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1. Introduction  

Aggressive time to market requirements are key drivers of electronic system design methods. 
The need of rapid prototyping platforms for electronic systems is present in both academia 
and industry. Accordingly, several platforms have been proposed such the Zebu XXL in 
(Zebu) and the NanoBoardTM in (ALT, 2009). While the verification platform Zebu XXL plays 
the role of a system emulator capable of testing Field Programmable Gate Arrays (FPGAs) or 
Application Specific Integrated Circuits (ASICs) the NanoBoard platform can be considered as 
one of the first rapid prototyping platforms of digital systems available in the market (Eve 
Corp, 2011). This chapter provides an overview of that rapid prototyping platform. The 
technology and the wafer scale device at its core are presented, describing its key components 
and techniques used to supply power to the wafer, as well as challenges regarding tools 
required to operate this prototyping platform. The novel rapid prototyping platform for 
electronic systems is developed as part of a large project involving more than 40 participants 
from several universities and organizations. The core concept was proposed by Norman 
(Norman, 2006). Further information on the project with related patents and papers are 
provided at www.DreamWafer.com (DreamWafer, 2011).  
Several technologies such as FPGAs and Field Programmable Interconnect Chips (FPICs) 
have been proposed (Mohsen, 1995) to support rapid prototyping of complex electronic 
systems and to reduce the time-to-market. With typical FPGA based rapid prototyping 
platforms, digital circuits to be prototyped are described using VHDL (VHSIC Hardware 
Description Language) or Verilog; a flow is then used to place, route and download the 
design into the FPGA (Ricci, 2002; Dollas, 1994). With FPICs, the area of a printed circuit 
board is shared between user components and the programmable interconnect chips 
(Mohsen, 1995). Space constraints impose stringent limits on the number of pins that may be 
dedicated to debugging electronic system prototypes. The novel rapid prototyping platform 
(Norman et al., 2008; Norman, 2006) presented in this chapter can significantly reduce the 
time-to-market by allowing hardware, from simple electronics to high-density electronics, 
micro-nano systems or system-on-chip application specific integrated circuits (ICs) to be 
prototyped in minutes instead of months.  
The novel prototyping platform is depicted in figure 1 (a). As illustrated in figure 1(b), user’s 
IC packages are placed on the wafer scale active surface of the WaferICTM and then the cover 
is closed. The package type and pins are detected, recognized and interconnected using a 
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configurable routing network embedded in the active wafer. The prototype is now ready to 
be brought up and run. This platform can considerably reduce the time to market when 
developing electronic micro-nano systems. Such systems may include ICs such as memories, 
field programmable gate arrays (FPGAs), sensors, and processors. The proposed platform 
can speed up the prototyping of a wide range of electronic systems, which may be the new 
technology under development or simply a support to that new technology providing 
power, ground and communications between components specified by a system developer 
and the external world. The main advantage of the proposed WaferIC is not to achieve 
greater computational power, as proposed in some previous work on Wafer Scale 
Integration (WSI) (Brewer, 1989; Jalowiecky, 1990; Minges, 1989). Indeed, the main goal of 
the WaferIC is to provide a smart active interconnect area that can be configured in a short 
period of time, and that is large enough to implement a densely interconnected system, 
possibly composed of multiple ICs having more than 2,000 pins each. 
 

 
                          (a)                                                                    (b) 

Fig. 1. WaferBoard™, a rapid prototyping platform for electronic systems.  

Wafer-scale integration feasibility has been demonstrated and several design rules that 
contribute to make it feasible have been defined as well (Landis, 1990; Boulori, 1991; 
Anderson, 1992; Koren, 1998; Sharifi, 2007). Moreover fault-tolerance and yield 
enhancement of WSI have been addressed in (Lea, 1988; Chen, 1994; Moore, 1985) as well as 
fundamental design methodologies for wafer scale integration in (Hedge, 1991). In addition 
to wafer scale integration of electronic circuits, this concept has been extended to MEMs WSI 
(Shimooka, 2008; Braun, 2010).   

