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ABSTRACT

Over the past few decades, the tremendous growth in the complexity of analog

and mixed-signal (AMS) systems has posed great challenges to AMS verification,

resulting in a rapidly growing verification gap. Existing formal methods provide

appealing completeness and reliability, yet they suffer from their limited efficiency

and scalability. Data oriented machine learning based methods offer efficient and

scalable solutions but do not guarantee completeness or full coverage. Additionally,

the trend towards shorter time to market for AMS chips urges the development of

efficient verification algorithms to accelerate with the joint design and testing phases.

This dissertation envisions a hierarchical and hybrid AMS verification framework

by consolidating assorted algorithms to embrace efficiency, scalability and complete-

ness in a statistical sense. Leveraging diverse advantages from various verification

techniques, this dissertation develops algorithms in different categories.

In the context of formal methods, this dissertation proposes a generic and com-

prehensive model abstraction paradigm to model AMS content with a unifying ana-

log representation. Moreover, an algorithm is proposed to parallelize reachability

analysis by decomposing AMS systems into subsystems with lower complexity, and

dividing the circuit’s reachable state space exploration, which is formulated as a

satisfiability problem, into subproblems with a reduced number of constraints. The

proposed modeling method and the hierarchical parallelization enhance the efficiency

and scalability of reachability analysis for AMS verification.

On the subject of learning based method, the dissertation proposes to convert the

verification problem into a binary classification problem solved using support vector

machine (SVM) based learning algorithms. To reduce the need of simulations for
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training sample collection, an active learning strategy based on probabilistic version

space reduction is proposed to perform adaptive sampling. An expansion of the

active learning strategy for the purpose of conservative prediction is leveraged to

minimize the occurrence of false negatives.

Moreover, another learning based method is proposed to characterize AMS sys-

tems with a sparse Bayesian learning regression model. An implicit feature weighting

mechanism based on the kernel method is embedded in the Bayesian learning model

for concurrent quantification of influence of circuit parameters on the targeted spec-

ification, which can be efficiently solved in an iterative method similar to the ex-

pectation maximization (EM) algorithm. Besides, the achieved sparse parameter

weighting offers favorable assistance to design analysis and test optimization.
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1. INTRODUCTION

Over the past few decades, the semiconductor community has witnessed tremen-

dous growth in the complexity of very-large-scale integration (VLSI) designs. As

circuits and systems become increasing sophisticated, researchers and engineers are

faced with challenges that continue to evolve at an unprecedented pace. Among

those challenges, verification of analog and mixed-signal (AMS) circuits is one of

those arduous tasks, whose difficulties come from not only continued technology

scaling, more stringent specifications, and escalating design complexity, but also the

need for addressing process-voltage-temperature (PVT) variations and device aging.

1.1 Analog and Mixed-Signal (AMS) Verification

AMS systems have been so pervasive in all sorts of modern products such as com-

puters, automotive, portable and wearable devices, biomedical equipment, robots,

and enormous systems like Internet of things (IoT) or cyber physical systems (CPS).

The importance of AMS systems is rapidly increasing, which is due both to their

indispensability as interfaces of electronic systems interacting with the real world,

and to their irreplaceable functions complementing the digital content.

AMS verification is a methodology that checks the correctness of given AMS

designs by investigating if the designs fulfill specified properties [54], which is usually

considered as a pre-silicon process. As shown in Fig. 1.1, verification is an crucial

stage in the flow from design to production. Since fabrication is usually expensive and

there is a pressing need of shorter time-to-market, the role of the verification stage

is becoming more and more important. The pre-silicon design-verfication iterations

are expected to capture and fix errors as much as possible. Occasionally, in view of

optimizing the whole flow, preliminary tasks of post-silicon testing and yield analysis

1



may be included in the verification stage as well.

Design Verification Fabrication Test

Production
Yield 

Analysis

Figure 1.1: AMS design to production flow.

Verification of digital circuits has greatly advanced over the decades. Historically,

it started with the development of transistor or gate level simulation techniques, then

evolved to register-transfer level (RTL) that focuses on hardware description lan-

guages like Verilog [122], and later to automatic testbench generation with specific

verification languages and libraries, where SystemVerilog [114] and universal verifi-

cation methodology (UVM) become the mainstream in the industry [47] nowadays.

Currently, digital verification is carried out at system levels involving multiple en-

gines for various needs, such as simulations, emulations and field-programmable gate

array (FPGA) prototypes.

Compared to digital verification, AMS verification is still immature due to the

fact that analog signals are by nature more complicated than digital signals. The

continuities in time, amplitude, frequency and phase of analog signals makes the

parameter space or searching space of AMS verification infinitely large, which easily

leads to the curse of dimensionality. Besides, unlike digital functionality that can be

atomized into basic logical operations, analog functions and characteristics are de-
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Completeness
100%

Efficiency Circuit size

Formal

Simulation based

Figure 1.2: Overview of the two categories of AMS verification techniques.

scribed by continuous and usually nonlinear mathematical expressions. Furthermore,

analog designs are still mostly custom designs relying on designers’ innovations, due

to the facts that standardizing analog designs or constraining them with a definite

set of rules is impractical, hampering generic analog synthesis and fully-automated

analog verification. Nonetheless, in addition to the constantly increasing complex-

ity, there is a pressing need of shorter time-to-market of AMS ICs. Therefore, the

demand of efficient algorithms for AMS verification has been greatly increased in

recent years.

It is widely accepted that AMS verification techniques can be categorized into

two groups [12]: simulation based verification and formal verification. Simulation

3



based methods verify circuits with a finite number of simulations by either embed-

ding checkers in the process of simulations or measuring the performance from the

output of the simulations. They are very efficient but cannot ensure coverage or

completeness. On the other hand, formal methods verify circuits in a rigorous man-

ner via approaches like mathematical proof. These methods are so expensive that

large circuits are still beyond their capability, yet they are more reliable since the

completeness is guaranteed. Fig. 1.2 demonstrates the differences between the two

kinds of AMS verification techniques in terms of completeness, efficiency and the

circuit size they are capable to handle.

Simulation based methods are more traditional but still prevailing over formal

methods in the industry nowadays. Similar to digital verification based on test-

benches, those methods verify AMS designs by running simulations across “corners”

and then check if the outputs of the simulations hit or miss the given specifications.

Due to the inherent continuity of analog signals and parameters, the state spaces or

searching spaces of the AMS verification problems are infinitely large and hence the

coverage provided by corner cases simulations is incomplete.

Recently, the investigation and development of formal methods in the AMS con-

text has been attracting more and more interests from researchers. Formal methods

are prominent in rigorous verification, and ensuring 100% coverage or completeness

of the verification via mathematical proofs. Whereas the past decades have witnessed

considerable advances in academic research of formal AMS verification, the efficiency

of the formal methods is still a bottleneck and their applicability is limited to circuits

of small sizes. Consequently, although noticeable growth of the adoption of formal

methods has been observed in the industry of digital ICs [47], the industrial practice

of such techniques in AMS applications is still minimal.
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Figure 1.3: Hierarchical AMS verification.

1.2 Hierarchical and Hybrid AMS Verification Challenges

To deal with the explosively growing complexity in AMS designs that consist of

an overwhelming amount of devices, designers are resorting to hierarchical method-

ologies that break a large design into smaller and sometimes reusable blocks. Since

AMS verification also faces the same complexity challenges, typically a verification

plan copes with a complex AMS system in its design hierarchy. For example, as

illustrated in Fig. 1.3, a complete verification plan is conducted hierarchically by

developing verification schemes for different levels including block level, chip level

and the top level.

While complex AMS systems may involve multiple functional blocks with diverse

functionality, it is impractical to develop one verification scheme for the entire top

level verification. The hierarchical structure demonstrated in Fig. 1.3 is able to
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segment the system level tasks into block level subroutines with lower complexity,

and allows flexible adoption of various verification plans based on the characteristics

or special needs of each block. For example, for critical blocks, formal methods are

more favorable for their appealing reliability, while simulation-based methods can

be used to handle non-critical but complex blocks in favor of better efficiency and

scalability. This suggests a framework involving hybrid strategies for hierarchical

AMS verification.

One of the challenges is the low efficiency of formal methods. Even after the

complex system is segmented into blocks with much lower complexities, practically,

the applicability of formal methods to the block level subsystems is still immensely

restricted by the expensive cost of time and computing resources. Consequently,

although it is widely recognized as an arduous challenge, it is remarkably favorable

to enhance the efficiency and scalability of general purpose formal methods for AMS

verification without any loss in the completeness or convergence.

For simulation-based methods, there usually is a lack of effective models that

leverage simulations more than just as repeated checks and are able to provide use-

ful feedback based on simulation results. Since each simulation can be treated as a

specific format of circuitry data, machine learning models can be built to perform

predictions for the purpose of verification based on the collected simulation data.

One of the challenges of adopting learning based methods in the context of AMS

verification is to reshape learning models to remedy the distinctive complication of

AMS verification problems such as the requirement of conservativeness (e.g. min-

imizing acceptance error by aggressively rejecting uncertain circuit instances), the

limited accessibility of data due to expensive simulations, and the enormous number

of parameters under consideration. Besides, as illustrated in Fig. 1.1, there may be a

considerable number of design-verification iterations in the flow from design to pro-
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duction. In this light, the reusability of the verification model is of great significance

in improving the efficiency of verification tasks after re-design.

Additionally, once an AMS design fails the verification process, providing hints

from the verification perspective to the designers may help the process of diagnosis

and re-design, and also improve the efficiency of design-verification iterations. Similar

situations also exist between the testing and verification tasks since testing plans can

usually be verified or optimized in the verification phase. Associating the design, the

testing plans and the verification suggests unifying circuit analysis models, which can

be achieved by learning based methods, and requires further development of learning

models in the verification environment for parameter and specification analysis.

1.3 Dissertation Contributions

This dissertation focuses on developing generic AMS verification algorithms for

better scalability and higher efficiency under the contexts of formal verification and

learning based verification, which can be readily embedded into the modern hier-

archical AMS verification framework described in the previous section. There are

three series of new algorithms proposed in this dissertation and their improvements

compared to legacy formal or simulation based methods is demonstrated in Fig. 1.4.

The first set of algorithms is developed under the reachability analysis framework

[1, 149], which is a prominent formal verification framework, to enhance the efficiency

and scalability of the reachability analysis by a new AMS model abstraction method,

a system decomposition mechanism that partitions the reachability analysis problem

into less complex subproblems, and hierarchical parallelization utilized among both

the decomposed subsystems and the internal constraints of satisfiability models. In

the hierarchical AMS verification framework, the combination of these algorithms

serves as a formal checker that can be applied to formally verify critical blocks in the
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AMS system.

The second set of algorithms demonstrate a novel active learning guided machine

learning approach for learning based verification. One of the algorithms is employed

under the context of support vector machines and is able to dramatically reduce the

need of simulations and samples, leading to significant reduction of the overall train-

ing cost. It is further extended to an asymmetric algorithm to enable conservative

prediction. Due to the superior efficiency of the algorithm and the reusability of the

produced model, the algorithm is particularly suitable for preliminary verification

of designs and any potential re-designs under the same specifications, or for quick

validation of the feasibility of test plans.

The third algorithm is another learning based method that develops statistical

regression model to accurately approximate the characteristics of AMS systems and

reliably capture complex dependencies of circuit performances on essential circuit

and device parameters. This sparse model produces accurate models learned from a

moderate amount of simulations or measurement data, and provides probabilistical

predictions which are beneficial to the conservativeness of verification tasks. Besides,

it is able to compute a probabilistically inferred weighting factor for each parameter.

Such factor quantifies the criticality of the parameter as part of the overall learning

framework, hence offering a powerful enabler for variability modeling, failure diag-

nosis, and test development. In this sense, it is a valuable asset to the whole flow

shown in Fig. 1.1. This statistical verification methodology can be leveraged in the

hierarchical AMS verification framework to handle all the systems/subsystems that

exceed the capability of formal checkers and provide helpful parametric analysis re-

sults to designers and testing engineers to aid the debug or re-design process and the

optimization of test plans, respectively.
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1.4 Dissertation Organization

In this dissertation, Section 2 discusses the existing AMS verification methods

in the contexts of formal methods and simulation-based methods. First, a general

definition of AMS systems is provided. Then, formal methods including proof based

symbolic methods, equivalence checking and model checking are introduced and def-

initions are provided to illustrate problems addressed by different techniques. After

that, a brief introduction to simulation based verification methods and the two pop-

ular routes including assertion based and learning based methods are provided.

In Section 3, the development of the first set of algorithms for formal AMS veri-

fication firstly proposes a model abstraction method that is specifically effective for

digitally-intensive analog systems, which accounts for a substantial subset of AMS

systems. Then, the concept and the potential improvement of system partitioning

and parallelization is introduced and discussed, followed by a generic system de-

composition method that is able to divide the original satisfiability problem into

subproblems with lower complexity. The efficiency of the algorithm is demonstrated

in reachability analysis of a simplified DC-DC converter and a digitally-intensive

phase-locked loop.

Section 4 proposes the second set of algorithms by formulating the verification

problems into binary classification problems which can be handled by support vector

machines. An active learning scheme based on version space reduction is developed

to guide the sampling process during the generation of training samples, resulting in

simulation reduction in the verification tasks. In addition, an asymmetric extension

of the active learning framework is proposed to achieve conservative prediction by

adding safety level evaluation of the model into the active learning strategy. The ad-

vantages of the reduced number of the required simulations and the resulted training
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process acceleration is manifested by verifying an LC based DC-DC converter and a

charge pump phase-locked loop. The algorithm is also extended to validate a testing

scheme of on-chip peak temperature monitoring.

In addition, a statistical regression method is proposed in Section 5 to simul-

taneously characterize AMS systems and capture the performance dependencies on

various parameters. To achieve both objectives concurrently, it faces challenges from

the complex AMS nature and the feature weighting problem, which are introduced

firstly. Then, a novel feature kernel is defined to embed feature weighting mecha-

nism into kernel machines. Under the Bayesian learning framework, a learning model

called sparse relevance kernel machine is developed to produce sparse and accurate

predicting models efficiently. The effectiveness of the algorithm is demonstrated in

the statistical variability modeling of a low-dropout regulator. And the method is

extended to the built-in self-test development and optimization of a charge-pump

phase-locked loop.

The dissertation is concluded in Section 6, with discussions of potential future

works towards a complete road map of hierarchical and hybrid AMS verification.
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2. MODELING OF AMS SYSTEMS AND VERIFICATION PROBLEMS

Before diving into detailed AMS verification algorithms, this section provides

definitions and brief descriptions of AMS systems and different verification problems

for the purpose of illustrating different verification frameworks.

2.1 AMS Systems

Generally, a model of an AMS system consists of both analog and digital variables

along with continuous and discrete transitions and state mapping functions. Based

on the definition provided in [85], a new definition of AMS systems is provided as

follows:

Definition 1 An AMS system is a tuple HAMS = (Xa, Xd, t, Fa, Fb), where:

• Xa ⊆ Rn is a set of continuous variables representing analog content of the

system;

• Xd ⊆ {0, 1}m is a set of boolean variables representing digital content of the

system;

• t ∈ R is a time variable;

• Fa ∈ Rn×{0, 1}m×R2 → Rn is the mapping function from the state (Xa, Xd)

at time t1 to the continuous portion Xa at time t2;

• Fd ∈ Rn × {0, 1}m × R2 → {0, 1}m is the mapping function from the state

(Xa, Xd) at time t1 to the discrete portion Xd at time t2.

To represent digital signals and arithmetic computations, Xd can be expressed

in integers (i.e., Xd ∈ Zm). Alternatively, for behavioral description, the digital
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content can also be defined by a nested tuple (Xd, Rres) where Xd ⊆ Rm is expressed

similarly to Xa but comes with a resolution Rres ∈ R. If m = 0, meaning Xd = ∅,

there is no digital content and thus the system is pure analog. On the other hand, if

m� n, meaning that digital content is the major portion, such systems are named

as digitally-intensive analog (DIA) systems.

The two mapping functions Fa and Fb describe the transient behaviors of the AMS

system. In Definition 1, Fa and Fb are generally defined to take both time-variant

and time-invariant systems into account with the following forms:

Xa(t2) = Fa(Xa(t1), Xd(t1), t1, t2),

Xd(t2) = Fd(Xa(t1), Xd(t1), t1, t2).

Time variant models are usually for specific applications, such as time-varying ca-

pacitors integrated in microelectromechanical systems (MEMS) [101], photodiodes

with temporal noise in image sensors, memristive cells for hardware implementation

of neural networks [135], and so on, which only account for a small portion of AMS

systems. Time-invariant components like filters, amplifiers, data converters, etc., are

more widely used in AMS systems. For time-invariant systems, the state at t2 may

be determined by the state at t1 and the time step ∆t = t2− t1. As a result, the two

mapping functions can be simplified to the following forms:

Xa(t2) = Fa(Xa(t1), Xd(t1),∆t) ∈ Rn × {0, 1}m × R→ Rn,

Xd(t2) = Fd(Xa(t1), Xd(t1),∆t) ∈ Rn × {0, 1}m × R→ {0, 1}m.
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2.2 Existing Formal AMS Verification Techniques

As illustrated in the previous section, formal methods account for an important

category of AMS verification techniques. The objective of this section is to provide

definitions of different formal verification methods and a brief overview of some

existing methods.

2.2.1 Proof Based Symbolic Methods

Symbolic analysis was the first step towards circuit design as well as formal veri-

fication by nature, and numerous proof based symbolic methods have been proposed

in the AMS verification domain [149, 107]. Such methods verify design properties of

AMS circuits with formal deduction based theorem proving. In the context of propo-

sitional logic [16], the AMS system HAMS can be considered as a set of formulas and

conditions, namely axioms, and the design properties P is a theorem. Given a set

of rules of inference Rinfer, this kind of verification methods can be consequently

defined as:

Definition 2 Proof based symbolic verification is a methodology finding a proof that

P is deducible from HAMS via Rinfer, denoted by:

HAMS ` P.

And a proof is a tuple Hproof = (A1, A2, ..., An, P ) with finite length, where Ai is

either an axiom in HAMS or an inference from its predecessors (A1, A2, ..., Ai−1) in

Hproof via Rinfer.

The applicability of traditional symbolic methods is limited by the facts that they

usually require substantial expertise and human innovation. Recent research has

been focused on handling these problems with theorem provers. For example, a high
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order logic proof checker PVS [106] is used in [50] to perform symbolic verification

by formally proving that an approximated piecewise linear model of a synthesized

netlist is functionally equivalent to the properties of a behavioral model extracted

from VHDL-AMS specifications. Another symbolic verification method proposed

in [4] uses Mathematica [139] to prove the correctness of the properties of AMS

designs. With circuits and properties described by generalized recurrence equations,

an iterative procedure is applied to keep generating counterexamples until the proof is

achieved. In addition to the usage of theorem provers, some other symbolic methods

focus on the development of data structures to efficiently manipulate large symbolic

representations, most of which lie in the framework of binary decision diagram (BDD)

[107] that eliminates data redundancy in the symbolic analysis, avoids exhaustive

enumeration, and provides efficient numerical evaluations.

2.2.2 Equivalence Checking

AMS systems are usually modeled and compared on different levels of abstrac-

tion such as transistor level schematics, SPICE netlists, behavioral models [109],

macromodels [82], etc. Equivalence checking is to prove or disprove the functional

equivalence or similarity between two models of an AMS system. Since the func-

tional equivalence is often verified with respect to the input-output behavior of the

AMS systems, an abstraction of HAMS can be expressed as a function M(x; p) that

takes inputs x and parameters p of the system and mimics the output of the system.

Assuming the set of all possible inputs is ΦI , and the set of all plausible parameters

or configurations is ΦP , equivalence checking can be defined as:

Definition 3 Given two abstractions M1 and M2 of HAMS, equivalence checking is

to prove or disprove the following statement:
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For functional equivalence,

∀x ∈ ΦI ,∀p ∈ ΦP ,M1(x; p) = M2(x; p),

or for functional similarity,

∀x ∈ ΦI ,∀p ∈ ΦP ,M1(x; p) ≈M2(x; p).

Linear AMS systems like filters and amplifiers are usually modeled with transfer

functions, and several works [11, 104] verify the transient response of linear analog

circuits by performing equivalence checking between the transfer function represent-

ing the implementation and the transfer function representing the specification. For

nonlinear AMS systems, ordinary differential equations (ODEs) or differential alge-

braic equations (DAEs) may be used to build the models [60, 32, 118] describing the

behavior of the systems. To verify the functional similarity instead of equivalence,

authors of [109] propose to formulate the equivalence checking problem as an opti-

mization problem by minimizing the errors between the behavioral model and the

implementation.

2.2.3 Model Checking

As a powerful tool for automatic verification, initially, model checking [10, 149]

was developed for discrete systems with finite-state models and formal properties.

Typically, the system under consideration is firstly modeled and the produced model

is usually expected to function as a simulator of the system for quick assessment.

Then, for AMS verification, a model checker is employed to determine if all the

properties are satisfied by completely exploring the whole state space. Therefore,

given properties or specifications P , model checking can be defined as:

16



Definition 4 Model checking is to build a model M from HAMS and then check if

P holds in the model M , denoted by

M |= P

Generally, P is formulated as a temporal logical formula, and model checking is

usually conducted by analyzing the reachable state spaces of the extracted model,

leading to a group of model checking methods called reachability analysis [1, 149].

This kind of methods is defined as follows:

Definition 5 Given an initial state space Φ0, reachability analysis is to compute a

sequence of the resulting reachable state space (Φ0,Φ1, ...,Φn) of the extracted model

M , until P is satisfied or violated in Φn, meaning the satisfiability of the following

formula can be determined:

(Φ0,Φ1, ...,Φn) |= P

By fixing a time step and a state transition relationship, an AMS system HAMS

can be characterized by an initial state space Φ0 and a transition function Tr().

Then, the reachable state space Φi+1 from the current state space Φi can be defined

as:

Φi+1 = {Tr(x)|x ∈ Φi}

For nonlinear AMS systems, it is often arduous to compute the exact reachable state

space. A more practical way is to overapproximate Φi with Φ̂i defined as:

Φ̂i+1 ⊇ {Tr(x)|x ∈ Φ̂i}

and for conservativeness, P should be checked that it is not violated in any of those

17



approximations. One of the key challenges posed here is the accumulation of over-

approximation which may collapse the convergence of the procedure of reachability

analysis. As a result, numerous schemes have been developed to achieve tighter

overapproximation of the state spaces, including hypercubes [57, 119, 146], convex

polygons [86, 132], support function representations [78, 83], projectahedrons [53],

zonotopes [7], and so on.

Reachability analysis for linear AMS systems is effective since the reachable state

spaces can be efficiently computed [8, 52] and the error accumulation is well con-

trolled. For nonlinear AMS systems, reachability analysis is much more complicated

and requires massive efforts to achieve automatic and efficient computation of the

reachable state spaces. For example, methods proposed in [7, 113] use a discrete-time

linear model to approximate the nonlinear system and perform efficient reachabil-

ity analysis via zonotope manipulation. Greatly benefited from the advances in

boolean satisfiability problems (abbreviated as SAT) in the digital domain, satisfia-

bility modulo theories (SMT) [14, 96] have been developed to decide the satisfiability

of formulas with both integers and real numbers. By converting reachability analysis

problems in the AMS verfication into SMT problems, methods in [132, 126, 145, 150]

utilize a variety of SMT solvers (e.g. Yices [42], iSAT [48], Z3 [36], etc.) to explore

the reachable spaces.

2.3 Existing Simulation Based AMS Verification Techniques

Despite the superior coverage or completeness provided by formal methods, re-

garding the efficiency and the scalability, simulation based methods are in a dominant

position in the industry. Usually, they take the form of simulations at different lev-

els (e.g. SPICE level or behavioral level) with configurable parameters varying in

given ranges to reflect process variations, initial conditions and design parameters.
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Industrial practice is to select the minimal, nominal and maximal values for each

parameter and run simulations for all permutations of these so-called corners.

Designing testbenches in the simulation environment and evaluating performances

of AMS systems based on simulation results is not yet fully automated. And running

simulations exhaustively can be extremely expensive. Research on simulation based

methods often aims at higher level automation, better versatility, optimization of the

sampling process, and extraction of more useful information from simulation data.

Simulation based methods are not well classified in the literature as formal methods

since models and approaches utilized in those methods are less rigorous but more

diverse. Nonetheless, some methods are similar in the techniques they utilized and

the following subsections will briefly cover two groups of simulation based methods.

2.3.1 Assertion Based Verification

Assertion based verification methods focus on improving the simulation envi-

ronment or creating new tools for the purpose of AMS verification. A common

implementation of these methods is to embed AMS assertions or checkers in the sim-

ulation flow so as to automatically invoke property checking during every simulation

process. For example, authors in [3] suggest extending the property specification lan-

guage (PSL) [65] assertions from the digital domain to the AMS environment, and

an implementation for SPICE level simulation has emerged [97]. Additionally, syn-

tax and semantics introduced in [58] expand and generalize SystemVerilog Assertion

(SVA) [114] regular expressions to continuous-time systems. Another AMS verifica-

tion flow proposed in [144] implements embedded AMS checkers with Verilog-A [46]

and VerilogAMS [75] to support top level functional coverage checking.

Overall, most of the assertion based methods focus on the AMS verification tools

or implementations for the ease of use or rich functionality to capture more analog
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behaviors. Those tools and implementations provide infrastructures to support and

improve verification flows built upon them.

2.3.2 Learning Based Verification

Machine learning techniques have been evolving for decades and have been widely

used in various domains like bioinformatics, medical imaging, information retrieval,

and circuit applications, showing exceptional power in sophisticated systems for tasks

such as classification, regression, clustering, decision making, etc. Lately, a machine

learning algorithm even masters the ancient board game Go against human world

champion [108], which is widely considered as another milestone of the progress

of machine learning. Benefited from the advances of machine learning, emerging

techniques leverage machine learning as a powerful toolbox to solve circuit problems

including AMS verification.

For any circuit simulation, there are two types of outcomes: the circuit under

consideration with a certain configuration complies with all the given specifications,

namely passing, or at least one of the given specifications is violated, namely failure.

Naturally, this can be formulated as a binary classification problem and authors in

[39, 84] train classifiers to verify the feasibility and the performance of AMS circuits.

Another approach towards machine learning based verification is to characterize

AMS circuits with regression models, reducing the burden of analyzing and extracting

specific models for various circuits. For example, a modeling method proposed in

[5] partitions large circuits into intermediate behavioral models and applies support

vector regression (SVR) [129] to capture continuous values in the verification flow.

Another method proposed in [35] extends recursive vector fitting (RVF) techniques

[38] to model the time-domain response of nonlinear circuits and to automatically

extract analytical behavioral models for the acceleration of simulation based flows
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including verification.

Additionally, learning methods have been adopted in a variety of techniques re-

lated to verification tasks or may potentially be desirable for verification improve-

ments. For instance, finite state machine (FSM) models are derived from transistor-

level circuit descriptions by learning from input/output trajectories in [55]. And

an algorithm called fast function extraction (FFX) [92] is proposed to build accu-

rate variation-aware models by augmenting design models with nonlinear equations

learned via pathwise regression method [49]. For post-silicon debug, an atomic model

learning approach [37] based on supervised learning is proposed to diagnose design

bugs by inserting modeling artifacts into different nodes and learning behaviors along

signal flow paths.

Although machine learning is beneficial to the efficiency improvement of simula-

tion based verification procedures, addressing AMS verification with machine learn-

ing techniques introduces new challenges including both the problems from the con-

text of machine learning like over-fitting problem, and the problems from the AMS

verification perspective, such as the limited availability of training data and safety

or conservativeness consideration. Consequently, integrating machine learning into

the AMS verification framework is a challenging task that requires innovation from

both domains.
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3. PARALLEL HIERARCHICAL REACHABILITY ANALYSIS ∗

Reachability analysis is an effective AMS formal verification technique [149] that

automatically verifies dynamic properties, which can be formally expressed by tem-

poral logic [28], of the AMS system. Similar to other formal methods, it also suffers

from state space explosion for complex AMS circuits.

Avenues towards efficiency enhancement include lowering the complexity of the

problem and increasing the computation power or resources. This work proposes a

parallel hierarchical satisfiability modulo theories (SMT) based reachability analysis

technique built on top of circuit decomposition. To achieve a less complex model,

an abstraction method is proposed to model AMS systems with pure analog rep-

resentations. Furthermore, the abstracted model is systematically decomposed into

subsystems with less complex transient transitions, whose reachability analysis can

be formulated as satisfiablity problems with fewer variables. The reachability analy-

sis flow is then parallelized at the decomposed subsystem level and the satisfiability

problem level. Overall, the framework lowers the complexity via model abstraction

and system decomposition, and invokes more computing resources via parallelism,

hence leads to appealing speedup compared to the traditional reachability analysis

flow.

∗Part of this section is reprinted with permission from: (1) “Verification of digitally-intensive
analog circuits via kernel ridge regression and hybrid reachability analysis” by Honghuang Lin,
Peng Li and Chris J. Myers, 2013. Proceedings of the 50th Annual Design Automation Conference,
Page 1-6, c©2013 ACM. (2) “Parallel hierarchical reachability analysis for analog verification” by
Honghuang Lin and Peng Li, 2014. Proceedings of the 51st Annual Design Automation Conference,
Page 1-6, c©2014 ACM.
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3.1 Introduction

Reachability analysis is an automatic formal framework in AMS circuit verifica-

tion, yet it is often incapable of verifying complex circuits due to the exponentially in-

creasing cost for high dimensional systems. Generally, the capability of formal meth-

ods is determined by the computational power and the complexity of the algorithm.

For example, the efficiency of the nonlinear SMT based methods [126, 145, 85, 83]

which convert the verification task into a satisfiability (SAT) problem heavily de-

pends on the performance of the adopted SMT solver [48, 13]. Since there is no

polynomial time solution for solving SAT problems, it leaves much opportunity for

improvement through other avenues such as lowering the complexity of the modeled

SAT problems and parallel computing.

Designing AMS circuits in highly scaled CMOS technologies is hampered by in-

creasing Process-Voltage-Temperature (PVT) variations and worsening device char-

acteristics. As a result, the so-called digitally-assisted or digitally-intensive analog

(DIA) design methodology has emerged, which minimizes the pure analog content

of the design while relying more on digital processing [93]. However, inclusion of

increased digital content in such designs adds new complications to the existing

challenges of AMS circuit design verification, which are resulted from effects such

as nonlinear dynamical characteristics and complex interactions between digital and

analog signals. Therefore, new model abstraction methods should be developed to

remedy the complex “digital” effects.

Furthermore, parallelizing the reachability analysis flow requires careful consid-

eration of possible additional errors, since breaking down the full system into subsys-

tems may introduce overapproximations whose accumulation in the flow may hamper

the convergence of the reachability analysis. Consequently, it is favorable to develop
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a parallel algorithm with less complex subproblems for potential further efficiency

improvement, but without introducing additional overapproximations to avoid error

accumulation issues.

This work aims to develop a hierarchical parallel verification technique for AMS

circuits under a formal reachability analysis framework [6, 145, 85, 83]. The pro-

posed method decreases the complexity of the system transient behavior via a gen-

eral system decomposition methodology and increases the computational power by

leveraging parallel computing techniques to enhance the efficiency of reachability

analysis.

The first main idea of this work is to “unify” the two types of signals by converting

digital signals into approximate analog signals. More precisely, this work leverages

machine learning to find the potential error of the conversion on a given digital block

and bound its output using a continuous analog signal and a tight error interval.

It turns out kernel based learning methods such as support vector machines (SVM)

[128, 129] are useful tools for this purpose. In particular, this work adopts kernel

ridge regression [103, 120] and the related confidence interval computing algorithm

[34] to construct such “analog” models for the digital block and estimate the error

interval, the latter of which ensures the conservativeness of this conversion as required

by formal verification. The accuracy of this “digital-to-analog” modeling, e.g. the

length of the error interval, is tightly controlled in the learning process.

Secondly, this work decomposes a nonlinear analog system into subsystems with

lower dimensional transient behavior such that the transient verification of the circuit

using the SMT-based reachability analysis can be drastically sped up. Partitioning an

analog circuit into a set of smaller blocks (subsystems) makes intuitive sense as analog

circuits tend to have a well-defined signal flow structure among different blocks.

However, partitioning the circuit for reachability analysis gives rise to significant
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complications to maintain key correlations among state variables. Furthermore, large

or even unacceptable overapproximation may occur in the full system reconstruction

from the lower dimensional reachable spaces of all the subsystems, which may lead

to the deceleration of the convergency of the computed state trajectories and the

failure in the reachability analysis altogether.

3.2 Model Abstraction

The interaction between digital (Boolean) and continuous-valued analog signals,

which is intensified in DIA circuits, presents a key challenge in AMS verification.

In addition, to fully capture “digital” effects such as finite resolution (inherent in

any analog-to-digital conversion), round-off error and overflow (inherent in addi-

tions/multiplications due to finite word length effects), additional state variables

need to be introduced, blowing up the dimensionality of the state space and slowing

down the the reachability analysis. To address the problem, this work proposes to

extract an abstract continuous model with a lower dimensionality for a given AMS

or DIA design through the use of learning-based regression. The correctness of our

approach is guaranteed by the use of error intervals that are part of the abstract

model.

While the proposed abstraction method can be applied to generic AMS circuits

and models to speedup transient reachability analysis, it turns out to be particularly

appealing to DIA circuits. DIA circuits are constructed to have high digital content

with minimum use of pure analog-based processing. Digital blocks such as filters

are designed to be “linear” and implemented in robust digital logic. However, this

linearity disappears in the presence of round-off errors due to finite word length

effects. The use of the machine learned conservative analog models re-establishes

this lost linearity and allows application of the proposed support function approach
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to a more dominant portion of the design, which is modeled as the linear sub-system.

3.2.1 DIA Verification Challenges

Taking the digitally-intensive phase-locked loop (DI-PLL) shown in Fig. 3.1 as an

example, the circuit consists only of digital functional blocks, yet involves an analog

feedback path from the digitally controlled oscillator (DCO) to the phase detector

(PD). The PD uses an accumulator and a time-to-digital converter (TDC) to detect

the only analog variable, which is the phase difference ∆φ between the reference clock

REF and the output signal CKV , and then outputs the phase difference to the loop

filter to control the DCO. Neglecting the digital effects and assuming all functional

blocks have an ideal continuous characteristics, the verification of the system can

be performed on a model involving a few state variables such as ones to capture

the input/output/internal signals of the loop filter. However, to fully capture those

digital effects, more state variables are needed and hence the model has a much

higher complexity.

IIR F(s)

TDC

Accumulator

Phase Detector

REF CKV

Loop Filter DCO

Figure 3.1: Block diagram for a DI-PLL.

For example, a TDC shown in Fig. 3.2 is used to measure the fractional phase

difference between CKV and REF . Theoretically, the output of the TDC should be
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proportional to the fractional phase difference, making the transition of the phase

detector linear. However, the finite delay of the inverters limits the achievable reso-

lution of the TDC. As a result, the phase detector with a finite TDC resolution has

a staircase transition curve instead of an ideal linear one.

Finite resolution

Pseudo-Thermometer-Code Edge Detector

REF

CKV

TDC_RISE TDC_FALL

Figure 3.2: Time-to-digital converter proposed in [115].

Digital filters such as finite impulse response (FIR) or infinite impulse response

(IIR) filters are often designed from a linear z-domain transfer function. To model

the ideal transfer function of a second order IIR loop filter shown in Fig. 3.3, four

state variables are sufficient. But to fully model the finite word length effects such

as overflow and round-off error of the filter, 8 more variables should be assigned to

the output nodes of all the internal adders and multipliers. The dimension of the

system is thus greatly increased.

Inspired by the highly developed and advanced verification techniques in the pure

digital domain, an intuitional approach towards AMS verification is to discretize the
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Figure 3.3: Second order IIR filter.

analog content [3] so as to address the problem with methods similar to digital tech-

niques. However, discretization based method can only provide very limited coverage.

Although it appears to bump heads with the DIA design trend that tends to replace

analog functional blocks with digital ones, based on the DIA verification challenges

posed above, modeling digital functional blocks with proper analog abstraction may

potentially simplify the complexity of the formal verification task while preserving

its completeness.

3.2.2 Digital Abstraction with Analog Variables

A general definition of an AMS system is provided in Definition 1 in the previous

section as a tuple HAMS = (Xa, Xd, t, Fa, Fb). Assuming HAMS is time-invariant and

the time step for the transitional relationship is fixed, the time variable t can be

discarded out of HAMS. Furthermore, as suggested in Section 2.1, digital signals

can be expressed as real value variables with pre-defined resolutions, resulting in a

definition of a DIA system as follows:

28



Definition 6 An DIA system is a tuple HDIA = (Xa, Xd, Rres, Fa, Fb), where:

• Xa ⊆ Rn is a set of continuous variables representing analog content of the

system;

• Xd ⊆ Rm is a set of real-value variables representing digital content of the

system, where m� n is expected;

• Rres ∈ Rm is a set of resolutions corresponding to the digital variables;

• Fa ∈ Rn+m → Rn is the transition function from the full state (Xa, Xd) to the

analog portion Xa in a time step;

• Fd ∈ Rn+2m → Rm is the transition function from the full state and the resolu-

tion (Xa, Xd, Rres) to the digital portion Xd in a time step.

As discussed in Section 3.2.1, the size of Xd and Fd in a DIA system is usually

large, which may likely blow up the dimension of the state space for verification.

From the design perspective, to focus on the key properties of the digital functional

blocks, it is common to approximate mapping functions in Fd with continuous map-

ping functions while independent error variables are added into Xa to cover the

approximation error. Fox example, a TDC is routinely modeled to have a linear con-

version characteristics and additive quantization errors, the latter of which is used

to analyze the TDC induced noise [116].

Motivated by the above design analysis technique, our method converts key vari-

ables in Xd into analog variables and approximates Fd with continuous mappings to

simplify the system. However, the goal of our method is to find a conservative ap-

proximation for the entire reachable state space rather than analyzing the “average”

noise behavior of the circuit. This prompts us to find conservative error intervals,

ideally tight, for our abstract models.
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Let us define the abstracted model produced by our proposed method as:

Definition 7 An abstraction of HDIA is a tuple HC = (X,F,Eu, El) where:

• X ⊆ RN consists of representations of analog content of the system Xa and

continuous approximations of digital content of the system Xd;

• F ∈ RN → RN is the transition functions that consists of analog transition Fa

and continuous approximations of digital transition Fd;

• Eu ∈ RN → RN is the upper bound of the error intervals of F (X);

• El ∈ RN → RN is the lower bound of the error intervals of F (X).

To extract an abstract continuous model from the DI-PLL, all the digital vari-

ables in Xd such as the input/output of the phase detector and the loop filter are

approximated by the corresponding continuous variables in X. Then, for all the dig-

ital blocks, the transition function will be approximated by the ideal characteristics.

For example, the transition of the phase detector is modeled as a linear function that

produces an output proportional to the detected phase difference. The transition of

the filter is modeled by its ideal z-domain transfer function, which is also a linear

mapping function that maps the input and internal storage of the filter to its output

at the next sampling clock cycle.

Error accumulation is an inherent problem in reachability analysis. If the system

abstraction comes with loose error intervals, i.e. large Eu − El, the reachability

analysis may converge slower or, even worse, may no longer converge. If the error

intervals are too narrow, i.e. small Eu−El, the abstraction may lose conservativeness

and the result of the reachability analysis is not ensured to cover all the possible cases.

So it is important and essential to find a tight interval that covers most of the errors

30



with small over approximation. The next subsection leverages kernel ridge regression

(KRR) to compute such tight intervals.

3.2.3 Error Interval Estimation via KRR

KRR [103], a.k.a. least squares support vector regression (LS-SVR)[120] is a very

effective statistical learning method and has been applied to error estimation. It is

formulated as:

min
w,b,e

wTw + γ

n∑
i=1

e2
i (3.1)

subject to

Yi = wTφ(Xi) + b+ ei, i = 1, ..., n. (3.2)

where (Xi, Yi) are training data and φ is the mapping function that maps Xi into a

higher dimensional space. By using Lagrange multipliers, one can solve the problem

by defining a kernel function K(Xi, Xj) = φ(Xi) · φ(Xj) instead of defining an exact

φ. This model produces the following decision function:

m̂(x) =
n∑
i=1

αiK(x,Xi) + bi (3.3)

Given enough training data and a suitable parameter γ, KRR can train an ac-

curate model for error prediction. Considering the system abstraction for DI-PLL,

errors may come from the continuation of digital variables and the mapping function

approximation by an ideal continuous characteristic. For instance, let xi ∈ X denote

the output of the phase detector in the abstract continuous model for the DI-PLL,

our method assumes that the abstracted mapping function of the phase detector is

xi = Fi(X) and its original mapping function is xi = Fad,i(X). This method samples

some random system states X1, X2, ..., Xn and computes the error of the abstraction

on xi as Yj = Fi(Xj)− Fad,i(Xj). Then, this method can get an error estimation of
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xi by applying KRR on the training data set(Yj, Xj) such that j = 1, 2, ..., n. By

repeating the sampling and training process, error prediction functions are produced

by KRR for every state variable.

To find a tight interval of the prediction, an efficient algorithm for computing

confidence intervals of KRR prediction has been given in [34]. The algorithm treats

KRR as a linear smoother to derive the formulation of the bias and variance of the

prediction. A linear smoother is defined as an estimator m̂ of m in which there exists

a smoother vector L(x) = (l1(x), ..., ln(x)) such that:

m̂(x) =
n∑
i=1

li(x)Yi,∀x ∈ Rd (3.4)

KRR prediction is a kind of biased estimation and thus there is bias between the

predicted value and the center of the prediction interval. The bias is given as

B̂(m̂(x)) = L(x)T m̂− m̂(x) (3.5)

where m̂ = (m̂(X1), ..., m̂(Xn))T . The variance of the prediction at x is given as

V̂ (m̂(x)) = L(x)T Σ̂2L(x) (3.6)

where Σ̂2 = diag(σ̂2(X1), ..., σ̂2(Xn)) and

σ̂2(x) =
L(x)Tdiag(ε̂ε̂T )

1 + L(x)T (SST − S − ST )
(3.7)

S denotes the smoother matrix of the initial smooth and ε̂ denotes the residuals of

m̂(X1), ..., m̂(Xn).

The KRR based abstraction process is shown in Fig. 3.4. At first, all the digital
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Figure 3.4: Error interval prediction via KRR.

variables are approximated by continuazation and ideal continuous characteristics

like the linearized transition of the phase detector are used to approximate digital

transitions. Then, for every extracted variables in X, KRR is trained to get the error

prediction. After KRR training, the upper and lower bounds are obtained by (3.4)

– (3.7).

3.2.4 State Space Representation with Support Functions

Support functions [18] are used to represent convex sets. In reachability analysis,

such representations are leveraged in [85] to overapproximate the reachable space

with a tight convex space. For a convex set Ω ⊆ Rd, the support function is defined

for any arbitrary vector l ∈ Rd:

ρΩ(l) = max
x∈Ω

l · x (3.8)
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The support function of any vector l actually defines a space l · x ≤ ρΩ(l). The

convex set Ω can be represented by the intersection of such spaces:

Ω =
⋂
l∈Rd

{x ∈ Rd|l · x ≤ ρΩ(l)} (3.9)

If the support function value ρΩ(l) is computed for any l ∈ Rd, the support function

representation of a convex set is precise. In practice, it is impossible and also unnec-

essary to build a full-precision convex presentation by storing an infinite number of

l vectors with their corresponding support function values. So, more practically, we

sample a finite number of li from Rd and record ρΩ(li) to approximate the convex

set. According to (3.9), the representation of Ω with k vectors is

Ω̂ =
⋂

1≤i≤k

{x ∈ Rd|li · x ≤ ρΩ(li)} (3.10)

which is a polyhedron overapproximation of Ω. For example, the blue polygon in

Fig. 3.5a is the support function representation of the red convex set with eight li vec-

tors. If we increase the number of li vectors, as shown in Fig. 3.5b, the corresponding

support function representation gets closer to the exact convex set.

3.3 Preliminary Approach Towards Efficient Reachability Analysis

This section proposes a preliminary method for the verification of abstracted

systems based on a basic idea of divide and conquer. Developed on top of the

simulation-assisted SMT framework, our proposed method divides the abstracted

system into subsystems, demonstrating the potential advantages of the aforemen-

tioned DIA abstraction, the support function state space representations, and the

system partitioning.
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Figure 3.5: Support function representation.

3.3.1 Simulation-assisted SMT Method with Support Function Representations

In the simulation-assisted SMT method [145], there are two stages to compute

the reachable state space Ω(t+ δt) of the system at time t+ δt from its initial state

space Ω(t) at time t. In the first stage, the method runs simulations to discover the

bulk of the reachable states by discretizing the N -dimensional state space into N -

dimensional boxes, namely N -orthotopes or hyper-rectangle, and combining all the

boxes hit by simulation trajectories as an approximation Ω̃(t + δt) of the reachable

state space Ω(t+ δt).

Once Ω̃(t+ δt) is computed, all those reachable states that fall outside Ω̃(t+ δt)

are found and added into Ω̃(t + δt) to make the approximation conservative during

the second stage. The exploration of such reachable states can be converted into a

satisfiability problem with the following conjunctions:

F ∧ (X(t) ∈ Ω̂(t)) ∧ (X(t+ δt) /∈ Ω̃(t+ δt)) (3.11)

where X is the state vector, and F denotes the transient transition relationship or
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characteristics of the circuit model. Solving this satisfiability problem is to search a

pair of X(t) and X(t + δt) that satisfies (3.11), meaning the existence of a certain

trajectory that starts from the previous reachable state space at time t but results in

a state outside the current approximation of the reachable state space at time t+ δt.

The satisfiability of (3.11) involves continuous state variables and thus is usually

handled by SMT [14, 96] which is developed to solve the satisfiability problems with

formulas containing both integer and real-valued variables.

Originally, the reachable state space is represented by discrete boxes in [145].

Such representation is flexible in the sense that it can describe an arbitrary state

space regardless of whether the state space is convex or non-convex, and whether

it is continuous or disjoint. However, such discretization suffers from the curse of

dimensionality in its efficiency and its memory usage. Theoretically, the satisfiability

problems have been proven to be NP-complete whose worst-case complexity is expo-

nential. In SMT methods, the problem size n is roughly proportional to the number

of variables, including both X(t) and X(t+δt), and the number of constraints. Using

the box representation will blow up the number of constraints in the description of

X(t) ∈ Ω̂(t) and X(t+ δt) /∈ Ω̃(t+ δt) in (3.11). Moreover, computing the combina-

tion of box representations in the first state may also lead to considerable excessive

cost.

To remedy the problems posed above, support function representations can be

utilized in the simulation-assisted SMT method to replace the box representations.

One of the advantages is that the number of the li vectors in (3.10) is a trade-off be-

tween accuracy and efficiency, which is less vulnerable to the curse of dimensionality

compared to the box representations.

Another advantage of the support function representation is its capability of

efficient convex hull computation by recognizing the following property of support
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functions:

ρCH(U,V )(l) = max(ρU(l), ρV (l)) (3.12)

where U and V are two convex sets that are already represented by support functions,

and CH(U, V ) denotes the convex hull of U and V . This property can be leveraged

in the first stage where simulations are conducted to quickly approximate the bulk

of the reachable state space. A reachable state hit by a simulation trajectory can

be modeled as a small convex set (e.g. a point, a hypersphere or still a box) but

represented by support functions, and the convex hull of all these convex sets can be

efficiently computed to roughly approximate Ω(t+ δt).

In addition, the number of the constraints occupying the descriptions of X(t) ∈

Ω̂(t) and X(t + δt) /∈ Ω̃(t + δt) in (3.11) is determined by the number of the li

vectors. If the full system can be partitioned into multiple subsystems with each

having a smaller number of state variables, it may require fewer li vectors in their

support function representations and consequently lead to more efficient solutions of

the corresponding SMT problems.

3.3.2 System Partition

After the DIA system HDIA is converted to the abstracted system HC , most of the

digital components are linearized by the abstraction process and a large portion of F

in HC is linear. Since there exists effective methods for linear systems, partitioning

the system into a linear portion and a nonlinear portion is beneficial in two aspects:

(1) linear methods are applicable to the linear portion; (2) the number of variables

in the nonlinear portion is reduced. This suggests a method to pick up variables

from X that are involved in linear transitions to form a subset XL and variables

that are involved in nonlinear transitions to form a subset XNL. If variables in XL

and XNL are independent with each other, then XL ∩ XNL = φ. However, there
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often exist variables in XL correlated to variables in XNL. Therefore, either subset

should contain additional correlated variables to cover those correlations. Besides, F

is divided into a set of linear transition mapping functions, FL, and a set of nonlinear

transition mapping functions, FNL.
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Figure 3.6: System partition of DI-PLL.

In the model of DI-PLL shown in Fig. 3.6, the phase detector and the loop filter

are linearized with system abstraction while the DCO remains nonlinear. Assuming

that the loop filter is a second order IIR digital filter, at time t, the state of the

system is X(t) = {xi(t)}T , i = 1, 2, 3, 4, 5, where x1(t) = ∆φ(t), x2(t) = V1(t),x3(t) =

V1(t−∆t),x4(t) = V2(t), and x5(t) = V2(t−∆t). From t to t+ ∆t, the transition of

the system can be partitioned as a linear transition:

X(t)→ (x2(t+ ∆t), x3(t+ ∆t), x4(t+ ∆t), x5(t+ ∆t))T (3.13)

and a nonlinear transition:
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(x1(t), x4(t))T → (x1(t+ ∆t)) (3.14)

After the partition, our method solves the reachable state space of the two sub-

systems with different methods. For the linear subsystem, once our method gets the

constraint state space of t, it can directly compute the 4-dimensional reachable state

space by support function space representation and corresponding properties. For

the nonlinear subsystem, our method uses an SMT-based formal method to conser-

vatively compute the reachable space. After exploring the reachable space of the

two subsystems, our method compute the intersection of the two subspaces to ob-

tain the reachable space of the entire system. Note that x1(t + ∆t) is correlated

with x2(t + ∆t) and x5(t + ∆t) since they are all determined by x1(t) and x4(t),

the nonlinear subsystem reachable space should include x1, x2 and x5, otherwise the

intersection computation may cause great overapproximation.

3.3.3 Analysis of the Linear Subsystem

For the linear subsystem, let X(t) ∈ Rn denote the state of the whole system

at t and XL(t) ∈ Rm denote the state of the linear subsystem at t + ∆t, then the

transition can be formulated as:

XL(t+ ∆t) = AX(t) (3.15)

where the size of A is m × n. To solve the reachable space of this system, support

functions have a useful property to be exploited:

ρAU(l) = ρU(AT l) (3.16)
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where U ⊆ Rd and A is an arbitrary matrix.

If the initial state space Ω0 is represented by an accurate support function formula

ρΩ0(l), reachable spaces Ωt at any moment can be solved by mapping any l ∈ Ωt

to l′ ∈ Ω0 and hence an accurate support function representation is maintained.

However, in the linear subsystem of DI-PLL, the formula form of the support function

representation is difficult to use since the reachable state space computation contains

the intersection operation between the linear and nonlinear reachable state space and

vectors in Ωt can only be mapped to Ωt−∆t. Hence, it is impractical to represent the

reachable state spaces with symbolic formula of support functions.

Our approach, more practically, uses a finite number of normalized direction

vectors l and their corresponding support function values to represent the reach-

able state space. As mentioned earlier, using a finite number of vectors, l, is actually

producing a tight polyhedral over-approximation of Ω. For the convenience of the fol-

lowing computations, our method evenly samples normalized l from a d-dimensional

spherical coordinate system.

To represent a reachable space Ωt, our method stores a list of normalized vectors

li and their corresponding support function values ρ(li) and uses them to compute

the support function values of Ωt+∆t. The problem is that for a vector l ∈ Ωt+∆t,

lx = AT lx ∈ Ωt may not be stored in the representation of Ωt. Therefore, our method

uses the following algorithm to approximate ρΩt(lx).

In a 2D space shown in Fig. 3.7, for an unknown vector lx, our approach can

first find two closest vectors from the evenly sampled known direction vector list.

Denote the two vectors as l1 and l2, and the intersection point of planes l1x = ρ(l1)

and l1x = ρ(l1) as vx, according to the definition of support function, ρ(lx) ≤ lx · vx.

Thus our method can first compute the intersection point vx and then use lx · vx to

approximate ρ(lx).
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Figure 3.7: Approximate support function value of arbitrary direction lx.

More generally, for arbitrary lx ∈ Rd, to approximate ρΩ(lx) with a list of stored

direction vectors and their corresponding support function values, our method can

first select d closest vectors l1, ..., ld from the direction vector list, and then compute

the intersection point vx of d corresponding hyperplanes. The selection of l1, ..., ld

can be easily achieved by mapping lx into a spherical coordinate system since the

stored vectors are sampled evenly from that system. Since vx lies on the boundary

of the corresponding half space of l1, ..., ld, it can be computed by solving:



lT1

lT2
...

lTd


vx =



ρΩ(l1)

ρΩ(l2)

...

ρΩ(ld)


(3.17)

After vx is computed, ρΩ(lx) can be approximated by vx · lx. With this algorithm,

the reachable state space of the linear subsystem can be solved with a support func-

tion representation of finite direction vectors.
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To make the reachable state space conservative, error intervals obtained by the

KRR-based method should be considered. Since the system transition is linear, the

reachable points of the states on the boundary of the current space still appear on

the boundary of the reachable space, our method can simply extend the boundary

according to error intervals of on-boundary states.

3.3.4 Analysis of the Nonlinear Subsystem

For the nonlinear subsystem, XNL(t+∆t) = FNL(XNL(t)), our method leverages

the SMT-based framework discussed in Section 3.3.1 to explore the reachable state

space. At first, simulations are used to quickly explore the bulk of the reachable

state space, and then an SMT solver is invoked to find the remaining reachable state

space. The flow has been improved by using support functions as the state space

representation partially due to the capability of efficient convex hull computation

described in (3.12).

In the first stage, each time a reachable state is generated from a simulation, it

is enlarged into a small convex set according to its error interval estimation given by

the previous KRR-based method. Then, our method computes the convex hull of

the current reachable state space and this small convex set to update the reachable

space. After a bunch of simulations, the result covers most of the reachable state

space. After that, our method uses an SMT solver to check whether the reachable

state space is completely covered or not. If not, the solver provides a counterexample

that is reachable but still not covered in the current approximation. The counterex-

ample is added into the convex hull and SMT checking is repeated until the solver

cannot find any counterexample or, in other words, the satisfiability problem (3.11)

is unsatisfiable. The final convex hull conservatively covers the reachable state space.

For a DIA system, the partitioned nonlinear subsystem is expected to have much

42



fewer state variables compared to the full system since a majority of the digital

components will be linearized in the abstraction. As a result, the complexity of

applying the simulation-assisted SMT method to the subsystem is much lower than

applying the method to the entire system.

3.3.5 Hybrid Reachability Analysis

In the complete flow of the hybrid reachability analysis, after a simplified model

is produced using abstraction, the system is partitioned to obtain a linear and a

nonlinear subsystem. Then, the support function based method is employed to solve

the linear subsystem and the SMT-based method is used to explore the reachable

space of the nonlinear subsystem.

After the reachable state space exploration of the two subsystems are completed,

the intersection of the two subspaces should be computed to obtain the reachable

space of the whole system. At first, our method should extend the two subspaces to

the same dimension, which can be performed in a similar way as approximating ρ(lx)

for an unrecorded lx. After that, for convex sets represented by support functions,

the intersection can be achieved by:

ρU∩V = min(ρU(l), ρV (l)) (3.18)

As discussed in [51], the min operation can be used to compute the intersection

of the two convex sets, but the result is not a strictly defined support function due

to possible redundant halfspaces. Even so, the system partition based method in-

evitably introduces overapproximation in the reconstruction of the high dimensional

state space of the full system. In addition, to maintain the correlations between the

linear and the nonlinear subsystems, state variables that interact between the two

subsystems are carefully selected and added into both subsystems, which requires
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additional manual work and expertise. Nevertheless, this hybrid method shed light

on the potentials of tacking the reachability analysis via system partition. An en-

hanced system decomposition will be introduced in the next section to address the

challenges occurred here.

3.4 Proposed System Decomposition

While error accumulation is a critical problem in reachability analysis, the afore-

mentioned overapproximation problem in the state space reconstruction needs to be

addressed before a partitioned based method is applied to the reachability analysis

framework.

One of the key contributions of this work is a technique that rigorously deals

with correlations between the partitioned subsystems and completely removes the

undesirable overapproximation in the full system state space reconstruction by oper-

ating on extended state variable vectors. By adopting polyhedral convex sets based

support function representations [51],[52],[85] to present the reachable state spaces,

what is novel in this work is that we show that special forms of support functions

can be chosen to ensure the equivalence between the full system state space and the

one that is implicitly represented by the support functions of the subsystems. This

important development allows us to efficiently reconstruct the full system state space

without any overapproximation.

3.4.1 Overapproximation Error

For any circuit with n state variables, we define the state of the system at time

t as:

X(t) = (x1(t), x2(t), ..., xn(t))T ∈ Rn (3.19)
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In analog circuits, the state transition towards X(t) can be tracked by using the in-

formation of the previous state X(t−δt) in a way that corresponds to the application

of forward Euler method in circuit simulation:

X(t) = F (X(t− δt), u(t)) (3.20)

The state evolution of (3.20) can be leveraged to explore the reachable state

space over the time. It is clear that partitioning the circuit into smaller pieces would

speedup the process. However, care must be taken to avoid overapproximation errors

when reconstructing the reachable space for the full system.
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Figure 3.8: Over-approximation of manifest system partition.

Without loss of generality, let us consider partitioning the circuit such that each

state variable xi(t) corresponds to the only state variable of a subsystem. This

implies that a system with n state variables will be partitioned into n subsystems.

For example, a two-dimensional system is shown in Fig. 3.8 and the original state

45



transition is a R2 → R2 mapping. One may partition this 2-d system into two 1-d

subsystems and separately compute the reachable state space for each of the two

state variables at time t given the initial state space of the full system at t − δt.

This leads to the two 1-d reachable spaces shown in Fig. 3.8. In contrast with the

actual 2-d reachable space of the full system, one can see that an unreachable state P

may be mistakenly included in the reachable subspaces, i.e. overapproximation error

happens with the system partition. The immediate reason for this error is that the

correlation between the two state variables is not properly captured in this manifest

system partition method.

3.4.2 Concepts of Extended State Spaces

The above problem is clearly significant. Such error can be easily accumulated

over time and grow much larger. A close examination of the correlation problem

from a dynamical system point of view reveals that the correlations stem from the

fact that current states of different subsystems commonly depend on the previous

state variables of the full system. This key observation motivates us to capture such

correlations very naturally by building support function state space representations

based on extended state variable vectors, i.e., vectors consisting of state variables at

two adjacent time points. We start by defining the extended state vector X(t) for

the full system of n state variables:

Xe(t) = (X(t), X(t− δt)) ∈ R2n

= (x1(t), ..., xn(t), x1(t− δt), ..., xn(t− δt))
(3.21)
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Denote the reachable extended state space of the full system by Ωe. For the k-th

subsystem produced by the above partition, its extended state vector is defined as:

Xek(t) = (xk(t), X(t− δt)) ∈ Rn+1

= (xk(t), x1(t− δt), ..., xn(t− δt))
(3.22)

whose reachable state space is denoted by Ωek.

Our key idea is to perform reachability analysis in the extended state spaces of

the full system and each subsystem so as to address the above overapproximation

problem. Considering that at some time (t− δt), the reachable extended state space

of the full system Ωe(t − δt) is already computed. From Ωe(t − δt), we can easily

extract out the reachable state space Ω(t− δt) of the full system at time t. As shown

in Fig. 3.9, to move onto the next time point t, we perform a separate reachablity

analysis for each subsystem using the full system Ω(t − δt) as its initial conditions.

However, to track the correlations across all subsystems, the result of each subsystem

reachability analysis is cast in its reachable extended state space, i.e. by computing

Ωek(t). Since each Ωek(t) captures the new reachable space for the k-th state variable

xk at time t and its correlation with Ω(t − δt) (common initial conditions for all

subsystems), they can be combined to precisely reconstruct the full system reachable

extended space Ωe(t) at time t. The same process repeats.

Considering that Ω(t−δt) (marked as S in Fig. 3.9) is covered among all the spaces

in Fig. 3.9, there exists one-to-one correspondence between the reachable states in

Ωe(t) and the ones in Ωek(t) since they have common corresponding projection in

Ω(t − δt). Moreover, it can be easily proved by contradiction that any unreachable

state in Ωe(t) is also unreachable in Ωek(t). Hence the combination of all the Ωek(t)

is an accurate representation of Ωe(t).

47



X1(t-δt)

X2(t-δt)

X2(t)

X1(t)

X1(t-δt)
X2(t-δt)
X1(t-2δt)
X2(t-2δt)

X1(t)
X1(t-δt)
X2(t-δt)

Subsystem 1

Next step

X1(t-2δt)

X2(t-2δt)

Extended Initial Space

X1(t-δt)
X2(t-δt)
X1(t-2δt)
X2(t-2δt)

X2(t)
X1(t-δt)
X2(t-δt)

Subsystem 2

X1(t)

X1(t-δt)

X2(t-δt)

X2(t)

X1(t-δt)

X2(t-δt)

Extended Reachable 

Subspaces

X1(t-δt)

X2(t-δt)

Extended Reachable Space

Reconstruction without 
overapproximation

An initial state

The corresponding reachable state

An unreachable state

Figure 3.9: Reachability analysis on extended decomposed state spaces for a 2D
system.

The actual implementation of the above process involves manipulation of proper

support function representations of both full system and subsystems, which is de-

scribed as follows.

3.4.3 Support Function Representations of Reachable Extended State Spaces and

Their Manipulation

We describe the support function representations involved in the above process.

The reachable extended state space of the full system Ωe(t− δt) at (t− δt) is repre-

sented using a set of vectors of the form:

l
(t−δt)
ei = (0, ..., 0, l

(t−δt)
ei,1 , ..., l

(t−δt)
ei,n ) ∈ R2n (3.23)
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where l
(t−δt)
ei,k denotes the (n+k)-th entry of l

(t−δt)
ei which can be non-zero. This par-

ticular representation of Ωe(t− δt) essentially provides the (un-extended) reachable

state space of the full system Ω(t− δt) at time t− δt. Using Ω(t− δt) as the initial

conditions, we perform a reachability analysis of each k-th subsystem and compute

the reachable extended state space Ωek(t) for the subsystem at t using a support

function representation based on a set of vectors lsi ∈ Rn+1.

To project Ωek(t) to the extended state space of the full system while keeping

the corresponding support function value unchanged, we simply extend each vector

lsi ∈ Rn+1 to a corresponding vector in R2n:

lesi,k = (0, ..., lsi,1, ..., 0, lsi,2, lsi,3, ..., lsi,n+1) (3.24)

where lsi,j is the j-th entry of lsi and lsi,1 appears at the k-th entry of lesi,k. The key

observation here is that these projected subsystems reachable extended spaces Ωek(t)

collectively provide a support function representation of the full system reachable

extended space Ωe(t) based on a specific set of vectors of the form of (3.24).

At this point, we have indeed computed the desired Ωe(t). However, it is not in

the right form to repeat the same process for the next time point. To continue, it is

desirable to map Ωe(t) from the form in (3.24) to a support function representation

based on the following set of vectors:

l
(t)
ei = (l

(t)
ei,1, ..., l

(t)
ei,n, 0, ..., 0) ∈ R2n (3.25)

where l
(t)
ei,k similarly denotes the k-th non-zero entry of l

(t)
ei . Essentially such mapping

is to compute the support function values under l
(t)
ei of (3.25) from the support

function values under lesj,k, k = 1, ..., n of (3.24). According to (3.8), if the subspace
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representation of any k-th subsystem Ωek is constructed under lsi, without going

in the detail it can be shown that the computation of ρΩe(l
(t)
ei ) can be be formally

achieved by solving the linear programming (LP) problem:

max
Xe(t)

l
(t)
ei ·Xe(t)

s.t. lesj,k ·Xe(t) ≤ ρΩek
(lsj)

(3.26)

where k = 1, ..., n and j = 1, ...,m if the number of vectors lsj is m.

Note that (3.26) only provides a formal mechanism to illustrate the transfor-

mation of support function representations. There exist more efficient practical

workarounds for our reachability analysis flow as described in the next section.

3.5 Proposed Parallel Algorithm

We develop our parallel reachability analysis based upon the simulation-assisted

SMT framework discussed in Section 2.2. In this framework, a set of circuit simu-

lation runs are used to discover a bulk part of the reachable state space at a given

time. A convex hull using the support function representation is computed to enclose

the reachable state space discovered by simulations. Then, a set of SMT runs are

launched to possibly find additional points in the reachable state space that are not

enclosed by the convex full. Finally, a conservative convex hull representation of the

full reachable state space is computed by enclosing the parts of the reachable space

found by both simulation and SMT.

To achieve the best possible efficiency, as shown in Fig. 3.10, we speed up both

the simulation and SMT checking tasks with two levels of parallelism. The first

level of parallelism is a direct result of the proposed system decomposition. At this

level, a number of simulations are launched in parallel to quickly approximate the

reachable state spaces of the extended full system and all the subsystems. Then,
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Figure 3.10: The proposed reachability analysis flow with two-level parallelism.

multiple SAT (SMT) checks are invoked for all subsystems simultaneously to search

for the missing reachable states. If such states are found, they will be added into

the reachable spaces of both their subsystems and the extended full system. The

SAT checking process continues until all the reachable states are discovered. At the

second level, we solve each SAT problem in parallel to gain additional speedups.

These two levels of parallelism are described in detail as follows.

3.5.1 Subsystem-level Parallelism

After the full system is extended and decomposed by the proposed method, it is

straightforward to apply the SMT-based reachability analysis to all the subsystems

in parallel within one time step. Since such decomposition inherently simplifies the

Rn → Rn state transition of the full system into a set of Rn → R state transitions,

i.e. the number of variables involved in the SAT problems is reduced from 2n to

(n+ 1), the efficiency speedup of the subsystem level parallelism is promising.

At first, our proposed method explores the reachable extended state spaces of all

the subsystems simultaneously via simulations. Then, using these simulation points,

the convex hull approximations of the reachable extended state spaces of all subsys-
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tems and the full system are computed in parallel. Parallel SAT checks are launched

to search for any possible missing reachable points which are used to expand the

convex hull approximation in the corresponding subsystems and, at the same time,

the one of the full system. The final convex hull of the full system is computed based

on inexpensive operations in (3.12) instead of costly solutions of the LP problems.

Leveraging the equivalence between the support function representations of the ex-

tended system and its subsystems, our proposed method dramatically reduce the

cost of the full system state space reconstruction.

3.5.2 SAT-level Parallelism

While our SMT checking is applied to the reachable extended state spaces, for

ease of discussion, we use the processing of reachable state spaces to illustrate the

same idea. According to (3.10), if Ω̃(t) and Ω̃(t+ δt) is constructed under the same

group of vectors li, i = 1, ..., k, then X(t+ δt) /∈ Ω̃(t+ δt) is a clause of:

∨
i

li ·X(t+ δt) > ρΩ̃(t+δt)(li) (3.27)

Our method further decomposes each SAT problem into k subproblems. The j-th

subproblem can be formulated as:

F ∧ (X(t) ∈ Ω̂(t)) ∧ (
∨
i

li ·X(t+ δt) > ρΩ̃(t+δt)(li)) (3.28)

where m is the number of li vectors and i ∈ [m(j−1)
k

, mj
k

). The subproblem reduces

the number of literals in the clause, i.e. the number of li vectors, from m to m/k,

leading to significant efficiency improvements.

Another benefit of solving these subproblems in parallel is the possibility of si-

multaneously finding multiple reachable states that are missed by the current convex
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Figure 3.11: Parallel counterexample exploration.

approximation. For example, as shown in Fig. 3.11, Ω is the approximation of the

reachable space under support function vectors l1, l2, l3 and l4. The serial SMT

method can only find out one satisfiable solution, i.e. either p1 or p2 outside Ω, at a

time. If the SAT problem is divided into two subproblems, one under l1 and l2 and

the other under l3 and l4, then the two subproblems explore solutions in different

areas (the shaded areas shown in Fig. 3.11). As a result, the parallelized search in

multiple subproblems tends to produce multiple solutions at one time. For example,

both p1 and p2 in Fig. 3.11 can be captured by the two subproblems simultaneously.

3.6 Experimental Results

We demonstrate the efficiency improvement of the proposed parallel algorithm

by verifying a PWM DC-DC converter and the nonlinear analog behavioral model

of a digitally-intensive phase-locked loop (DI-PLL)[85].

3.6.1 PWM DC-DC Converter

A simplified model of a DC-DC converter is shown in Fig. 3.12, with RL and RC

representing the parasitic resistance of inductor L and capacitor C, respectively. The

power switch is controlled by the PWM waveform to keep charging or discharging the

LC filter repeatedly, and hence generating both output voltage and inductor current

ripples. Assumeing that the switch, the voltage source, the PWM control module,
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and the feedback mechanism are all ideal components with perfect characteristics,

the state of the system can be represented by two variables: the current i through

the inductor and the output voltage v.
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Figure 3.12: Simplified model of a DC-DC converter.

The target of this experiment is to verify the settling time of v after the load

current iload is doubled, which reflects one of the key specification of the DC-DC

converter. Due to the ripple and other forms of uncertainty associated with the

circuit, neither v nor i can be considered as fixed value when the change in iload is

applied. Therefore, to conservatively verify the settling time, we start with a set of

v and i as the initial state space and track the reachable space of all possible circuit

trajectories from this initial state space.

