141 research outputs found

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    Helly-type problems

    Get PDF
    In this paper we present a variety of problems in the interface between combinatorics and geometry around the theorems of Helly, Radon, Carathéodory, and Tverberg. Through these problems we describe the fascinating area of Helly-type theorems and explain some of their main themes and goals

    Good covers are algorithmically unrecognizable

    Full text link
    A good cover in R^d is a collection of open contractible sets in R^d such that the intersection of any subcollection is either contractible or empty. Motivated by an analogy with convex sets, intersection patterns of good covers were studied intensively. Our main result is that intersection patterns of good covers are algorithmically unrecognizable. More precisely, the intersection pattern of a good cover can be stored in a simplicial complex called nerve which records which subfamilies of the good cover intersect. A simplicial complex is topologically d-representable if it is isomorphic to the nerve of a good cover in R^d. We prove that it is algorithmically undecidable whether a given simplicial complex is topologically d-representable for any fixed d \geq 5. The result remains also valid if we replace good covers with acyclic covers or with covers by open d-balls. As an auxiliary result we prove that if a simplicial complex is PL embeddable into R^d, then it is topologically d-representable. We also supply this result with showing that if a "sufficiently fine" subdivision of a k-dimensional complex is d-representable and k \leq (2d-3)/3, then the complex is PL embeddable into R^d.Comment: 22 pages, 5 figures; result extended also to acyclic covers in version

    On Minc's sheltered middle path

    Get PDF
    This paper shows that a construction, which was introduced by Piotr Minc in connection with a problem that came from Helly type theorems and that allows to replace three PL-arcs with a "sheltered middle path", can in the case of general (non-PL) paths result in the topologist's sine curve.Comment: 18 pages, 3 figure

    Convexities related to path properties on graphs; a unified approach

    Get PDF
    Path properties, such as 'geodesic', 'induced', 'all paths' define a convexity on a connected graph. The general notion of path property, introduced in this paper, gives rise to a comprehensive survey of results obtained by different authors for a variety of path properties, together with a number of new results. We pay special attention to convexities defined by path properties on graph products and the classical convexity invariants, such as the Caratheodory, Helly and Radon numbers in relation with graph invariants, such as clique numbers and other graph properties.

    Spindle Starshaped Sets

    Get PDF
    In this paper, spindle starshaped sets are introduced and investigated, which apart from normalization form an everywhere dense subfamily within the family of starshaped sets. We focus on proving spindle starshaped analogues of recent theorems of Bobylev, Breen, Toranzos, and Zamfirescu on starshaped sets. Finally, we consider the problem of guarding treasures in an art gallery (in the traditional linear way as well as via spindles).Comment: 16 pages, 2 figure

    Lines pinning lines

    Full text link
    A line g is a transversal to a family F of convex polytopes in 3-dimensional space if it intersects every member of F. If, in addition, g is an isolated point of the space of line transversals to F, we say that F is a pinning of g. We show that any minimal pinning of a line by convex polytopes such that no face of a polytope is coplanar with the line has size at most eight. If, in addition, the polytopes are disjoint, then it has size at most six. We completely characterize configurations of disjoint polytopes that form minimal pinnings of a line.Comment: 27 pages, 10 figure
    corecore