2. A Wafer-scale reconfigurable platform 

This section briefly summarizes the so-called WaferBoard technology. It covers (1) the 
physical aspects of the WaferIC, (2) its core interconnection network, (3) the power 
distribution strategy, (4) the proposed development software workflow and (5) the 
fabrication of WaferBoard prototypes.  

2.1 Physical aspects of the WaferIC 
The electronic system prototyping platform depicted in figure 1 is composed of four main 
building-blocks (Fig. 2): (1) the WaferIC, (2) the top PCB providing external interfaces, 

Pouch filled 
with a thermal 

fluid 
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including those to a host computer, (3) the power supply, and (4) the bottom PCB to support 
power distribution.  
 

 
Fig. 2. WaferBoard basic building-blocks. 

This platform is made possible by leveraging a full 200 mm diameter wafer-scale integrated 
circuit. Its active surface is covered with a very dense array of very fine conductive pads 
called NanoPads (Fig. 3). As depicted in figure 1(b), the top surface of the active wafer is 
covered by an anisotropic conductive film (ACF). This anisotropic Z-axis film comprises as 
many as 80 million conductive fibers (BtechCorp, 2011, Diop, 2010). It establishes electrical 
contact between the NanoPads and the balls of ICs deposited on the surface by the user. The 
active surface of the wafer has 1,245,184 micro-sized NanoPads. Due to the high density of 
NanoPads, each user’s IC (uIC) solder ball will make electrical contact with several 
NanoPads. Each NanoPad embeds sensors that can detect electrical contact established 
between neighbor NanoPads through uIC balls. From these uIC contacts, a map is built and 
then the wafer’s internal digital network structure is dynamically configured to establish 
connection between uIC pins according to a user specified netlist.  
This platform requires innovative CAD tools. A machine learning algorithm analyzes 
detected uIC pins in order to recognize IC packages. The user specified netlist may be used 
for that task. A fast routing algorithm is used to configure on the fly the wafer-scale defect-
tolerant interconnect network (WaferNetTM). Connections are established as a function of 
user specified constraints. As a wafer scale device normally contains a number of defects 
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(one every 5 cm2 on average is assumed as a general design guideline), the router works 
around pre-diagnosed defects. Based on routing results, and considering the user specified 
netlist and constraints, the tools may propose a better IC placement. Another remarkable 
feature of this prototyping platform is the possibility, as part of the system debugging and 
validation process, to add control and observation test points at will. A workflow linking the 
envisioned tool set was proposed (Lepercq et al., 2009). 
 
 

 
Fig. 3. The cell-based architecture of the WaferIC. 

Supported uIC packages include BGA, QFP, and TSOP, to name a few. Each NanoPad can be 
configured as floating, digital input/output, controlled-voltage power supply or ground, 
according to the type of uIC pin in contact with it. An array of 4×4 NanoPads is grouped into a 
defect tolerant Unit-cell (Fig. 3), which can manage eventual detected and localized defects. 
A regular array of 32×32 Unit-Cells is assembled to obtain a part of the integrated structure. 
This 32×32 Unit-Cells array fits into a single reticle image. That chip-size part of the system is 
photo-repeated 76 times to completely cover a 20 cm wafer. Using a process step called inter-
reticle stitching, connections can be established between neighbor reticle images, as depicted in 
figure 3. Several metal layers can be stitched as needed. The system under development takes 
advantage of multiple metal layers in mature 0.18 µm CMOS technologies, combined with 
stitching, to fabricate a wafer-wide defect-tolerant interconnection network, capable of 
implementing a large number of interconnections between any NanoPad combination 
specified by the user's netlist. The implemented WaferIC has 1,477,120 millimeter-scale 
programmable interconnection segments, 1,710,848 sub-millimeter programmable 
interconnect segments, which are configured using 22,750,000 bits of static memory.  

