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K. B. Athreya—P. E. Ney, Branching processes (Die Grundlehren der mathematischen Wissen-
schaften in Einzeldarstellungen, Bd. 196), XI+287 pages, Springer-Verlag, Berlin—Heidelberg— 
New York, 1972. 

This book can be regarded as a continuation of T. E. Harris' book (Springer-Verlag, 1963). 
Chapter I gives a brief summary of classical results on Galton—Watson processes, and a more 
detailed treatise of its modern refinements, e.g. the decomposition of the supercritical branching 
process. 

Chapter II develops the potential theoretical tools and their application to the discrete 
time case. 

One of the most interesting theorems here is the sharp limit law due to the authors. Chapter 
III deals with the Markovian case using Kolmogorov's equations and martingale convergence theo-
rems, and investigates the problem of imbedding a Galton—Watson process into a continuous 
time Markov branching process. 

Chapter IV is devoted to the so called age-dependent process. It is not Markovian and the 
methods of the previous chapters do not apply. Such models were introduced and first studied by 
R. Bellman and T. E. Harris (1952). The key tool here is the renewal equation. 

Chapter V generalizes results proved in previous chapters for the multitype case. 
Chapter VI examines special processes, e.g. the branching diffusion, branching processes 

with random environments and the continuous state branching processes and processes with im-
migrations. The authors cite an abundance of literature. After every chapter there are complements 
and problems, including open ones. 

The treatment is thorough, precise and easy to follow. 
A. Krdmli (Budapest) 

N. L. Biggs, Interaction models, London Math. Soc. Lecture Notes Series 30,101 pp., Cambridge 
University Press, Cambridge—London—New York—Melbourne, 1977. 

Have you ever thought that the Four Colour Problem is in any connection with ferromagnetism? 
Well, this book shows such a connection! 

To be less sensational but more specific, it has been the Four Colour Problem which has 
inspired most of the research done in connection with the so-called chromatic polynomial. This 
polynomialpa(x) expresses the number of colorations of the graph G in x colors. Graph theorists, 
primarily G. D. Birkhoff, H. Whitney and W. T. Tutte have developed several expansion formulas, 
generalizations, and other properties of this polynomial. 

Meanwhile physicists, among others Ising, Mayer, Lieb etc. have studied "interaction models", 
which can be described in terms of a graph: the vertices are particles, and interaction exists between 
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adjacent vertices only. Each particle has a finite number of possible states, and each interacting pair 
contributes to the Hamiltonian H of the system depending on their states. Important physical 
phenomena, like phase transitions, can be described in terms of the expression 27 exp H (summed 
over all states of the particles). This expression has properties very similar to those of the chromatic 
polynomial, in fact, the chromatic polynomial is a special case of it. Various properties and expan-
sions of the chromatic polynomial have their analogues and generalizations in physics; most of 
them have been discovered independently but some discoveries have been inspired by this analogy. 

"The lectures on which this book is based were intended for a 'mixed audience' ... some of 
the audience were basically physicists, and others were basically mathematicians... The desire to be 
intelligible to two classes of students has been my main preoccupation in preparing the lectures 
and writing the book." So the book may serve as a bridge between theoretical physicists and mathe-
maticians working on two ends of the same problem, and who have now caught sight of each other. 

The author also points out: "It would be idle to pretend that the material treated in this book 
is in its final form... If some of my errors stimulate other mathematicians to put things right, then 
the book will have served its purpose." Indeed, one feels the air of openness and the temptation to 
join the research when reading the book. And this, I think, is a good reccommendation. 

L. Lovász (Szeged) 

R. P. Burn, Deductive Transformation Geometry, XI+121 pages, Cambridge University Press, 
1975. 

There are two usual types of descriptions of the relationship between the Euclidean plane and 
the real number system. A geometric description was made by Hilbert under which the real number 
system emerged from postulated properties of points and lines. Algebraic descriptions explicitly 
start from the real number system, and construct points as ordered pairs, lines as linear subsets of 
ordered pairs of real numbers. The main aim of this book to show which properties of the real 
number system are required to establish particular theorems in geometry. The approach will be 
geometric in that the axioms will all be axioms of or about incidence, but the method will be algebraic, 
in that the existence and properties of a coordinate system will be obtained by exploring groups of 
transformations. 

In Chapter 1 the affine incidence axioms in the plane are assumed, only to see what kind of 
geometry can be done without any algebraic properties of real numbers. The study of finite affine 
geometries gives rise to a great number of easily stated, but as yet unsolved problems. At the end 
of this chapter, by adjoining a line of new points to the affine plane, the projective plane is con-
structed. Chapter 2 goes back to the affine plane, defines parallel projections of lines, and affinities 
of lines as products of parallel projections. The affinities of a line onto itself which are products of 
two parallel projections are called (affine) permutations. Addition and multiplication of permutations 
can be defined in the usual way. By using the permutations, coordinate systems on lines can be intro-
duced. Postulating that the permutations of a line form a group, the coordinate elements form an 
Abelian group under addition, and for the (not necessarily commutative) multiplication a one-sided 
distributive law follows. Chapter 3 is devoted to the study of those transformations of the plane 
which map each line onto a parallel line. There are two classes of these transformations; those with 
no fixed points, called translations, and those with just one fixed point, called enlargements. In 
Chapter 4 those planes are considered which admit all possible translations and enlargements. These 
are the Desarguesian planes. In these planes the underlying algebra of coordinates satifies both 
distributive laws. Chapter 5 deals with collineations of the plane, in particular with collineations 
having a line of fixed points, called axial collineations: The theorems obtained here are strikingly 
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analogous to those obtained in Chapter 3 for translations and enlargements. In Chapter 6 a geo-
metric description is given for those planes which have a field as their underlying algebra. It turns 
out that these are the Pappian planes. In Chapter 7 reflections are studied. Chapter 8 compares 
different systems of axioms given by Hilbert, Birkhoff, Moise and others. 

