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Abstract

Path properties, such as ’geodesic’, ’induced’, ’all paths’ define a convex-
ity on a connected graph. The general notion of path property, introduced
in this paper, gives rise to a comprehensive survey of results obtained by
different authors for a variety of path properties, together with a number of
new results. We pay special attention to convexities defined by path prop-
erties on graph products and the classical convexity invariants, such as the
Carathéodory, Helly and Radon numbers in relation with graph invariants,
such as clique numbers and other graph properties.
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1 INTRODUCTION

For any two vertices v1 and v2 in a graph, the vertices on a path between v1 and
v2 can be considered as located between v1 and v2; vertices on other similar paths
between v1 and v2 can be seen as being in the convex hull of v1 and v2. Convexities
on graphs are studied by many authors (see [4], [5], [8], [9], [12], [13], [14], [17], and
[21]) for a variety of specific path properties, such as ’geodesic’( see [5],[12],[15],
and [21]), ’induced’ (see [4], and [14]), and ’all paths’ (see [1], and [17]). The
main purpose of this paper is to offer a unifying approach based on the general
notion of a ’path with property Φ’. This notion is used to introduce the so called
Φ-convexity on a graph which satisfies the general notion of abstract convexity,
introduced in among others [6] and [19]. This connection enables us to study the
invariants of Carathéodory, Helly and Radon for connected graphs. We consider
finite simple connected loopless graphs, denoted by G = (V,E), with vertex set
V and edge set E. By a u − v path joining two vertices u and v in G, we mean
a sequence of distinct vertices u, u1, u2, ..., ui, ui+1, ..., un, v such that consecutive
vertices in this sequence join an edge. A path property Φ is defined as a property
which associates for each pair of vertices in G a path (called a Φ-path) with the
property Φ, while a path in a graph isomorphic to G, corresponding to a Φ-path
in G, is a Φ-path as well. A u− v path with property Φ is called a u− v Φ-path.
For example, if Φ = ’geodesic’, then a geodesic path between any two vertices u
and v in G is a u − v path of smallest length. If Φ = ‘induced’, then an induced
path between u and v is a path without chords, where a chord of a path is an edge
joining two nonconsecutive vertices in that path. The collection of all Φ-paths
between two vertices u and v is denoted by P(u,v)(Φ).

Let R : V × V → 2V be a function satisfying the following two axioms:

(t1) u ∈ R(u, v) for all u and v in V ,
(t2) R(u, v) = R(v, u) for all u and v in V .

R is said to satisfy the betweenness property if

(b1) x ∈ R(u, v), x 6= v =⇒ v /∈ R(u, x),
(b2) x ∈ R(u, v) =⇒ R(u, x) ⊆ R(u, v).

Because obvious properties of betweenness are not present in the case of all func-
tions R in general, we follow the terminology of [13] and call these functions
transit functions. Let R1 and R2 be transit functions. Then the relation ’≤’
defined by: ”R1 ≤ R2 if and only if R1(u, v) ⊆ R2(u, v) for all u, v ∈ V ”
is a partial ordering on the family of all transit functions on G. Moreover,
R1 ∧ R2 defined as (R1 ∧ R2)(u, v) = R1(u, v) ∩ R2(u, v) and R1 ∨ R2 defined
as (R1 ∨ R2)(u, v) = R1(u, v) ∪ R2(u, v) for all u, v ∈ V , are transit functions and
hence the family of all transit functions is a lattice denoted by L(R). For any path
property Φ, define the function RΦ : V × V → 2V by

2



RΦ(u, v) = {z ∈ V |z ∈ P for some P ∈ P(u,v)(Φ)}.