2.2 Unit-cell architecture of the WaferIC 
The functional architecture of the Unit-Cell is depicted in figure 4. Each Unit-Cell has 
complex logic and analog circuits to ensure communication between the uICs and the 4×4 
array of NanoPads. From a network point of view, a Unit-Cell is an interconnection node 
which can route signals from any direction to any destination. Once the signal has reached 
the destination cell, its internal N×M crossbar can be configured in a mode that injects the 
signal into a NanoPad on the surface of the wafer. 
To ensure fast propagation of digital signals between uICs, an interconnect chain 
implemented as depicted in figure 5 is used. This interconnect chain starts from the 
input/output (IO) stage and continues through interconnect stages composed of active 
repeaters and crossbars. The crossbars can steer signals in any direction possible from one 
 

32×32 Unit-Cells 
WaferIC™ 

Reticule 
Image 

4×4 NanoPads  
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Fig. 4. Architecture of a Unit-Cell. 

 

 
Fig. 5. Overview of an interconnect chain embedded in the WaferIC. 
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NanoPad to another. Figure 5 presents an example of one possible route through the 
interconnect chain. The interconnect chain is made of three main elements. The first element 
is the input/output (IO). It is made of configurable IO buffers set up at each NanoPad, 
which allow the WaferIC to supply a variety of voltage levels in order to support different 
types of uICs. To maintain signal integrity, an interconnect chain is implemented with the 
second element, a set of repeaters inserted at regular interval. The third element is the 
crossbar, used to route the signal in different directions as needed in the WaferNet. More 
details about the crossbar architecture are given in section 2.3. 

2.3 WaferNet, a defect tolerant interconnection network  
The WaferNet was designed to support most standard uICs, including processors, FPGAs, 
and memories regardless of the packages’ pin-count and density. The large interconnect 
density offered by the multiple metal layers available in mature CMOS technologies enables 
the WaferNet to support point-to-point, point-to-multipoint and busses. The WaferNet is a 
scalable multi-dimensional mesh network, which can route a large number of connections 
without conflict as required by dense PCBs.  
 

 
Fig. 6. Example of interconnections with other cells for the Unit-Cell colored in black where 
L stands for the length of links measured as a distance in Unit-Cells. 

Contacts between adjacent interconnections can be achieved using a two dimensional 
neighbor-to-neighbor mesh, but this approach becomes inefficient in the case of distant 
interconnections. Thus, in WaferNet, each network node is linked to K others in each 
physical direction (N-S-E-W). Figure 6 shows the progressive increase in length of K links in 
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a given direction. Indeed, the length of links grows according to a geometric series. As 
depicted in figure 6, each node follows the same pattern of connection; when K=3, for 
example, the node depicted in black is connected to the 1st, 2nd and 4th neighboring nodes 
in each direction (N-S-E-W). The value of K is a key design parameter that influences 
complexity, interconnect density and defect tolerance. Indeed, increasing K contributes to 
improve defect tolerance as each crossbar supports more links than the minimum required. 
Moreover a dense NanoPad array in which each component ball intersects a plurality of 
NanoPads contributes to defect tolerance.  
The WaferNet has a regular architecture based on a Unit-Cell elementary tile in order to 
meet the wafer-scale integration constraints. The N×M crossbar that is part of each cell can 
route its 4×K (4 directions) inward signals to its 4×K outward signals. Each Unit-Cell is 
designed to handle up to B uIC balls. A regular uIC ball implies one or more crossbar input 
or output. By contrast, each bi-directional uIC ball consumes two crossbar outputs. One of 
them is used to control the signal direction. The size of the crossbar (NM) is therefore 
related to the number of uIC balls supported by a cell and its neighbor (as needed to 
support defect tolerance), where N  4×K+B and M  4×K+2B. In general, increasing M or N 
makes the network more robust to faults or defects.  

