3,399 research outputs found

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

    Get PDF
    Nowadays, systems-on-chip are commonly equipped with reconfigurable hardware. The use of hybrid architectures based on a mixture of general purpose processors and reconfigurable components has gained importance across the scientific community allowing a significant improvement of computational performance. Along with the demand for performance, the great sensitivity of reconfigurable hardware devices to physical defects lead to the request of highly dependable and fault tolerant systems. This paper proposes an FPGA-based reconfigurable software architecture able to abstract the underlying hardware platform giving an homogeneous view of it. The abstraction mechanism is used to implement fault tolerance mechanisms with a minimum impact on the system performanc

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    SimpleSSD: Modeling Solid State Drives for Holistic System Simulation

    Full text link
    Existing solid state drive (SSD) simulators unfortunately lack hardware and/or software architecture models. Consequently, they are far from capturing the critical features of contemporary SSD devices. More importantly, while the performance of modern systems that adopt SSDs can vary based on their numerous internal design parameters and storage-level configurations, a full system simulation with traditional SSD models often requires unreasonably long runtimes and excessive computational resources. In this work, we propose SimpleSSD, a highfidelity simulator that models all detailed characteristics of hardware and software, while simplifying the nondescript features of storage internals. In contrast to existing SSD simulators, SimpleSSD can easily be integrated into publicly-available full system simulators. In addition, it can accommodate a complete storage stack and evaluate the performance of SSDs along with diverse memory technologies and microarchitectures. Thus, it facilitates simulations that explore the full design space at different levels of system abstraction.Comment: This paper has been accepted at IEEE Computer Architecture Letters (CAL

    Dynamic Virtual Page-based Flash Translation Layer with Novel Hot Data Identification and Adaptive Parallelism Management

    Get PDF
    Solid-state disks (SSDs) tend to replace traditional motor-driven hard disks in high-end storage devices in past few decades. However, various inherent features, such as out-of-place update [resorting to garbage collection (GC)] and limited endurance (resorting to wear leveling), need to be reduced to a large extent before that day comes. Both the GC and wear leveling fundamentally depend on hot data identification (HDI). In this paper, we propose a hot data-aware flash translation layer architecture based on a dynamic virtual page (DVPFTL) so as to improve the performance and lifetime of NAND flash devices. First, we develop a generalized dual layer HDI (DL-HDI) framework, which is composed of a cold data pre-classifier and a hot data post-identifier. Those can efficiently follow the frequency and recency of information access. Then, we design an adaptive parallelism manager (APM) to assign the clustered data chunks to distinct resident blocks in the SSD so as to prolong its endurance. Finally, the experimental results from our realized SSD prototype indicate that the DVPFTL scheme has reliably improved the parallelizability and endurance of NAND flash devices with improved GC-costs, compared with related works.Peer reviewe

    Fast self-reconfigurable embedded system on Spartan-3

    Get PDF
    Many image-processing algorithms require several stages to be processed that cannot be resolved by embedded microprocessors in a reasonable time, due to their high-computational cost. A set of dedicated coprocessors can accelerate the resolution of these algorithms, alt hough the main drawback is the area needed for their implementation. The main advantage of a reconfigurable system is that several coprocessors designed to perform different operations can be mapped on the same area in a time-multiplexed way. This work presents the architecture of an embedded system composed of a microprocessor and a run-time reconfigurable coprocessor, mapped on Spartan-3, the low-cost family of Xilinx FPGAs. Designing reconfigurable systems on Spartan-3 requires much design effort, since unlike higher cost families of Xilinx FPGAs, this device does not officially support partial reconfiguration. In order to overcome this drawback, the paper also describes the main steps used in the design flow to obtain a successful design. The main goal of the presented architecture is to reduce the coprocessor reconfiguration time, as well as accelerate image-processing algorithms. The experimental results demonstrate significant improvement in both objectives. The reconfiguration rate nearly achieves 320 Mb/s which is far superior to th e previous related works.Peer ReviewedPostprint (published version
    corecore