ…ฎ waste and labor required for repair processes. However, there are no automated processes for smallscale repairs. Various small devices, from vehicles to mobile phones, use composites and thus require appropriate repair processes. Studies focusing on these issues are still lacking. In this study, we developed a rapid curing carbon-fiber composite printer. This can achieve a uniform fiber composite by automating the fiber laying method. A rapid curing device using Joule heat is used for local repairs. The repair time is reduced by mounting the rapid curing device on the printer. The proposed printing system is validated by comparing the recovery rates of undamaged specimens and double-lap repaired specimens. These repaired samples achieve uniform quality following repeated repair, and are thus superior to conventional hand-lay-up repaired samples. The use of the rapid curing system improved the recovery rate by 93% or more in the double lap test. As mentioned previously, the variables used to describe the repair performance, which may vary depending on the technician's proficiency, are stabilized under our system. The rapid curing is also optimized by mounting a feedback system between the temperature and electric power. This achieves uniform recovery rates, regardless of user proficiency. Non-destructive testing is also possible if we attach highly sensitive nanoparticle sensors to the device. The quality of the repair is assessed based on the life cycle and deformation of adhesive repair patches, which are evaluated using the proposed sensors. In this study, we propose the use of a rapid curing carbon composite printer and nanoparticle sensors. We expect that the composite printer developed in our research can be used to support the development of carbon composite applications in industries such as electric vehicles and airplanes.ํƒ„์†Œ ์„ฌ์œ  ๋ณตํ•ฉ์žฌ์˜ ์ˆ˜์š”๋Š” ๋น„ํ–‰๊ธฐ ์‚ฐ์—… ๋ฐ ํ’๋ ฅ ๋ฐœ์ „ ์‚ฐ์—… ๋“ฑ์—์„œ ๋งŽ์ด ์‚ฌ์šฉ๋˜์–ด ์™”์œผ๋ฉฐ, ์ „๊ธฐ์ฐจ์˜ ๋ฐœ์ „์œผ๋กœ ์ธํ•ด ๊ฒฝ๋Ÿ‰์†Œ์žฌ์— ๋Œ€ํ•œ ๊ด€์‹ฌ ๋˜ํ•œ ์ฆ๊ฐ€ํ•˜๋ฉด์„œ ๋”์šฑ ๋งŽ์€ ์ˆ˜์š”๊ฐ€ ๋ฐœ์ƒํ•˜์˜€๋‹ค. ์ด์— ๋”ฐ๋ผ ์ด ์ œํ’ˆ๋“ค์„ ์‚ฌ์šฉํ•˜๋Š” ์‚ฌ์šฉ์ž๋“ค์˜ ์ˆ˜๋ฆฌ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด์™”์œผ๋ฉฐ, ์„ฌ์œ  ๋ณตํ•ฉ์žฌ์˜ ํŠน์„ฑ์ƒ ์ˆ˜๋ฆฌ๋œ ๋ถ€์œ„์˜ ํŒŒ๊ดด์ˆ˜์ค€์„ ์ธก์ •ํ•˜๊ธฐ ์–ด๋ ต๊ณ , ์ด๋ฅผ ํ™•์ธํ•œ ํ›„์—๋„ ์ˆ˜๋ฆฌ๊ณผ์ •์ด ์ž‘์—…์ž์˜ ์†์„ ์ด์šฉํ•œ ์ž‘์—…์ด ์ฃผ๋œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ์ˆ˜๋ฆฌ์ž์˜ ์ˆ™๋ จ๋„์— ํฌ๊ฒŒ ์ˆ˜๋ฆฌ์˜ ์„ฑ๋Šฅ์ด ์ขŒ์šฐ๋˜๋Š” ๋ฐฉ๋ฒ•์ด๋ฉฐ, ์ˆ˜๋ฆฌ๋ถ€์œ„์˜ ํฌ๊ธฐ์™€ ํ˜•ํƒœ์— ๋”ฐ๋ผ ํƒ„์†Œ ์„ฌ์œ ๋ฅผ ์žฌ๋‹จํ•˜๋Š”๋ฐ ํฐ ๋…ธ๋™๊ณผ ์‹œ๊ฐ„์ด ๋“ค์–ด๊ฐ„๋‹ค. ๋˜ํ•œ ๋ณตํ•ฉ์žฌ์˜ ๋‹ค๋ฅธ ํŠน์„ฑ์ธ ํ›„๊ฒฝํ™” ๊ณผ์ •์€ ์ˆ˜๋ฆฌ๊ณผ์ •์—์„œ ๊ธด ์‹œ๊ฐ„์„ ์š”๊ตฌํ•˜๋ฉฐ, ์ด๋Š” ์ˆ˜๋ฆฌ ๋ถ€์œ„์˜ ํฌ๊ธฐ์™€ ์ƒ๊ด€์—†์ด ๊ธด ์‹œ๊ฐ„์ด ๊ฑธ๋ฆฌ๊ธฐ ๋•Œ๋ฌธ์— ์ž๋™์ฐจ ๋ถ€๋ถ„ ํŒŒ์† ํ˜น์€ ํœด๋Œ€ํฐ ์™ธ๊ด€ ์ˆ˜๋ฆฌ์™€ ๊ฐ™์€ ์ž‘์€ ํŒŒํŠธ๋ฅผ ์ˆ˜๋ฆฌํ•˜๋Š” ๋ถ€๋ถ„์— ์žˆ์–ด ํฐ ๋‚ญ๋น„๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. ์ˆ˜๋ฆฌ๋ฅผ ์™„๋ฃŒํ•œ ์ดํ›„์—๋„ ์ด ์ˆ˜๋ฆฌ๋ถ€์˜ ์ˆ˜๋ช…์ด๋‚˜ ๋ณ€ํ˜•์„ ์ธก์ •ํ•จ์œผ๋กœ์จ, ์‚ฌ์šฉ์ž๊ฐ€ ํŒŒ์†์„ ์˜ˆ์ธกํ•˜๊ณ  ๋Œ€๋น„ํ•˜๊ณ  ์ •๋„์— ๋”ฐ๋ผ ์ˆ˜๋ฆฌ๊ณผ์ •์„ ์ค€๋น„ํ•  ๋ฐฉ๋ฒ• ๋˜ํ•œ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ„์™€ ๊ฐ™์€ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•˜์—ฌ ์‚ฌ๋žŒ์˜ ์†์œผ๋กœ ์ง„ํ–‰ํ•ด์•ผ ํ•˜๋Š” ๋ถ€๋ถ„์„ ์ž๋™ํ™”ํ•จ์œผ๋กœ์จ ๋ณ€์ˆ˜๋ฅผ ํ†ตํ•ฉ ๋ฐ ์•ˆ์ •ํ™”ํ•˜๊ณ , ๊ธด ์‹œ๊ฐ„์„ ์ฐจ์ง€ํ•˜๋Š” ํ›„๊ฒฝํ™”๋ฅผ ๊ตญ์ง€์  ์ฃผ์šธ์—ด์„ ํ†ตํ•œ ๊ธ‰์† ๊ฒฝํ™” ์žฅ์น˜๋ฅผ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ๊ธ‰์† ๊ฒฝํ™” ํƒ„์†Œ ์„ฌ์œ  ๋ณตํ•ฉ์žฌ ํ”„๋ฆฐํ„ฐ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ๋น„ํ–‰๊ธฐ๋‚˜ ๋Œ€ํ˜• ํƒ„์†Œ๋ณตํ•ฉ์žฌ๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•œ Automated tape laying (ATL) ๊ณผ ๊ฐ™์€ ๋Œ€ํ˜• ์žฅ๋น„๋“ค์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋“ค์ด 2016 ๋ถ€ํ„ฐ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜์—ˆ์œผ๋‚˜, ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ๋Œ€๋ถ€๋ถ„์€ ๋Œ€ํ˜• ํƒ„์†Œ ์„ฌ์œ  ๋ณตํ•ฉ์žฌ๋ฅผ ์ œ์ž‘ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ์ง„ํ–‰ํ•˜๊ณ  ์žˆ์–ด, ํ›„๊ฒฝํ™”์˜ ๋‹จ์ถ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์ˆ˜ํ–‰๊ณผ ์†Œ๊ทœ๋ชจ์„ฑ์˜ ์ˆ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ž๋™ํ™” ๊ณต์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์—ฌ์ „ํžˆ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์˜ ๊ตญ์ง€์  ์ˆ˜๋ฆฌ์— ์ ํ•ฉํ•œ ์ฃผ์šธ์—ด์„ ํ†ตํ•œ ๊ธ‰์† ๊ฒฝํ™” ์žฅ์น˜๊ฐ€ ์ ์šฉ๋œ ์‚ฌ๋ก€๋Š” ์—†๋‹ค. ์ด์™€ ๊ฐ™์ด ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ํ”„๋ฆฐํŒ… ์‹œ์Šคํ…œ์„ ์ด์šฉํ•˜์—ฌ ์–‘๋ฉด ์ ‘์ฐฉ ๋ฐฉ์‹์˜ ์ˆ˜๋ฆฌ ์‹œํŽธ์„ ๋งŒ๋“ค์–ด ๊ธฐ์กด ๋ฏธํŒŒ๊ดด ์‹œํŽธ๊ณผ์˜ ํŒŒ๋‹จ๊ฐ•๋„์— ๋”ฐ๋ฅธ ๋น„์œจ์„ ํšŒ๋ณต๋ฅ ์ด๋ผ๊ณ  ์ •์˜ํ•˜์˜€๋‹ค. ๋˜ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ํšŒ๋ณต๋ฅ ์„ ํ™•์ธํ•˜์˜€๊ณ , ํ”„๋ฆฐํŒ…์„ ํ†ตํ•œ ์ˆ˜๋ฆฌ ์‹œํŽธ์€ ์ธ์žฅ๊ฐ•๋„ ๊ธฐ์ค€์œผ๋กœ 80% ์ด์ƒ ์ˆ˜์ค€์„ ๋‹ฌ์„ฑํ•˜์˜€๊ณ  ๊ธ‰์† ๊ฒฝํ™” ์‹œ์Šคํ…œ์„ ์ถ”๊ฐ€ํ•œ ์‹œํŽธ์˜ ๊ฒฝ์šฐ๋Š” ์งง์€ ๊ตฌ๊ฐ„์—์„œ ๋” ๋†’์€ ์ ‘์ฐฉ๋ ฅ์„ ๋ณด์ด๋ฉด์„œ 93%์ด์ƒ ํšŒ๋ณต๋ฅ ๋กœ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์•ž์„œ ์ œ์‹œํ•œ ๋ฐ”์™€ ๊ฐ™์ด ์ˆ˜๋ฆฌ์ž์˜ ์ˆ™๋ จ๋„์— ๋”ฐ๋ผ ๋ณ€๊ฒฝ๋  ์ˆ˜ ์žˆ๋Š” ์ˆ˜๋ฆฌ ์„ฑ๋Šฅ์— ๋Œ€ํ•œ ๋ณ€์ˆ˜๋ฅผ ๊ทœ๊ฒฉํ™” ํ•˜์˜€์œผ๋ฉฐ, ์˜จ๋„์™€ ์ „๋ ฅ๋Ÿ‰ ๊ฐ„์˜ ํ”ผ๋“œ๋ฐฑ ์‹œ์Šคํ…œ์„ ํ˜•์„ฑํ•˜์—ฌ ๊ธ‰์† ๊ฒฝํ™” ๋˜ํ•œ ์ตœ์ ํ™”ํ•จ์œผ๋กœ์จ ์‚ฌ์šฉ์ž์˜ ์ˆ™๋ จ๋„์™€ ์ƒ๊ด€์—†์ด ๊ท ์ผํ•œ ํšŒ๋ณต๋ฅ ์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ํšจ๊ณผ๋ฅผ ์–ป์—ˆ๊ณ  ์ด์— ์ ‘์ฐฉ ์ˆ˜๋ฆฌ ํŒจ์น˜์˜ ์ˆ˜๋ช…๊ณผ ๋Œ€๋ณ€ํ˜•๊ณผ ๊ฐ™์€ ์ˆ˜๋ฆฌํŒŒ์† ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ๋‚˜๋…ธ์ž…์ž ์„ผ์„œ๋ฅผ ๋ถ€์ฐฉํ•˜๊ณ  ๋ฌด์„ ํ†ต์‹  ์‹œ์Šคํ…œ์„ ์ ์šฉํ•จ์œผ๋กœ์จ ๋น„ํŒŒ๊ดด ๊ฒ€์‚ฌ ๋˜ํ•œ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ๊ธ‰์† ๊ฒฝํ™” ํƒ„์†Œ ๋ณตํ•ฉ์žฌ ํ”„๋ฆฐํ„ฐ์™€ ์ด๋ฅผ ๊ฒ€์‚ฌํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ์˜ ์›๋ฆฌ๋ฅผ ์‘์šฉํ•œ ๊ธฐ์ˆ ์€ ๋ฐœ์ „๋  ํƒ„์†Œ ์„ฌ์œ ๋ฅผ ์ด์šฉํ•œ ์ „๊ธฐ์ฐจ ํ˜น์€ ํœด๋Œ€๊ธฐ๊ธฐ ์‹œ์žฅ ๋“ฑ ์‚ฐ์—…์  ์‘์šฉ ๋ถ„์•ผ ํ™•์žฅ์— ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.1 CHAPTER 1. INTRODUCTION 1 1.1 OVERVIEW 1 1.2 CARBON FIBER REINFORCED PLASTIC (CFRP) 5 1.3 CFRP REPAIR 5 1.4 THE GOAL OF THIS RESEARCH 7 1.5 OUTLINE OF DISSERTATION 9 2 CHAPTER 2. BACKGROUND 11 2.1 DEMAND FOR CFRP 11 2.2 BONDED PATCH REPAIR 13 2.3 STRUCTURAL HEALTH MONITORING (SHM) 19 3 CHAPTER 3. DESIGN AND FABRICATION 21 3.1 DIRECT CARBON PRINTING SYSTEM 21 3.1.1 Overview of printing system 21 3.1.2 Fiber feeding component 26 3.1.3 Epoxy feeding component 30 3.2 RAPID CURING SYSTEM 32 3.2.1 Overview of rapid curing process 32 3.2.2 Modeling for rapid curing 33 3.2.3 Joule heating module 39 3.2.4 Electric-Thermal feedback module 44 3.3 HIGHLY SENSITIVE SENSOR PATCH FOR SHM 48 3.3.1 Aerodynamically focused nanoparticle (AFN) printing 48 3.3.2 Highly sensitive strain sensor 53 3.3.3 Design of sensor patch and communication system 57 4 CHAPTER 4. EVALUATION 64 4.1 EVALUATION OF PRINTED SAMPLE 64 4.2 EVALUATION OF DEGREE OF CURING VIA RAPID CURING 77 4.3 EVALUATION OF SHM VIA COMMUNICATION SYSTEM 84 5 CHAPTER 5. CONCLUSION 89 BIBLIOGRAPHY 91 ์š”์•ฝ (๊ตญ๋ฌธ์ดˆ๋ก) 99Docto

    The impact of printed electronics on product design

    Get PDF
    Printed electronics (PE) is a disruptive but growing technology that is beginning to integrate its way into viable applications for product design. However, the potential for future impact of the technology on product design and the designer s role and contribution to this has yet to be established. Interest is increasing in the potential for product designers to explore and exploit this technology. Technologies can be seen as being disruptive from both a business, and an adoption point of view. For a business, changing from one technology to another or incorporating a new technology and its production processes can be difficult if they already have their suppliers established and existing relationships in place. Understanding and adopting a new technology can be challenging for a business and individuals working within an established industry as it can cause many questions to be raised around its performance, and direct comparison with the technology they already have in place. However, there have been many technologies that could be seen as disruptive in the past, as they offered an alternative way of working or method of manufacture, such as Bluetooth, 3D printing, and automation (manufacturing/assembly/finishing), etc., and their success has been dictated by individual s perception and adoption of the technology, with their ability to see