2.4 Crossbar implementations 
The crossbar required by the network architecture utilizes a large part of the Unit-Cell logic. 
To illustrate that complexity, the internal architecture of a crossbar for a given variable K, 
B=2 is shown in figure 7. Three approaches were considered for crossbar implementation: 
(1) crosspoint-based crossbar, (2) tri-state based crossbar, and (3) switch-based crossbar. All  
 

 
Fig. 7. Crossbar implementation using crosspoints. 
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three techniques were implemented at the circuit level and these implementations were 
compared in order to find the best solution for the WaferNet. 
The first solution implements crossbars with crosspoints. This crosspoint-based crossbar 
(Fig. 7) uses a single memory element per crosspoint that is responsible for propagating or 
not propagating some signals to any given column. In figure 7, several crosspoints are 
labeled as unnecessary from a functional standpoint. However, some implementations may 
keep these crosspoints for layout regularity. Another solution is to use pass-transistor 
switches. Such switches (see Fig. 8 (b)) are notably used to implement FPGA crosspoints.  
While pass transistor switches are bi-directional, their implementation requires special care 
due to the threshold voltage losses they induce. A solution to alleviate threshold voltage 
losses is to use transmission gate switches at the cost of more silicon area and parasitic 
capacitances. The advantage of using pass transistors or transmission gates to implement 
switch based-crosspoints may be offset by the relatively large resistivity that accumulates as 
a signal passes through several layers of switches. A common means to combat this effect is 
to regenerate the signals by inserting buffers at regular intervals. To avoid unintentional 
shorts on column lines, the crosspoints and their related configuration sequence must be 
carefully designed. Shorts could generate high peak currents that would stress the 
components. This could reduce significantly the reliability and product life of the 
WaferBoard, and increase its power consumption. 
 

 
 

Fig. 8. Examples of crossbar implementations (a) Tri-state based crosspoints, (b) switch-
based crosspoints. 
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Another approach for implementing crossbars is to use multiplexers. To implement a full 
N×M crossbar, M N-input multiplexers (one per column) are needed. A total of N log2M 
configuration memory elements are required while log2M memory elements are required for 
each column multiplexer. An advantage of using multiplexers to implement the crossbar is 
the manner in which short-circuits are prevented compared to crosspoint-based crossbars. 
Moreover, the number of memory elements, especially for large K, is considerably reduced 
with this approach.  
Several crossbars were designed according to these various styles for K=7, and the resulting 
implementations were compared. Table 1 summarizes the logic area extracted from RTL 
synthesis for four implementations. Some results are also reported for partial pruned 
crossbars (see figure 7). In figure 9 that shows internal details of a cell , the incoming links in 
the N-E-S-W physical directions are called CI0,[0..6], CI1,[0..6], CI2,[0..6], and CI3,[0..6] 
respectively.   
 

 
Fig. 9. Unit-Cell structure with its two internal scan chains : configuration scan ((h) and (b)), 
test and diagnosis scan ((f), (g) and (i)). (Basile-Bellavance, Blaquière & Savaria, 2009). 

Our results, reported in Table 1, demonstrate that the multiplexer based crossbar occupies 
less area than the tri-state based crossbar. This is due to the fact that the crossbar complexity 
grows as O(N log2M), where N is the number of inputs and M is the number of outputs. This 
is to be compared with a linear growth O(N×M) in total area with crosspoint–based 
crossbars.  
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Crossbar type Total area (µm2) Memory area (µm2) 
Memory proportion 

(%) 

Full Tri-state based 125400 54240 43.3 

Partial tri-state based 91521 41764 45.6 

Full mux based 45050 9040 20.2 

Partial mux based 43538 9040 20.8 

Table 1. Synthesis results of crossbar implementations for K=7. 

Based on these results, the first full wafer prototype that was produced use K=6 to fully take 
advantage of the interconnect density that multi-metal-layer lithography provides with the 
adopted standard 0.18 µm CMOS process (logic and interconnect complexities were too high 
to fit in the available area when K=7). Thus the implemented crossbar includes 6 incoming  
6 links and outgoing links in each direction (Fig. 9). The Unit-Cell includes also internal scan 
chains that are used to configure the crossbar and to get access to crossbar I/Os using a 
protocol similar to that found in the IEEE standard 1149.1 (referred as JTAG here) (Parker, 
1998). The Unit-Cell internal scan chains can be daisy chained and accessed through the 
standard four JTAG ports, one set per reticle image (TDI, TDO, TCK and TMS).  