The book is written in a well readable way. . 
L. Gehir (Szeged) 

Combinatorial Surveys, Proceedings of the Sixth British Combinatorial Conference, Edited 
by P. J. Cameron, 226 pages, Academic Press, London—New York—San Francisco, 1977 

The book consists of lectures of invited speakers of the Combinatorial Conference held at 
Egham (London), 1977. The chapters, as the title shows, are survey-type, therefore the reader receives 
a good cross-section of advanced combinatorics. The index of the book shows both the unity of 
the subject (with designs, graphs, matroids, projective spaces as prevailing themes) and its diversity 
(campanology, the golden ration, parallelism, Ramanujan numbers, root systems, etc.). This Pro-
ceedings is a useful reference book. 

Chapter 1 (F. BUEKENHOUT, What is a subspace?) investigates the abstract concept of subspace 
and exhibits how to use it for graphs, matroids and block designs. 

Chapter 2 (P. J. CAMERON, Extensions of design: variations of a theme). It is an old result of 
the theory of designs that a projective plane can be extended by one point to a 3-design only if its 
order is 2, 4 or (possibly) 10. Generalizations in three different directions are given. 

Chapter 3 (L. LovAsz, Flats in matroids and geometric graphs) is devoted to show how to 
use the concept of a geometric graph to unify the theory of r-critical graphs and to prove a con-
jecture of Gallai and some new Helly-type theorems on flats in geometries. 

Chapter 4 (D. K. RAY-CHAUDHURI, Combinatorial characterization theorems for geometric 
incidence structures) provides a thorough and deep survey of the theory of geometric incidence 
structures. It contains 29 theorems and embraces a great part of this theory. The emphasis is on 
theorems asserting that certain incidence structures are "coordinatizable", i. e. can be derived 
from geometries over finite fields. 

Chapter 5 (N. J. A. SLOANE, Binary codes, lattices, and sphere-packings) surveys a surprising 
connection between binary codes on the one hand, and sphere-packings and lattices in R" on the 
other hand. 

Chapter 6 (A. T. WHITE, Graphs of groups on surfaces) deals with Cayley graphs of groups, 
embedding of them in a surface, voltage and current graphs, genus etc. 

Chapter 7 (D. R. WOODALL, Zeros of chromatic polynomials) provides an introduction to the 
theory of chromatic polynomials of graphs. The emphasis is on the location of real zeros, and on 
the multiplicities of the integer zeros. 

A. Frank (Budapest) 

R. D. Driver, Ordinary and delay differential equations (Applied Mathematical Sciences, Vol. 
20), IX+501 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1977. 

The so-called functional differential equations arose a long time ago in the history of mathe-
matics. These are differential equations, in which the unknown function and its derivatives occur 
with various different arguments. Nowadays such equations play a particularly important role in 
applications; they are motivated by problems in control theory, physics, biology, ecology, economics 
and the theory of nuclear reactors. During the past two or three decades a number of valuable 
monographs on this subject were published, but none of them can be considered as an introduc-
tory text. 
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This book is an excellent first course on delay differential equations (this means an equation 
expressing the highest order derivative of the unknown function x at time t in terms of x and its 
lower order derivatives at t and at earlier instants). One of its advantages is that the author gives 
simultaneously an introduction to ordinary differential equations also. The book is especially well-
organized from the point of view of didactics. This is mostly due to the great number of examples 
worked out. They prepare the reader excellently for understanding the theorems and convince him 
of their applicability. Some of the examples are very interesting in themselves, e.g. population growth, 
electrical circuits, two-body problem of electrodynamics, control systems, and numerous mechanical 
examples. At the end of the chapters several problems of various difficulty are listed, with answers 
or hints. 

The structure of the book is the following. First comes the uniqueness of the solution of ordinary 
differential equations satisfying a Lipschitz condition. The properties of the solutions of ordinary 
linear systems are treated. Further on existence and stability problems are discussed for ordinary 
and delay equations simultaneously. The final chapter is devoted to autonomous differential 
equations. 

The book is recommended to lecturers wishing to introduce delay differential equations in 
the senior and beginning graduate level curricula. It is suitable also for students and users of mathe-
matics interested in differential equations. 