Fig. 3.13a shows the same conservative bounds of v that are computed by both

the sequential and parallel implementations of the proposed reachability analysis.

The bounds tightly enclose many sets of simulation trajectories, implying a settling

time smaller than 10µs. The initial state space before the change of iLoad is shown in

Fig. 3.13b, where the red convex set is the actual initial space and the blue polygon is
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Figure 3.13: Transient reachability analysis: (a) simulation trajectories and the
bounds of v; (b) initial state space; (c) reachable space evolution in the first 1µs; (d)
reachable space evolution in the last 1µs.[83]
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the support function approximation. Fig. 3.13c shows the evolution of the reachable

state space in the first 1µs after the variation of iLoad during which the variation on

v is greatly increased compared to the ripple of the initial state space. Fig. 3.13d

indicates that in the last 1µs of the transient experiment, the ripple of v become

smaller than 0.001 volts, meaning v settles down eventually.

This simple example is only used to demonstrate the basic working the proposed

techniques. Next, we consider a much more challenging verification problem.

3.6.2 PLL

Digital PLLs have been a popular choice for clock generation and RF communica-

tion applications due to their inherent robustness to process variations [116]. While

a DI-PLL may have a significant digital content, it inevitably has an analog feedback

path from the digitally controlled oscillator (DCO) to the phase detector (PD) and

its overall loop behavior is similar to analog type (e.g. charge-pump based) PLLs. In

order to demonstrate the verification of general analog circuits, we extract an equiv-

alent nonlinear analog model (Fig. 3.14) out of the DI-PLL to test the proposed

algorithms.
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Figure 3.14: The analog behavioral model of PLL.

Assuming that the loop filter is a second order IIR filter and the transition char-
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acteristic of all the functional blocks are continuous, the extracted analog behavioral

model of the PLL and the state variables needed to describe its state space are shown

in Fig. 3.14. The state vector of the model at time t is defined as:

X(t) = (x1(t), x2(t), x3(t), x4(t), x5(t)) ∈ R5

= (∆φ(t), V1(t), V1(t−∆t), V2(t), V2(t−∆t))

(3.29)

The goal of the experiment is to verify if the PLL can reach a locked state

within a given lock-time specification if started from an arbitrary state from a given

initial state set, where the initial phase difference x1(0) may vary from −π to π.

Verification of the lock-in time of a nonlinear PLL under a wide range of initial

condition uncertainty is a computationally demanding task as the nonlinear circuit

trajectories must be tracked over a large number of time points. While this circuit

has five continuous state variables, it is not a trivial target for many existing formal

techniques. For the simulation-assisted SMT-based reachability analysis proposed

in [145], it takes hours to verify a charge-pump PLL with 3 continuous variables,

by discretizing the state space with a resolution of 1003 cubes and performing SMT

checking for R3 → R3 mappings. In Fig. 3.14, the model has a higher dimensional

state space which requires 1005 cubes to achieve similar resolution and performs

more complex SMT checking for R5 → R5. With the above setups, this lock-in time

verification is extremely computationally challenging and becomes a good test for

the proposed techniques

In this experiment, several different configurations of SMT-based verification are

implemented in C/C++ and run on a Linux server with 24 AMD Opteron(TM)

2.2GHz processors to analyze the speedups of the proposed techniques. The multi-

threaded parallel programs are implemented in OpenMP and iSAT [48] is invoked as
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the SMT solver.

When solving a single SAT problem, as mentioned previously, the speedup of the

system decomposition mainly comes from the reduction of state variables involved

in each SAT problem. To focus on the effect of the state variable reduction, we

compare the speedups of solving the conjunctions of F ∧ (X(t) ∈ Ω̂(t)), which is a

chunk in (3.11) for easy manipulation, when different number of variables is reduced

from F. For the SAT-level parallelism, the speedup comes from the reduction of the

number of literals in (3.27). We divide the SAT problem of the entire PLL model

into different number of subproblems and compare their speedup below.
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Figure 3.15: Speedup in solving a single SAT problem: (a) system decomposition;
(b) SAT parallelism.

As shown in Fig. 3.15, the speedup in solving a single SAT problem by system

decomposition tends to grow superlinearly when the number of involved SAT vari-

ables is reduced. And the SAT-level parallelism also shows a significant speedup by

dividing the SAT problem into four subproblems. Note that the speedup may be

worse for deep parallelized subproblem which is likely to be unsatisfiable and hence
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takes the SAT solver more time to reach the solution. However, even if the subprob-

lem takes the same run time as the original SAT problem, our framework can still

benefit from its capability of producing multiple satisfiable solutions simultaneously.

Now we combine the two strategies and analyze the speedup of the entire parallel

flow using various numbers of threads. Since the serial reachability analysis flow for

the PLL model shown in Fig. 3.14 cannot run to a completion within one week, it

is impractical to compare the total runtime of the serial flow and the parallel flow.

Therefore, we compute the speedup by comparing the runtime of the first five time

steps of different flows. For the serial flow, it takes 30 hours to perform reachability

analysis for the first five time steps.
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Figure 3.16: Speedup of the entire flow for various numbers of threads [83].

Fig. 3.16 shows the speedups of different parallel implementations. Here we de-

compose the system into five subsystems via the proposed methodology. For the first

column with five threads, each subsystem is solved by one thread, meaning that only
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the subsystem level parallelism is adopted, which speed up the process by 7.4 times.

In the second column in Fig. 3.16, two threads are allocated to each subsystem,

which means the SAT problem of each subsystem is divided into two subproblems to

be solved in parallel. The system decomposition and the two levels of parallelism all

contribute to the efficiency improvement and together produce a significant speedup

of 42X. Similarly, in the third column in Fig. 3.16, each subsystem is solved with

four threads, achieving a speedup of 248X.
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Figure 3.17: Convergence of the reachability analysis on ∆φ(t) and the PLL locktime
verification.

We use the parallel implementation with 20 processors to verify the lock-time

specification of the extracted analog model of the PLL. The results of the reachability

analysis on one of the state variables ∆φ(t) are shown in Fig. 3.17 where the red

curves represent the upper and lower bound of the phase difference and the dense blue

60



Upper bound

Lower bound

Upper bound

Lower bound

Upper bound

Lower bound

( )

2

t



 1( )V t

2 ( )V t

/t s /t s

/t s

Figure 3.18: Convergence of the reachability analysis on V1(t).
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Figure 3.19: Convergence of the reachability analysis on V2(t).
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traces are the simulation trajectories, which are bounded by the two bounds tightly.

It is indicated that the PLL can lock within 0.25 µs with an arbitrary initial phase

difference based on the convergence of the phase difference ∆φ(t). The convergence

of V1(t) illustrated in Fig. 3.18 and the convergence of V2(t) demonstrated in Fig. 3.19

also lead to the same conclusion.

3.7 Summary

This section proposes a parallel hierarchical reachability analysis method to signif-

icantly improve the efficiency of analog verification. The general system decomposi-

tion method is proposed to decompose an analog system into less complex subsystems

without any reconstruction overapproximation. In addition, a two-level parallel al-

gorithm is implemented to decrease the complexity of the SAT problems and further

speedup the verification by finding out multiple satisfiable solutions simultaneously.
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4. ACTIVE LEARNING GUIDED SUPPORT VECTOR MACHINE BASED

CIRCUIT VERIFICATION ∗

Even though the efficiency of the reachablity analysis is greatly improved by sys-

tem decomposition and parallelization in Section 3, complex nonlinear AMS systems

are still often beyond its capability. Since leveraging machine learning has been

proven as a promising avenue for addressing many practical simulation-based cir-

cuit challenges, developing simulation-based AMS verification under the context of

machine learning may produce promising performance. This section demonstrates a

novel active learning guided machine learning approach for circuit performance char-

acterization and verification. When employed under the context of support vector

machines, the proposed probabilistically weighted active learning approach is able to

dramatically reduce the size of the training data, leading to significant reduction of

the overall training cost. The proposed active learning approach is extended to the

training of asymmetric support vector machine classifiers, which is further sped up

by a global acceleration scheme. The excellent performance of the proposed tech-

niques is demonstrated by three case studies: DC/DC converter ripple noise analysis,

PLL lock-time verification, and prediction of chip peak temperature using a limited

number of on-chip temperature sensors.

4.1 Introduction

Understanding circuit performances’ dependencies on key design, process and op-

erating condition parameters is a central issue in many phases of IC development. For

∗Reprinted with permission from “Circuit Performance Classification With Active Learning
Guided Sampling for Support Vector Machines” by Honghuang Lin and Peng Li, 2015. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 34, Page 1467-
1480, c©2015 IEEE.
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instance, design equations or circuit performance models that capture specifications’

dependency on design parameters are essential for guiding design optimization.

However, as a by-product of design complexity increase and technology scaling,

design, process parameters and operating conditions interact with design perfor-

mance and operation in an increasingly complex manner. Optimizing design perfor-

mance and safeguarding design robustness becomes a significant challenge.

In this light, the ability in characterizing circuit performance in the complex de-

sign/technology/operating parameter space is key to design, verification and test. In

practice, performance characterization process often entails collecting and process-

ing large volumes of simulation or measurement data, which can be extremely costly

and time consuming. To address the above challenge, we leverage a specific type of

machine learning techniques, support vector machines (SVMs) [30, 129], for efficient

characterization of design performance.

Machine learning has been adopted in EDA research in the past. Voting based

methods are used in [88] and [33] to train analog performance models parameterized

in design parameters. In [33, 41], one-class SVM is adopted to represent analog circuit

performance and perform outlier analysis for cost reduction of delay test. In [91, 15],

regression techniques are used to analyze circuit reliability and rank design features

that contribute to unmodeled systematic timing effects. Focusing on a somewhat

different problem, the authors of [110] combine the extreme value theory and machine

learning (e.g. support vector machine) for yield estimation of SRAMs. The same

problem is approached by several other authors through fast Monte-Carlo importance

sampling techniques or boundary searching based non-Monte-Carlo methods (see, for

example [40, 69, 142]).

SVM is well-known for its capability of handling nonlinear problems. Compared

to other classification techniques in the machine learning domain, SVM tends to
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Figure 4.1: Active-learning guided SVM.

generate a sparser solution from an evenly sampled training data set. As a useful

toolbox in the EDA community, leveraging such sparsity to reduce the intense need in

sampling has been largely left untouched, which is the key focus of the present paper.

We propose an optimized probabilistic active learning guided SVM approach to train

high-quality circuit performance classifiers with significantly reduced cost. As shown

in Fig. 4.1, active learning is a class of powerful techniques that can be leveraged to

build “intelligence” into the sampling step of classifier training [79, 127, 105]: only

promising instances that are expected to improve the performance of the classifier

are selected for query (e.g. circuit simulation).

To select the optimal query instance at a time, we rank the candidate instances

according to a probabilistically weighted goodness metric that is computed by rig-

orously evaluating potential reduction of version space if the instance were queried.

As such, our active learning scheme intelligently selects query instances which are

expected to act as support vectors throughout the iterative classifier training pro-

cess, hence avoids committing wasteful queries and significantly reduces the required

training data and the overall training cost.

For many binary classification problems in circuit design, certain degree of asym-

metry exists between the two classes. For instance, in design verification, it is prac-

tically relevant to answer the following question: how to ensure designs passing the
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verification are very likely to be actually acceptable, while allowing some of the ac-

ceptable designs to be rejected? To ensure the conservativeness in verification, the

error on predictions of acceptance shall be more heavily minimized to avoid overly

optimistic prediction of design robustness. To this end, we extend the proposed prob-

abilistic active learning to the case of asymmetric SVMs by generalizing the concept

of version space reduction and evaluating the biased safety level. Finally, we present a

global acceleration scheme to further improve the convergence of asymmetric SVMs.

The presented ideas are rather general. We demonstrate their application by

conducting four classification case studies: ripple noise analysis of LC based DC/DC

converters , lock-time verification of charge-pump PLLs, reliability analysis of ring

oscillators, and prediction of peak chip temperature based on a limited number of

on-chip temperature sensors. For these applications, our techniques have led to one

order of magnitude of efficiency improvement.

4.2 SVM

Support vector machine (SVM) [30, 129] is a useful supervised learning algo-

rithm in solving binary classification problems. Given a set of training samples, the

technique constructs a discriminant function as a classifying hyperplane in the input

space. Its training process can be solved as a quadratic programming optimization

problem. The objective of the optimization is to find the structural optimal hyper-

plane that separates the training data with largest margin. Such objective is called

structural risk minimization and provides promising performance in many situations.

In practice, training samples are often not linearly separable, especially in circuit

related applications. To achieve a nonlinear classifier, SVM projects the input data

into a higher dimensional space, which is called feature space, and then tries to

linearly separate the samples in the feature space. The higher dimensional hyperplane
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may have a nonlinear projection in the input space, serving as a nonlinear classifier

for the input data.

Denote the i-th sample in the training data set as

(xi, yi), yi ∈ {−1,+1}, i = 1, 2, 3, ..., n (4.1)

which consists of the input vector xi and the corresponding class label yi. Let φ(x)

be the mapping function that maps any input vector x from Rn to Rm. SVM defines

the discriminant function of the classifier as

f(x) = w · φ(x) + b (4.2)

where w is a vector with m entries. An unlabeled x will be classified as a positive

instance or a negative instance if f(x) > 0 or f(x) < 0, respectively. The separating

hyperplane in the feature space is defined by f(x) = 0. Instances closest to the

hyperplane are defined as support vectors. The distance from any support vector

to the hyperplane is called margin, which should be maximized during the training

process.

The primal form of SVM is defined as follows:

min
w,b

‖w‖2

2
(4.3)

subject to

yi(w · φ(xi) + b) ≥ 1. (4.4)

Equality of (4.4) holds when xi is a support vector. Based on the definition and the
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constraints described in (4.4), the margin can be computed by:

m =
1

‖w‖
(4.5)

and thus minimizing the objective function is actually maximizing the margin (see

Fig. 4.2a).

f(x)=0

(a)

2012/4/15

mξa

m

mξb

(b)

Figure 4.2: (a) Hard margin SVM. Circles and squares are instances of the two
classes. f(x) = 0 is the separating hyperplane; (b) Differences between soft margin
and hard margin SVM. The dot line is the hyperplane of hard margin SVM with
margin m′. The solid line is the hyperplane of soft margin SVM with larger margin
m. The solid circle and square violate the margin m with slack variable ξa and ξb
respectively.

To solve the equivalent optimization problem of the SVM model, Lagrange mul-

tipliers are often employed, and the dual form of the SVM problem is derived as:

min
αi

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj · φ(xi) · φ(xj) (4.6)

subject to

αi ≥ 0 (4.7)
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and
n∑
i=1

αiyi = 0 (4.8)

where Lagrange multipliers αi are the new model parameters. The support vectors

can then be defined as training vectors whose corresponding αi is nonzero. And the

original w in (4.2) can be expressed as:

w =
n∑
i=1

αiyi · φ(xi). (4.9)

From the dual problem, we can find that only inner products of vectors in the

feature space are involved in computation. Thus we can simply define a kernel

function K(x1, x2) = φ(x1) · φ(x2) to implicitly describe the mapping towards the

feature space while solving the optimization problem instead of finding an exact

mapping function φ(x).

One of the widely used kernel functions is called Radial Basis Functions [129]

(RBF, a.k.a. Gaussian kernel):

K(xi, xj) = e−γ‖xi−xj‖
2

. (4.10)

The usage of kernel functions, the form of the discriminant function, and the struc-

tural risk minimization make SVM distinguished from other classification techniques,

since the optimal solution may be sparse in the context that it can be represented

by just a small portion of the samples, i.e. support vectors.

Leveraging the kernel (4.10), the biasing term b in the discriminant function is

often set to be zero for simplicity. With b = 0, the constraint (4.8) will be freed,

leaving (4.7) be the only constraints of the dual problem. In this work, we use (4.10)

as the default kernel and adopt the unbiased hyperplane by setting b = 0 in order to
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facilitate active learning[127] (details in later sections).

Overfitting is one of the common obstacles in supervised learning techniques.

The fact is that the “strictly learned” discriminant function from a large amount of

training data is often outperformed by well regularized discriminant functions with

some extent of relaxation. To balance the overfitting and underfitting, a modified

SVM called soft margin SVM is proposed in [30] and [129].

Rather than satisfying all the constraints defined by the training data set, soft

margin SVM uses slack variables and a cost factor to trade-off the training error and

the margin. The primal form of soft margin SVM can be posed as follows:

min
w,ξ

‖w‖2

2
+ C

n∑
i=1

ξi (4.11)

subject to

yi(w · φ(xi)) ≥ 1− ξi, ξi ≥ 0 (4.12)

where C is the constant cost coefficient defined before the training and ξi is the slack

variable representing the margin violation of the i-th training example. And the

margin (as shown in Fig. 4.2b) is defined as

m = min
i

yif(xi) + ξi
‖w‖

=
1

‖w‖
. (4.13)

Similarly, by applying Lagrange multipliers to the primal problem, one can derive

the dual problem with exactly the same objective function as (4.6) but with different

constraints:

0 ≤ αi ≤ C. (4.14)

In this case, support vectors can still be defined as vectors with αi > 0. For those

70



vectors with αi < C, they locate right on the boundaries of the margin. For those

vectors with αi = C, they are outliers that violates the margin, sometimes may even

be misclassified samples.

4.3 Active Learning Guided SVM

The goal of circuit performance classification is to predict if a circuit with uncer-

tain parameters (i.e. design parameters, process variations, or working conditions)

will meet the performance specification or not. Given sufficient training data, an

SVM classifier can be trained for accurate prediction. However, expensive circuit

simulation usually makes it infeasible to obtain a large volume of samples to train

an accurate SVM.

To reduce the intense need of training data, a group of techniques called semi-

supervised active learning [73] is developed by leveraging the spatial information (e.g.

clustering based in [63]) or the sampling history (e.g. significance space construction

in [99]). It only works for problems with finite candidates and thus is not applicable

to analog circuits whose sampling space is usually infinite. Supervised active learning

uses a clearer strategy to select samples: hypothesis space reduction (e.g. agnostic

active learning [19]) or SVM oriented version space reduction [127, 43]. In this

domain, the concern lies on the efficiency of the algorithm. However, in circuit

application, since simulations can be extremely expensive, we need to optimize the

quality of the selected sample as well. Therefore, in this section, we propose active

learning for high quality and fast convergence. Another active learning scheme for

conservative prediction is proposed in the next section.

4.3.1 Version Space

Pool-based active learning [79] is a method that starts with an initial training

data set and a pool of unlabeled data. The learner can query the class labels of
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instances in the pool and add them to the training data set.

Different active learning strategies have been developed in different scenarios for

the selection of candidates from the pool . In the EDA domain, for example, [33]

employs active learning to generate a balanced, in terms of the number of different

types of samples, training data set. Another method proposed in [91] develops ac-

tive learning strategy to reduce the need of expensive aging simulations in building

regression models for circuit reliability analysis.

A querying strategy based on version space introduced by [127] is an effective

method for active learning with SVM. With this strategy, active learner would start

with a set of all the possible separating hyperplanes, i.e. the version space, and then

choose the next query to shrink this set as much as possible until the size of the set

is small enough. Then the optimal hyperplane of this small set could be used as an

accurate approximation of the real separating hyperplane (more details in the next

subsection).

Version space V is defined as the set of all the hyperplanes in the form of f(x) =

w · φ(x) = 0 that completely separate the training data in the feature space. Since

the normalization of w

ŵ =
w

‖w‖
(4.15)

will not change the hyperplane, we can define the version space as:

V = {ŵ ∈ W |‖ŵ‖ = 1, yi(ŵ · φ(xi)) > 0,∀i} (4.16)

where the parameter space W has the same dimension of the feature space F . Ac-

cording to the duality between the parameter space W and feature space F [129],

every training sample xi has a corresponding hyperplane φ(xi) · w = 0 in W that
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cuts off a part of the hypersphere ‖ŵ‖ = 1. An example in a 2-D parameter space is

shown in Fig. 4.3a. Each training data is actually a constraint in the optimization

problem, partially defining the set of all the feasible solutions. As a result, all the

infeasible ŵ will be cut off by any training sample they violate and the surface on

the hypersphere that remains at last will be the version space.

Due to the structural risk minimization in the SVM model, the corresponding

ŵ∗ ∈ V of the optimal classifier produced by the hard margin SVM will be the

center of a sphere which is tangent to the cutting hyperplanes in W associated with

support vectors (see Fig. 4.3a):

ŵ∗ = arg max
ŵ∈W

min
i
{yi(ŵ · φ(xi))}. (4.17)

Here ‖ŵ‖ is normalized instead of the normalization of |f(xi)| for support vectors in

the hard margin SVM problem (4.3)(4.4). Therefore ŵ∗ is the normalization of the

optimal separating hyperplane represented by w∗, and the distance between support

vectors and this hyperplane is the margin m in (4.5).

Note that (4.16) is defined under the condition that all the training data are

linearly separable in the feature space. However, since most circuit variables(i.e.

voltage, current etc.) are continuous and the characteristics are often nonlinear,

samples in circuit application are usually not completely separable. Thus we employ

soft margin SVMs instead of hard margin SVMs in our applications and propose

another definition of version space V for the soft margin SVM:

V = {ŵ ∈ W |‖ŵ‖ = 1, yi(ŵ · φ(xi)) > −
ξi
‖w‖

,∀i} (4.18)

where w and ξi are constants produced by the training process of soft margin SVM
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Figure 4.3: Version Space in 2-dimensional W Space: (a) x1,x2 and x3 are cutting
hyperplane associated with training data. x1 and x2 are support vectors. the solid
arc is the version space. (b) ŵ∗ and version space between x1 and x2 correspond to
hard margin SVM. In soft margin SVM, hyperplane of x2 is shift to x′2 with a vertical
offset of ξ2/‖w‖. the version space is enlarged by the arc between x2 and x3. ŵ∗′

corresponds to the optimal classifier of soft margin SVM. x3 becomes the support
vector as well.
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(4.11)(4.12) with given cost coefficient C. As mentioned in the previous section,

the cost coefficient C provide a trade-off mechanism between the structural risk and

the constraint slackness. In practice, such mechanism often provides much better

regularization, hence it’s reasonable to assume that the slackness ξi can also make

the version space more resistant to the overfitting problem.

As shown in Fig. 4.3b, a non zero slack variable ξi moves the corresponding cutting

hyperplane vertically, relaxing the constraint defined by xi. Therefore, compared to

the version space of hard margin with the same training data, soft margin SVM

enlarges the size of the version space as well as the margin of the classifier.

Alternatively, from the perspective of the dual problem and the kernel method,

if we define α̂i = αiyi, by substituting (4.9) into (4.2), the form of all the possible

discriminant function can be defined as:

fd(x) =
n∑
i=1

α̂i ·K(xi, x). (4.19)

Then the equivalent hard margin version space can be redefined as:

Vd = {α̂ ∈ Rn|‖α̂‖ = ‖α∗‖,
n∑
i=1

α̂i ·K(xi, xj) > 0,∀j} (4.20)

where n denotes the total number of training samples xj and α̂ is an n-entry vector.

The α∗ corresponds to the output of the SVM training, constraining the version

space to a hypersphere again.

Given a distinct form of discriminant functions, the cardinality of Vd is different

from V . However, the optimal member in both version spaces that corresponds to

the solution of the SVM should be the same due to the duality.