the worth and potential in the technology. Cost comparison is also an important aspect for a business to consider when choosing whether to change to a new technology or to remain with their existing technology, as changing can disrupt the manufacturing line assembly of a product, and direct cost comparisons of components themselves, such as the cost of buying silicon components in bulk verses printing the components. The new technology needs to offer something different to a product to be worth implementing it in a product, such as its flexible form or lightweight properties of printed electronics being of benefit to the product over what a silicon electronic component/circuit could offer (restricted to rigid circuit boards), the functionality/performance of the components themselves also need to be considered. Performance, availability and maturity of the technology are some of the essential aspects to consider when incorporating a new technology into a product and these can be evaluated using a Technology Readiness Level (TRL) scale. Interest in the stage of development for a technology lies not only with designers; industry and academia also contribute to knowledge by playing a central role in the process of determining a TRL scale that is universally recognised. However, a TRL separation issue occurs between academia (often the technology only reaching an experimental proof of concept stage, a lower number on the TRL scale indicating that the technology is at an early stage of development) and industry (not considering technology for commercialisation until it reaches a stage where there is a demonstration of pre-production capability validated on economic runs, a much higher number on the TRL scale - indicating that the technology is at a much more advanced stage of development). The aim of this doctoral research was to explore the contribution of PE to product design. The researcher experienced the scientific development of the technology first-hand, and undertook a literature review that covered three main topics: 1) printed electronics (the technology itself), 2) impact (approaches to assessing impact and methods of judging new technology) because together they will identify the state of the art of printed electronics technology, and 3) education - educational theories/methods for designers - studying how designers learn, explore different methods in educating them about new technologies, and start to find appropriate methods for educating them about printed electronics technology. A knowledge framework for PE technology was generated and utilised to produce a taxonomy and TRL scale for PE and confirmed by PE expert interview. Existing case studies in which PE technology had been presented to student designers were investigated through interviews with participants from