We can easily see that RΦ is a transit function. Since RΦ is defined by a Φ-path,
RΦ is called the Φ- path transit function associated with Φ. Also note that the
subgraph induced by RΦ(u, v) is a connected subgraph of G. If no confusion is
likely, we call a Φ-path transit function a path transit function. If RΦ1 and RΦ2

are two path transit functions, then RΦ1∧RΦ2 need not be a path transit function.
For example, if Φ1 = ’geodesic’ and Φ2 = ’longest ’, then (RΦ1 ∧RΦ2)(u, v) can be
equal to {u, v} which need not be a path. However, RΦ1 ∨RΦ2 is always a Φ-path
transit function, namely Φ is the path property that either Φ1 or Φ2 holds. Hence,
the family of all path transit functions is a join semi-lattice of L(R), denoted as
L(RΦ). Clearly, the ”all paths” transit function defined by

A(u, v) = {z ∈ V (G)|z lies in some u− v path in G},

is an universal upper bound of L(RΦ).
For any transit function R, a subset A of V is said to be R-convex if R(u, v) ⊆ A

for all u, v ∈ A. The collection of all R-convex subsets of V is an abstract convexity,
denoted by CR, in the sense that it is closed under both intersections and nested
unions and also both ∅ and V are R-convex sets. Convexities defined by a transit
function are called interval convexities, or interval spaces in e.g. [6] and [21]. For
a detailed account on abstract convexities, see for example [21]. The smallest
R-convex subset containing a subset A of V is denoted by 〈A〉R and is called
the R-convex hull of A. It is left to the reader to show that, in general, we do
not have that 〈A〉R =

⋃
u,v∈AR(u, v). The family of all R-convexities on V is

a lattice with meet and join, defined for any two R-convexities CR1 and CR2 by
CR1 ∧ CR2 = CR1 ∩ CR2, and CR1 ∨ CR2 = {B ∩C|B ∈ CR1, C ∈ CR2}. The lattice of
all R− convexities on V is denoted by L(CR). We have the following theorem.

Theorem 1 CR1∧R2 = CR1 ∨ CR2 and CR1∨R2 = CR1 ∧ CR2

Proof. Since, A ∈ CR1∨R2 ⇐⇒ [(R1 ∨ R2)(u, v) ⊆ A ∀ u, v ∈ A] ⇐⇒ [R1(u, v) ∪
R2(u, v) ⊆ A ∀ u, v ∈ A] ⇐⇒ [R1(u, v) ⊆ A and R2(u, v) ⊆ A∀u, v ∈ A] ⇐⇒
[A ∈ CR1 and A ∈ CR2] ⇐⇒ A ∈ CR1 ∩ CR2,we have that CR1∨R2 = CR1 ∧ CR2.
Moreover, since A ∈ CR1∧R2 ⇐⇒ [A = ∪{(R1 ∧ R2)(u, v)|u, v ∈ A}] ⇐⇒ [A =
∪{R1(u, v)∩R2(u, v)|u, v ∈ A}]⇐⇒ [A = B∩C where B = ∪{R1(u, v)|u, v ∈ A}
and C = ∪{R2(u, v)|u, v ∈ A}]⇐⇒ [A = B ∩C where B ∈ CR1 and C ∈ CR]⇐⇒
A ∈ CR1 ∨ CR2, we have that CR1∧R2 = CR1 ∨ CR2.

2 SPECIAL Φ-CONVEX SETS

In this section we analyze a number of specific Φ-path transit functions and the
corresponding convexities. We introduce a number of new path transit functions.
Throughout, we call RΦ-convex sets shortly Φ-convex sets and write CΦ instead of
CRΦ

.
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2.1 The geodesic transit function

The geodesic or shortest-path transit function I on a connected graph G is defined
as follows. Let u,v ∈ V . Then,

I(u, v) = {w ∈ V |w lies on some shortest u− v path in G}

In this definition ’shortest’ is again in terms of the number of vertices on the path.
The geodesic interval function I and the geodesic convexity of a connected graph G
are important tools for the study of the metric properties of G, cf. e.g. [3, 12]. An
example of a class of graphs where these tools are indispensable, is that of median
graphs. Such graphs are defined by the property that, for any triple of vertices,
the intervals between the pairs of the triple intersect in exactly one vertex. This
class of graphs is well studied; see [10, 12]. This definition of I is in terms of the
distance function of G. In Nebeský[15, 16] an axiomatic characterization of the
geodesic interval function is given without any reference to metric notions. It may
be noted that geodesic convex sets are very difficult to characterize.