Similarly, for the dual problem of the soft margin SVM, if we follow the same
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adjustment performed in (4.18), i.e. using a soft margin SVM with given cost factor

C to determine the relaxation ξi on all the training data xi, the proposed soft margin

version space can be redefined as:

Vd = {α̂ ∈ [−C,C]n|‖α̂‖ = ‖α∗‖,
n∑
i=1

α̂i ·K(xi, xj) > −ξj,∀j}. (4.21)

Compared to the hard margin version space, the soft margin one is constrained

within a smaller space [−C,C]n instead of the whole n dimensional space Rn. If

C = ∞, all the ξj will be zero and thus the soft margin version space should be

equivalent to the hard margin one.

4.3.2 Proposed Accelerated Active Learning with Probabilistic Version Space

Suppose that there is a pool of unlabeled data with a size of n, Vn is the resulting

version space if we query all the instances in the pool and ŵ∗n is the corresponding

optimal separating hyperplane, then ŵ∗n lies in version space Vi after i queries.

In case that the pool is of a huge size, it is too expensive to query the labels for all

the instances in the pool. Since ŵ∗n is determined only by support vectors, a limited

number of queries that include all the support vectors will also produce the same

optimal hyperplane ŵ∗n. Thus ŵ∗n can be approximated with much lower expense.

Version space based active learning tends to find a smart way of querying and

finally has an accurate approximation of ŵ∗n with limited number of queries. For hard

margin SVM, according to the definition of version space, Vi ⊇ Vi+1 for i = 0, 1, 2, ...,

which means the size of the version space is reduced as more and more instances are

queried. For soft margin SVM, as every query adds a cutting hyperplane in W , the

version space would be reduced by more queries as well. If the size of Vk is small

enough, any ŵ ∈ Vk is close to ŵ∗n and we can use ŵ∗k to approximate the optimal

classifier of the whole pool. The upper error bound of this approximation will be
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smaller if Vk is shrinking. Therefore, to make ŵ∗k converge to ŵ∗n as fast as possible,

we can select query that shrink the version space as much as possible in every step.

Let Area(Vk) denote the surface area of the version space Vk which is defined by

k queried samples. Since the shape of the version space could be very complicate in

high dimensional space, it is impractical to compute Area(Vk) explicitly. In general,

ŵ∗k may be located near the center of the version space, thus the distance between

ŵ∗k and support vectors, which corresponds to the margin of the unnormalized w∗k

in feature space, can be used to represent the surface area of the version space. We

assume that Area(Vk) is proportional to the margin of w∗k and, for simplicity, the

constant of proportionality is 1:

Area(V ) =
1

‖w∗k‖
. (4.22)

In [127], the authors tried to halve the version space with every query as far as

possible. They select such an instance in the pool in every step that has equal or

most approximate size of version space no matter which class it is labeled. This

method requires twice retraining of SVM for every instance in the pool, which is

very expensive when it comes to cases that the pool is often of a huge size. And the

reduction of version space in every step is likely to be no more than one half.

In this paper, we propose an accelerated active learning method with probabilistic

version space. It reduces the retraining cost by pool size shrinking and tends to have

a more aggressive reduction in version space.

In active learning process, version space described in the previous subsection

is used to measure the resulting benefit of any candidate query. To compute the

resulting reduction in version space of any candidate instance, we need to get its

label and retrain an SVM by adding it into the training data set. We avoid querying
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the real label of the candidate instance by assuming its label as +1 and -1 and

perform SVM retraining respectively (no simulation is committed yet at this point).

In every single step of active learning, if the pool has n instances, we should train

2n SVMs to find the optimal query. It is too expensive especially when it comes to

our applications of circuit performance classifications.

Since most circuit parameters are of analog value, the pool consists of infinite

unlabeled instances, which makes it impossible to calculate the expected size of

resulting version space for every instance. One simple way is to randomly sample a

certain number of instances in the input space to form a pool of finite size in every

step. However, for a high dimensional input space, it requires a huge number of

samples for the algorithm to reach certain accuracy. It would be far too expensive

to find an optimal query out of the pool.

In the SVM model, based on the definition of the constraints (4.4) and (4.12),

for samples xi right on the margin (i.e. support vectors in the hard margin SVM or

support vectors with ξi = 0), we have |f(xi)| = 1. According to (4.17), a new query

of x will reduce the size of version space if and only if

|f(x)| < 1 (4.23)

which means x should be closer to the hyperplane than support vectors with zero

ξi. Therefore, in every step of active learning, we can sample a certain number of

instances that satisfy (4.23) to form a pool with acceptable size instead of sampling

in the whole input space and then perform previously mentioned active learning

algorithm after that. Whichever instance in the pool is chosen to be queried, part of

the version space will be cut off, and hence we can guarantee that the version space

is reduced in every step.
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In addition to the above acceleration, in every step of active learning, we try to

find such an instance x in the pool that has the largest expectation of size reduction

in version space. In other words, after we add x into the training data set, the

expectation of the resulting version space should be the smallest. Let Vi denotes the

version space after i queries and xi+1 denotes the (i+ 1)th query, define:

V +
i = Vi ∩ {ŵ ∈ W |+ ŵ · φ(xi+1) > − ξi

‖w‖
}; (4.24)

V −i = Vi ∩ {ŵ ∈ W | − ŵ · φ(xi+1) > − ξi
‖w‖
}. (4.25)

Obviously V +
i and V −i denote the version spaces that xi+1 is labeled as +1 or -1

respectively. A more aggressive strategy is to find an instance xi+1 in the (i + 1)th

step with smallest value of

E = P (y = 1|xi+1)Area(V +
i ) + P (y = −1|xi+1)Area(V −i ) (4.26)

where P (y = 1|xi+1) and P (y = −1|xi+1) denote the probability of xi+1 being labeled

as +1 and -1 respectively.

We use an intuitive function for the conversion between SVM output f(x) and

the probability in our algorithm:

P (y = 1|x) =
1

1 + exp(−αf(x))
. (4.27)

With a tuned parameter α, it provides symmetric probability results for computing

the expectation of version space.

The algorithm flow of active learning combined by all the above steps is demon-

strated in Algorithm.1.
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Algorithm 1 Accelerated Active Learning with Probabilistic Version Space

1. Find an initial training data set S which includes both positive and negative
examples
2.Train a soft margin SVM classifier f(x) with S
3. Randomly pick up a huge set T from the input space
4. Classify T with f(x)
5. Pick up a certain number of instances with small enough |f(x)| in T , form a
subset T̂
6. For every xi ∈ T̂ ,
(a) Assign P (y = 1|xi) and P (y = −1|xi) to xi
(b) Label xi as positive, add it to S temporarily
(c) Train an SVM to compute its resulting size of version space Area+

(d) Label xi as negative, add it to S temporarily, and train another SVM to get
Area−
(e)E = P (y = 1|xi)Area+ + P (y = −1|xi)Area−
7. Query the real label of the instance with smallest E, add it into S
8. Repeat steps 2 - 7 until E is small enough
9. Train a final SVM with S

It should be aware that the pool is randomly regenerated in each iteration, making

it unique to the others in the other iterations. As the process iterates, the granularity

of the superposition of all the pools in the previous iterations, which can be viewed

as the discretization of the continuous input space, gets finer and finer. This can be

used to capture the continuity of analog systems and makes the proposed method

distinguished from the traditional active learning algorithms (such as [127, 105, 73])

for finite discrete applications.

4.3.3 Error Bound

An error bound estimation of the SVM classifiers based on leave-one-out cross

validation is proposed in [129], providing a method to approximate the upper bound

of the misclassification from a given training data set. However, such method is

based on the assumption that all the training samples are selected independently. In
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the context of active learning, such assumption is always not true since new samples

are always evaluated and selected by the current SVM classifier trained from the

current training samples.

As mentioned in the previous section, standard SVM models with sufficient train-

ing data often produce good classifiers with promising performance. Therefore, rather

than analyze the upper bound of the misclassification of the actively learned model,

we treat the SVM classifier learned from sufficient data as the desired “golden”

classifier and explore the maximum difference between such classifier and any other

solutions in the reduced version space.

Due to the duality between the primal form and the dual form of the SVM

model, the optimal solution ŵ∗ ∈ V is equivalent to the optimal solution α̂∗ ∈

Vd. Although V and Vd might have different cardinality, considering the powerful

expressive capability of kernel method with (4.10), we make the assumption that

ŵ =
∑n

i=1 α̂iφ(xi) for arbitrary ŵ, which guarantees the trends or convergence of

applying active learning version space reduction in both version space definitions

should be consistent.

As a result, the error between the golden classifier represented by α̂∗ and any

solution α̂ in the version space can be formulated as:

∆(α̂) = |f α̂∗

d (x)− f α̂d (x)| =
n∑
i=1

|α̂∗i − α̂i|K(xi, x). (4.28)

If the Guassian kernel (4.10) is applied here, since 0 ≤ K(x, y) ≤ 1, we have

∆(α̂) ≤
∑n

i=1 |α̂∗i − α̂i|. Taking all the training data into account, the upper bound

of the difference between the golden classifier and any solution in the version space
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is the optimal solution of the following linear programming problem:

max
α̂

n∑
i=1

|α̂∗i − α̂i| (4.29)

subject to:
n∑
i=1

α̂iK(xi, xj) > 0,∀j = 1, 2, ..., n (4.30)

where xi and xj denote arbitrary training samples.

The procedure of active learning in the context of the error bound defined above

is not as explicit as version space reduction. The reason is that adding a new sample

xx+1 into the training data set might reduce the current set of the feasible solutions

defined by (4.30), but a new variable α̂n+1 will also be introduced. Nevertheless,

since it suffices to consider only the feasible solutions on the boundary to find out

the optimal solution (i.e. the error bound) of a linear programming problem, a new

sample may help to lower the error bound if it cuts off a part of the boundary of the

set of feasible solutions.

4.4 Asymmetric Active Learning

Compared to related active learning methods developed in the machine learning

domain [127, 105, 73], the proposed method mainly focuses on continuous problems

rather than finite discrete space. In traditional discrete applications, the imbal-

ance between the numbers of positive and negative samples is usually a challenging

problem. While in circuit scenarios, since the continuous space can be infinitely

discretized, meaning infinite number of different types of samples can be obtained,

such problem may not be a concern any more. However, the need of safe prediction

occurs as a new challenge in the circuit domain.

For example, in applications like circuit verification, we are much more concerned
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about the class of failure than the class of success. Misclassifying acceptable circuits

into the class of failure may be allowed, while misclassifying flawed circuits into

the class of success should be strictly restricted. In this light, we expect that the

prediction on the failure class is conservative while the classifier still has high global

accuracy.

Some adaptive sampling techniques such as [59, 25, 134] are developed to gener-

ate balanced training set from imbalanced data in the machine learning domain, and

similar algorithms [40, 69] designed for circuit problems are adopted in the EDA com-

munity to solve the sampling problem of rare events (e.g. SRAM yield analysis). In

this work, the objective problem is different. Instead of dealing with imbalanced data

density, we adjust our active learning algorithm to meet different safety requirements

on the two classes.

4.4.1 Cost Asymmetric SVM

To reduce misclassifications in one class, one frequently used method is to assign a

higher cost or penalty coefficient to that class [98][9]. The previous soft margin SVM

model will be further modified into the following cost asymmetric SVM model(a.k.a.

2C-SVM):

min
w,ξ

‖w‖
2

+ C+

n∑
i:yi=+1

ξi + C−

n∑
i:yi=−1

ξi (4.31)

subject to

yi(w · φ(xi)) ≥ 1− ξi, ξi ≥ 0. (4.32)

Without any loss of generality, assume that C+ > C−. As a result, rather than

assigning a non-zero slack variable to a positive training sample, the 2C-SVM model

tends to increase the slackness of one or more negative samples. Therefore, after the

training process of 2C-SVM, fewer relaxation will be assigned to the positive training
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samples compared to the negative samples. The resulting classifier should be more

accurate for positive instances.

The dual problem of the 2C-SVM shares the same objective function (4.6) while

the constraints will be modified as:

0 ≤ αi ≤


C+, yi > 0;

C−, yi < 0.

(4.33)

By defining the class of failure as positive and the class of success as negative, if

C+ � C−, then errors that misclassifying a positive instance as a negative one, a.k.a.

false negative, will be much fewer than misclassifications on negative instances, a.k.a.

false positive.

4.4.2 Safety Level Evaluation

It is hard to evaluate the safety level of a classifier on positive class explicitly, but

apparently, a classifier with few false negatives and large margin on positive class is

more conservative than those with more false negatives or smaller margin on positive

class.

Hinge loss[131] is the loss function for soft margin SVM. For a training example

(x, y), it is defined as:

l(x, y) = max(0, 1− y · f(x)). (4.34)

It is widely used in SVM to penalize if (x, y) violates the margin, which is already

implicitly included in the standard soft margin SVM and the 2-C SVM. Recalling the

definition of soft margin SVM, l(x, y) is in fact ξi in (4.11)(4.12). If 0 < l(x, y) ≤ 1,

then (x, y) is the instance with distance to the hyperplane smaller than the margin.

If l(x, y) > 1, then (x, y) is a misclassification.
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In order to evaluate the conservation of the positive class, we sum up all the hinge

loss in the positive class only:

L =
∑
yi=+1

l(x, y). (4.35)

The smaller L is, the more conservative the classifier is. If L = 0, since there is no

misclassification or margin violation, we believe that it is the most conservative case.

4.4.3 Asymmetric Active Learning and Performance Optimization

To get a conservative classifier, we employ the 2C-SVM and the newly-defined

hinge loss metric in the previous strategy to achieve a conservative active learning

algorithm. In every step, we query an instance that may reduce the version space

largely and maintain a small L at the same time. For every instance in the pool, we

compute its expected loss as

Loss = P (y = 1|xi+1)L+ + P (y = −1|xi+1)L− (4.36)

where L+ and L− denote the resulting hinge loss on the positive class if the in-

stance is labeled as positive or negative respectively. Then we perform the following

calculation for every instance

D = E + η · Loss (4.37)

where η is the trade-off coefficient and the instance with smallest D will be selected

to be queried. This strategy may not shrink the version space the fastest, but it can

make the classifier more conservative.

Since instance with smallest D is less likely to have a smallest E at the same time,
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the version space reduction in every step will be smaller and hence the convergence

will be slower. In order to improve the efficiency, we propose the following global

strategy for improving the convergence. Considering two 2C-SVMs with different

cost coefficient but trained by the same training data set:

min
w,ξ

‖w‖
2

+ C1+

n∑
i:yi=+1

ξi + C1−

n∑
i:yi=−1

ξi; (4.38)

min
w,ξ

‖w‖
2

+ C2+

n∑
i:yi=+1

ξi + C2−

n∑
i:yi=−1

ξi. (4.39)

We know that ‖w‖ and
∑n ξi are conflict notions that represent the margin and

the violation of the margin respectively. Thus ‖w‖ will increase if
∑n ξi decreases

and vice versa. For the two 2C-SVMs, if C1± > C2± respectively, then we will have

‖w1‖ ≥ ‖w2‖. According to (4.22), it means that the size of the resulting version

space of (4.38) will be smaller than that of (4.39). Assumes that C∗+ and C∗− are the

two cost coefficients that could achieve a conservative classifier in the final step, we

may start the active learning from larger cost coefficients C+ and C− and gradually

reduce them to C∗+ and C∗− respectively. By this strategy, we can achieve a faster

convergence than the strategy that use C∗+ and C∗− from the very beginning.

The algorithm flow of the asymmetric active learning is shown in Algorithm. 2.

4.4.4 Dynamic Model Selection

According to the earlier discussions, the selection of the SVM model or, more

specifically, the selection of the cost parameters (i.e. the C in the soft margin SVM,

the C+ and C− in the 2C-SVM) plays an important role in the active learning

procedure.

A popular choice of the algorithms on model selection is based on cross validation.
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Algorithm 2 Asymmetric Active Learning

1. Find an initial training data set S which includes both positive and negative
examples
2.Train a soft margin SVM classifier f1(x) with S
3. Randomly pick up a huge set T from the input space
4. Classify T with f1(x)
5. Pick up a certain number of instances with small enough |f1(x)| in T , form a
subset T̂
6. For every xi ∈ T̂ ,
(a) Assign P (y = 1|xi) and P (y = −1|xi) to xi
(b) Label xi as positive, add it to S temporarily
(c) Train a 2C-SVM with parameter C+ and C− to compute its resulting size of
version space Area+ and loss L+

(d) Label xi as negative, add it to S temporarily, and train another 2C-SVM with
parameter C+ and C− to get Area− and loss L−
(e)D = P (y = 1|xi)(Area+ + αL+) + P (y = −1|xi)(Area− + αL−)
7. Query the real label of the instance with smallest D, add it into S
8. If C+ and C− are larger than the given C∗+ and C∗−, reduce C− and C+ accord-
ingly
9. Repeat steps 2 - 8 until D is small enough
10. Train a final 2C-SVM with S and the cost coefficients C∗+ and C∗−
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Models with different parameters are trained and tested by cross validation and the

one with the best average performance will be picked. However, in active learning,

the number of training samples is limited and, again, samples are not independent

with each other. Therefore methods based on cross validation are not applicable in

the procedure of active learning.

A simple yet practical analytic method for model selection is proposed in [27] to

determine the appropriate parameters for the SVM regression. We adopt the similar

reasoning here to determine the model parameter in each iteration during the active

learning procedure.

Due to the fact that 0 ≤ K(x, y) ≤ 1 for Gaussian kernel (4.10) and the dual

form definition of the soft margin SVM, we have the following inequality:

|f(x)| ≤
nSV∑
i=1

|αiyiK(xi, x)|

≤
nSV∑
i=1

|αi|

≤ nSV · C

(4.40)

where xi denote the support vectors (i.e. those with non-zero αi) and nSV denotes

the total number of them. Then the model parameter C can be estimated by:

C ≥ k · maxx |f(x)|
nSV

(4.41)

where k is a parameter used to implement the adjustment in C mentioned in the

previous subsection. At the beginning of the active learning procedure, we use a large

k for fast convergence, and then reduce it gradually towards 1 to get a better regu-

larized solution. Since the input space x is often bounded in the circuit application,
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calculating maxx |f(x)| should be trivial once we obtain the form of f(x).

In the application of active learning, the given initial training data set is often very

small, and often easy to be completely separable. Thus applying an SVM model with

a large C will produce us the first approximation of the discriminant function f(x)

and the first group of support vectors. After that, in the n-th (n ≥ 2) iteration, we

use the f(x) and nSV gained from the (n− 1)-th iteration to estimate the parameter

C.

Another important model parameter is the ratio of C+/C− in the asymmetric

model. One way to determine such ratio is to use the practical cost for the misclas-

sification on different classes. However, such ratio might be indefinite or indistinct.

In such cases, we can determine the ratio from the context of the model.

According to the definition of the 2C-SVM, an outlier xi in the positive class that

violates the margin may have an impact of C+K(xi, x) to the learned discriminant

function, since its corresponding αi = C+. If it is in the negative class, then the

impact should be C−K(xi, x). The essence of the 2C-SVM is to make the impact of

the two kinds of outliers different. Therefore, to ensure that outliers in the positive

class always have greater impacts on the discriminant function than the negative

outliers, we can select the ratio that satisfies:

C+

C−
≥

maxxi,xj K(xi, xj)

minxi,xj K(xi, xj)
(4.42)

where xi and xj are arbitrary vectors in the input space. Again, since the input space

in circuit application is often bounded, the maximum and minimum of the kernel

function on the input space should be computable.
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4.5 Experimental Results

In this section, our proposed method is applied as a general flow to various circuit

applications. Since the flow mainly focuses on simulation need reduction, for very

high dimensional system, the running of a single simulation can still be expensive.

Due to the limited scope, we illustrate the effectiveness of the proposed method in

four simplified circuit systems.

Our proposed active learning approach employed in the following experiments is

implemented in C++ on a Linux server. Our active learning scheme interface with

the base-line SVM package SVMLight[67]. And we use the default γ = 1 in this tool

for SVM training. For the probability estimation in (4.27), the tuning parameter is

set to be a constant α = 3.

4.5.1 LC Based DC/DC Converter Design Classification

A simplified model of an LC-based DC-DC converter is shown in Fig. 4.4, where

RL and RC represent the parasitic resistance of the inductor L and capacitor C,

respectively. The PWM unit controls the power switch to keep charging or discharg-

ing the LC filter repeatedly, and hence generating both output voltage and inductor

current ripples. Ripple noise is one of the important specifications of a DC/DC con-

verter and, apparently, choices of design parameters L and C may produce different

levels of ripple noise on the output voltage.

Assume that the switch, the voltage source, the PWM control module, and the

feedback mechanism are all ideal components with perfect characteristics, and ad-

ditionally the resistance of RL and the conductance of RC are proportional to the

value of L and C, respectively. In this case, the state variables of the system can

be defined as the current i on the inductor and the output voltage v if the input

voltage Vin and the load current ILoad are given. And the dynamics of the system in

90



DC

PWM

L

C

RL

RC

I L
o
ad

vi

Figure 4.4: A simplified model of an LC-based DC/DC converter.

the s-plane can be described by

v =
(1 + sCRC)[Vin − (sL+RC)ILoad]

1 + sC(RC +RL) + s2LC
(4.43)

and

i =
sCVin + (1 + sCRC)ILoad
1 + sC(RC +RL) + s2LC

. (4.44)

By assuming that both v and i are initially set to be zero, the simulation is

implemented using numerical methods to approximate (4.43) and (4.44). In terms

of efficiency, active learning is not superior compared to passive learning due to the

inexpensive simulations. This two dimensional system is used as an example to show

the intuition of the convergence of active learning and the predominant improvement

in reducing the need of samples/simulations.

The goal of our analysis here is to examine the dependencies of the ripple on

important design parameters under a fixed working condition (i. e. with fixed input

voltage and load current). For this, an SVM model can be extracted by defining

the input features as L and C and labeling each instance according to its ripple

noise. Given a threshold noise level, if a circuit with a group of design parameters

91



has a ripple noise that exceeds the threshold, it will be labeled as a positive sample.

Otherwise, the negative label meaning that it meets the given threshold will be

assigned to it. In this experiment, we set the load current Iload = 0.1A, the input

voltage as 1V and the threshold of ripple noise as 0.2mV .

The objective of the classifier is to accurately predict whether a combination of

L and C within a given area will meet the given ripple noise specification or not.

Thus the proposed symmetric model is adopted. We evenly select 9 samples out of

the input space as the initial training data set and the procedure of active learning

is shown in Fig. 4.5. In the query process for an unknown pair of (L,C), a transient

simulation of (4.43) and (4.44) is invoked and the ripple noise is measured after the

system gets stable, i.e. the current on the inductor and the output voltage settle

down.

From Fig. 4.5a to Fig. 4.5d, the convergence of the active learning sampling is

clearly demonstrated. New samples tend to be selected around the boundary be-

tween the positive and negative classes and gradually cluster the accurate separating

hyperplane. The 200 samples selected by the active learning scheme in Fig. 4.5d

already shows the outline of the hyperplane. Compared to Fig. 4.5e that shows the

hyperplane with a large number of random instances, the approximated hyperplane

in Fig. 4.5d is very close.