L. Hatvani—L. Pintér (Szeged) 

O 
Lars Garding, Encounter with Mathematics, X+270 pages, Springer-Verlag, New York— 

Heidelberg—Berlin, 1977. 
This book is meant mainly for people on the level of a junior student and aims to give a general 

but comparatively comprehensive picture of some of the central topics of mathematics. Roughly 
speaking, these are the branches initiated before the middle of the last century, but their development 
is mostly followed up to quite recent results. It is by no way an easy piece of reading for a beginner 
so that it seems to be more apt to inform students already interested in mathematics than to intrigue 
those maintaining a lukewarm relation to it. 

After an introductory chapter on the interrelation between mathematics and reality and a 
short account on the basic facts and problems of number theory, chapter 3 deals with algebra (equa-
tions, groups, rings, Galois theory). It includes Hilbert's Nullstellensatz with proof. The next section 
(Geometry and linear algebra) gives among others the foundations of Banach and Hilbert spaces, 
including the contraction theorem for Banach spaces with full proof and the spectral theorem for 
compact linear operators (proved for finite dimensions only). Speaking about continuity, the author 
presents Dedekind's theory of real numbers, uniform continuity and uniform convergence, and 
the notion of a topological space. After an interlude on the history of mathematics in the seven-
teenth century, chapters 7 and 8 deal with differentiation and integration and give a rather thorough 
picture of both fields. However to work with the Grassmann algebra is perhaps too formal at this 
level. — Fourier transform and the inversion formula are proved, to be used in the chapter treating 
probabilities. The section on series deals, among others, with the Weierstrass approximation the-
orems. The section on probability presents the basic classical results, a bit of statistics and of physi-
cal applications. In chapter 11 (Applications) mathematical modeling is illustrated on acoustics. 
The last section deals with sociology, psychology, and teaching of mathematics. 

All in all, the material the book ranges over is rather large, even too large. This is partly com-
pensated by a clear and well-considered treatment. It was also a good idea to give a few selected 
passages of classical works in the corresponding fields. There are a lot of misprints, several embar-
rassing ones. 

G. Pollák (Szeged) 
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D. Gilbarg—N. S. Trudinger, Elliptic partial differential equations of second order (Grundlehren 
der mathematischen Wissenschaften 224), X+401 pages, Springer-Verlag, New York—Heidelberg— 
Berlin, 1977. 

The book grew out of graduate courses held by the authors at Stanford University. 
The theory of partial differential equations is now so large that a comprehensive treatment is 

impossible. Every book contains a small part of the theory only. The tools also vary considerably, 
there are books written in classical style with several applications while others are making use of 
concepts of modern mathematics. The present authors' aim was to write a book on second order 
elliptic partial differential equations for a broad spectrum of readers, interested in the various con-
cepts, methods and techniques which have been developed in this theory. 

The book consists of two parts. In Part One, Chapters 2—8, the linear theory is developed. 
Naturally, Laplace's and Poisson's equations are the starting points for the study of classical solu-
tions. The Dirichlet problem for harmonic functions with continuous boundary conditions is in-
vestigated through the Perron method of subharmonic functions, emphasizing the maximum prin-
ciple and the barrier concept for studying boundary behavior. The Holder estimates for the solution 
of the Poisson equation are derived from an analysis of the Newton potential. Ch. 6 develops an 
extension of potential theory based on the fundamental observation that equations with Holder 
continuous coefficients can be treated locally as a perturbation of constant coefficient equations. 
Ch. 8 on "Generalized solutions and regularity" shows that by Hilbert space methods a more general 
approach can be achieved to linear problems. Throughout the book — whenever it is possible — 
the authors emphasize the connections and applications to the nonlinear theory; thus the regularity 
theory and Holder estimates of generalized solutions are fundamental to the nonlinear theory. 

Part Two deals with the Dirichlet problem and related estimates for quasilinear equations. 
In Ch. 9 maximum and comparison principles are given for the solutions of quasilinear equations-
Ch. 10 contains fixed point theorems of Schauder, Leray—Schauder and Brouwer, and some of their 
applications. Chapters 12, 13 and 14 present gradient estimates. Here we find the fundamental 
results of Ladyzhenskaya and Ural'tseva, the Jenkins and Serrin criterion for solvability of the 
Dirichlet problem for the minimal surface equation. 

The work is almost entirely self-contained, some basic facts of real analysis and linear algebra 
are supposed only. Much of the material appears in a single volume for the first-time. A number of 
interesting problems, historical material, and bibliographical references are added to each chapter. 

Summing up, if one wishes to see a variety of modern methods and their applications to some 
classical problems of elliptic partial differential equations, examples to illustrate the developments 
a few up-to-date results, and references to further study, all gathered in a book which is written 
carefully and in an enjoyable style, then he should read this book. 

L. Hatvani—L. Pintér (Szeged) 

Computing Methods in Applied Sciences and Engineering, Second International Symposium, 
December 15—19, 1975, Iria Laboria, Institut de Recherche d'lnformatique et d'Automatique: 
Edited by R. Glowinski and J. L. Lions (Lecture Notes in Economics and Mathematical Systems» 
134), VIII+390 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1976. 

This book consists of a selected part of the lectures which were presented during the symposium 
indicated in the title. It has five parts: Numerical Algebra, Finite Elements, Dynamical Problems, 
Identification and Inverse Problems, and Integral Methods. 