2.2 The induced-path transit function

The induced-path transit function J on G is for each u, v ∈ V defined as

J(u, v) = {z ∈ V (G)|z lies on some u− v induced-path in G}

The induced-path transit function is also known in the literature as minimal path
transit function; see for example [4]. The induced-path transit function J and the
convexity generated by this transit function is an interesting concept and various
authors have studied it, see e.g.[4, 8]. The analogue of median graphs in the case
of the function J is studied in [14]. The characterization of this transit function in
terms of transit axioms alone seems to be difficult, but its convex sets are nicely
characterized. The following characterization of the induced-path convex hull is
due to Duchet[4].

In a connected graph G a vertex v belongs to the induced-path convex
hull of a subset A of V if and only if no clique of G\v separates v and
A.

2.3 The all-paths transit function

The all paths transit function for each u, v ∈ V is defined as

A(u, v) = {z ∈ V (G)|z lies on some u− v path in G }.

This transit function can be seen as the coarsest path transit function. From
the convexity point of view, the convexity generated by the all-paths function A

4



has also been studied in [4, 17], where it is called the coarsest path interval. A
characterization in terms of transit axioms is recently established in [1]. The all-
paths function has a nice structure, reflecting the block cut-vertex structure of the
graph.

2.4 The triangle-path transit function

Let R be a Φ-path transit function on G. Then R4 is the Φ-path transit function
defined for each u, v ∈ V by

R4(u, v) = {z ∈ V (G)|z lies on some Φ-path between u and v or z is
adjacent to two consecutive vertices on some Φ-path between u and v
in G}.

An u − v path with property Φ4 is either an u − v path with property Φ, or an
u− v path of which some of its edges are replaced by triangles, meaning that edge
ab on the Φ-path is replaced by the vertices az and bz with z some vertex not on
the Φ-path. Hence for each u, v ∈ V , it holds that

R4(u, v) = {z ∈ V (G)|z lies on some Φ4-path between u and v in
G}.

The transit functionR4 is called the triangle Φ-path or simply triangle-path transit

function. Recursively, define Rk4 as R04 = R and Rk4 =
(
R(k−1)4)4 for k ≥ 1.

Clearly, Rk4 is a Φ-path transit function as well. We can easily see that the
convexities defined by Rk4 are the same for all k ≥ 1. We can also see that
R(k−1)4 ≤ Rk4 for k ≥ 1. Since the I-convex sets are difficult to characterize,
we may expect that the I4-convex sets are also difficult to characterize. However,
similar to the J-convex sets the J4-convex sets can be characterized as follows.
The following statement can be found in [2].

Let G = (V,E) be a connected graph, and let A ⊆ V . Any vertex
v does not belong to the J∆− convex hull of A if and only if there
exists a clique M separating v and A in such a way that any two paths
connecting v to two distinct vertices of M contain a chordless cycle of
length at least 4.

2.5 The Ij-path transit function

For j ≥ 0, the Ij-path interval is for any u, v ∈ V defined by

Ij(u, v) = {z ∈ V (G)|z lies on a path of length ≤ d(u, v) + j}.

We can easily see that I4(u, v) ≤ I1(u, v), since a vertex lying on a geodesic
triangle-path between u and v should have length at most d(u, v) + 1. Similarly,
Ik4(u, v) ≤ Ik(u, v) for every k ≥ 0. Moreover, we have that < I4k (u, v) > ⊆
< Ik(u, v) >.
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3 PATH TRANSIT FUNCTIONS ON GRAPH