The learned classifier can be exploited to quickly determine the performance

of a certain design. Compared to SVM training based on random sampling, the

required number of simulations is much fewer in active learning. Such comparison

with respect to the number of simulations is shown in Fig. 4.6 and a large reduction

in simulations is achieved by active learning. For example, active learning only needs

10% the total number of simulations of the random sampling to produce a classifier

with 97% accuracy.
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Figure 4.5: The sampling procedure of active learning in the parameter space L :
[1nH, 1uH]×C : [10nF, 10uF ] (red star denotes positive instances, blue circle denotes
negative instances, square denotes initial training samples): (a) 20 samples selected;
(b) 50 samples selected; (c) 100 samples selected; (d) 200 samples selected; (e) 10,000
random instances
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Figure 4.6: Comparison in the required number of simulations (AL short for Active
Learning, RS short for Random Sampling) where the global accuracy is defined as
the fraction of the correct predictions on 10K random test samples. (e.g. 0.1 means
10%)

In general, the active learning flow can be extended to other circuit design prob-

lems. We believe building an accurate classifier for circuits by taking various design

parameters as its input features is meaningful for quick performance prediction in

circuit design/debug. Once the classifier is given, designers can directly tell whether

a design with some new parameters is going to work or the And the training cost

to obtain such classifier can be significantly reduced by our proposed active learning

scheme.

4.5.2 PLL Verification

The charge pump phase-locked loop being verified is shown in Fig.4.7. If the

divided output signal is ahead of the reference clock, the voltage on the node down

will be logical 1 and up be logical 0, controlling the charge pump to discharge the

two capacitors in the loop filter to lower the input voltage of VCO, which will lower

the frequency and reduce the phase of the output signal, or vice versa. If the phase
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difference between the reference clock and the divided output signal is 0, both up

and down are logical 0. Through such negative feedback, the frequency of the output

voltage should gradually converge and finally be locked to N times the reference

frequency.

2012/4/16

D Q

D Q

Ref

1/N
Divider

up

down

Reset Output
VCO

Loop
Filter

Charge Pump
Phase Detector

v1

v2

Figure 4.7: Block diagram of PLL

Typically, the phase detector (PD) is implemented by two DFFs and one AND

gate. The behavior of the PD can be described as: if the divided signal div takes

the lead, a rising edge will be generated at down, followed by a falling edge triggered

by the arrival of the rising edge of the reference clock ref. A similar pulse will be

generated at up if reference clock ref takes the lead. A pulse at up makes the charge

pump to charge the loop filter and increase the input voltage of the VCO, while a

pulse at down reverses such impact. The timing diagram of the phase detector and

the resulting output of the charge pump and loop filter is shown in Fig. 4.8.

We use Verilog-A to set up the behaviorial model of the PLL and, similar with
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Figure 4.8: Timing diagram of the phase detector and the resulting output of the
charge pump and loop filter.

the PLL model built in [146], define the state of the circuit with 5 variables: voltages

on two capacitors v1 and v2, phase difference φ and two digital variables up and

down.

Our goal is to verify that PLL with various size of initial state space will be locked

within a certain time or not. To start with some failures for the SVM training, we

set a rather large searching space for the state variables that is very likely to break

the PLL (which is a similar concept in stress-testing). The searching space for the

two initial voltages is the interval [0V, 0.8V] and the phase difference has a range

[0, 2π). There are only three combinations of up and down: {0, 0}, {0, 1}, {1, 0}.

In this case we hope to have a conservative verification of PLL lock-time over

uncertain initial startup conditions. Thus the asymmetric active learning algorithm

is employed. The class with positive label corresponds to meeting the specified
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lock time, and the class with negative label corresponds to failing the lock-time

specification. We compare the performance of this method with another method

that only trains a 2C-SVM with random samples to illustrate the improvement in

efficiency of the our method.

We use a set of 27 instances evenly distributed in the whole state space as our

initial training data set. To make the comparison more reasonable, we also add this

set into the random samples of the uniform sampling. The results of classifying a

randomly generated data set with a size of 100,000 by two methods are shown in

Fig. 4.9. We can infer that much less simulations and runtime is needed for our active

learning method to achieve certain accuracy and prediction safety levels, the latter

of which is measured by the classification error on the positive class (i.e. percentage

of false negatives over the positive class). Considering achieving same accuracy, the

number of simulations is reduced by an average of 70% and a maximum of 92%, the

runtime is reduced by an average of 69% and a maximum of 91%. Considering the

safety, an average of 89% and a maximum of 96% simulations are saved, with an

average of 72% and a maximum of 89% saving in runtime.

By neglecting the two digital state variables, the distributions of instances sam-

pled by active learning is shown in Fig. 4.10a. Again, the result shows that samples

selected by active learning tend to cluster the separating hyperplane. A further pro-

jection into a 2-dimensional space (V1, V2) clearly shows the trend. The projection

also implies that the initial states V1 and V2 have more impacts on the lock time of

the PLL.

Note that the verification problem defined in this experiment is different from

what is commonly approached as the problem of formal verification, such as [146, 83]

based on reachability analysis and [147, 71] based on global convergence analysis.

Their identical concern is to explore the problematic initial states in a fixed initial
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Figure 4.9: Results of PLL experiments (AL short for active learning, RS short
for random sampling) where the global accuracy and the error on positive class are
defined as the fraction of the correct predictions, with a test set whose size is 100K.
(e.g. 0.1 means 10%): (a) number of simulations for certain accuracy; (b) number of
simulations for safe prediction; (c) runtime to achieve certain accuracy; (d) runtime
to achieve safe prediction
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Figure 4.10: Samples selected by active learning: (a) the projection of the selected
samples in the continuous 3-D (V1, V2,∆φ)space, where V1 and V2 are the initial volt-
ages on the two capacitors, and ∆φ is the initial phase difference; (b) the projection
of the selected samples in the (V1, V2) space. .

state space. However, in our experiment, we aim at determining proper initial state

spaces for a design. Once an SVM classifier is trained for a given PLL, if the actual

initial state space is a subset of the class of success, it’s confident to accept the

design. If not, certain suggestions can be fed back to designers to fix the problem.

For example, pre-charging mechanism before or during the power-on process can be

added to the PLL to shift the original state space to the desired space. The model

and the flow are also reusable if the design is changed in the events like re-designing

the circuit, or embedding the circuit into a larger system, and so on.

4.5.3 Prediction of Peak Chip Temperature Using a Limited Number of On-chip

Thermal Sensors

In this experiment, finite elements simulations are employed to check whether the

temperatures on a chip exceed the highest allowable value or not via limited number

of sensors integrated on the chip. Fig. 4.11 shows the functional blocks placement of
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a processor, similar to the simplified DEC alpha chip model in [81]. We place five

sensors on top 5 blocks with highest possible power density (the positions of the red

squares in Fig. 4.11.

Full-chip thermal simulation is performed by running a finite-difference based

in-house thermal simulator. The simulator adopts the conjugate gradient iterative

method with an incomplete LU (ILU) preconditioner. On a Linux-based desktop,

each thermal simulation takes about 65 seconds to complete. This simulation runtime

will grow if a finer thermal PDE discretization is adopted or finer details of material

inhomogeneity is considered along the lateral dimensions of each material layer on

the chip, producing a higher demand for smart learning.

Active 
Learning

Selected
Instance

Query

SVM Re‐train

Add 

Training Data of
Power Distribution

Corresponding
Sensor Readings

Record

Train 2C‐SVM

Figure 4.11: Functional blocks placement, sensor positions and experiment flow

For every block, the parameter is the power consumption that varies from 0 to

its peak value. The parameters of all the 15 blocks form a 15-dimensional space.

Our goal is to train an accurate and conservative SVM classifier that can take the

readings from the five sensors and then predict the actual peak chip temperature,

which may not take place at any of these sensor locations. To guarantee the safety

of the chip, we use asymmetric models in two steps.
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In the first step of the flow, we train a 2C-SVM classifier mapping block level

power consumption to the actual peak chip temperature. The classifier takes the

power consumption on all the blocks as the input features, and the label/prediction

is made according to the given temperature threshold. During this step, if any

simulation is invoked to query the real label of a certain combination of the 15

parameters, the sensor readings are also recorded and paired with the obtained label.

Active learning is invoked in this step to select samples with high quality.

In the second step, we use the recorded sensor readings and their correspond-

ing labels to train another 2C-SVM classifier which makes the prediction of peak

temperature directly based on sensor readings. This step assembles the fine samples

generated from the last step into a classifier with desired format.

We use a set of 100 random instances as the initial training data set for the active

learning. To provide a comparison reference, we repeat the above two-step process

based on passive learning, i.e. training on a large set of random samples. Again

we add this set into the random samples of the passive learning. The results of

classifying a randomly generated data set with a size of 100,000 by two methods are

shown in Fig. 4.12. The active learning costs significantly less in terms of simulation

and runtime. In terms of accuracy, we save an average of 51% and up to 67%

in simulations as well as an average of 38% and up to 54% in runtime. In terms of

achieving the same level of safety guarantee (e.g. false negatives), there is an average

of 71% and up to 84% reduction in the needed number of simulations together with

an average of 63% and up to 87% reductions in runtime.

This experiment shows the potential application of the proposed flow in moni-

toring complex systems. While implementing a substantial number of sensors in the

system is beneficial to the safety, it may be costly for complex and highly integrated

systems. In this light, the active learning guided sampling and SVM techniques can
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Figure 4.12: Results of chip thermal experiments (AL short for active learning, RS
short for random sampling) where the global accuracy and the error on positive class
are defined as the fractions of the correct predictions, using a test data set whose size
is 100K. (e.g. 0.1 means 10%): (a) number of simulations for certain accuracy; (b)
number of simulations for safe prediction; (c) runtime to achieve certain accuracy;
(d) runtime to achieve safe prediction
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be applied to reduce the required number of sensors while retaining high alertness in

the observation of the working conditions of the systems.

4.6 Summary

This section presents an SVM-based active learning method for circuit perfor-

mance classification and verification. There are two algorithm flows proposed: the

symmetric one for classifications only considering the accuracy, and the asymmetric

one concerning about both safety and accuracy. The proposed method is applied to

DC/DC converter ripple noise analysis, PLL lock-time verification, and chip ther-

mal checking. The proposed algorithms provide significant simulation reduction and

efficiency improvement in all the experiments.
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5. STATISTICAL AMS VERIFICATION AND PARAMETRIC ANALYSIS VIA

BAYESIAN LEARNING

The effectiveness of learning based methods applied to AMS verification prob-

lems has been demonstrated in the preceding section. However, even an asymmetric

strategy is developed to conform the conservative nature of verification problems,

the completeness and reliability of the verification solutions is not guaranteed or pre-

served to an acceptable extent. As a first step towards a conservative learning based

method, it is essential to evaluate the coverage or reliability of the learned models.

In this light, statistical learning methods can be a good fit since the evaluation of

the coverage or reliability can be achieved in the statistical sense.

The verification tasks can be facilitated with accurate and computationally effi-

cient models that estimate the corresponding circuit performances or specifications

based on the given circuit parameters. Besides, both the design phase and the

testing phase can benefit from those models if they can reliably capture complex

dependencies of circuit performances on essential circuit and device parameters or

test signatures. To build such models, this section presents a novel Bayesian learn-

ing technique, namely sparse relevance kernel machine (SRKM), for characterizing

analog circuits with sparse statistical regression models. SRKM not only produces

accurate models learned from a moderate amount of simulation or measurement

data, but also computes a probabilistically inferred weighting factor quantifying the

criticality of each parameter as part of the overall learning framework, hence offering

a powerful enabler for variability modeling, failure diagnosis, and test development.

Compared to other popular learning-based techniques, the proposed SRKM produces

more accurate models, requires less amount of training data, and extracts more re-
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liable parametric ranking.

Throughout this section, bold capital letters denote matrices and bold letters in

lower case denote vectors. For a matrix X, we use X(i, j) to denote its entry at the

i-th row and the j-th column. We represent the i-th entry of a vector x by x(i).

And diag(d) is a diagonal matrix whose diagonal elements are defined by d.

5.1 Introduction

For AMS systems, it is essential to characterize the dependencies of circuit per-

formances/specifications on various circuit and device parameters or test signatures

for purposes such as design, verification and test optimization. However, doing so is

not trivial since the targeted dependencies are usually complex and nonlinear with

deep-rooted correlations, making it arduous to reliably quantify the importance of

numerous parameters. Particularly, embedding parametric analysis into statistical

AMS verification flow is eminently appealing, but faces obstacles from both the com-

plex AMS nature and the feature weighting problem.

5.1.1 Challenges from the Complex AMS Nature

For characterizing sophisticated circuit systems, machine learning techniques

based on circuit simulations or measurements have been proven to be effective and

produced promising outcomes. For example, the preceding section uses the SVM

as a nonlinear classifier to capture the mapping from input parameters to circuit

performance. A regression extension to the SVM is employed in [15] to rank circuit

parameters based on their correlations with unexpected timing deviations. Addi-

tionally, Bayesian inference is often used to build statistical circuit models. For

instance, a co-learning Bayesian model is proposed in [133] to efficiently model the

performance of AMS circuits.

Input parameters of vastly different amplitudes are often normalized to the same
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value range before being fed to a machine learning algorithm. This and other is-

sues may amplify the impact of redundant or noisy parameters in the model and

aggravate its vulnerability to noisy training data and/or inclusion of noisy or re-

dundant input features (parameters). Since the sensitivities of circuit performances

to various parameters may vary vastly, it is instrumental to extract accurate sta-

tistical models and reliable parameter criticality simultaneously. While traditional

feature selection or importance ranking techniques may help to identify and select

some important parameters out of a large parameter set, building models only with

the selected parameters usually degrades the model performance and few of those

techniques can guide the model to achieve higher accuracy [61, 26]. These difficulties

present important roadblocks to analog/mixed-signal circuit characterization with

machine learning techniques.

In addition, to build an accurate predictor, most machine learning techniques re-

quire appropriate pre-processing of the features/parameters in training data, which

may require domain expertise, especially for scenarios where there is noise and re-

dundancy in the collected samples. Regrading this problem, due to the diversity of

AMS circuits, developing an accurate statistical model with automatic parameter

handling or processing in training samples is of great demand.

5.1.2 Challenges from the Feature Weighting Problem

Generally, the performance of machine learning techniques, especially classifica-

tion and regression techniques, is heavily affected by the quality of the training data.

To enhance the quality of the training data set before feeding it to a training model,

it usually requires great efforts in pre-processing the so-called features, which are

basically the circuit parameters in the scenario of AMS verification. Techniques such

as feature construction/extraction [56] and feature selection [24, 56, 21] may be em-
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ployed to convert the raw data into features that will be finally used to train the

model.

Traditionally, feature selection may be performed by combinatorial search [112,

130] to incrementally add or remove features from the selected subset, which is

evaluated by the performance of its resulting predictor. Another kind of methods [20,

123, 95] trim the feature space with regularization based methods, like introducing

new regularization terms into the cost function, to perform the feature selection.

All these techniques are considered as linear feature selection methods since they

handle or formulate the features in a linear manner, such as combinatorial search or

L1 norm regularization. To capture the nonlinear dependencies among features and

their nonlinear “relevancy” to the targets, some other methods [80, 61, 26] switch the

roles of features and samples in their learning models and apply the kernel method to

the features instead of samples. This kind of methods also belong to the category of

regularization based methods since their optimization models using Euclidean inner

product as their kernel functions are equivalent to Lasso regression [123] based on

the conclusion provided by [80]. A drawback of such methods is that their results

usually only improves the regularization of the learning model but not the accuracy,

since they work independently as preceding filters of the training process.

Moreover, in AMS verification where features’ relevancy may vary in a large range,

proper weighting of the features may improve the learning quality if the weighting

can reflect the impacts of features on the targeted performance. In this sense, fea-

ture selection is a 0-1 binary weighting scheme, whose capability is limited when it

comes to AMS verification applications. The task of assigning weights directly to the

features and embed the weighted samples into the kernel function [124] is very chal-

lenging, since most commonly used kernel functions are nonlinear, making weights

difficult to manipulate and costly to optimize.
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5.1.3 Overview

To address all the problems mentioned above, this work proposes a novel Bayesian

learning framework for characterizing analog circuits in tasks including, but not

limited to, AMS verification by consolidating learning models with embedded feature

weighting mechanisms to achieve accurate models. Since the SVM is well-known for

achieving superb performance in both classification and regression applications, we

propose a novel implicit feature weighting scheme in the kernel machine framework

adopted by the SVM. Instead of directly manipulating the features in a traditional

way, the original kernel function is atomized into the newly defined feature kernels

with weighting factors that obliquely reflect the relevancy of the features. Then,

the training model of the new kernel machine with feature weighting is developed

following the relevance vector machone (RVM) [124] framework, which is a sparse

Bayesian learning treatment of the SVM, to achieve a sparse model called sparse

relevance kernel machine (SRKM) for AMS circuit characterization.

The proposed SRKM simultaneously seeks relevant training samples (i.e. sam-

ples) and parameters (i.e. features) to derive a sparse model in both the vector and

parameter spaces based upon the atomized feature kernel weighting. As a result, the

SRKM not only produces accurate models learned from a moderate amount of simu-

lation or measurement data, but also computes a probabilistically inferred weighting

factor quantifying the criticality of each parameter as part of the overall learning

framework, hence offering a powerful enabler for variability modeling, failure diag-

nosis, and test development. In addition, an iterative algorithm is developed for

efficient training of the proposed SRKM.

Compared to other popular learning-based techniques, the SRKM produces more

accurate models, requires less amount of training data, and extracts more reliable
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parametric ranking. The effectiveness of SRKM is demonstrated in terms of the

statistical variability verification of a low-dropout regulator (LDO) and the built-in

self-test (BIST) development and optimization of a charge-pump phase-locked loop

(PLL).

5.2 Relevance Kernel Machines

This section introduces the newly defined feature kernel for implicit feature

weighting, by reviewing the popular kernel methods in the first subsection and de-

scribing the proposed kernel machine in the second and third subsections.

5.2.1 Kernel Methods

SVMs have been widely used in various domains like bioinformatics [23], medical

imaging [66], handwriting recognition [87], and circuit applications[84], as a powerful

supervised learning toolbox solving classification and regression problems. According

to a recent experiment conducted by [45], the comparison of 179 classifiers evaluated

on 121 data sets shows that SVM is still among the top methods.

The excellence of SVM mainly relies on two portions of its model: the cost

function and the famous “kernel trick”. Similar with some other learning meth-

ods, the cost function of SVM is composed of a fitting loss term and a smoothing

penalty term. By using different formulas for losses and penalties, several variants of

SVM [121, 111, 70, 64] are derived from the original quadratic optimization problem.

Such composition of cost functions provides exceptional robustness and regulariza-

tion [141]. On the other hand, kernel trick or kernel method has shown great success

in handling nonlinear problems.

In SVM, the idea of solving nonlinear problems is to map the original input vectors

from the input space, which are not linearly solvable, into a higher dimensional space,

which is referred to as feature space and explore a linear solution in that space. For
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example, as shown in Fig. 5.1, the five 2-D training samples for classification are not

linearly separable in the input space. By using the mapping x → x̂ described in

Fig. 5.1, the five mapped training samples are linearly separable in the 3-D feature

space.

1 2( , )Tx xx 2 2

1 2 1 2
ˆ ( , , )Tx x x x x

( , ) T T TK  a b a b a a b bx x x x x x x x

ˆx x

Figure 5.1: A mapping example from a 2-D space to a 3-D space with its correspond-
ing kernel function. Different colors denote different classes.

By using the Lagrange multipliers, the exploration of the optimal separating

hyperplane in the mapped higher dimensional space can be expressed as the opti-

mization problem (4.6). It is clearly shown in (4.6) that the optimization problem

can be solved by merely knowing the inner product of any pair of the mapped input

vectors 〈x̂i, x̂j〉, without explicitly defining the mapping x→ x̂. Therefore, defining

a kernel function K that satisfies or represents K(xi,xj) = 〈x̂i, x̂j〉 and substituting

it into the optimization problem should achieve the same results as what is produced

by making the mapping x→ x̂. For example, using the kernel function described in

Fig. 5.1 to construct the SVM training model should be equally sufficient as using the

mapping shown in Fig. 5.1 to solve the classification problem. As long as the kernel
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function K satisfies Mercer’s condition [129], there exists a feature space where the

inner product is generated by K. In this light, a kernel function can be considered

as an implicit definition of a certain mapping.

5.2.2 Feature Kernel Weighting

Although the implicit mapping defined by kernel methods are very powerful in

solving nonlinear problems, similar with other learning techniques, it may easily

be confused by irrelevant or redundant features. For example, suppose we further

sample the 2-D input space in Fig. 5.1 and find that one of the features is actually

irrelevant to the target, as Fig. 5.2 shows, using the same kernel and the same

resulting mapping, the mapped input vectors can no longer be linearly solved in the

3-D feature space. Alternatively, another mapping x→ x̃ shown in Fig. 5.2 manages

to map the samples in the input space into another space where a linear solution

exists. The new mapping is based upon the original mapping by eliminating the

irrelevant feature x1 from the mapping.

A more complex situation is that features may have quite different relevancy as

Fig. 5.3 shows. The feature x2 is the major feature that reflects the class lables of

the samples while x1 has subtle but not negligible relevancy. This example cannot

be linearly solved by the mapping x→ x̂, either. A feasible mapping x→ x̃ add a

weighting factor to adjust the impact of the less relevant feature x2 and successfully

reach another feature space where a linear solution is available.

Based on the implicit mapping mechanism, we propose to construct a new ker-

nel by atomizing the existing kernel functions to achieve implicit feature weighting.

Considering the example shown in Fig. 5.2 and Fig. 5.3, to get rid of the interfer-

ence from the redundant or much less relevant feature, the mapping can be further

extended into a even higher dimensional space by breaking any dimension involving
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Figure 5.2: An example with an irrelevant feature, where blue circles and red stars
denote two different classes respectively. It cannot be linearly solved by the kernel
function corresponding to the mapping x = (x1, x2) → x̂ = (x1, x2, x

2
1 + x2

2). The
kernel function corresponds to the mapping x→ x̃ is feasible, with a linear solution
denoted by the purple plane. Here x̃1 = x2, x̃2 = 0, and x̃3 = x2

2.

multiple features into several dimensions that consists only one feature:

x̂ = (x1, x2, x
2
1, x

2
2)T ,

The feasible mappings shown in Fig. 5.2 and Fig. 5.3 are actually linear projections of

the above new mapping. Since the mapped samples are linearly solvable in the new

3-D spaces, it means linear solutions exist in spaces which are linearly transformed

from the 4-D space defined by x̂.
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Figure 5.3: An example with irregular feature relevancy, where blue circles and red
stars denote two different classes respectively. It cannot be linearly solved by the
kernel function corresponding to the mapping x = (x1, x2) → x̂ = (x1, x2, x

2
1 + x2

2).
The kernel function corresponds to the mapping x → x̃ is feasible, with a linear
solution denoted by the purple plane. Here x̃1 = x1, x̃2 = υx2, and x̃3 = x2

1 + υx2
2,

where υ is a small positive weight..

While implicit mappings defined by kernel functions are more favorable, for the

exact mapping x→ x̃ defined above, its corresponding kernel function is:

K̃(xa,xb) = (x(1)
a )Tx

(1)
b +(x(1)

a )Tx(1)
a (x

(1)
b )Tx

(1)
b +(x(2)

a )Tx
(2)
b +(x(2)

a )Tx(2)
a (x

(2)
b )Tx

(2)
b ,

where x(1) = diag(1, 0) · x and x(2) = diag(0, 1) · x. By substituting the original
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kernel function K in Fig. 5.1 into the new kernel, it can be re-written as:

K̃(xa,xb) = K(diag(1, 0) · xa, diag(1, 0) · xb) +K(diag(0, 1) · xa, diag(0, 1) · xb),

where the first term and second term are original kernels with vectors scaled by

diag(1, 0) and diag(0, 1), respectively. In other words, each term eliminates one

feature with a zero factor and map x to a portion of the dimensions in x̃ which is

isolated from that feature.