Part I treats the solution of large linear sparse systems of linear algebraic equations arising 
at the application of the finite element method (by Alan George), hypermatrix algorithms in con-
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nection with the solution of linear equations or eigenreduction (by K. A. Braun, G. Dietrich, G. 
Frik, Th. L. Johnson, K. Straub, and G. Vallianos), iterative methods for the solution of non-com-
patible systems of linear equations, occurring in connection with the solution of systems of difference 
equations approximating the Neumann boundary problem for elliptic differential equations (by 
Y. A. Kuznetsov), a generalized conjugate gradient method for nonsymmetric systems of linear 
equations (by P. Concus and G. H. Golub), and spline approximation in Euclidean spaces (by 
V. A. Vasilenko). 

Part II presents the mathematical foundations of hybrid and mixed finite element methods for 
plate bending problems described by fourth order elliptic equations (by F. Brezzi); the result that 
the strain energy of a shell is elliptic, using W. T. Koiter's linear model (by M. Bernadou and P. G. 
Ciarlet); the homogenization approach in engineering, where homogenization is meant as a method 
which studies the macrobehaviour of a medium by its microproperties (by Ivo Babuska); and finite 
element approximations for solving elastic problems (by J. Nitsche). 

Part III deals with a finite element approximation for parabolic equations via an operator 
theoretical approach (by Hiroshi Fujita): a variational method for increasing the accuracy of the 
difference scheme in a close relation to the Richardson extrapolation (by G. I. Marchouk and V. V. 
Shaydourov); Runge—Kutta methods for the approximation of the evolution problem (by M. 
Crouzeix); and continuous and discontinuous finite element methods for solving the neutron trans-
port equation (by P. Lesaint). 

Part IV contains the survey papers of J. Cea (on domain identification problems), J. M. Bois-
serie and R. Glowinski (on optimization of rotational membranes), R. Glowinski and O. Pironneau 
(on optimal control), Masaya Yamaguti (on solidification), J. Galligani (on numerical problems 
of earth science), T. Dupont and H. H. Rachford Jr. (on a Galerkin method for liquid pipelines)-

In Part V two papers give a glimpse into the integral equation methods applied to elasticity 
problems (by J. C. Lachet and J. O. Watson) and to fluid mechanics (by T. S. Luu), and a paper 
reviews curved finite element methods for the solution of singular integral equations on surfaces 
in R3 (by J. C. Nedelec). 

Of the above papers 13 are written in English, 9 in French. Each paper is followed by a rich 
and up-to-date bibliography. 

The book is warmly recommended for use to research workers in numerical analysis as well 
as to experts in theoretical physics and engineering. 

F. Móricz (Szeged) 

H. Grauert—R. Rennert, Theorie der Steinschen Räume (Grundlehren der mathematischen 
Wissenschaften, 227), XX+249 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1977. 

The central results of complex function theory show that the fundamental difficulty in gener-
alizing the classical theorems for a single variable to several variables is that in C" there exist domains 
which are not domains of holomorphy. ( G c C " is called a domain of holomorphy if there is a holo-
morphic function on G which is singular in every boundary point of G). Since the main problems 
of complex analysis are solvable for domains of holomorphy, the natural question was raised how 
can one axiomatize intrinsically the complex spaces which are generalizations of domains of holo-
morphy and for which the classical results of complex analysis can be extended. A Stein space X is 
such a generalization of a domain of holomorphy, which in the singularity-free case (that is when 
A" is a complex analytical manifold) can be characterized by the following properties: 

(i) X is holomorphically separable, i.e. for every x0£X there are holomorphic functions 
/ i , ...,/m on X such that xa is isolated in the set {x^X: /¡(x) =... =/m (x)=0}. 
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(ii) X is holomorphically convex, that is, for every compact subset Kc X its holomorphically 
convex hull ]£ is compact, where i t is defined by 

K={x£X: | / (x) |Ssup | / | , / holomorphic on 
K 

The theory of Stein spaces is developed using the methods of sheaf theoretic cohomology 
theory. A breaf survey on this subject is given in Chapters A and B. In Chapter I the coherence 
theorems on finite holomorphic maps are treated. Chapter II is devoted to the de Rham and Dolbeault 
cohomology theory. In Chapters III—IV the main theorems on Stein spaces (Theorems A and B) 
are proved, which are the generalizations of the Cartan—Serre theorems on singularity-free Stein 
mainifolds. Chapter V contains the fundamental applications of the main theorems to Cousin and 
Poincare problems and to characterizations of Stein spaces. In Chapter VI the finite dimensionality 
theorem of Cartan and Serre is generalized to the complex spaces with singularities. Chapter VII 
treats the theory of compact Riemann surfaces, applying the preceding general results. 

The book is a fundamental monography on the subject, it is well organized, the presentation 
is always clear. The reader is assumed to have a certain knowledge of complex analysis and sheaf 
theory. 

P. T. Nagy (Szeged) 

H. Grauert—K. Fritzsche, Several Complex Variables (Granduate Texts in Mathematics), 
VIII+207 pages, Springer-Verlag, New York—Heidelberg—Berlin, 1976. 