PRODUCTS

In this section we discuss path transit functions on graph products. Given con-
nected graphs G1 and G2, the Cartesian product of G1 and G2, denoted by
G1 × G2 is defined as the graph with vertex set V (G1) × V (G2) and edge set
as follows; two vertices (u1, u2), (v1, v2) in V (G1) × V (G2) form an edge if ei-
ther u1 = u2 and v1v2 ∈ E(G2) or v1 = v2 and u1u2 ∈ E(G1). Obviously, if
Φ1 and Φ2 are two path properties on G1 and G2, respectively, then a Φ1Φ2-
path is a path in G1 × G2 with the property that its projections on G1 and G2

are the Φ1- and Φ2-paths, respectively. For any two vertices (u1, v1), (un, vm) ∈
V (G1×G2), there exist a Φ1-path between u1 and un, say u1, u2, ...., un in G1, and
a Φ2-path between v1 and vm, say v1, v2, ..., vm in G2. Now the path defined as
(u1, v1), (u2, v1), ..., (un, v1)(un, v2), ..., (un, vm) is a (u1, v1), (un, vm)-path in G1×G2

of which the projection on G1 is the Φ1-path u1, u2, ...., un and the projection on
G2 is the Φ2-path v1, v2, ..., vm. Hence there is a natural way of defining a path
property in the Cartesian product of graphs, given two path properties in the
component graphs. We have,

Theorem 2 Let Φ1 and Φ2 be path properties on the connected graphs G1 and G2,
respectively. Then Φ1Φ2 is a path property on G1 ×G2.

Clearly, since RΦ1Φ2 = RΦ1 ×RΦ2 , RΦ1Φ2 is a path transit function. In general,
the product convexity, denoted by C1 × C2, on the convexity spaces C1 and C2 is
defined by C1 × C2 = {A × B|A ∈ C1, B ∈ C2}; see, e.g. [18, 19]. Instead of CRΦ,
we will write CΦ.

Theorem 3 For any two path properties Φ1 and Φ2, it holds that CΦ1Φ2 = CΦ1 ×
CΦ2.

Proof. Take any C ∈ CΦ1Φ2 . We need to show that C = Π1C × Π2C, with
Π1C ∈ CΦ1 and Π2C ∈ CΦ2 . To that end, take any u1,u2 ∈ Π1C. Then there
exist v1,v2 ∈ Π2C such that (u1, v1),(u2, v2) ∈ C. Since RΦ1Φ2((u1, v1), (u2, v2)) =
(RΦ1 × RΦ2)((u1, v1), (u2, v2)) = RΦ1(u1, u2) × RΦ2(v1, v2) ⊆ C, it follows that
RΦ1(u1, u2) ⊆ Π1C and RΦ2(v1, v2) ⊆ Π2C. Hence Π1C ∈ CΦ1 . Similarly Π2C ∈
CΦ2 . Since C ⊆ Π1C × Π2C, we only need to show that Π1C × Π2C ⊆ C. Take
any u1 ∈ Π1C and v1 ∈ Π2C. Then there exist u2 ∈ Π1C, v2 ∈ Π2C such that
(u2, v1) ∈ C and (u1, v2) ∈ C. Hence, (u1, v1) ∈ RΦ1(u1, u2) × RΦ2(v1, v2) =
RΦ1Φ2((u1, v1), (u2, v2)) ⊆ C.

As a specialization of the above discussion, one may ask the questions: under
what conditions do we have the following situations?
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(a) RΦΦ(G1 ×G2) = RΦ(G1 ×G2),
(b) RΦΦ(G1 ×G2) ≤ RΦ(G1 ×G2),
(c) RΦΦ(G1 ×G2) ≥ RΦ(G1 ×G2),