More generally, we define a selecting diagonal matrix Si with:

Si = diag(si) (5.1)

where si(j) = 1 for j = i, and si(j) = 1, ∀j 6= i. For any existing kernel function

K(xa,xb), we define a new feature kernel function as:

Ki(xa,xb) = K(Si · xa,Si · xb). (5.2)

Such feature kernel only preserves the sensitivity to the i-th feature in both xa and

xb, with other features eliminated by the selecting diagonal matrix Si.

Assuming that kernel K maps samples from an f -dimensional input space to a

d-dimensional space, which may be vulnerable to irrelevant or nonlinearly relevant

features, we now atomize K into the sum of f weighted feature kernels by assigning

one for each feature:

K̃(xa,xb) =

f∑
i=1

viKi(xa,xb). (5.3)

It will result in a mapping from the f -dimensional input space to another higher but

up to (d · f)-dimensional space. In this higher dimensional space, we are expecting
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that the inner product of any pair of vectors can be expressed or approximated by a

linear combination of the feature kernels.

In addition, for the i-th feature kernel Ki, it only represents the information

provided by the i-th feature since the influence of other features in the correspond-

ing “axes” of the mapped space is completely dismissed. Therefore, we propose to

perform feature weighting via the weighting parameters vi as demonstrated in (5.3).

Larger |vi| means the i-th kernel is more important in the kernel model. For example,

in Fig. 5.2, the kernel function corresponding to the projection is K̃ = 0 ·K1 + K2

while in Fig. 5.3, it is K̃ = K1 + υ ·K2 where υ = 3/8. These two atomized kernel

functions clearly reflect the relevancy of the two features.

One of the advantages of this weighting scheme is that the weighting parameters

are much easier to manipulate compared to the schemes that directly apply weighting

parameters to the input vectors. Secondly, analogously to the original kernel method,

this weighting scheme actually avoids defining explicit feature weighting by instead

weighting the linear combination of the feature kernels, which can be considered as

an implicitly defined nonlinear weighting scheme.

For an existing kernel function K that satisfies Mercer’s condition [129], the newly

defined feature kernel Ki should also satisfy Mercer’s condition. As a result, for all

square integrable g(x) we have:

∫
χ×χ

K̃(xa,xb)g(xa)g(xb)dxadxb =

f∑
i=1

∫
χ×χ

viKi(xa,xb)g(xa)g(xb)dxadxb ≥ 0,

for all xa,xb ∈ χ as long as vi ≥ 0,∀i. Furthermore, assuming that all the features

are normalized into the same range like, for example, χ = [0, 1]f , and that the original

kernel function K is not dependent on the ordering of the features, meaning K is
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invariable when the feature ordering in x is changed, we have:

∫
χ×χ

Ki(xa,xb)g(xa)g(xb)dxadxb =

∫
χ×χ

Kj(xa,xb)g(xa)g(xb)dxadxb,

and consequently:

∫
χ×χ

K̃(xa,xb)g(xa)g(xb)dxadxb = (

f∑
i=1

vi)

∫
χ×χ

K1(xa,xb)g(xa)g(xb)dxadxb ≥ 0,

provided that
∑f

i=1 vi ≥ 0. Hence, the sum of the weighted feature kernels satisfies

Mercer’s condition if the weighting parameters vi are properly constrained.

5.2.3 Relevance Kernel Machine

In SVM, the training model is often solved in its dual form and, by leveraging

Karush–Kuhn–Tucker (KKT) conditions, the prediction model is based upon the

following decision function:

y(x;w) =
N∑
i=1

wiK(x,xi), (5.4)

where {xi}Ni=1 are the training examples and wi are actually the Lagrange multipli-

ers referred to as αi in the SVM. The training process of learning methods using

(5.4) as their decision function is to infer all the parameters wi in (5.4) given the

corresponding targets {ti}Ni=1 of the training examples {xi}Ni=1.

Taking the error ei between ti and y(xi;w) into consideration, the kernel based

machine can be written as:

t = Φw ·w + e, (5.5)

where Φw is an N×N matrix defined by Φw(i, j) = K(xi,xj), t is simply the target
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vector with t(i) = ti and e is the error vector for the N training samples. Learning

methods like SVM aim at minimizing e with fitting loss term and regularizing w

with smoothing regularization term simultaneously.

As previously mentioned, most popular kernel functions such as Gaussian kernel

(also known as radial basis function) and polynomial kernel are vulnerable to fea-

tures with complicate relevancy. For training data with F features, we define a new

relevance kernel machine by embedding the sum of weighted feature kernels as a new

kernel function into (5.5) to handle feature relevancy:

t = Φwv · (w ⊗ v) + e, (5.6)

where Φwv is an N×(NF ) matrix defined by Φwv(i, (j−1)F +k) = Kk(xi,xj) with

i, j ∈ [1, N ] and k ∈ [1, F ]. Besides, w⊗ v in (5.6) is the tensor product of vector w

and v which yields an (NF )×1 row vector with the definition (w⊗v)((j−1)F+k) =

wjvk where j ∈ [1, N ] and k ∈ [1, F ].

In this new kernel machine, the exploration of w is to figure out relevant samples,

which is a notion similar with the support vectors in SVM, while the exploration of

v is to weight relevant features by tuning the kernel mapping. Overall the whole

vector (w ⊗ v) weights the atomized feature kernels in the decision function and

hence we name the new kernel machine as relevance kernel machine (RKM). A

learning method that minimize e and regularize (w ⊗ v) simultaneously should be

able to achieve an accurate predictor with built-in feature weighting.

Another useful property of the RKM is that the roles of w and v in the model

(5.6) are relatively symmetric and transposable. Model (5.5) can be derived from

model (5.6) by moving v from the tensor product to the design matrix defined by

Φw(i, j) =
∑F

k=1 vkKk(xi,xj) with i, j ∈ [1, N ]. Similarly, the following model can
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be derived from (5.6) by instead moving w to the design matrix:

t = Φv · v + e, (5.7)

where Φv is an N×F matrix defined by Φv(i, k) =
∑N

j=1wjKk(xi,xj) with i ∈ [1, N ]

and k ∈ [1, F ]. This property indicates that the exploration process of w and v may

be unified, which will be discussed in details in the next section.

5.3 Sparse Relevance Kernel Machine for AMS Characterization

Assuming that there are F circuit parameters of interest with which the circuit

is described by a parameter (feature) vector x. A sample of the circuit is defined

by a pair {xi, ti} where ti is the circuit performance under the configuration xi.

By collecting a number of N samples, the objective of regression is to capture the

mapping Ψ : x → t with a function y(x) whose output can be used as a prediction

of the performance t. The set {xi}Ni=1 along with its corresponding {ti}Ni=1 is usually

referred to as the training data set.

For analog/mixed-signal circuits, the objective of the proposed method is to cap-

ture the mapping Ψ from the parameters to the performance and to perform paramet-

ric analysis evaluating the relevancy of circuit parameters simultaneously. For this,

the RKM proposed in the preceding section is a good fit, with both vector weights

w and feature weights v contributing to the accuracy of the regression model, and

feature weights v reflecting parameter relevancy additionally.

Despite the exceptional functionality provided by the RKM, for complex AMS

circuits, there may be a large number of circuit parameters which may severely in-

flate the searching space of the solution. A sparse treatment of the RKM is highly

appealing since the sparsity may help to reduce the complexity. And in the sce-

nario of parametric analysis, it may help to filter out irrelevant or redundant circuit
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parameters as much as possible if v tends to be sparse. Since Bayesian learning

frameworks with sparse prior [136, 124, 137] is capable of producing highly sparse

models, we develop a sparse relevance kernel machine under the Bayesian learning

framework in this section.

5.3.1 Relevance Vector Machine

The relevance vector machines (RVM) [124] is a sparse Bayesian model providing

a viable probabilistic framework for regression. The Bayesian network model of the

RVM is shown in Fig. 5.4.
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Figure 5.4: The network model of the RVM where Kij = K(xi, xj). Circles denote
random variables and squares denote deterministic model parameters.

Given the input vectors {xn}Nn=1 and their corresponding targets {tn}Nn=1, the

RVM is used to probabilistically determine the model (5.5). The given target values

are modeled as random variables by assuming every entry of the additive noise e

is a zero-mean Gaussian random variable with variance σ2. Further assuming the

independence of tn gives the following probability distribution

p(t|w, σ2) =
N∏
n=1

N (y(xn;w), σ2). (5.8)
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Different from deterministic learning models (e.g. the SVM) that compute w

directly, the RVM defines the prior distribution of w as independent zero-mean

Gaussian random variables with variance α, and compute α instead of w in the

training process:

p(w|α) =
N∏
n=1

N (0, α−1
n ). (5.9)

If αi < ∞, wi is called a relevance vector since it has a variance greater than zero,

allowing xi making contributions to the decision function. Note that the RVM per-

forms prediction with the posterior probability of the internal variables (i.e. the

weights). Via convolution of Gaussian distributions, the covariance and mean of the

posterior p(w|t,α, σ2) can be shown to be respectively:

Σ = (σ−2ΦTΦ +A)−1, (5.10)

µ = σ−2ΣΦT t, (5.11)

where A = diag(α).

The objective of the Bayesian network is to find the most probable model param-

eters with the given training samples, i.e., to maximize the posterior p(w,α, σ2|t).

The objective can be decomposed as:

p(w,α, σ2|t) = p(w|α, σ2, t) · p(α, σ2|t).

Based on the assumption provided in [124] that the most probable values of the pa-

rameters α and σ2 from p(w,α, σ2|t) are identical to those sampled from p(α, σ2|t),

since p(w|α, σ2, t) is Gaussian, the optimal w that maximizes p(w,α, σ2|t) can be

determined once the optimalα and σ2 are obtained, and thus maximizing p(w,α, σ2|t)
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with respect to w, α and σ2 is actually maximizing p(α, σ2|t) with respect to only

α and σ2. Furthermore, based on the Bayes’ rule, such objective is equivalent to:

arg max
α,σ2

p(t|α, σ). (5.12)

Once the optimal α and σ2 are computed by the training process, for any unknown

feature vector x̂, the expectation of its predicted target is:

ŷ = µTφ(x̂),

and the variance is:

σ̂ = σ2 + φ(x̂)TΣφ(x̂),

where φ(x̂) is a vector of size N whose i-th entry is defined by φ(x̂)(i) = K(x̂,xi).

The predicted variance consists of the noise estimation σ2 on the training data and

the uncertainty from the weights.

Compared to SVM, the training cost of RVM models is much higher, for which

a fast iterative training algorithm is proposed by [125]. The learning process is

formulated as the maximization of the marginal likelihood, or its logarithm L(α),

with respect to α:

L(α) = log p(t|α, σ2)

= −N log 2π + log |C|+ tTC−1t

2
,

(5.13)

where C = σ2I + ΦA−1ΦT . Based on the analysis of [44], in each iteration of the

updating flow, the objective function (5.13) has a unique maximum with respect to

α, which leads to the efficient algorithm by [125] that quickly approximates α and
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reduces the sizes of the the related matrices (for example Φ and Σ) and vectors (for

instance µ and α) by discarding entries of non-relevance vectors in each iteration.

5.3.2 Sparse Relevance Kernel Machine

The RVM is a learning model based on the decision function (5.4) focusing on

producing a sparse w. Under the same framework, a feature selection technique

called relevance feature vector machine(RFVM) [26] is proposed to exchange the roles

of samples and features by defining the “feature vector” fi = (x1(i),x2(i), ...,xF (i))T

and a new feature kernel K ′ to solve the following feature weighting model:

t′ = Φ′ · v + e (5.14)

where t′(i) = K ′(t,fi) and v is the weights of all features. This is a regularization

based feature selection method, which focuses on building a filter method [24] by

ranking the features.

To achieve high model accuracy and high quality feature weighting with the RKM,

we propose a sparse relevance kernel machine (SRKM) whose conceptual structure

is shown in Fig. 5.5.

Without using the RKM model, learning method with embedded feature weight-

ing is often realized by directly assigning weights v to the parameters. However,

as we discussed previously, since most kernel functions are nonlinear, it is extremely

difficult to develop the models in the Bayesian learning contexts. For example, by as-

signing Gaussian prior to v in a similar way p(v|β) =
∏F

n=1N (0, β−1
n ), the Bayesian

network described in Fig. 5.4 is extended to derive the new model in the upper left

corner of Fig. 5.6. Assuming Gaussian kernel with linear direct feature weighting

K(xi,xj) = e−γ‖diag(v)·(xi−xj)‖2 ,

122







u w v 

RFVM

w

Feature

Vector

v

SRKM





RVM

Figure 5.5: The conceptual SRKM model. Small black dots denote training data,
with each row representing a vector and each column representing a feature. Circles
denote random variables and squares denote deterministic model parameters.
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is employed, the deterministic relationship from w and v to t is highly nonlinear. As

a result, the following optimization objective of the Bayesian training process is not

analytically computable and hence hinders the optimization based training process:

p(t|α,β, σ2) =

∫∫
p(t|w,v, σ2) · p(w|α) · p(v|β)dwdv. (5.15)
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Figure 5.6: Development of SRKM Bayesian network where Kijk = Kk(xi,xj). Cir-
cles denote random variables and squares denote deterministic model parameters.

As the first step towards developing the SRKM, we embed the RKM into the

Bayesian learning framework to handle the feature weighting problem. Leveraging

the relevance kernel machine in the Bayesian network helps to simplify the highly
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nonlinear deterministic relationships into a bilinear form. As described in (5.6), t

can be expressed as linear combinations of a series of w(j)v(k) terms.

However, inference in Bayesian networks with nonlinear or even bilinear determin-

istic relationships requires great effort like piece-wise linearization [29] or dynamic

discretization [94] to deal with the nonliearity, which may greatly boost the com-

plexity of the learning model. To address this problem, instead of defining w and v

as separate Gaussian random variables, we replace the term w(j)v(k) with a single

random variable ujk for all j ∈ [1, N ] and k ∈ [1, F ], which results in linear deter-

ministic relationships from ujk to t. If we define a new vector u of size (N ·F ) whose

entry u((j − 1)N + k) = ujk = w(j) · v(j), the model becomes:

t = Φu · u+ e, (5.16)

where the design matrix Φu is identical to Φwv in (5.6).

In the RVM, the zero-mean Gaussian prior distribution of w tends to help the

model converge to a sparse w since the resulting marginal prior distribution over

w is the product of Student-t distributions. Similarly, to achieve sparsity in u, we

also define their prior distributions as independent zero-mean Gaussian distributions.

Considering the nature of u, if uj,k is irrelevant, meaning the distribution of uj,k is

infinitely peaked at zero, either the i-th sample ({uj,k}Fk=1) or the j-th parameter

({uj,k}Nj=1) should be irrelevant as well. To reflect this, we define a proper prior for

u as:

p(u|α,β) =
N∏
j=1

F∏
k=1

N (0, α−1
j β−1

k ), (5.17)

which leads to our proposed computable linear Bayesian network shown in the bottom

left corner of Fig. 5.6 and our conceptual model described in Fig. 5.5. An infinite
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αjβk = ∞ means ujk = 0 and the corresponding feature kernel is irrelevant to the

final decision function. In addition, if αj → ∞, all the {uj,k}Fk=1 are zero, meaning

the j-th sample is discarded from the set of relevance vectors. Likewise, if βk < ∞,

the k-th parameter is relevant and there should be at least one non-zero ui,j for

i ∈ [1, N ].

Under the same Bayesian inference framework, the posterior covariance and mean

of p(u|t,α,β, σ2) in the proposed Bayesian network are found to be:

Σu = (σ−2(Φu)TΦu +Au)−1, (5.18)

µu = σ−2Σu(Φu)T t, (5.19)

where Au = diag(α ⊗ β) and Φu is the new design matrix defined in (5.16). The

formulas (5.18) and (5.19) are in the same form as the posterior covariance and mean

of w in the RVM, and consequently solvable with the existing RVM algorithms.

5.3.3 Efficient Training Algorithm

The marginal likelihood maximization [125] required in training the RVM model

is solved in an iterative process similar to the well-known expectation maximization

(EM) algorithm. Due to the required matrix operations, the worst case compu-

tational complexity in each iteration is O(N2F + N2M) [72] if there are M rele-

vance vectors in that iteration and F features in total. By performing one-time pre-

computation of the full N ×N design matrix Φ with the complexity of O(N2F ) and

pre-computing (ΦTΦ), the complexity of each iteration can be reduced to O(NM2)

by using O(N2) memory instead of O(NM).

For the SRKM, by solving (5.16) with this algorithm, since the size of the vector

u is (N ·F ), a large number of features F will blow up the worst case computational
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complexity for each iteration from O(NM2) to O(NFM2E2) if there are M relevance

vectors and E relevance features in that iteration.

To address this computational challenge, our proposed efficient algorithm lever-

ages the property that w and v are interchangeable in the bilinear Bayesian network

(5.6), and that either vector can be merged into the design matrix to reduce our

model to (5.5) or (5.7). As Fig. 5.7 shows, fixing α and moving the resulting poste-

rior expectation of w (denoted by w̄) into the design matrix (i.e. converting Φu in

(5.16) to Φv in (5.7)) will reduce every column in Fig. 5.7 to a single weight vj with

its prior βj. More specifically, the reduced model can be represented as:

t = Φv,w̄ · v + e, (5.20)

where Φv,w̄ is an N × F matrix defined by Φv,w̄(i, k) =
∑N

j=1 w̄(j)Kk(xi,xj) with

i ∈ [1, N ] and k ∈ [1, F ]. This model explores the optimal β with the given α and

w̄, and produces the posterior mean of v as:

v̄ = σ−2ΣvΦ
T
v,w̄t, (5.21)

where Σv = (σ−2ΦT
v,w̄Φv,w̄ + B)−1 and B = diag(β). The computation of the

posterior mean and variance is analogous to the computation provided in (5.10) and

(5.11).

Similarly, row-wise reduction by fixing β and moving the v̄ obtained from (5.21)

into the design matrix converts the proposed network to another RVM network with

w and α:

t = Φw,v̄ ·w + e, (5.22)

where Φw,v̄ is an N × N matrix defined by Φw,v̄(i, j) =
∑N

k=1 v̄(k)Kk(xi,xj) with
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Figure 5.7: Efficient SRKM model with network reduction. Circles denote random
variables and squares denote deterministic model parameters.
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i ∈ [1, N ] and j ∈ [1, N ]. Instead, this model searches the optimal α with the given

β and v̄, and produces the posterior mean of w as:

w̄ = σ−2ΣwΦT
w,v̄t, (5.23)

where Σw = (σ−2ΦT
w,v̄Φw,v̄ + A)−1 and A = diag(α). The computation is again

based on (5.10) and (5.11), and the computed w̄ can be used to construct the column-

wise reduced model (5.20) and compute the v̄ in (5.21).

The above discussion suggests an efficient two-level iterative training process. In

each iteration of the top level, we reduce the model either row-wise or column-wise,

and update α or β subsequently. In the second level, the original algorithm [125]

can be employed to solve either Model (5.22) or Model (5.20). The complexity in

each iteration is now reduced to either O(NM2) or O(FE2). Due to the nature of

this iterative algorithm, the convergence may be affected by the initialization of the

parameters. For simplicity, we start the iterative process from the row-wise reduced

model (5.22) to firstly update α and w with β(k) = 1 and v̄(k) = 1/F for all

k ∈ [1, F ].

The proposed algorithm is an EM-nested-EM-like process, which has an embed-

ded EM-like subroutine in each iteration of the original algorithm for the RVM.

Similar to the original EM-like algorithm for the RVM, the proposed algorithm may

not be able to finally reach to the exact global optimal solution. Furthermore, the

additionally nested EM-like subroutines may introduce larger errors into the itera-

tive solving process since more approximations have been involved in each iteration.

However, analogous to the classic EM algorithm or any EM-like algorithms, it is

guaranteed that the objective marginal likelihood will be improved after each itera-

tion.
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5.4 Experiments

To demonstrate the superiority of the proposed SRKM, we compare its capability

of relevant feature detection with other kernel machine based feature selection meth-

ods in the first experiment. In the second experiment, SRKM is applied to verify

a realistic low-dropout regulator (LDO) design regarding process variations, where

performance of the SRKM is compared with popular learning-based techniques in-

cluding the SVM [128] and the RVM [124]. We also compare the SRKM with the

RFVM [26] in terms of parameter (feature) ranking. Since the proposed SRKM is

a generic learning model, its potential applicability such as built-in self-test BIST

scheme optimization is demonstrated in the last experiment.

5.4.0.1 Relevant Feature Detection

Focusing on the feature selection functionality of the SRKM, we conduct the

experiment described by [26] to evaluate its performance regarding the detection rate

and false alarm rate. Here the training data is generated by the following synthetic

function:

y(x) =
20∑
i=0

fi(xi) +
100∑
i=21

0 · xi,

where the first 20 relevant features are randomly uniformly selected from [−0.5, 0.5]

and the remaining 80 irrelevant features are uniformly generated from [0, 20]. And
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the basis functions {fi}20
i=0 are randomly chosen from the following eight candidates:

fc1(x) = 40x,

fc2(x) = 20(1− x2),

fc3(x) = 23x3,

fc4(x) = 20sin(40x− 5),

fc5(x) = 20ex,

fc6(x) = −log2(|x|),

fc7(x) = 20
√

1− x,

fc8(x) = 20cos(20x− 7).

The synthetic function is firstly assembled from the weight candidate basis func-

tions. Then, the SRKM is trained based upon 1000 samples generated by the syn-

thetic function. Features are considered as selected if their corresponding feature

kernel weights are nonzero. There are 20 rounds of such process, with the minimum,

maximum and average of the detection rates (that is, the number of relevant features

selected out of the first 20 features) and the false alarm rates (that is, the number

of irrelevant features mis-selected out of the last 80 features) reported in Fig. 5.8.

Statistics for other methods including the FVM by [80], the P-SVM by [61] and the

RFVM by [26] are collected from the results reported by [26].

Although the SRKM has similar average false alarm rate compared to the other

three feature selection techniques, it succeeds in improving the detection rate by

capturing roughly 25% more of all the relevant features. Moreover, different from the

traditional feature selection methods which in fact performs 0-1 feature weighting, the

SRKM assigns more diverse weights to features and such mechanism is able to help

the model against misleading irrelevant features. For example, in this experiment,
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Figure 5.8: Performance comparison in feature selection: (a) detection rate; (b) false
alarm rate.

the average weights assigned to the first 20 features are approximately 2.7× larger

than the average ones assigned to the last 80 features. It strengthens the importance

of the real relevant features and weakens the misleading effects of the false detection.

5.4.1 Variability Analysis of an LDO

Building an accurate regression model for a given analog performance and per-

forming feature ranking among all sorts of process parameters are key to the under-

standing of the impacts of process variabilities and the verification of AMS systems.

Since simulations or measurements are usually expensive, it is of great significance

to build an accurate regression model and obtain reliable parameter weighting with

a moderate amount of samples, which turns out to be a task well handled by the

SRKM.

