674 research outputs found

    A greedy heuristic for workforce scheduling and routing with time-dependent activities constraints

    Get PDF
    We present a greedy heuristic (GHI) designed to tackle five time-dependent activities constraints (synchronisation, overlap, minimum difference, maximum difference and minimum-maximum difference) on workforce scheduling and routing problems. These types of constraints are important because they allow the modelling of situations in which activities relate to each other time-wise, e.g. synchronising two technicians to complete a job. These constraints often make the scheduling and routing of employees more difficult. GHI is tested on set of benchmark instances from different workforce scheduling and routing problems (WSRPs). We compare the results obtained by GHI against the results from a mathematical programming solver. The comparison seeks to determine which solution method achieves more best solutions across all instances. Two parameters of GHI are discussed, the sorting of employees and the sorting of visits. We conclude that using the solver is adequate for instances with less than 100 visits but for larger instances GHI obtains better results in less time

    Optimisation models and algorithms for workforce scheduling and routing

    Get PDF
    This thesis investigates the problem of scheduling and routing employees that are required to perform activities at clients’ locations. Clients request the activities to be performed during a time period. Employees are required to have the skills and qualifications necessary to perform their designated activities. The working time of employees must be respected. Activities could require more than one employee. Additionally, an activity might have time-dependent constraints with other activities. Time-dependent activities constraints include: synchronisation, when two activities need to start at the same time; overlap, if at any time two activities are being performed simultaneously; and with a time difference between the start of the two activities. Such time difference can be given as a minimum time difference, maximum time difference, or a combination of both (min-max). The applicability of such workforce scheduling and routing problem (WSRP) is found in many industries e.g. home health care provision, midwives visiting future mothers, technicians performing installations and repairs, estate agents showing residences for sale, security guards patrolling different locations, etc. Such diversity makes the WSRP an important combinatorial optimisation problem to study. Five data sets, obtained from the literature, were normalised and used to investigate the problem. A total of 375 instances were derived from these data sets. Two mathematical models, an integer and a mixed integer, are used. The integer model does not consider the case when the number of employees is not enough to perform all activities. The mixed integer model can leave activities unassigned. A mathematical solver is used to obtain feasible solutions for the instances. The solver provides optimal solutions for small instances, but it cannot provide feasible solutions for medium and large instances. This thesis presents the gradual development of a greedy heuristic that is designed to tackle medium and large instances. Five versions of the greedy heuristic are presented, each of them obtains better results than the previous one. All versions are compared to the results obtained by the mathematical solver when using the mixed integer model. The greedy heuristic exploits domain information to speed the search and discard infeasible solutions. It uses tailored functions to deal with each of the time-dependent activity constraints. These constraints make more difficult the solution process. Further improvements are obtained by using tabu search. It provides moves based on the tailored functions of the greedy heuristic. Overall, the greedy heuristic and the tabu search, maintain feasible solutions at all times. The main contributions of this thesis are: the definition of WSRP; the introduction of 375 instances based on five data sets; the adaptation of two mathematical models; the introduction of a greedy heuristic capable of obtaining better results than the solver; and, the implementation of a tabu search to further improve the results

    Optimisation models and algorithms for workforce scheduling and routing

    Get PDF
    This thesis investigates the problem of scheduling and routing employees that are required to perform activities at clients’ locations. Clients request the activities to be performed during a time period. Employees are required to have the skills and qualifications necessary to perform their designated activities. The working time of employees must be respected. Activities could require more than one employee. Additionally, an activity might have time-dependent constraints with other activities. Time-dependent activities constraints include: synchronisation, when two activities need to start at the same time; overlap, if at any time two activities are being performed simultaneously; and with a time difference between the start of the two activities. Such time difference can be given as a minimum time difference, maximum time difference, or a combination of both (min-max). The applicability of such workforce scheduling and routing problem (WSRP) is found in many industries e.g. home health care provision, midwives visiting future mothers, technicians performing installations and repairs, estate agents showing residences for sale, security guards patrolling different locations, etc. Such diversity makes the WSRP an important combinatorial optimisation problem to study. Five data sets, obtained from the literature, were normalised and used to investigate the problem. A total of 375 instances were derived from these data sets. Two mathematical models, an integer and a mixed integer, are used. The integer model does not consider the case when the number of employees is not enough to perform all activities. The mixed integer model can leave activities unassigned. A mathematical solver is used to obtain feasible solutions for the instances. The solver provides optimal solutions for small instances, but it cannot provide feasible solutions for medium and large instances. This thesis presents the gradual development of a greedy heuristic that is designed to tackle medium and large instances. Five versions of the greedy heuristic are presented, each of them obtains better results than the previous one. All versions are compared to the results obtained by the mathematical solver when using the mixed integer model. The greedy heuristic exploits domain information to speed the search and discard infeasible solutions. It uses tailored functions to deal with each of the time-dependent activity constraints. These constraints make more difficult the solution process. Further improvements are obtained by using tabu search. It provides moves based on the tailored functions of the greedy heuristic. Overall, the greedy heuristic and the tabu search, maintain feasible solutions at all times. The main contributions of this thesis are: the definition of WSRP; the introduction of 375 instances based on five data sets; the adaptation of two mathematical models; the introduction of a greedy heuristic capable of obtaining better results than the solver; and, the implementation of a tabu search to further improve the results

    A Genetic Algorithm for a Workforce Scheduling and Routing Problem

    Get PDF
    The Workforce Scheduling and Routing Problem refers to the assignment of personnel to visits across various geographical locations. Solving this problem demands tackling scheduling and routing constraints while aiming to minimise the total operational cost. This paper presents a Genetic Algorithm (GA) tailored to tackle a set of real-world instances of this problem. The proposed GA uses a customised chromosome representation to maintain the feasibility of solutions. The performance of several genetic operators is investigated in relation to the tailored chromosome representation. This paper also presents a study of parameter settings for the proposed GA in relation to the various problem instances considered. Results show that the proposed GA, which incorporates tailored components, performs very well and is an effective baseline evolutionary algorithm for this difficult problem

    A greedy heuristic approach for the project scheduling with labour allocation problem

    Get PDF
    Responding to the growing need of generating a robust project scheduling, in this article we present a greedy algorithm to generate the project baseline schedule. The robustness achieved by integrating two dimensions of the human resources flexibilities. The first is the operators’ polyvalence, i.e. each operator has one or more secondary skill(s) beside his principal one, his mastering level being characterized by a factor we call “efficiency”. The second refers to the working time modulation, i.e. the workers have a flexible time-table that may vary on a daily or weekly basis respecting annualized working strategy. Moreover, the activity processing time is a non-increasing function of the number of workforce allocated to create it, also of their heterogynous working efficiencies. This modelling approach has led to a nonlinear optimization model with mixed variables. We present: the problem under study, the greedy algorithm used to solve it, and then results in comparison with those of the genetic algorithms

    An investigation of heuristic decomposition to tackle workforce scheduling and routing with time-dependent activities constraints

    Get PDF
    This paper presents an investigation into the application of heuristic decomposition and mixed-integer programming to tackle workforce scheduling and routing problems (WSRP) that involve time dependent activities constraints. These constraints refer to time-wise dependencies between activities. The decomposition method investigated here is called repeated decomposition with conflict repair (RDCR) and it consists of repeatedly applying a phase of problem decomposition and sub-problem solving, followed by a phase dedicated to conflict repair. In order to deal with the time-dependent activities constraints, the problem decomposition puts all activities associated to the same location and their dependent activities in the same sub-problem. This is to guarantee the satisfaction of time-dependent activities constraints as each sub-problem is solved exactly with an exact solver. Once the assignments are made, the time windows of dependent activities are fixed even if those activities are subject to the repair phase. The paper presents an experimental study to assess the performance of the decomposition method when compared to a tailored greedy heuristic. Results show that the proposed RDCR is an effective approach to harness the power of mixed integer programming solvers to tackle the difficult and highly constrained WSRP in practical computational time. Also, an analysis is conducted in order to understand how the performance of the different solution methods (the decomposition, the tailored heuristic and the MIP solver) is affected by the size of the problem instances and other features of the problem. The paper concludes by making some recommendations on the type of method that could be more suitable for different problem sizes

    An investigation of heuristic decomposition to tackle workforce scheduling and routing with time-dependent activities constraints

    Get PDF
    This paper presents an investigation into the application of heuristic decomposition and mixed-integer programming to tackle workforce scheduling and routing problems (WSRP) that involve timedependent activities constraints. These constraints refer to time-wise dependencies between activities. The decomposition method investigated here is called repeated decomposition with con ict repair (RDCR) and it consists of repeatedly applying a phase of problem decomposition and sub-problem solving, followed by a phase dedicated to con ict repair. In order to deal with the time-dependent activities constraints, the problem decomposition puts all activities associated to the same location and their dependent activities in the same sub-problem. This is to guarantee the satisfaction of time-dependent activities constraints as each sub-problem is solved exactly with an exact solver. Once the assignments are made, the time windows of dependent activities are fixed even if those activities are subject to the repair phase. The paper presents an experimental study to assess the performance of the decomposition method when compared to a tailored greedy heuristic. Results show that the proposed RDCR is an effective approach to harness the power of mixed integer programming solvers to tackle the diffcult and highly constrained WSRP in practical computational time. Also, an analysis is conducted in order to understand how the performance of the different solution methods (the decomposition, the tailored heuristic and the MIP solver) is accected by the size of the problem instances and other features of the problem. The paper concludes by making some recommendations on the type of method that could be more suitable for different problem sizes

    A study of genetic operators for the Workforce Scheduling and Routing Problem

    Get PDF
    The Workforce Scheduling and Routing Problem (WSRP) is concerned with planning visits of qualified workers to different locations to perform a set of tasks, while satisfying each task time-window plus additional requirements such as customer/workers preferences. This type of mobile workforce scheduling problem arises in many real-world operational scenarios. We investigate a set of genetic operators including problem-specific and well-known generic operators used in related problems. The aim is to conduct an in-depth analysis on their performance on this very constrained scheduling problem. In particular, we want to identify genetic operators that could help to minimise the violation of customer/workers preferences. We also develop two cost-based genetic operators tailored to the WSRP. A Steady State Genetic Algorithm (SSGA) is used in the study and experiments are conducted on a set of problem instances from a real-world Home Health Care scenario (HHC). The experimental analysis allows us to better understand how we can more effectively employ genetic operators to tackle WSRPs
    • …
    corecore