with G1 and G2 connected graphs. (We have included the product G1 ×G2 in
the above formula for clearness sake.) So actually, the question is: when do we
obtain the path property Φ on the product where on the two components of the
product Φ holds. If RΦ = A, the all-paths transit function, then for connected
graphs G1 and G2 with at least two vertices, the A(G1 × G2)-convexity is the
trivial convexity consisting of the empty set ∅, all single vertices and the whole set
V (G1 ×G2). Thus evidently A(G1)× A(G2) ≤ A(G1 ×G2). Similarly for R = J ,
we have the same inequality, namely J(G1) × J(G2) ≤ J(G1 × G2), since for a
vertex z = (zi, zj) ∈ J(u1, un)× J(v1, vm) we have that zi lies on an induced-path,
say u1, u2, . . . , un and zj lies on an induced-path v1, v2, . . . , vm. Hence, the path
defined by (u1, v1), (u2, v1), . . . , (zi, v1), (zi, v2), . . . , (zi, zj), . . . , (zi, vm), (zi+1, vm),
. . . , (un, vm) is an induced-path in (G1 × G2), all of whose vertices belong to
J(u1, un)× J(v1, vm). Since the distance function d of (G1×G2) is the sum of the
distance functions d1 and d2 of the components G1 and G2, respectively, we have
that the geodesic transit function I satisfies I(G1) × I(G2) = I(G1 × G2). The
following theorem provides an example related to case(c).

Theorem 4 Let j, k ≥ 1 and let G1 and G2 be two connected graphs with Ij and
Ik path transit functions on G1 and G2 respectively. Then,

Ij(G1)× Ik(G2) = Ij+k(G1 ×G2).

Proof. Take any u1, un ∈ V (G1) and v1, vm ∈ V (G2). Then z = (zi, zj) ∈
Ij(u1, un)× Ik(v1, vm)⇐⇒ zi ∈ Ij(u1, un) and zj ∈ Ik(v1, vm ⇐⇒ zi lies on a path
of length ≤ d1(u1, un) + j and zj lies on a path of length ≤ d2(v1, vm) + k ⇐⇒ z
lies on a path of length ≤ d(u, z) + j + k in G1 × G2 ⇐⇒ z ∈ Ij+k(u, v), where
u = (u1, v1) and v = (un, vm).

It follows directly from this theorem that I1(G1 × G2) ⊆ I1(G1) × I1(G2) =
I2(G1 × G2) ⊆ I3(G1 × G2) ⊆ In(G1 × G2) . . .. Moreover, the product convex-
ity of two Ij-convexities is precisely the convexity generated by the path transit
function I2j on G1 × G2, i.e, Ij(G1) × Ij(G2) = I2j(G1 × G2). Also note that
I(G1)× I(G2) = I(G1×G2), but that I4(G1×G2) 6= I4(G1)× I4(G2). However,
in the case of the CIk4-convexity we have the following theorem.

Theorem 5 If G1 and G2 are two connected graphs, and k ≥ 0, then CIk4(G1)×
CIk4(G2) = CIk4(G1 ×G2).

Proof. To show that CIk4(G1)× CIk4(G2) ⊆ CIk4(G1 × G2) for each k ≥ 0, take
any k ≥ 0, and A×B ∈ CIk4(G1)×CIk4(G2). Moreover, take any u, v ∈ A×B, and
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z ∈ RIk4(u, v). Then there is a Ik4-path in G1×G2 between u and v, say Pu,a,z,b,v
which includes z = (z1, z2). Then either 4k

a,b,z ⊆ G1 × {t} or 4k
a,b,z ⊆ {s} × G2

for some (s, t) ∈ A × B, say 4k
a,b,z ⊆ G1 × {t}. Since I is the geodesic transit

function, we have that Π1Pu,a,z,b,v (Π1 is projection on G1) is a Ik4-path between
Π1(u) = u − 1, Π1(v) = v1, Π1(a) = a1, Π1(b) = b1, and Π1(z) = z1. Hence
z1 ∈ Pu1,a1,z1,b1,v1 ⊆ RIk4(u1, v1) ⊆ A. Similarly it follows that z2 ∈ B. Hence
z ∈ A×B, so that A×B is in fact Ik4-convex in G1 ×G2.