This textbook is an excellent introduction to complex analysis in several variables, suitable 
for undergraduate students. The reader is only supposed to be familiar with elementary calculus, 
with the theory of complex functions of a single variable and with a few elements of algebra and 
general topology. In accord with its introductory character the book treats many examples and 
special cases in full detail and with numerous illustrative figures. At the end of the chapters the 
authors give a survey of the fundamental results of the theory, tempting the readers to further study. 

In Chapter I the notion and basic properties of holomorphic functions of several variables 
are introduced. In contrast to the one-variable theory, there exist domains G in C" such that every 
holomorphic function on G has a holomorphic continuation beyond G. Domains G c C" for which 
such a continuation of holomorphic functions on G do not exist are called domains of holomorphy. 
In Chapter II some characterizations of domains of holomorphy are given. Chapter III is devoted 
to the algebraic treatment of the ring of convergent power series and to its applications to the theory 
of analytic sets, which are locally the sets of zeros of holomorphic functions. Chapter IV is a brief 
introduction to sheaf theory. In Chapter V the notion of complex manifolds and Stein manifolds are 
introduced. (The latter is a natural generalization of the domain of holomorphy.) Here a lot of 
examples of complex manifolds are discussed. In Chapter VI the cohomology theory of sheaves is 
treated. It is a useful generalization of the Cech cohomology theory and provides a frame to express 
the main results for domains of holomorphy and Stein manifolds. Chapter VII is devoted to the 
analysis of real differentiability in complex manifolds. The notions of tangent spaces, differential 
forms and exterior derivation are introduced and the theorems of Dolbeault and de Rham are 
proved. 

P. T. Nagy (Szeged) 

James E. Humphreys, Linear Algebraic Groups (Graduate Texts in Mathematics), XIV+247 
pages, Springer-Verlag, New York—Heidelberg—Berlin, 1975. 

The theory of linear algebraic groups has been studied extensively during the past twenty 
years following the fundamental work of A. Borel, Chevalley, Steinberg, Tits and others, and has 
made a significant progress in a number of areas: semisimple Lie groups and arithmetic subgroups, 
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p-adic groups, classical linear groups, finite simple groups, invariant theory, etc. This theory is 
hardly accessible for beginners, because in the fundamental monographs on the subject a substantial 
familiarity with the abstract methods of algebraic geometry is assumed. This book is to serve as 
a detailed textbook for graduate students on affLne algebraic groups over an algebraically closed 
field K, containing a very useful introduction to algebraic geometry. 

An aflme algebraic group G is defined as an aifine algebraic variety (i. e. a set of common 
zeros of a finite collection of polynomials in an aifine space K"), endowed with a structure of a group 
such that the group operations (x.y) -* xy and x x " 1 are polynomial functions on G. The 
standard examples of a Sine algebraic groups are the classical linear groups: the general linear group 
GL(n, K), the special linear group SL{n, K), the symplectic group Sp(n, K), the special orthogonal 
group 50(n, K). It is true that any affine algebraic group is "linear" in the sense that it is isomorphic 
with an algebraic subgroup of some GL(n, K). 

The building of the theory of affine algebraic groups is considerably parallel to the theory of 
Lie groups, only the differential topological terms and methods in Lie group theory are replaced 
by the terms and methods of algebraic geometry. One can define an intrinsic algebraic notion of 
tangent space to an algebraic variety at a point, which in the case of an algebraic group can be 
endowed with an additional Lie algebra structure. This way a functor can be defined from the 
category of affine algebraic groups to the category of Lie algebras, and with the help of this functor 
the structure theory of Lie algebras can be applied to the theory of affine algebraic groups. 

The basic concepts of algebraic geometry are introduced in Chapter I. The treatment is detailed 
only according to necessity and is not scheme-oriented. In Chapters II—V the basic facts about 
algebraic groups, their Lie algebras and homogeneous spaces are treated. In Chapters IV—IX 
special questions, essential tools for the structure theory are discussed: the Jordan—Chevalley 
decomposition, diagonizable groups, nilpotent and solvable groups, Borel subgroups, maximal tori 
etc. Chapter X is devoted to the study of structure theory of reductive groups, especially properties 
of the root systems, normal and parabolic subgroups. In Chapter XI the representations and classi-
fication of semisimple groups are treated. Chapter XII contains a survey, without proofs, of the 
rationality properties of algebraic groups. 

The reader is supposed to be conversant with the standard results of commutative algebra and 
the structure theory of semisimple Lie algebras. The treatise provides a rich and up-to-date account 
of the theory of linear algebraic groups. 

P. T. Nagy (Szeged) 

J . Lindenstrauss—L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, 188 pages, Springer-
Verlag, Berlin—Heidelberg—New York, 1977. 