academia and industry to solicit perception and opinions on approaches for the effective communication of PE knowledge to student designers within an educational environment. The findings were interpreted using thematic analysis and, after comparing the data, three main themes identified: technical constraints, designer s perspective, and what a designer is required to do. The findings from the research were combined to create an educational approach for knowledge transfer aimed specifically at meeting the needs of product designers. This resulted in the need for PE technology to be translated into both a visual and written format to create structure and direct links between the technological elements and their form and function in order to facilitate understanding by designers. Conclusions from the research indicate that the translation of this technology into an appropriate design language will equip designers with accessible fundamental knowledge on PE technology (i.e. electrical components: form, function, and area of the technology), which will allow informed decisions to be made about how PE can be used and to utilise its benefits in the design of products. The capabilities and properties of this technology, when paired with product design practice, has the capacity to transform the designs of future products in terms of form/functionality and prevailing/views towards design approaches with electronics. If exposed to a variety of PE elements ranging across different TRLs, designers have the capacity to bridge the TRL separation issue (the gap between academia and industry) through their ability to create design solutions for an end user and provide a commercial application for the technology

    Liquid Metal Printing with Scanning Probe Lithography for Printed Electronics

    Get PDF
    In den letzten Jahren hat das โ€žInternet der Dingeโ€œ (Englisch Internet of Things, abgekรผrzt IoT), das auch als Internet of Everything (Deutsch frei โ€žInternet von Allemโ€œ) bezeichnet wird, mit dem Aufkommen der โ€žIndustrie 4.0โ€œ einen Strom innovativer und intelligenter sensorgestรผtzter Elektronik der neuen Generation in den Alltag gebracht. Dies erfordert auch die Herstellung einer riesigen Anzahl von elektronischen Bauteilen, einschlieรŸlich Sensoren, Aktoren und anderen Komponenten. Gleichzeitig ist die herkรถmmliche Elektronikfertigung zu einem hochkomplexen und investitionsintensiven Prozess geworden. In dem MaรŸe, wie die Zahl der elektronischen Bauteile und die Nachfrage nach neuen, fortschrittlicheren elektronischen Bauteilen zunimmt, steigt auch die Notwendigkeit, effizientere und nachhaltigere Wege zur Herstellung dieser Bauteile zu finden. Die gedruckte Elektronik ist ein wachsender Markt, der diese Nachfrage befriedigen und die Zukunft der Herstellung von elektronischen