1,346 research outputs found

    A Heterogeneous Wireless Identification Network for the Localization of Animals Based on Stochastic Movements

    Get PDF
    The improvement in the transmission range in wireless applications without the use of batteries remains a significant challenge in identification applications. In this paper, we describe a heterogeneous wireless identification network mostly powered by kinetic energy, which allows the localization of animals in open environments. The system relies on radio communications and a global positioning system. It is made up of primary and secondary nodes. Secondary nodes are kinetic-powered and take advantage of animal movements to activate the node and transmit a specific identifier, reducing the number of batteries of the system. Primary nodes are battery-powered and gather secondary-node transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. The system allows tracking based on contextual information obtained from statistical data

    Cattle-powered nodes experience in a heterogeneous network for localization of herds

    Full text link
    A heterogeneous network, mainly based on nodes that use harvested energy to self-energize is presented and its use demonstrated. The network, mostly kinetically powered, has been used for the localization of herds in grazing areas under extreme climate conditions. The network consists of secondary and primary nodes. The former, powered by a kinetic generator, take advantage of animal movements to broadcast a unique identifier. The latter are battery-powered and gather secondarynode transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. Because a limited human interaction is desirable, the aim of this network is to reduce the battery count of the system

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Performance assessment of a kinetically-powered network for herd localization

    Get PDF
    Developing a herd localization system capable to operate unattended in communication-challenged areas arises from the necessity of improving current systems in terms of cost, autonomy or any other facilities that a certain target group (or overall users) may demand. A network architecture of herd localization is proposed with its corresponding hardware and a methodology to assess performance in different operating conditions. The system is designed taking into account an eventual environmental impact hence most nodes are simple, cheap and kinetically powered from animal movements-neither batteries nor sophisticated processor chips are needed. Other network elements integrating GPS and batteries operate with selectable duty cycles, thus reducing maintenance duties. Equipment has been tested on Scandinavian reindeer in Lapland and its element modeling is integrated into a simulator to analyze such localization network applicability for different use cases. Performance indicators (detection frequency, localization accuracy and delay) are fitted to assess the overall performance; system relative costs are enclosed also for a range of deployments

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Analysis of Low Energy Adaptive Clustering Hierarchy (LEACH) protocol

    Get PDF
    Sensor network consists of tiny sensors and actuators with general purpose computing elements to cooperatively monitor physical or environmental conditions, such as temperature, pressure, etc. Wireless Sensor Networks are uniquely characterized by properties like limited power they can harvest or store, dynamic network topology, large scale of deployment. Sensor networks have a huge application in fields which includes habitat monitoring, object tracking, fire detection, land slide detection and traffic monitoring. Based on the network topology, routing protocols in sensor networks can be classified as flat-based routing, hierarchical-based routing and location-based routing. These protocols are quite simple and hence are very susceptible to attacks like Sinkhole attack, Selective forwarding, Sybil attack, Wormholes, HELLO flood attack, Acknowledgement spoofing or altering, replaying routing information. Low Energy Adaptive Clustering Hierarchy (LEACH) is an energy-efficient hierarchical-based routing protocol. Our prime focus was on the analysis of LEACH based upon certain parameters like network lifetime, stability period, etc. and also the effect of selective forwarding attack and degree of heterogeneity on LEACH protocol. After a number of simulations, it was found that the stability region’s length is considerably increased by choosing an optimal value of heterogeneity; energy is not properly utilized and throughput is decreased in networks compromised by selective forwarding attack but the number of cluster-heads per round remains unaffected in such networks

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    corecore