2.5 WaferBoard power distribution 
The first implemented WaferIC has 4,864 regularly distributed Through Silicon Vias (TSVs). 
The TSV technology (Motoyoshi, 2009; Rimskog, 2008) is a mature technology that allows 
integration of 3D IC or 3D packaging (Papanikolaou, 2011; Lau, 2009; Mitsumasa, 2009). 
Power and ground must be distributed to uICs through these TSVs with embedded 
programmable regulators within the NanoPads to ensure proper power supply integrity. 
Effectively, decoupling capacitors cannot be placed on the top side of the WaferIC and 
integration of sufficient capacitance is impossible due to silicon area constraints imposed by 
the WaferIC. Consequently, the chosen architecture needs to rapidly deliver a regulated 
 

 
Fig. 10. TSV distribution over the reticle image. 
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voltage without the benefit of adding capacitors. The voltage regulator in each NanoPad is 
designed to provide a range of standard VDD levels such as 1.0, 1.5, 1.8, 2 and 2.5 V. Each 
reticle image has an array of 8×8 TSVs as depicted in Figure 10, which are used to supply 
ground (27 TSVs), and two levels of power 1.8 V and 3.3 V (16 TSVs each). A set of 5 TSVs is 
reserved for JTAG signals to configure the device. Each NanoPad can deliver up to 100 mA 
to a uIC ball load. The power delivered to the wafer through TSVs comes from an array of 
independent power sources that can supply 15 A each, and a total of 315 A to the WaferIC.  
The WaferIC is made of analog and digital parts. The analog part comprises I/O buffers, one 
per NanoPad, and distributed power regulators, responsible to supply power to uICs. The 
digital portion consists of the embedded programmable interconnect network and of the 
defect tolerant scan chains used for configuration purposes. 
Figure 11 presents the WaferIC power-supply tree structure with a single power-source at 
its root and a distributed set of regulators that constitute slave stage embedded in the 
NanoPads at its leaves. These regulators, very close to uIC pins, are designed to respond 
rapidly to uICs power demands. The WaferIC receives power through modules called 
PowerBlocks, each of which feeds several reticle images from the back side through TSVs. 
Discrete regulators providing ground, 1.8 V, and 3.3 V are embedded in each PowerBlock.  
 

 
Fig. 11. WaferIC power-supply tree structure. 

Each voltage reference circuit embedded in the NanoPads is structured as depicted in figure 12. 
These regulators could have a substantial quiescent current. In this case, the total quiescent 
current consumed by the large number of voltage references embedded in the WaferIC 
could significantly contribute to the power consumption of the wafer-scale circuit. The use 
of a master-slave architecture helps in reducing the power consumption by a factor of 16. 
For example, the WaferIC contains ~1.3 million NanoPads; if each of them consumed 100 
μA, this would result in a contribution to total current of 130 A, which is not acceptable. The 
proposed solution is to share low-power circuitries in the master stage in a Unit-Cell. This 
solution considerably reduces the power consumption of the whole wafer-scale system. 
The topology of the embedded regulators in the WaferIC is such that each Unit-Cell contains 
one master stage and 16 slave stages (Fig. 12). There is only one VSET reference voltage 
node for the 4×4 NanoPads within the same Unit-Cell. The main function of the master stage 
is to set a stable control signal VSET for all the slave stages. A programmable voltage 
reference is followed by an Operational Transconductance Amplifier (OTA) in its feedback 
loop, which controls the output of a buffer, followed by a fast load regulation module. The 
Slave stage is controlled by VSET and provides a stable output to drive the Nanopads. The  
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Fig. 12. Hierarchical topology of the embedded regulators in the WaferIC Unit-Cell 
[Laflamme-Mayer et al., 2010]. 

in-situ distributed part of the regulator has a low power quiescent mode necessary due to 
the fact that a full wafer device contains many copies of this circuit, most of which are 
normally unused.  