The present volume deals with sequence spaces; the notion of a Schauder basis plays a central 
role here. The text is divided into four chapters. Chapter 1 contains a quite complete account of the 
main results on Schauder bases in general Banach spaces. Some notions related to Schauder bases, 
e.g. approximation properties, biorthogonal systems, Schauder decompositions are discussed in 
detail. Chapter 2 is devoted to the study of the classical sequence spaces and c0. Sub-
spaces and characterizations of these spaces among Banach spaces are studied. This chapter contains 
also a discussion of general results related to the approximation property. The last section deals 
with extension properties of c0 and t°°, the lifting property of P- and the automorphisms of these 
spaces. In Chapter 3 the special properties of symmetric bases and the relation between symmetric 
bases and unconditional bases are discussed. The final chapter deals with the study of the structure 
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of some particular classes of spaces with symmetric bases, mainly Orlicz sequence spaces, and gives 
a detailed discussion of such spaces. 

Familiarity with the basic results of real analysis and functional analysis is assumed. The book 
is highly recommended to anyone who is interested in Banach space theory. 

L. Gehér (Szeged) 

P. Medgyessy, Decomposition of superpositions of density functions and discrete distributions 
(Disquisitiones Mathematicae Hungaricae 8), 308 pages, Akadémiai Kiadó, Budapest, 1977. 

The main problem discussed in this book reads as follows. Given the graph of the superposition 
of an unknown number, say N, of components (of unimodal density functions or discrete distribu-
tions) of a given type, how is it possible to determine N and obtain approximate values of some of 
the unknown parameters of the superposition? Problems of this nature arise e.g. in analysing 
spectra in spectroscopy or nuclear physics, in biology, in mathematical statistics etc. The book is 
a successful attempt to treat these problems in a unified way making use of rigorous mathematical 
tools. 

A little monograph "Decomposition of superpositions of distribution functions" (Akadémiai 
Kiadó, Budapest, 1961) was already published by the present author. As far as we know, this was 
the first systematic elaboration on such problems. Unfortunately, several problems that needed to 
be treated were numerically incorrect (ill-posed) thus their treatment was unsatisfactory there. 
A systematic investigation of handling ill-posed problems started in 1962. On the other hand, the 
author also found new ideas and methods in connection with the decomposition problems, as a 
result of which the whole discipline has taken a more coherent form. 

The present book is not a revised or enlarged edition of the earlier work. Naturally, the main 
problem and certain results are the same in both books. However, they are restricted here to a 
narrower area: to superpositions of density functions and of discrete distributions, while the treat-
ment in the earlier book was excessively general. As to the rest, however, this work is thoroughly 
new. The fundamental scope of the present book essentially belongs to numerical analysis, and not 
to probability theory or mathematical statistics. Only methods that can be realized numerically 
are considered, and several former procedures analytically elegant in themselves but useless in 
practice are omitted. In spite of this the majority of tools come from probability theory. 

The book consists of five chapters, divided and subdivided into paragraphs, sections and 
subsections. A Postscript summarizes the possible tasks of future research. Remarks, historical 
comments, unanswered questions etc. are collected at the end of each paragraph under the title 
Supplements and problems. They may also point out the future tasks in this field. 

Chapter I is an introduction. It provides the basic concepts and formulates the so-called de-
composition problem. For density functions this reads as follows. Let fix; a, (!) be a two-parameter 
density function of known analytical form, and let a superposition 

3V 
g(x) = I Pkf(x; ak, fik) 

be given, where N, pk, <xk, fik (k= 1, 2, . . . , AO are unknown parameters; there are no identical pairs 
(otk, fik) and pk> 0. We have to estimate these parameters or a part of them on the basis of the know-
ledge of g(x). 

Chapter II summarizes the mathematical tools applied in the book. Many of them are due to 
the author, e.g., a new characterization of the shape (of the "narrowness") of the graph of a density 
function or discrete distribution (§§ 4 and 5). 

Chapter III is devoted to the decomposition of superpositions of density functions essentially 
by means of the unimodality preserving, narrowness-increasing transformations. Historically the 
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first decomposition problem: the decomposition of superpositions of normal density functions, 
investigated by N. Sen in 1922, appears here as a particular case within a group of problems. This 
chapter also includes the decomposition of superpositions of exponential density funcions, which 
is more difficult than the former one. This problem is important in many fields of natural sciences, too. 

Chapter IV deals with the decomposition of superpositions of discrete distributions. The 
methods here differ from those in the previous chapter essentially in their discrete character. From 
the viewpoint of numerical analysis the situation is much easier here; in the most important cases 
ill-posed problems do not appear and every theoretically good method can be adopted in practice. 

Chapter V surveys those numerical methods which are of use in decomposition problems, e.g. 
the solution of integral equations of the first kind, numerical computation of convolution transforms, 
etc. The most important part of this chapter deals with the numerical treatment of ill-posed problems. 
Among others, the so-called regularization method invented by A. N. Tihonov in 1963 is given in 
detail, as well as several methods of the author, which have been proved useful in certain spe-
cial cases. 

The reading of the book requires only a few notions from probability theory and numerical 
analysis. A great number of figures helps the reader to understand the text. There is an abundance 
of numerical examples taken from practice. 

At the end References, complete up to 1975, list the papers comprising nearly 400 items. 
Certain items from the References were picked out to compose a Chronological Bibliography. 

To sum up, this well-written book fills in a gap in the literature. It provides a rich and up-to-date 
material of the fast-growing discipline indicated in its title, whose significance is becoming crucial 
for practice. 