To show that CIk4(G1 × G2) ⊆ CIk4(G1) × CIk4(G2), let C ∈ CIk4(G1 × G2).
Then C = 〈A〉Ik4 for some A ⊆ V (G1 × V (G2). Let z ∈ C. If z ∈ A, then
z ∈ Π1(A)× Π2(A) ⊆ 〈Π1(A)〉Ik4 × 〈Π2(A)〉Ik4 ∈ CIk4(G1)× CIk4(G2), where Π1

and Π2 are the projections on V (G1) and V (G2) respectively, and we are done. If
z /∈ A, then z ∈ Ik4(a, b) for two vertices a = (a1, a2), b = (b1, b2) ∈ A and k ≥ 1
implies that z ∈

〈
Ik4(a1, b1)

〉
×
〈
Ik4(a2, b2)

〉
∈ CI4(G1) × CI4(G2). .

4 CONVEXITY INVARIANTS

In this section we discuss the classical convexity invariants such as Carathéodory,
Helly, Radon and Exchange numbers in combination with the Rank and the Hull
number. We will discuss these parameters for the well known convexities defined by
path transit functions, and give improvements on the bounds of these parameters.
We start with shortly recalling the various definitions. Let Φ be a path property.
A Φ-copoint of a point p of V is a maximal Φ-convex subset of V not containing
p. The Carathéodory number c of the convexity space C is the smallest integer (if
exists) such that for any finite subset S of V , 〈S〉C =

⋃
{〈F 〉C |F ⊆ S, |F | ≤ c}. The

Exchange number e of C is the smallest integer (if exists) such that for any subset
F of V with |F | ≥ e and any point p in F , 〈F\{p}〉C ⊆

⋃
{〈F\{a}〉C |a ∈ F\{p}}.

The Helly number h of C is the smallest integer (if exists) such that every family of
convex sets with an empty intersection contains a subfamily of at most h members
with an empty intersection. Equivalently, h is the smallest natural number such
that

⋂
s ∈ S 〈S\{s}〉C 6= ∅ for every (h + 1)-element subset S of V . The Radon

number r of C is the smallest integer (if exists) such that every r-element set A ⊆ V
admits a Radon partition, that is, a partition A = A1 ∪ A2, (A1 ∩ A2 = ∅) with
〈A1〉C∩〈A2〉C 6= ∅. The mth Radon number, denoted by rm, is the smallest number
(if exists) such that every rm-element set A ⊆ V admits a Radon m-partition,
that is a partition of A into m pair wise disjoint subsets A1, A2, ..., Am such that
〈A1〉C ∩ 〈A2〉C ∩ .... ∩ 〈Am〉C 6= ∅. A subset I ⊆ V is called an independent set if
x /∈ 〈I\{x}〉C for every x ∈ I. The Rank of C is the supremum of the cardinalities
of the independent subsets of V . The Hull number u of C is the infimum of the
cardinalities of subsets S of V such that 〈S〉C = V .

A clique of G is a subset of pair wise adjacent vertices. The Clique number
ω is the cardinality of the largest clique in G. By a clique separator of G, we
mean a clique whose removal disconnects G; an atom of G is a maximal connected
subgraph of G containing no clique separator. The atom-clique separator tree
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T (G) of G is the intersection graph with the vertex set consisting of atoms and
clique separators of G, and two vertices adjacent if one of them is an atom and
the other is a clique separator intersecting with the atom. It can be easily verified
that T (G) is a tree.

In the literature we can find a variety of relationships between the mentioned
numbers; see e.g.[19]. One of the open problems is showing that the so called
Eckhoff-Jamison inequality r ≤ c(h − 1) + 2 is sharp, meaning that there is a
convexity space with (arbitrary) Carathéodory, Helly and Radon numbers c, h,
and r, respectively, satisfying r = c(h − 1) + 1. For the Φ-convexities of this
paper this inequality holds. Another famous open problem is the so-called Eckhoff
conjecture (see [7] and [11]. This conjecture reads that for any convexity space the
mth Radon number satisfies the inequality rm ≤ (r2−1)(m−1)+1 for m ≥ 2. For
the specific Φ-convexities in this paper the Eckhoff conjecture holds, but remains
a challenging open problem.