2.6 WaferConnect, a software tool for the WaferBoard 
The rapid prototyping platform is supported by a suite of software tools called 
WaferConnect. This toolbox supports a workflow defined as proposed by the Workflow 
Management Coalition (WfMC, 1999). This model has been extensively used for building 
general workflows (Geogakopoulos & Hornick, 1995) as well as computer-aided design 
tools (Huang & Liao, 2007; Trappey et al., 2007). The proposed workflow has a total of nine 
steps (see figure 13). In step 1, the user puts the required ICs on the active WaferIC surface.  
Step (2) is the boot-up and diagnosis process step. At this stage the wafer is automatically 
powered-up and the whole wafer is scanned to extract a defect map. That information is 
forwarded to other tools designed to ensure that the system will not make use of these 
defective resources. In step (3), a map of connected NanoPads (NanoPads that are in contact 
with a uIC package balls) is extracted. About one million contact sensors embedded into the 
WaferIC are used to extract the contact map based on shorts between adjacent NanoPads 
created by a uIC solder ball.  
This contact map is then used by the uIC package pin/netlist recognition process (4). The user 
provides a netlist and constraints in step (5). This netlist contains information that defines 
interconnections required between uICs deposited on the surface of the WaferIC. It can be 
manually defined or preferably read from a standard netlist file (e.g. EDIF, GRB, Protel). The 
netlist and its specified constraints are used in step (6) to compute feasible routes for each net. 
The constraints supported by the proposed system are somewhat similar to those supported 
by PCB routers. However, in our prototyping system, routes must be assigned to predefined 
wire segments of a defect-tolerant multi-dimensional mesh interconnection network described 
in (Lepercq, 2008). For instance, bus latency (timing constraints), skew, and bandwidth are 
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other routing constraints. In step 7 the network is configured using suitable drivers.  The user 
then debugs his systems as part of step (8) with the support of a set of debugging tools that 
will be defined as part of our future research. Finally, in step (9) of the workflow, reports are 
generated to confirm compliance with the specification. 
 

 
Fig. 13. The WaferBoard workflow: from WaferIC characterization up to a working 
electronic system prototype. 

Only two critical tools of the work flow are described here. The first is the package 
recognition tool and the second is the routing tool for one type of constraints. Prior to 
package recognition of the user's IC deposited on the WaferIC surface, all ball positions of 
the user’s IC are estimated. The scale-space theory (Babaud, 1986) is used in the package 
recognition algorithm. The position and size of each ball are estimated from the set of 
NanoPads that are in contact with that ball. This problem is similar to the geometric 
problem of finding the smallest bounding circle for n points in a two dimensional space 
(Arvo, 1991). The package recognition is possible whenever all balls are connected to at least 
two NanoPads. After estimating the balls position, a package orientation is extracted based 
on two IC characteristics. Finally, the package recognition is completed by searching in a 
library of known IC packages. The implemented algorithm is based on (Tuytelaars & 
Mikolajezyk, 2008). 
The second critical tool is the routing algorithm. In order to find the shortest path between 
connected NanoPads, the interconnection network is modeled as a dense graph G(V, E) with 
#E >> #V, where E is the set of WaferNet segments, V its set of cells and #S is the cardinality 
of respective set S. Moreover two heuristic approaches are proposed to manage conflicts. 
The first heuristic approach is called In-Order, which routes each net of the user netlist 
incrementally, while the second heuristic approach computes a route independently for 
each net, with the assumption of an ideal and fully functional WaferNet. A defective 
interconnect resource  is treated as a resource that was previously assigned to another net. 