It is no exaggeration to say that the book is indispensable for everyone, either mathematician 
or specialist in a field of sciences, dealing with decomposition problems. It is also very useful 
for all those mathematicians whose interest is in probability theory, mathematical statistics or 
numerical analysis. 

F. Móricz (Szeged) 

N. Rouche—P. Habets—M. Laloy, Stability theory by Liapunov's direct method (Applied 
Mathematical Sciences, Vol. 22), XII+396 pages, Springer-Verlag, New York—Heidel-
berg—Berlin, 1977. 

In 1892 A. M. Ljapunov invented a new method — called by himself a direct method — for 
the study of stability and asymptotic properties of solutions of ordinary differential equations. 
By the aid of this method, based upon the study of the behaviour of certain scalar auxiliary "energy-
like" functions along the solutions, he solved numerous important problems in theoretical mechanics 
and in the qualitative theory of differential equations. The direct method was further developed by 
N. G. Cetajev and his school in the 1930—40's. In the 1950's the development was even more rapid 
since the method proved to be most useful in the study of stability problems in control systems and 
in biological, physical, technical and economical systems described by ordinary differential equations. 

Although this development is still going on, no book wholly devoted to the subject was pub-
lished since 1967, when W. Hahn's book appeared. So an up-to-date monograph was needed to 
synthetize modern results of the theory, to describe its present state, and to make users of mathe-
matics acquainted with the latest interesting applications taken from various fields. This excellent 
book answers these purposes in every respect. It is a collective work based on the material of a seminar 
held at the University of Louvain during the academic year 1971—72. Besides the three authors, 
C. Risito, K. Peiffer, R. J. Ballieu, Dang Chan Phien and J. L. Corne also worked on some chapters. 

In the first two chapters the authors give a compact but intelligible introduction to the basic 
concepts, theorems and topics of stability theory, which are already considered classical. 
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Chapter III is a pearl in the book. As Lagrange stated and Dirichlet proved, a mechanical 
equilibrium of a conservative system is stable at each point where the potential function has a strict 
minimum. In this chapter, the authors first study some versions of this theorem. Next, they consider 
the inversion of this theorem, a classical incompletely solved problem of theoretical mechanics: 
In the two final sections the effect of dissipative and gyroscopic forces on stability properties of an 
equilibrium position is treated. The chapter is very valuable also because this topic was not considered 
in earlier monographs. 

The following three chapters are: IV. Stability in the presence of first integrals; V. Instability; 
VI. A survey of qualitative concepts. 

A set of the phase space is called attractive if every solution starting near the set tends to the 
set as f-«-°°. Chapters VII and VIII deal with this concept for autonomous and nonautonomous 
equations, which have been recently studied in addition to asymptotic stability. 

Chapter IX is a splendid review of the comparison method, which can be considered as the com-
bination of the classical Ljapunov method with the theory of differential inequalities. 

The subject-matter of the book is fortunately selected so that the reader is informed of what 
happened in the Ljapunov theory of stability during the last decade. The style is always clear, 
precise, but not too abstract even for users of mathematics. For them the latest significant and 
characteristic applications of Ljapunov's direct method will especially be useful, e.g. stability and 
instability of the betatron, nonlinear electrical networks, the ecological problem of interacting 
populations, stability of composite systems. 

This book is indispensable for specialists in stability problems, or more generally, in the quali-
tative theory of differential equations, but it is also useful for students and for everybody interested 
in applications of differenctial equations. 

L. Hatvani—L. Pintér (Szeged) 

The State of the Art in Numerical Analysis, Proceedings of the conference held at The Univer-
sity of York, England, April 12—15,1976; organized by The Institute of Mathematics and its Appli-
cations; edited by D. A. H. Jacobs; XIX+978 pages, Academic Press, London—New York—San 
Francisco, 1977. 

The book surveys those areas of numerical analysis in which considerable advance has been 
achieved during the last ten years (1965—1975). It provides descriptions of theories, comparisons 
of methods, computational techniques and even algorithms, while indicating in some cases where 
current research efforts are being concentrated, and in others where future research might profitably 
be directed. 

The book is divided into seven Parts, each of which comprises several chapters. Alternatively 
each Part of the book can be consulted to obtain a survey of one branch of numerical analysis, or 
all the Parts together to obtain an up-to-date overview of the many different branches and topics 
of numerical analysis. 

Part I: Linear Algebra. Very valuable contributions are made here by J. H. Wilkinson (Some 
Recent Advances in Numerical Linear Algebra giving, among others, a concise account of the square-
root-free Givens transformations, the QZ algorithm), P. E. Gill and W. Murray (Modification of 
Matrix Factorizations after a Rank-one Change), and J. K. Reid (Sparse Matrices). 

Part II: Error analysis. It begins with the explanation of the ideas of error analysis made by 
C. G. Broyden, then follow contributions by N. Metropolis (Methods of Significance Arithmetic) 
and K. Nickel (Interval-Analysis). 

Part III: Optimization and Non-Linear Systems. Here the most remarkable chapters are by 
K. W. Brodlie (Unconstrained Minimization) and J. E. Dennis, Jr. (Non-Linear Least Squares and 
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Equations). The first gives a rather comprehensive account of the quasi-Newton methods from the 
original conception to modern implementations and new ideas, while the second treats unconstrained 
minimization, non-linear squares, and simultaneous solution of non-linear equations as a trilogy 
of problems. There follow contributions by P. E. Gill and W. Murray (Linearly-Constrained Problems 
including Linear and Quadratic Programming), R. Fletcher (Methods for Solving Non-Linearly 
Constrained Optimization Problems), and E. M. L. Beale (Integer Programming). 

Part IV: Ordinary Differential Equations and Quadrature. The initial value problem (including 
the problem of stiff systems) is discussed by J. D. Lambert and the boundary value problem by 
J. Walsh. J. E. Lyness ( Quid, Quo. Quadrature ) deals in detail with the principles of automatic quadra-
ture routines and multidimensional quadrature. 

Part V: Approximation Theory. It contains three chapters: Numerical Methods for Fitting 
Functions of Two Variables by M. J. D. Powell, Recent Results in Approximation Theory by D-
Kershaw, and A Survey of Numerical Methods for Data and Function Approximation by M. G. Cox. 

Part VI : Parabolic and Hyperbolic Problems consisting of the following chapters : Finite Element 
Methods in Time Dependent Problems by A. R. Mitchell, Initial-Value Problems by Finite Difference 
and Other Methods by K. W. Morton with special emphasis on stability problems and convergence, 
Splitting Methods for Time Dependent Partial Differential Equations by A. R. Gourlay. 

Part VII : Elliptic Problems and Integral Equations. An exhaustive study is given by L. Fox 
(Finite-Difference Methods for Elliptic Boundary- Value Problems), presenting new developments 
in economic direct methods, strongly implicit iterative and factorization methods, mechanization 
of some acceleration devices, etc. The further chapters are by R. Wait (Finite Element Methods for 
Elliptic Problems) and Ben Noble (The Numerical Solution of Integral Equations). 

It may be anticipated that a large number of those practicing numerical analysis in industry 
or at universities and technical colleges will find great value in reading this book. Their knowledge 
and appreciation of the different aspects of numerical analysis should be greatly increased. It will 
also be of great value for teachers, as a source book of up-to-date information. Useful references 
for further study and a rich bibliography are added to this valuable work. 

F. Móricz (Szeged) 

André Weil, Elliptic functions according to Eisenstein and Kronecker (Ergebnisse der Mathematik 
und ihrer Grenzgebiete, Band 88), 93 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1976. 

In the first part of the book the author successfully presents Eisenstein's approach to elliptic 
functions. One of the most important virtues of this approach is that it supplies directly (without 
recourse to function theory) many formulas on elliptic functions, in the explicit form, appropriate 
for their use in number theory. 

The principal chapters of this part are: Trigonometric functions, The basic elliptic functions. 
Basic relations and infinite products. 

The second part gives a systematic exposition of applications of Eisenstein's approach. It also 
reinterpretes some of the results of Kronecker using the theory of distributions. 

The principal chapters of this part are: Kronecker's double series, Pell's equation and the 
Chowla—Selberg formula. 

J. Németh (Szeged) 

• Alan I. Weir, General Integration and Measure, vol. 2, XI+298 pages, Cambridge University 
Press, 1974. 

The present volume (comprising Chapters 8—17 of the work) is written as "self-contained" 
as possible. Chapter 8 introduces the notion of the Daniell integral. The fundamental Monotone 
and Dominated Convergence Theorems are established. Measurable functions are defined in terms 
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of integrable functions by using the idea of truncation of a function by another function. The 
notion of measure follows naturally. Stone's theorem relating measure and integration is proved. 
In Chapter 9 Lebesgue—Stieltjes integrals are defined as Daniell integrals on spaces Z,1(/?k), which 
contain all the step functions (or equivalently all the continuous functions on Rk which vanish 
outside a compact set). Various forms of Riesz's Representation Theorem for bounded linear 
functionals on the space of continuous functions on a compact topological space provide the subject 
matter of Chapter 10. In Chapter 11 the general notion of measure is introduced, the extension of 
a measure on a ring to a measure on a <r-algebra is done by means of the Daniell integral. Chapter 
12 contains a classical approach of the problem of integration with respect to a measure on a a-
algebra. Chapter 13 is devoted to the study of uniqueness of extensions of measures in the case 
where the universal space is <T-finite with respect to the measure. In Chapter 14 product measures 
are defined as extensions of a measure on elementary product sets to a measure on a c-algebra. 
Chapter 16 introduces the notions of real and complex measures. The Jordan Decomposition Theo-
rem shows the connection between positive and real or complex measures. In Chapter 17 the Radon— 
Nikodym theorem is proved both in measure theoretic form and for Daniell integrals, and used for a 
study of dual spaces of L* spaces. A short Appendix gives a summary of the most important topolo-
gical notions used in the text. All the chapters end with exercises; the solutions can be found at the 
end of the book. 

An elementary knowledge of topological spaces is assumed. The book is offered for students. 

L. Geher (Szeged) 
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