4.1 Geodesic convexity

The geodesic convexity is in some sense ”universal” with respect to the above men-
tioned invariants, namely in Duchet [5] it is observed that for every convexity on a
finite set V , with Helly, Radon and mth Radon numbers h,r and rm, respectively,
there is a finite connected graph G whose geodesic convexity has Helly number
h, Radon number r and mth Radon number at least rm. So far no relationships
between the invariants Carathéodory, Helly and Radon numbers and any known
graph parameter are known. Observe that the n-cube Qn has h = 2, c = n and
r = dlog2(n+ 1)e+ 2.

4.2 Induced-path convexity

For the induced-path convexity, Duchet has determined in [4] the relationships
between the Helly and Radon numbers and the Clique number. It is also shown
there that the Carathéodory number c ≤ 2. Using the inequality e ≤ c+ 1 [18], it
follows that the Exchange number e ≤ 3. Duchet’s result is as follows.

The J-convexity has Carathéodory number c ≤ 2, Helly number h = ω
and Radon number r = ω + 1 if ω ≥ 3 and r ≤ 4 if ω ≤ 2.

In the following theorem we characterize the cases r = 3 and r = 4 for triangle
free graphs, i.e. graphs with ω ≤ 2.

Theorem 6 The Radon number r of the J-convexity in a triangle free connected
graph G is 3 if and only if either G is a simple path or G is 2-connected and the
atom-clique separator tree of G is a simple path; r = 4 for all other triangle free
graphs.
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Proof. If G is an induced simple path then clearly r = 3. Suppose G is two
connected and the atom-clique separator tree T of G be a simple path. Then G
consists of a chain of atoms connected by clique separators. For any three vertices,
u, v, w in G, each of u, v and w will lie on atoms. If at least two of them lie on the
same atom, then one of them will lie on the J-convex hull of the other two. If they
lie on pair wise different atoms, then there is an atom containing one of u, v, w,
say w, which lies in between the atoms containing u and v and hence the J-convex
hull 〈J(u, v)〉 will contain the atom containing w, and hence u, v, w has a Radon
partition. Suppose G be any other triangle free graph. If G is not 2-connected,
then G has a cut vertex v having at least three neighbours. Any three vertex sub-
sets of the set of neighbours with two vertices belonging to distinct components of
G\v has no Radon partition. If G is two connected, then every clique-separator of
G is an edge and since the atom-clique separator tree T of G is not a simple path,
there exist at least three end vertices for T . The three vertices lying on three dis-
tinct atoms corresponding to the three end vertices of T has no Radon Partition.

From the definition of the J-convex hull, we have

Theorem 7 For any connected graph G and any vertex p, it holds that any two
distinct copoints of p are non-intersecting..

Proof. Consider two distinct copoints Kp and Lp of vertex p of G. Since Kp

and Lp are distinct J-convex sets, they are separated by a clique separator and
hence have no vertex in common. Therefore Kp and Lp are non-intersecting.

Let m, k ≥ 1. A convexity C on V has the C-copoint intersection property
CIP (m, k) iff for each p in V , it holds that any set of m distinct C-copoints
at p contains a k-subset with an empty intersection. In Jamison-Waldner [9] the
following result is shown.

Let the convexity C on V satisfy CIP (3, 2) and has finite Helly number
h. Then for each m ≥ 1, rm ≤ 2m if h = 2, and rm = (m− 1)h + 1 if
h ≥ 3.

By Theorem 7 the J-convexity satisfies CIP (3, 2). Therefore we have the
following theorem.

Theorem 8 The J-convexity on a connected graph satisfies rm ≤ 2m if ω = 2
and rm = (m− 1)ω + 1 if ω ≥ 3.