Gerรคten neu gestalten kรถnnte. Sie erlaubt eine einfache und kostengรผnstige Produktion und ermรถglicht die Herstellung von Gerรคten auf Papier- oder Kunststoffsubstraten. Fรผr die Herstellung gibt es dabei eine Vielzahl von Methoden. Techniken auf der Grundlage der Rastersondenlithografie waren dabei schon immer Teil der gedruckten Elektronik und haben zu Innovationen in diesem Bereich gefรผhrt. Obwohl die Technologie noch jung ist und der derzeitige Stand der gedruckten Elektronik im industriellen MaรŸstab, wie z. B. die Herstellung kompletter integrierter Schaltkreise, stark limitiert ist, sind die potenziellen Anwendungen enorm. Im Mittelpunkt der Entwicklung gedruckter elektronischer Schaltungen steht der Druck leitfรคhiger und anderer funktionaler Materialien. Die meisten der derzeit verfรผgbaren Arbeiten haben sich dabei auf die Verwendung von Tinten auf Nanopartikelbasis konzentriert. Die Herstellungsschritte auf der Grundlage von Tinten auf Nanopartikelbasis sind komplizierte Prozesse, da sie das Ausglรผhen (Englisch Annealing) und weitere Nachbearbeitungsschritte umfassen, um die gedruckten Muster leitfรคhig zu machen. Die Verwendung von Gallium-basierten, bei/nahe Raumtemperatur flรผssigen Metallen und deren direktes Schreiben fรผr vollstรคndig gedruckte Elektronik ist immer noch ungewรถhnlich, da die Kombination aus dem Vorhandensein einer Oxidschicht, hohen Oberflรคchenspannungen und Viskositรคt ihre Handhabung erschwert. Zu diesem Zweck zielt diese Arbeit darauf ab, Methoden zum Drucken von Materialien, einschlieรŸlich Flรผssigmetallen, zu entwickeln, die mit den verfรผgbaren Druckmethoden nicht oder nur schwer gedruckt werden kรถnnen und diese Methoden zur Herstellung vollstรคndig gedruckter elektronischer Bauteile zu verwenden. Weiter werden Lรถsungen fรผr Probleme wรคhrend des Druckprozesses untersucht, wie z. B. die Haftung der Tinte auf dem Substrat und andere abscheidungsrelevante Aspekte. Es wird auch versucht, wissenschaftliche Fragen zur Stabilitรคt von gedruckten elektronischen Bauelementen auf Flรผssigmetallbasis zu beantworten. Im Rahmen der vorliegenden Arbeit wurde eine auf Glaskapillaren basierenden Direktschreibmethode fรผr das Drucken von Flรผssigmetallen, hier Galinstan, entwickelt. Die Methode wurde auf zwei unterschiedlichen Wegen implementiert: Einmal in einer โ€žHochleistungsversionโ€œ, basierend auf einem angepassten Nanolithographiegerรคt, aber ebenfalls in einer hochflexiblen, auf Mikromanipulatoren basierenden Version. Dieser Aufbau erlaubt einen on-the-fly (โ€žim Flugeโ€œ) kapillarbasierten Druck auf einer breiten Palette von Geometrien, wie am Beispiel von vertikalen, vertieften Oberflรคchen sowie gestapelten 3D-Gerรผsten als schwer zugรคngliche Oberflรคchen gezeigt wird. Die Arbeit erkundet den potenziellen Einsatz dieser Methode