2.7 Prototypes of the WaferBoard™: three implemented test chips 
A first test chip has been implemented as a proof of concept. This test chip embeds an array 
of 3×3 Unit-Cells of the WaferIC (Fig. 14). It is a miniature version of the WaferIC, where 
most of the functionality of the WaferIC was validated without the need to have an 
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expensive prototype including an entire silicon wafer. Each cell contains 4×4 NanoPads, 
giving a checkerboard of 12×12 NanoPads. Among the 144 NanoPads, only 22 were 
accessible for testing. The others were not accessible as they were not bounded to the output 
pins of the chip. Five control signals allow a JTAG scan chain to program that test chip, and 
two voltage levels (3.3V and 1.8V) were needed to provide power to the user's integrated 
circuit. The analog block section and programmable drivers section of each NanoPad were 
validated. The digital part of the integrated circuit was implemented with standard cells. 
 

 
Fig. 14. First test chip silicon die. 

A test and measurement protocol has been developed: all signals transmitted to the circuit 
under test were recorded by a logic analyzer that provides all the information necessary to 
diagnose failures. The digital tests were performed by applying test vectors and by 
measuring the output response. To validate the behavior of the WaferNet, signals were 
injected into NanoPads accessible from the pins of the circuit under test. The signals injected 
into NanoPads were generated by programmable waveform generators. These signals 
entering and leaving the WaferNet were observed using digital oscilloscopes. Figure 15 
shows the results of this test on the oscilloscope. The current passing through the power 
pins (VDD) and that passing through the ground (GND) were measured, as well as the 
current passing through the NanoPad VDD3.3V connection. 
 

 
Fig. 15. Signal propagation in the WaferNet of the first test chip. 

The results obtained with the first test Chip were very significant for the WaferBoard proof 
of concept. The positive results obtained demonstrated clearly that it is possible to create a 
circuit embedding the WaferNet configurable network. 
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A second test chip (Fig. 16) was also fabricated using the standard CMOS technology in which 
a novel architecture was implemented to support fast differential signaling. This is particularly 
useful when uICs have some fast differential IOs. According to post layout simulations, the 
proposed architecture supports a data rate of 2.5 Gbps with 200 mV of voltage swing. More 
details on the internal architecture can be found in (Valorge, Blaquière & Savaria, 2010).    
 

 
Fig. 16. Second test chip silicon die layout (Valorge, Blaquière & Savaria, 2010). 

  

 
Fig. 17. Third test chip silicon die. 

As part of this project, a third test chip was fabricated. It has an area of approximately 1/10,000th 
that of a full 200 mm WaferIC. It was also fabricated with a standard 6-metal layer 0.18 µm 
CMOS technology to prove the proposed concepts. This third test chip (Fig. 17) was created to 
further test a more elaborate version of the programmable pad embedded inside each NanoPad. 
A beta-multiplier architecture was used in the proposed programmable voltage reference circuit 
to provide a reference current IREF that ideally depends only on transistor parameters. This 
current is duplicated into a Programmable Reference Array (PRA). The test results show that the 
NanoPad can be configured to one the following standard levels: 1.0 V, 1.5 V, 1.8 V, 2.0 V, 2.5 V 
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or 3.3 V. The programmable voltage reference, when it is in a sleep mode, showed an ultra-low 
quiescent power consumption of 0.66 nW from a 3.3 V supply. 

3. Conclusion 

In this chapter, we presented an innovative rapid prototyping platform, developed to 
facilitate and accelerate the development of a wide range of electronic systems made of 
several integrated circuits. We summarized the main building blocks that comprise the 
proposed platform. Finally, we briefly exposed the challenge regarding CAD tools needed 
to make this platform functional and user-friendly. The goal of this project is to demonstrate 
an easy to use system that allows rapid configuration of functional systems from hand-
placed packaged components deposited over an active surface that embeds a high capacity 
configurable routing network, as well as means to test, diagnose and control the system, and 
to supply power to user ICs at the needed voltage, level of current, and integrity. 
The first set of full functionality stitched wafers have been fabricated at a CMOS fab and are 
now processed to create the required through silicon vias. On-going research activities should 
lead to a functional prototype system in 2011-2012. Its successful completion leverages leading 
edge technology and skills of four different companies (Tower Semiconductor, Allvia, Sound 
Design Technologies and Btech Corp) providing unique and compatible technologies. 
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