50 research outputs found

    Reconfiguration for Fault Tolerance and Performance Analysis

    Get PDF
    Architecture reconfiguration, the ability of a system to alter the active interconnection among modules, has a history of different purposes and strategies. Its purposes develop from the relatively simple desire to formalize procedures that all processes have in common to reconfiguration for the improvement of fault-tolerance, to reconfiguration for performance enhancement, either through the simple maximizing of system use or by sophisticated notions of wedding topology to the specific needs of a given process. Strategies range from straightforward redundancy by means of an identical backup system to intricate structures employing multistage interconnection networks. The present discussion surveys the more important contributions to developments in reconfigurable architecture. The strategy here is in a sense to approach the field from an historical perspective, with the goal of developing a more coherent theory of reconfiguration. First, the Turing and von Neumann machines are discussed from the perspective of system reconfiguration, and it is seen that this early important theoretical work contains little that anticipates reconfiguration. Then some early developments in reconfiguration are analyzed, including the work of Estrin and associates on the fixed plus variable restructurable computer system, the attempt to theorize about configurable computers by Miller and Cocke, and the work of Reddi and Feustel on their restructable computer system. The discussion then focuses on the most sustained systems for fault tolerance and performance enhancement that have been proposed. An attempt will be made to define fault tolerance and to investigate some of the strategies used to achieve it. By investigating four different systems, the Tandern computer, the C.vmp system, the Extra Stage Cube, and the Gamma network, the move from dynamic redundancy to reconfiguration is observed. Then reconfiguration for performance enhancement is discussed. A survey of some proposals is attempted, then the discussion focuses on the most sustained systems that have been proposed: PASM, the DC architecture, the Star local network, and the NYU Ultracomputer. The discussion is organized around a comparison of control, scheduling, communication, and network topology. Finally, comparisons are drawn between fault tolerance and performance enhancement, in order to clarify the notion of reconfiguration and to reveal the common ground of fault tolerance and performance enhancement as well as the areas in which they diverge. An attempt is made in the conclusion to derive from this survey and analysis some observations on the nature of reconfiguration, as well as some remarks on necessary further areas of research

    Aeronautical engineering: A continuing bibliography with indexes (supplement 212)

    Get PDF
    This bibliography lists 493 reports, articles and other documents introduced into the NASA scientific and technical information system in March, 1987

    A Reconfigurable Pattern Matching Hardware Implementation Using On-Chip Ram-Based FSM

    Get PDF
    The use of synthesizable reconfigurable IP cores has increasingly become a trend in System on Chip (SOC) designs. Such domain-special cores are being used for their flexibility and powerful functionality. The market introduction of multi-featured platform FPGAs equipped with on-chip memory and embedded processor blocks has further extended the possibility of utilizing dynamic reconfiguration to improve overall system adaptability to meet varying product requirements. A dynamically reconfigurable Finite State Machine (FSM) can be implemented using on-chip memory and an embedded processor. Since FSMs are the vital part of sequential hardware designs, the reconfiguration can be achieved in all designs containing FSMs. In this thesis, a FSM-based reconfigurable hardware implementation is presented. The embedded soft-core processor is used for orchestrating the run-time reconfiguration. The FSM is implemented using an on-chip memory. The hardware can be reconfigured on-the-fly by only altering the memory content. The use of a processor for reconfiguration enables SOC designers to utilize both software and hardware capability to achieve reconfiguration. This scheme of reconfigurable hardware implementation is independent of the placement and routing of the hardware on the FPGA. To demonstrate the feasibility of the proposed approach, the Knuth-Morris-Pratt (KMP) algorithm was implemented. A unique way of using memory-based FSM to reconfigure and speed up the KMP search algorithm has been introduced. With the proposed technique, the system can reconfigure itself based on a new incoming pattern and perform a pattern search on a given text without involving a host processor. Data extracted from test cases shows that the proposed approach made the maximum achievable frequency of the design independent of the pattern length. The number of clock cycles required to match the pattern in the worst case is equal to the pattern length plus the text length (O (m+n))

    Aeronautical engineering: A continuing bibliography with indexes (supplement 272)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore