4 research outputs found

    Face recognition with the RGB-D sensor

    Get PDF
    Face recognition in unconstrained environments is still a challenge, because of the many variations of the facial appearance due to changes in head pose, lighting conditions, facial expression, age, etc. This work addresses the problem of face recognition in the presence of 2D facial appearance variations caused by 3D head rotations. It explores the advantages of the recently developed consumer-level RGB-D cameras (e.g. Kinect). These cameras provide color and depth images at the same rate. They are affordable and easy to use, but the depth images are noisy and in low resolution, unlike laser scanned depth images. The proposed approach to face recognition is able to deal with large head pose variations using RGB-D face images. The method uses the depth information to correct the pose of the face. It does not need to learn a generic face model or make complex 3D-2D registrations. It is simple and fast, yet able to deal with large pose variations and perform pose-invariant face recognition. Experiments on a public database show that the presented approach is effective and efficient under significant pose changes. Also, the idea is used to develop a face recognition software that is able to achieve real-time face recognition in the presence of large yaw rotations using the Kinect sensor. It is shown in real-time how this method improves recognition accuracy and confidence level. This study demonstrates that RGB-D sensors are a promising tool that can lead to the development of robust pose-invariant face recognition systems under large pose variations

    GPS-MIV: The General Purpose System for Multi-display Interactive Visualization

    Get PDF
    The new age of information has created opportunities for inventions like the internet. These inventions allow us access to tremendous quantities of data. But, with the increase in information there is need to make sense of such vast quantities of information by manipulating that information to reveal hidden patterns to aid in making sense of it. Data visualization systems provide the tools to reveal patterns and filter information, aiding the processes of insight and decision making. The purpose of this thesis is to develop and test a data visualization system, The General Purpose System for Multi-display Interactive Visualization (GPS-MIV). GPS-MIV is a software system allowing the user to visualize data graphically and interact with it. At the core of the system is a graphics system that displays different computer generated scenes from multiple perspectives and with multiple views. Additionally, GSP-MIV provides interaction for the user to explore the scene

    Detecci贸n robusta de la orientaci贸n de la cabeza del usuario a partir de una c谩mara RGBZ

    Get PDF
    La localizaci贸n de caras es una caracter铆stica ampliamente utilizada actualmente en diferentes productos software. Adem谩s, con la aparici贸n de sensores RGBZ (como la Kinect o la RealSense) se ha a帽adido la capacidad no s贸lo detectar d贸nde hay una cabeza, si no de obtener informaci贸n tridimensional sobre la misma. En este proyecto se dise帽a, desarrolla y analiza un software que permita obtener, mediante el uso de las c谩maras RGBZ anteriormente mencionadas, la orientaci贸n 3D de la cabeza del usuario que est茅 delante de ellas, es decir, los 谩ngulos que determinan hacia qu茅 direcci贸n est谩 mirando el usuario. Para ello se ha dise帽ado un algoritmo basado en el m茅todo Iterative Closest Point, de forma que por cada imagen capturada por la c谩mara se detecte qu茅 谩ngulos presenta la cabeza. Tambi茅n se ha desarrollado una plataforma externa utilizando un servomotor y un microcontrolador Arduino, permitiendo realizar pruebas de los diferentes par谩metros del algoritmo para validar sus resultados, mediante una plataforma giratoria sobre la que se puede orientar con precisi贸n una reproducci贸n a escala de una cabeza 3D.La localitzaci贸 de cares es una caracter铆stica 脿mpliament utilitzada en diferents productes software actualment. A m茅s, amb l鈥檃parici贸 de sensors RGBZ (com la Kinect o la RealSense) s鈥檋a afegit la capacitat de, no nom茅s detectar a on hi ha una cara, si no d鈥檕btenir la informaci贸 tridimensional d鈥檃questa. En aquest projecte es dissenya, desenvolupa i s鈥檃nalitza un software que permeti obtenir, mitjan莽ant l鈥櫭簊 de les c脿meres RGBZ anteriorment nombrades, la orientaci贸 del cap de l鈥檜suari que es trobi davant d鈥檈lles, 茅s a dir, dels angles que defineixen cap a quina direcci贸 est脿 mirant l鈥檜suari. Per aconseguir-ho s鈥檋a dissenyat un algoritme basat en el m猫tode Iterative Closest Point, de manera que per cada imatge capturada per la c脿mera es detecti quins angles presenta el cap. Tamb茅 s鈥檋a desenvolupat una plataforma externa utilitzant un motor i un microcontrolador Arduino, a on es poden realitzar proves dels diferents par脿metres de l鈥檃lgoritme per validar els resultats mitjan莽ant una plataforma girat貌ria sobre la qual s鈥檋a col路locat una reproducci贸 a escala d鈥檜n cap en tres dimensions que es pot orientar amb precisi贸.Face localization has become a hugely demanded feature in many different sofware products. In addition, with the appearence of RGBZ sensors (such as the Kinect and the RealSense) the capacity of not only detecting where the face is located but also obtaining the 3D orientation of the face has been added. In this project we aim to design, develop and test a software able to, using the RGBZ sensors, detect the pose of the head of a user in front of the camera, that is, extract the three angles that define the direction of the head. To do that, we developed an algorithm based on the Iterative Closest Point family. For each image provided by the camera, the angles are detected. An external platform was also developed using a servomotor and an Arduino microcontroller, able to perform tests of the different parameters of the algorithm to validate the results using a rotating base that can turn precisely a reproduction of a real-size 3D printed head
    corecore