Consider the atom-clique separator tree T (G) of G by taking all the minimal
clique separators (A minimal clique separator is one such that no proper subset
of it is not a clique separator). An end atom of G is an atom corresponding to
an end vertex or external vertex of T (G). If an end atom is itself a clique of size
m ≥ 2, then join m−1 vertices by an edge in T (G) to the vertex corresponding to
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the minimal clique separator separating the end atom with the rest of G and the
tree thus obtained is denoted by T ′(G). The set of end vertices of T (G), T ′(G) is
called the periphery of T (G), respectively T ′(G) denoted as P (T (G)), respectively
P (T ′(G)). For each x ∈ P (T ′(G)) take a corresponding vertex in G and the set
of vertices thus obtained forms an independent set of V (G). We have a straight
forward theorem.

Theorem 9 For the J-convexity of a connected graph G, it holds that the Hull
number u is equal to the cardinality of P (T (G)) if the end atoms of G are not
cliques and is equal to the cardinality of P (T ′(G)) otherwise. That is, u = |P (T (G))|
or u = |P (T ′(G))|.

We have that every clique of G forms an independent set. The cardinality
of P (T ′(G)) or P (T (G)) is dependent on the number of external atoms and not
dependent on ω; there can be graphs with ω ≥ u and u ≥ ω. Therefore we have

Theorem 10 The rank of J-convexity is given by max(h, u).

4.3 Triangle-path convexity

As in the the case of the geodesic convexity, no bound or relationship between the
invariants of the I4-convexity and any other known graph parameter is known.
But, for the J∆-convexity, the bounds of the invariants are known. The following
result can be found in [2]. The J∆-convexity has the Carathéodory number c = 2,
the Exchange number e = 3, the Helly number h = 2 and the Radon number r
satisfying 3 ≤ r ≤ 4.

Clearly, Theorem 7 formulated for J-convexities, also holds for J∆- convexities
for the triangle free connected graphs, because J = J∆. Since any two J∆-copoints
are separated by clique separators, as in the case of the J-convexity, we have

Theorem 11 For the J∆-convexity, given any vertex p of G, any two distinct
copoints of p are non-intersecting

The J∆-convexity has helly number h = 2 and by the previous theorem, it
satisfies CIP (3, 2). Therefore as a corollary of the theorem of Jamison-Waldner
[9] we have the following theorem

Theorem 12 Let m ≥ 1. The mth Radon number for the J∆-convexity satisfies:
rm ≤ 2m

In order to discuss the Hull number and Rank, we need a small modification
for the atom-clique separator T (G) of G in case of the J∆ − convexity; denoted
as T∆(G). The vertex set of T∆(G) is the family of all atoms and cliques not
separating a J∆-convex subset and an atom A is adjacent to a clique separator
M in T∆(G) if M separates A such that any two paths connecting a vertex in A
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to two distinct vertices of M contain a chordless cycle of length at least equal to
4. Here also T∆(G) is a tree and as in the case of the P (T (G)), the subset of V
corresponding to the set of elements of P (T∆(G)), forms an independent set of
V (G). We have a similar straightforward theorem to that of the J-convexity.

Theorem 13 The Hull number of J∆-convexity is equal to the cardinality of
P (T∆(G)).

Unlike the J-convexity, the clique vertices (vertices which forms a clique ) of
G are J∆-convexly dependent. Hence we have

Theorem 14 The rank of the J∆-convexity is the Hull number u.

The Carathéodory, Helly and Radon numbers for the all-paths convexity (A-
convexity) are investigated in [17]. By considering the block-cut vertex tree B(G)
instead of the T (G), and following similar arguments to that of the J∆-convexity,
we can obtain the Hull number u and the Rank of A-convexity. We summerize
these results in the following theorem.

Theorem 15 The following statements hold for the all-paths convexity. The
Carathéodory number c = 2, the Exchange number e = 3, the Helly number h = 2
and the Radon number r satisfies 3 ≤ r ≤ 4. The mth Radon number rm ≤ 2m.
The Hull number and the Rank are the same and equal to the cardinality of the set
P (B(G)).
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