24 research outputs found

    Nano-Power Integrated Circuits for Energy Harvesting

    Get PDF
    The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    NEGATIVE BIAS TEMPERATURE INSTABILITY STUDIES FOR ANALOG SOC CIRCUITS

    Get PDF
    Negative Bias Temperature Instability (NBTI) is one of the recent reliability issues in sub threshold CMOS circuits. NBTI effect on analog circuits, which require matched device pairs and mismatches, will cause circuit failure. This work is to assess the NBTI effect considering the voltage and the temperature variations. It also provides a working knowledge of NBTI awareness to the circuit design community for reliable design of the SOC analog circuit. There have been numerous studies to date on the NBTI effect to analog circuits. However, other researchers did not study the implication of NBTI stress on analog circuits utilizing bandgap reference circuit. The reliability performance of all matched pair circuits, particularly the bandgap reference, is at the mercy of aging differential. Reliability simulation is mandatory to obtain realistic risk evaluation for circuit design reliability qualification. It is applicable to all circuit aging problems covering both analog and digital. Failure rate varies as a function of voltage and temperature. It is shown that PMOS is the reliabilitysusceptible device and NBTI is the most vital failure mechanism for analog circuit in sub-micrometer CMOS technology. This study provides a complete reliability simulation analysis of the on-die Thermal Sensor and the Digital Analog Converter (DAC) circuits and analyzes the effect of NBTI using reliability simulation tool. In order to check out the robustness of the NBTI-induced SOC circuit design, a bum-in experiment was conducted on the DAC circuits. The NBTI degradation observed in the reliability simulation analysis has given a clue that under a severe stress condition, a massive voltage threshold mismatch of beyond the 2mV limit was recorded. Bum-in experimental result on DAC proves the reliability sensitivity of NBTI to the DAC circuitry

    Enabling low cost test and tuning of difficult-to-measure device specifications: application to DC-DC converters and high speed devices

    Get PDF
    Low-cost test and tuning methods for difficult-to-measure specifications are presented in this research from the following perspectives: 1)"Safe" test and self-tuning for power converters: To avoid the risk of device under test (DUT) damage during conventional load/line regulation measurement on power converter, a "safe" alternate test structure is developed where the power converter (boost/buck converter) is placed in a different mode of operation during alternative test (light switching load) as opposed to standard test (heavy switching load) to prevent damage to the DUT during manufacturing test. Based on the alternative test structure, self-tuning methods for both boost and buck converters are also developed in this thesis. In addition, to make these test structures suitable for on-chip built-in self-test (BIST) application, a special sensing circuit has been designed and implemented. Stability analysis filters and appropriate models are also implemented to predict the DUT’s electrical stability condition during test and to further predict the values of tuning knobs needed for the tuning process. 2) High bandwidth RF signal generation: Up-convertion has been widely used in high frequency RF signal generation but mixer nonlinearity results in signal distortion that is difficult to eliminate with such methods. To address this problem, a framework for low-cost high-fidelity wideband RF signal generation is developed in this thesis. Depending on the band-limited target waveform, the input data for two interleaved DACs (digital-to-analog converters) system is optimized by a matrix-model-based algorithm in such a way that it minimizes the distortion between one of its image replicas in the frequency domain and the target RF waveform within a specified signal bandwidth. The approach is used to demonstrate how interferers with specified frequency characteristics can be synthesized at low cost for interference testing of RF communications systems. The frameworks presented in this thesis have a significant impact in enabling low-cost test and tuning of difficult-to-measure device specifications for power converter and high-speed devices.Ph.D

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Algorithms for Verification of Analog and Mixed-Signal Integrated Circuits

    Get PDF
    Over the past few decades, the tremendous growth in the complexity of analog and mixed-signal (AMS) systems has posed great challenges to AMS verification, resulting in a rapidly growing verification gap. Existing formal methods provide appealing completeness and reliability, yet they suffer from their limited efficiency and scalability. Data oriented machine learning based methods offer efficient and scalable solutions but do not guarantee completeness or full coverage. Additionally, the trend towards shorter time to market for AMS chips urges the development of efficient verification algorithms to accelerate with the joint design and testing phases. This dissertation envisions a hierarchical and hybrid AMS verification framework by consolidating assorted algorithms to embrace efficiency, scalability and completeness in a statistical sense. Leveraging diverse advantages from various verification techniques, this dissertation develops algorithms in different categories. In the context of formal methods, this dissertation proposes a generic and comprehensive model abstraction paradigm to model AMS content with a unifying analog representation. Moreover, an algorithm is proposed to parallelize reachability analysis by decomposing AMS systems into subsystems with lower complexity, and dividing the circuit's reachable state space exploration, which is formulated as a satisfiability problem, into subproblems with a reduced number of constraints. The proposed modeling method and the hierarchical parallelization enhance the efficiency and scalability of reachability analysis for AMS verification. On the subject of learning based method, the dissertation proposes to convert the verification problem into a binary classification problem solved using support vector machine (SVM) based learning algorithms. To reduce the need of simulations for training sample collection, an active learning strategy based on probabilistic version space reduction is proposed to perform adaptive sampling. An expansion of the active learning strategy for the purpose of conservative prediction is leveraged to minimize the occurrence of false negatives. Moreover, another learning based method is proposed to characterize AMS systems with a sparse Bayesian learning regression model. An implicit feature weighting mechanism based on the kernel method is embedded in the Bayesian learning model for concurrent quantification of influence of circuit parameters on the targeted specification, which can be efficiently solved in an iterative method similar to the expectation maximization (EM) algorithm. Besides, the achieved sparse parameter weighting offers favorable assistance to design analysis and test optimization

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Sistemi di Regolazione dell'Alimentazione Affidabili per Processori Multi-Core

    Get PDF
    I moderni processori multi-core ad elevate prestazioni sono alimentati da regolatori di tensione integrati direttamente sul chip. Questi regolatori forniscono a ciascun power domain la tensione ottimale sulla base della sua attività, monitorata da una Power Control Unit. Questo consente da un lato di ottenere una riduzione dei consumi, dall'altro di avere un boost delle prestazioni in particolari contesti. Tali regolatori integrati sul die sono affetti da guasti e fenomeni di aging, che possono compromettere il corretto funzionamento del circuito. Questi problemi non sono tollerabili in contesti caratterizzati da esigenze di elevata reliability, come l'autonomous driving. Dunque, è stato sviluppato un monitor per rivelare on-line eventuali guasti che possono verificarsi durante il normale funzionamento sul campo. In caso di guasto il monitor è in grado di dare un'indicazione d'errore, che può essere utilizzata per attivare delle procedure di recovery. La soluzione proposta, basata su un approccio completamente differente rispetto a quello suggerito dallo standard ISO 26262, beneficia, rispetto a quest'ultima, di costi nettamente inferiori e prestazioni superiori. Il monitor può essere calibrato automaticamente per compensare le variazioni dei parametri di processo ed i fenomeni di aging che possono affliggere il monitor stesso. È stata verificata la self-checking ability del monitor rispetto a guasti di tipo transistor stuck-on, transistor stuck-open e bridging resistivo, risultando Totally Self-Checking rispetto all'insieme di guasti considerato
    corecore