We investigate the process variations in a realistic low-dropout regulator (LDO)

design (Fig. 5.9) proposed in [77]. We build SRKMs to analyze the impact of process

variations on LDO specifications including its quiescent current, undershoot of the

output voltage Vout and load regulation. Channel length variations of all transistors in

the LDO are modeled at the SPICE level using a commercial 90nm CMOS technology
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Figure 5.9: Transistor level schematic of an LDO.

design kit. We define the 20 channel length variations as the training features and

train a regression model for each specification. We use various numbers of simulation

samples to build a regression model relating the model process parameters with each

targeted specification and test the accuracies of these models using a testing set of

1,000 simulation samples. The results are shown in Fig. 5.10.

In this experiment, normalized mean square error (NMSE) is used as the metric

to evaluate the performance of the predictors trained with different techniques. The

NMSE is defined as:

NMSE =
1

N

N∑
i=1

(yi − ti)2

ȳ · t̄

where N denotes the number of testing samples, yi and ti denote the prediction

and target of the i-th testing sample, and ȳ and t̄ denote the mean of all the N

predictions and targets respectively. As Fig. 5.10 shows, the SRKM out-performs

the popular SVM and RVM in all cases by achieving one-order of magnitude lower

NMSEs. In addition, the trends illustrated in Fig. 5.10 imply that the SRKM can

even achieve higher accuracy with fewer samples. For example, in all three cases, the
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Figure 5.10: Regression performance comparison.

SRKM trained with 200 samples outperforms the SVM and the RVM trained with

800 samples.

With the embedded feature weighing mechanism, the SRKM is able to produce

probabilistic circuit parameter weighting during the training process. The weights

are represented by normal distributions and the obtained mean and variance of each

weights can be used to calculate the confidence interval of each parameter weight

shown in Fig. 5.11. The average training time to collect such results is 2.78 seconds.

We use design knowledge to provide insights and validation for the parameter

weighting of the 20 channel length variations computed by the SRKM. For example,

based on the analysis in [76], the multi-loop flipped voltage follower (FVF) based

LDO is designed as such that a majority portion of its quiescent current is consumed

by the fastest two loops in the output stage and hence the variation on M2 has direct

impact on the majority portion of the quiescent current. Due to the high gain of
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Figure 5.11: Weights of transistor’s channel length variation in the model of: (a)
quiescent current; (b) undershoot; (c) load regulation. Red lines represent the means
of the probabilistic weights while the higher and lower bounds represent the 95%
confidence bound estimated by SRKM.
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the error amplifier, variations on transistors like M3, M7, M8 and M9 may lead

to mismatches and considerable changes at the two output nodes of the amplifier,

one of which is Vg of M2. For the quiescent current of the error amplifier, it is also

partially defined by the tail current sources (M16 and M18). This complies with the

ranking illustrated in Fig. 5.11a.

Moreover, according to [76], the undershoot of the LDO is mainly determined by

the load capacitor and the loop bandwidth, which is further determined by the error

amplifier (involving M3 ∼ M10), the fast loop in the output stage (M12), and the

in-band zeros locations defined as:

ωLCZ ≈
√

gm1gm11ga
gm2CC2(CC1 + CC3)

, (5.24)

where gmi is the transconductance of the i − th transistor and ga is the output

admittance of the error amplifier defined by the gm of M7 ∼ M10. The ranking of

the SRKM in Fig. 5.11b is reliable since it captures all these relevant variations.

Load regulation of the LDO is mainly determined by the DC loop gain, which is

given in [76] as the product of the gains of all stages in the loop. The gain of the

EA stage is inversely proportional to the gm of M7 ∼ M10 and the second stage is

comprised of M17 and M11. Again, the ranking of the SRKM as shown in Fig. 5.11c

successfully identifies all these important variations.

To illustrate the capability of handling high dimensional applications, we addi-

tionally assign random variations in the range of ±3σ on the oxide thickness and

threshold voltage to each transistor, making a total of 60 features in the regression

model. We use 200 SPICE simulations to train the SRKMs for the three specifica-

tions. Fig. 5.12 illustrates the average of the normalized weights for various process

variations in 20 repetitions of the SRKM training, with an average training time of
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Figure 5.12: Weights for process variations.

4.36 seconds for each repetition. Since transistors M3 ∼ M6 act as an error ampli-

fier in Fig. 5.9, the results clearly show that the specifications of the LDO are more

sensitive or vulnerable to process variations in the error amplifier.

Note that the parametric relevancy and redundancy revealed by the feature

weighting of the SRKM is purely inferred from the given training data. In the

experiments whose results are reported in Fig. 5.11 and Fig. 5.12, it is assumed that

all process variations are independent, thus they are sampled uniformly and indepen-

dently. As a result, the SRKM only captures the relevancy between the parameters

and the target performance based on the evenly collected training data.

Such relevancy or redundancy can be considered as purely circuit performance

model oriented parametric analysis without considering any correlations among the
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parameters. However, in reality, the observed process variations usually shows a va-

riety of correlations. For example, parameters may be more or less correlated based

on their relative spatial locations. Such correlations are referred to as spatial correla-

tions [89] and sometimes are leveraged in layout techniques to minimize mismatches.

Taking matching properties [100]into consideration, in the experiment that only in-

volves 20 channel length variations, strong correlation of the variations in each of the

four transistor pairs (M3 ∼ M10) of the error amplifier is assumed. To reflect this,

the difference between the two variations in each pair is restricted by an interval of

[−5%,+5%] in a new uniform sampling process.

Quiescent 
current

Undershoot

Load 
regulation

Transistor pairs

Figure 5.13: Weights for transistors’ channel length variations with strong correla-
tions and uniform sampling.

The SRKM trained with the newly sampled training data is shown in Fig. 5.13.
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The parameter weighting is quite different compared to the results in Fig. 5.11 since

there is one parameter significantly outweights the other in each transistor pair (de-

noted by red bars in Fig. 5.13). This complies with the strong correlations utilized

in the sampling process, indicating that the SRKM can also capture relevancy and

redundancy due to correlations reflected among parameters in the training data.

In reality, however, process data reveals more complex correlations than the

strong spatial correlation utilized in Fig. 5.13. For example, histograms of pro-

cess variations reported in [17, 2, 31] suggest that characterizing process variations

as Gaussian distributions is more realistic compared to uniform distributions. And

for the spatial correlation between any two process variations l1 and l2, it is defined

in [140] as:

ρv =
cov(l1, l2)

σl1 · σl2

where cov(l1, l2) denotes the covariance between l1 and l2 and σl1 · σl2 denotes the

product of the standard deviations of l1 and l2. Based on [140], ρv is 0.8 for minimal

spatial distance between l1 and l2.

To reflect more realistic matching effects, we utilize the corresponding covariance

of ρv = 0.8 instead of the aforementioned strong correlations and collect new samples

with Latin hypercube sampling (LHS) from Gaussian distributions [117]. The new

parameter weighting produced by the SRKM is shown in Fig. 5.14. The parameter

weighting for the quiescent current and the load regulation is more sparse, figuring

out only one significant parameter for each case. Since the training data sampled

from Gaussian distributions tends to accumulate around mean values rather than

uniformly spreading out, it places various implicit emphasis across the sample space

and produces results reflecting such emphasis. Therefore, the results indicate that

the quiescent current and the load regulation are actually significantly relevant to
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only one parameter if the distribution of the process data is taken into consideration.
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Figure 5.14: Weights for transistors’ channel length variations with more realistic
spatial correlations.

An interesting observation is that the two parameters in each transistor pairs

are assigned notable and similar weights in the undershoot model. Compared to the

results in Fig. 5.13 with strong correlations, this indicates that undershoot is actually

more sensitive to the mismatch (determined by uncorrelated randomness of the two

parameters) rather than the common sizing variation (the correlated portion) in each

transistor pair in the error amplifier. Therefore, the weighting results produced by

the SRKM of the correlated parameters may reveal the actual relevant portions in

those parameters.

Moreover, correlations across various types of process variations also exist. In the

experiment that involves 60 process variations, the channel length variation and the

140



gate oxide thickness variation of each transistor can be considered as independent

parameters since they are two fundamental physical parameters. Consequently, only

spatial correlation is utilized for these two types of parameters. For the threshold

voltage variation, it is an electrical parameter that correlate with the other two

parameters [74, 138]. In addition, it may correlate with other variations such as

line-edge-roughness (LER) [102, 143] and random dopant fluctuation [143, 138].

Figure 5.15: Weights for all the variations with correlations across different types of
variations.

To reflect the more complex but more realistic correlations, for each type of

parameters, we define the correlation ρv = 0.8 for each pair of transistors and the

inter-chip global variation correlation ρv = 0.2 [140] for other transistors. And for
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each transistor, its threshold voltage variation is correlated with both its gate oxide

thickness and its channel length variation with ρv = 0.1. New samples are collected

by LHS from Gaussian distributions again and the SRKM trained with the new

samples produces feature weighting results shown in Fig. 5.15. The weighting results

are more sparse compared to those reported in Fig. 5.12, which makes sensitive

parameters more definite under the context of the pre-defined process data.

5.4.2 PLL BIST Scheme Optimization

Built-in-self-test (BIST) is very effective in detecting operational failures of de-

ployed analog/mixed-signal circuits. Base on the concept of alternative test, efficient

BIST solutions can be formed by collecting low-cost test signatures and relating the

signatures to targeted performance specifications using statistical prediction models.

The effectiveness of BIST heavily depends on the quality of the selected signatures

and the tradeoffs between accuracy, overhead, and test time. We apply the SRKM

to the BIST of a charge-pump PLL targeting three key specifications: lock-time(LT),

frequency overshoot(OVS), and jitter(JT).

Fig. 5.16 shows the PLL along with three BIST schemes using various test sig-

natures. Jitter, frequency overshoot and lock-time are important specifications but

cannot be easily measured directly on the chip. To capture failures in those specifi-

cations, the first candidate BIST scheme [148] collects the readouts of the counter in

the divider as its test signature, while the second scheme [62] collects the accumu-

lated up and dn phase detector outputs via integrators and time-to-digital converters

(TDCs). The third scheme is an example of IDDQ testing, measuring the quiescent

currents of the charge pump (CP) and the voltage control oscillator (VCO) as test

signatures similar to the approach of [90].

The first two schemes operate in a special test mode which instead of feeding
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Figure 5.16: A PLL and three BIST schemes.

back the divider output, it first feeds the one-buffer delayed reference clock to the

phase detector for 8 reference cycles with a cycle time of 0.1 us. Then, the reference

clock input is replaced by the double delayed reference clock for another 8 cycles.

Each cycle generates one signature for Scheme 1 and two for Scheme 2, making a

total of 16 and 32 signatures for Scheme 1 and 2, respectively. Scheme 3 reads out

two signatures, i.e. the CP and VCO quiescent currents, in the quiescent mode.

Recently, learning-based classifiers like the SVM have been trained to perform

the failure detection in BIST [148, 22]. To make better usage of the collected test

signatures, we apply the proposed SRKM in each scheme. We fit the target specifi-

cation into a sigmoid function before we employ the SRKM as a classier for failure

detection. Three classification techniques, the SVM, RVM, and SRKM, are trained

with 200 simulation samples and tested with 4,000 samples. The classifying errors
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LT

OVS

JT

Figure 5.17: Classifier performance comparison.

are compared in Fig. 5.17 which shows the superior BIST classifier accuracy of the

proposed SRKM.

In addition, the SRKM also produces reliable ranking among test signatures,

which can be further leveraged to improve the efficiency of BIST schemes. For

example, the SRKM ranks the 16 test signatures in Scheme 1 as shown in Fig. 5.18

when building the classifier for jitter failure detection. The tenth signature is the

last one with a significant weight. After that, the remaining 6 signatures are of

little importance and can be considered as redundant. Using the same procedure,

we reduce the test time for each of the three specifications for Scheme 1 as reported

in Table 5.1.

Assuming that realizing all three schemes on-chip does not lead to significant

overhead, we seek to improve BIST accuracy by leveraging the signatures of all the
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Shorter test time

Pruned

Figure 5.18: Signature ranking for jitter prediction with Scheme 1.

Table 5.1: Test time optimization of Scheme 1

Spec.
Original
Accuracy

Selected
Readouts

Resulting
Accuracy

Test Time
Reduction

JT 97.22% 1 - 10 96.20% 37.5%
OVS 95.78% 1 - 12 94.89% 25.0%
LT 96.20% 1 - 6 97.00% 62.5%
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schemes. While combing all the signatures can offer the best accuracy, it may not be

completely efficient due to the existence of redundant signatures. For this, we train

an SRKM on all the signatures across the three schemes to predict the jitter. The

average training time to produce signature ranking is 5.18 seconds. Based on the

signature ranking shown in Fig. 5.19, we collect the first three signatures in Scheme

1 and the first signature in Scheme 2. Although the third last signature in Scheme

2 also possesses a notable weight, collecting such signature is not cost-effective in

terms of test time, and thus it is discarded. For Scheme 3, only the quiescent current

of VCO is selected, which can be measured in 0.6us according to [90].

Selected

Pruned

Scheme 1 Scheme 2 3

Pruned

Selected

IDDQ of VCO

Figure 5.19: Signature ranking for jitter prediction with all three schemes.

Based on these five selected signatures, we synthesize an optimized combined
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BIST scheme for each specification and show the results in Table 5.2. As can be

been, by using the proposed SRKM, the BIST accuracy can be boosted to over

99.88% with a test time reduction of about 40%.

5.5 Summary

This paper proposes a novel sparse Bayesian learning framework named sparse

relevance kernel machine to capture circuit characteristics and analyze circuit perfor-

mance dependencies on assorted parameters or signatures via a statistical regression

model. The advantages of the proposed framework are demonstrated by variability

analysis of an LDO and BIST optimization for a charge-pump PLL.
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6. CONCLUSION AND FUTURE WORK

This section concludes with a review of the algorithms for AMS verification pro-

posed in this dissertation, and discusses potential revenues towards the complete

road map of the hierarchical and hybrid AMS verification framework utilizing as-

sorted verification algorithms.

6.1 Conclusion

The tremendous and perpetual growth in both importance and complexity of the

AMS systems poses great challenges to AMS verification. Existing formal methods

suffer from their limitation in efficiency and scalability while traditional simulation

based methods rarely provide acceptable completeness or coverage. Moreover, the

escalating need of shorter time to market for AMS chips requires close collaboration

among design, verification and test, resulting in emerging challenges for design and

test analysis in the verification phase.

To enhance the efficiency and scalability of SMT based reachability analysis,

the dissertation proposes in Section 3 a new paradigm for AMS system abstraction,

which is especially effective for DIA systems, to unify AMS content into a pure analog

representation. Based on the paradigm, a system decomposition with fine granularity

is adopted to divide the SMT problem into subproblems with lower complexity and

fewer constraints to be solved in parallel. Larger AMS circuits can be formally verified

more efficiently due to the lower complexity resulted by system decomposition and

the parallelization.

For complex AMS systems beyond the capability of formal methods, the dis-

sertation proposes two simulation based methods with different emphasis. The one

described in Section 4 converts verification problems to binary classifications and
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uses SVMs as the classifiers. Active learning strategy based on probabilistic version

space reduction is employed under this context to reduce the required samples. An

asymmetric expansion of the active learning strategy is built to conform the conser-

vative nature of verification. The algorithm is efficient and reusable classifiers can

be produced for quick validation of re-designs or test plans.

Another simulation-based method proposed in Section 5 builds accurate char-

acterization models for AMS systems with statistical regression techniques and im-

plants a feature weighting mechanism for concurrent parametric analysis. Developed

in the Bayesian learning framework, the algorithm is able to achieve sparsity in the

sample weighting and the feature weighting and produce probabilistic predictions

enabling statistical circuit analysis including verification with confidence level. Be-

sides, the provided probabilistic feature weighting implicitly quantifies the influence

of circuit parameters on a certain specification, offering favorable assistance to design

analysis and test optimization.

Design Verification Test

Alg.1

Alg.2

Alg.3

Test plan 
validation

Redesign 
evaluation

Dependencies 
analysis

Test signature 
optimization

Figure 6.1: Roles of the proposed algorithms in the design flow.
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Each of the three algorithms can be invoked in the design flow as an AMS ver-

ification solution independently, but plays a distinctive role as shown in Fig. 6.1.

The first algorithm is a formal method. If the design passes the process of formal

verification, since it is rigorously proven to meet the given specifications, there is

no need for re-designing and sometimes even for testing [68] either. However, if the

design fails the formal verification, it is difficult to gather useful information from the

verification process to aid design debugging or testing. Similar with legacy simula-

tion based methods, the second algorithm lacks coverage or completeness assurance

as a verification solution. Nevertheless, it’s the most efficient method among the

three algorithms and its produced model is highly reusable, enabling instantaneous

evaluation of re-designs and validation of test plans. The third algorithm developed

under the statistical framework possesses the auspicious efficiency and scalability as

a data-driven method and approaches the completeness and coverage problem in a

probabilistic sense. Its ability of simultaneous parametric analysis during the train-

ing process also provides analysis of performance dependencies to aid design analysis

and test signature relevancy to aid test scheme optimization.

6.2 Future Work

There are multiple potential directions that lead to further exploration and ex-

pansion of the functionality and efficiency of the proposed algorithms. For example,

the proposed system decomposition method for reachability analysis can be migrated

to other SMT-based applications like model checking or fault detection for higher

efficiency. The active learning strategy can be applied to capture test signatures

near the separating hyperplane defined by the given performance threshold, which

may lead to more efficient design for test. Moreover, the statistical Bayesian learning

method with concurrent parameter weighting can be treated as a general purpose
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learning model, which is favorable to any applications with noisy data or redundant

parameters. Nonetheless, this section focus on the potential development of AMS

verification framework by consolidating the proposed algorithms.

6.2.1 Semi-Formal Verification with Statistical Models

The simulation-based statistical method proposed in Section 5 focuses on build-

ing accurate characterization models shown in Fig. 6.2 rather than describing the

whole verification flow. Typically, a regression model will be trained to estimate

the mean and variance of each performance or specification of the AMS system.

Leveraging the fact that performing prediction is computationally efficient, once the

models are trained, the verification can be addressed in a straightforward manner by

oversampling x from the parameter space Φ and computing the performances.

2,N Nf 

2

1 1 1
ˆ ( ) ~ ( ( ), ( ))p x f x x

2

2 2 2
ˆ ( ) ~ ( ( ), ( ))p x f x x

2ˆ ( ) ~ ( ( ), ( ))N N Np x f x x

2

1 1( ), ( )f x x

2

2 2,f 
x

Parameter 
space

Train

Predict Performances 
estimations

Figure 6.2: Characterization model built by the statistical algorithm.

Considering the completeness and reliability offered by rigorous formal methods,

it is hypothesized that implanting the statistical model into a formal framework

should produce a very promising semi-formal verification framework. For example,

assuming each performance or specification pi are required to fall into an interval Ii,

the statistical model based verification problem can be formulated as the following
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satisfiability problem:

(x ∈ Φ) ∧ (
∧
i

[fi(x)± k · σi(x)] ∈ Ii) (6.1)

where k is a constant parameter that controls the confidence level of the predic-

tion and those [fi(x) ± k · σi(x)] ∈ Ii terms in (6.1) represent the performance or

specification checking of the worst cases.

Analogous to the solution of the satisfiability problems in Section 3, the problem

(6.1) can be solved by SMT techniques. Auspiciously, unlike the process in Section 3,

iterative SMT constructions and computations are unnecessary while solving the

problem (6.1) once should be sufficient to directly verify the system.

By embedding the statistical models into the SMT framework, it is envisaged that

this new method will achieve a certain level of formality with the SMT framework

while its informality will be well controlled by the confidence level of the statistical

models. For example, by using k = 3, the problem (6.1) actually checks whether the

worst cases of the statistical predictions with 99.7% confidence level meet the per-

formance requirements. This results in a semi-formal method with better efficiency

and scalability as well as reliability.

6.2.2 Road Map Towards Hierarchical and Hybrid AMS Verification

The roles of the three proposed algorithms have been illustrated in Fig. 6.1 and the

preceding section. Compared to improving each algorithm independently, the avenue

to assemble and consolidate all the algorithms into the hierarchical and hybrid AMS

verification framework discussed in Section 1.2 is of greater significance, since it

is a systematized and multi-level oriented blueprint approaching elimination of the

design and verification gap.

Considering a two-level hierarchy that involves a top level and a block level for
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AMS systems, as shown in Fig. 6.3, the three proposed algorithms can all be invoked

into the block level. Due to their diverse functionality, a hybrid flow is more fa-

vorable. For example, for complex blocks beyond the capability of formal methods,

the statistical method (Algorithm 3) can be utilized to perform verification with a

certain level of confidence. If the block passes the verification, Algorithm 3 provides

a statistical model to the verification at the top level. Otherwise, Algorithm 2 can be

applied before the procedure goes back to the design phase and the produced model

along with the parametric analysis from Algorithm 3 can help to fix the design and

perform quick preliminary evaluation of any design modifications. In addition, for

blocks with considerations of process variations, since process data is usually statis-

tical in nature, applying Algorithm 3 to those blocks and injecting process data into

the model can assist the variability and yield analysis.

Alg.1

Block-level design

Top Level 
Verification

Alg.2

Alg.3

Alg.3

Alg.2

Block Level 
Verification

Pass

Pass

Pass

Fail

Fail

Fail

Stat.
(95%)

Formal
(100%)

Stat.
(99%)

Alg.3

Critical
blocks

Complex
blocks blocks

Variable

data
Process

Yield 
analysis

Variability 
analysis

. . .

Figure 6.3: Road map towards hierarchical and hybrid AMS verification.
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On the other hand, for critical blocks with moderate complexity, Algorithm 1 can

be utilized for formal verification. An ideal case is that the block under verification

passes the formal verification, providing a formal model with 100% completeness to

the top level verification. However, if the block fails, it does not necessarily mean

that the design violates the given specifications since formal methods tend to follow

stringent criteria which may reject marginal designs that are actually acceptable.

Therefore, to complement the flow, if a block fails in Algorithm 1, Algorithm 3 can be

applied to the block for further investigation. If the block passes with an acceptable

confidence level, Algorithm 3 produces a statistical model with high confidence to

the top level. Otherwise the same flow for complex blocks can be repeated again by

employing Algorithm 2 and the generated parametric analysis by Algorithm 3 to aid

the revision of the design.

1(1)

1{ }N

i ip 
2(2)

1{ }N

i ip 

(n)

1{ } nN

i ip 

Block 1 Block 2 Block n

Beh. n. . .

. . .

. . .

Semi-formal verification based on Alg. 3

Full statistical top level verification

Beh. 1 Beh. 2

Top level 
behavioral model

Top level 
simulation

100%99% 95%
Confidence 

level

Block level 
verification

Figure 6.4: Envisioned top level full statistical verification developed from block level
models.
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The last piece of the road map shown in Fig. 6.3 is the construction of the top

level verification that involves a series of formal models and statistical models with

various confidence levels. In this light, statistical models can be further applied

to the top level to chain together all the block level models and perform top level

probabilistic verification. As illustrated in Fig. 6.4, after the specifications {pi}Ni=1

of each block is verified in the block level verification, based on the specifications,

behavioral models for all the blocks can be extracted with a certain confidence level

for the purpose of top level simulations. Then, the top level verification can resort

to the potential semi-formal verification framework based on Algorithm 3 described

in Section 6.2.1, leading to full statistical top level verification. This finalizes the

entire road map shown in Fig. 6.3 and embraces the functions and advantages of

assorted algorithms. Such framework is envisioned to be applicable to AMS systems

with high complexity in a viable and flexible way.
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