fรผr die Herstellung von vollstรคndig gedruckten durch Flรผssigmetall ermรถglichten Bauteilen, einschlieรŸlich Widerstรคnden, Mikroheizer, p-n-Dioden und Feldeffekttransistoren. Alle diese elektronischen Bauelemente werden ausfรผhrlich charakterisiert. Die hergestellten Mikroheizerstrukturen werden fรผr temperaturgeschaltete Mikroventile eingesetzt, um den Flรผssigkeitsstrom in einem Mikrokanal zu kontrollieren. Diese Demonstration und die einfache Herstellung zeigt, dass das Konzept auch auf andere Anwendungen, wie z.B. die bedarfsgerechte Herstellung von Mikroheizern fรผr in-situ Rasterelektronenmikroskop-Experimente, ausgeweitet werden kann. Darรผber hinaus zeigt diese Arbeit, wie PMMA-Verkapselung als effektive Barriere gegen Sauerstoff und Feuchtigkeit fungiert und zusรคtzlich als brauchbarer mechanischer Schutz der auf Flรผssigmetall basierenden gedruckten elektronischen Bauteile wirken kann. Insgesamt zeigen der alleinstehende, integrierte Herstellungsablauf und die Funktionalitรคt der Gerรคte, dass das Potenzial des Flรผssigmetall-Drucks in der gedruckten Elektronik viel grรถรŸer ist als einzig die Verwendung zur Verbindung konventioneller elektronischer Bauteile. Neben der Entwicklung von Druckverfahren und der Herstellung elektronischer Bauteile befasst sich die Arbeit auch mit der Korrosion und der zusรคtzlichen Legierung von konventionellen Metallelektroden in Kontakt mit Flรผssigmetallen, welche die Stabilitรคt der Bauteil beintrรคchtigen kรถnnten. Zu diesem Zweck wurde eine korrelierte Materialinteraktionsstudie von gedruckten Galinstan- und Goldelektroden durchgefรผhrt. Durch die kombinierte Anwendung von optischer Mikroskopie, vertikaler Rasterinterferometrie, Rasterelektronenmikroskopie, Rรถntgenphotonenspektroskopie und Rasterkraftmikroskopie konnte der Ausbreitungsprozess von Flรผssigmetalllinien auf Goldfilmen eingehend charakterisiert werden. Diese Studie zeigt eine unterschiedliche Ausbreitung der verschiedenen Komponenten des Flรผssigmetalls sowie die Bildung von intermetallischen Nanostrukturen auf der umgebenden Goldfilmoberflรคche. Auf der Grundlage der erhaltenen zeitabhรคngigen, korrelierten Charakterisierungsergebnisse wird ein Modell fรผr den Ausbreitungsprozess vorgeschlagen, das auf dem Eindringen des Flรผssigmetalls in den Goldfilm basiert. Um eine ergรคnzende Perspektive auf die interne Nanostruktur zu erhalten, wurde die Rรถntgen-Nanotomographie eingesetzt, um die Verteilung von Gold, Galinstan und intermetallischen Phasen in einem in das Flรผssigmetall getauchten Golddraht zu untersuchen. Schlussendlich werden Langzeitmessungen des Widerstands an Flรผssigmetallleitungen, die Goldelektroden verbinden, durchgefรผhrt, was dazu beitrรคgt, die Auswirkungen von Materialwechselwirkungen auf elektronische Anwendungen zu bewerten
    • โ€ฆ
    corecore