41 research outputs found

    \u3cem\u3en\u3c/em\u3e-Distributivity, Dimension and Carathéodory\u27s Theorem

    Get PDF
    A. Huhn proved that the dimension of Euclidean spaces can be characterized through algebraic properties of the lattices of convex sets. In fact, the lattice of convex sets of IEn is n+1-distributive but not n-distributive. In this paper his result is generalized for a class of algebraic lattices generated by their completely join-irreducible elements. The lattice theoretic form of Carathédory\u27s theorem characterizes n-distributivity in such lattices. Several consequences of this result are studies. First, it is shown how infinite n-distributivity and Carathédory\u27s theorem are related. Then the main result is applied to prove that for a large class of lattices being n-distributive means being in a variety generated by the finite n-distributive lattices. Finally, n-distributivity is studied for various classes of lattices, with particular attention being paid to convexity lattices of Birkhoff and Bennett for which a Helly type result is also proved

    Geometric, Algebraic, and Topological Combinatorics

    Get PDF
    The 2019 Oberwolfach meeting "Geometric, Algebraic and Topological Combinatorics" was organized by Gil Kalai (Jerusalem), Isabella Novik (Seattle), Francisco Santos (Santander), and Volkmar Welker (Marburg). It covered a wide variety of aspects of Discrete Geometry, Algebraic Combinatorics with geometric flavor, and Topological Combinatorics. Some of the highlights of the conference included (1) Karim Adiprasito presented his very recent proof of the gg-conjecture for spheres (as a talk and as a "Q\&A" evening session) (2) Federico Ardila gave an overview on "The geometry of matroids", including his recent extension with Denham and Huh of previous work of Adiprasito, Huh and Katz

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio

    Bibliographie

    Get PDF

    On lattices of convex sets in R^n

    Full text link
    Properties of several sorts of lattices of convex subsets of R^n are examined. The lattice of convex sets containing the origin turns out, for n>1, to satisfy a set of identities strictly between those of the lattice of all convex subsets of R^n and the lattice of all convex subsets of R^{n-1}. The lattices of arbitrary, of open bounded, and of compact convex sets in R^n all satisfy the same identities, but the last of these is join-semidistributive, while for n>1 the first two are not. The lattice of relatively convex subsets of a fixed set S \subseteq R^n satisfies some, but in general not all of the identities of the lattice of ``genuine'' convex subsets of R^n.Comment: 35 pages, to appear in Algebra Universalis, Ivan Rival memorial issue. See also http://math.berkeley.edu/~gbergman/paper
    corecore