Castillo Salazar, José Arturo (2015) Optimisation models and algorithms for workforce scheduling and routing. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:

http://eprints.nottingham.ac.uk/30886/1/JACS\ PHD\ THESIS.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial licence and may be reused according to the conditions of the licence. For more details see: http://creativecommons.org/licenses/by-nc/2.5/

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

The University of Nottingham

ASAP

Optimisation Models and Algorithms for Workforce Scheduling and Routing

by José Arturo Castillo Salazar, MSc

Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy.

Abstract

This thesis investigates the problem of scheduling and routing employees that are required to perform activities at clients' locations. Clients request the activities to be performed during a time period. Employees are required to have the skills and qualifications necessary to perform their designated activities. The working time of employees must be respected. Activities could require more than one employee. Additionally, an activity might have time-dependent constraints with other activities. Time-dependent activities constraints include: synchronisation, when two activities need to start at the same time; overlap, if at any time two activities are being performed simultaneously; and with a time difference between the start of the two activities. Such time difference can be given as a minimum time difference, maximum time difference, or a combination of both (min-max). The applicability of such workforce scheduling and routing problem (WSRP) is found in many industries e.g. home health care provision, midwives visiting future mothers, technicians performing installations and repairs, state agents showing residences for sale, security guards patrolling different locations, etc. Such diversity makes the WSRP an important combinatorial optimisation problem to study. Five data sets, obtained from the literature, were normalised and used to investigate the problem. A total of 375 instances were derived from these data sets. Two mathematical models, an integer and a mixed integer, are used. The integer model does not consider the case when the number of employees is not enough to perform all activities. The mixed integer model can leave activities unassigned. A mathematical solver is used to obtain feasible solutions for the instances. The solver provides optimal solutions for small instances, but it cannot provide feasible solutions for medium and large instances. This thesis presents the gradual development of a greedy heuristic that is designed to tackle medium and large instances. Five versions of the greedy heuristic are presented, each of them obtains better results than the previous one. All versions are compared to the results obtained by the mathematical solver by using the mixed integer model. The greedy heuristic exploits domain information to speed the search and discard infeasible solutions. It uses tailored functions to deal with each of the time-dependent activity constraints. These constraints make more difficult the solution process. Further improvements are obtained by using tabu search. It provides moves based on the tailored functions of the greedy heuristic. Overall, the greedy heuristic and the tabu search, maintain feasible solutions at all times. The main contributions of this thesis are: the definition of WSRP; the introduction of 375 instances based on five data sets; the adaptation of two mathematical models; the introduction of a greedy heuristic capable of obtaining better results than the solver; and, the implementation of a tabu search to further improve the results.

Publications

1. Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2012). A survey on workforce scheduling and routing problems. In Proceedings of the 9th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 283-302, Son, Norway
2. Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2014a). Computational study for workforce scheduling and routing problems. In ICORES 2014-Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems, pages 434-444
3. Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2014b). Workforce scheduling and routing problems: literature survey and computational study. Annals of Operations Research, doi: 10.1007/s10479-014-1687-2
4. Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2015). A greedy heuristic for workforce scheduling and routing with time-dependent activities constraints. In ICORES 2015 - Proceedings of the 4 th International Conference on Operations Research and Enterprise Systems, pages 367-375, Lisbon, Portugal. INSTICC, Scitepress
5. Laesanklang, W., Landa-Silva, D., and Castillo-Salazar, J. A. (2015). Mixed integer programming with decomposition to solve a workforce scheduling and routing problem. In ICORES 2015 - Proceedings of the 4 th International Conference on Operations Research and Enterprise Systems, pages 283-293, Lisbon, Portugal. INSTICC, Scitepress

Acknowledgements

This research programme would not have been possible without the financial support provided by: the University of Nottingham through the International Research Excellence Scholarship awarded to overseas students; Mexico's National Council for Science and Technology (CONACYT) via the scholarship (SICOB 214017); and The United Kingdom's Engineering and Physical Sciences Research Council (EPSRC) via the LANCS initiative (EP/F033214/1).

I am deeply grateful to my main supervisor Dr. Dario Landa Silva for his patience, guidance and encouragement throughout the doctoral programme. In particular, for his help in securing all the necessary funding and for always being willing to review my work at very short notice. His support went beyond his academic duties.

I would like to thank as well my second supervisor Dr. Rong Qu for her insightful comments and suggestions which improved the quality and clarity of my work. My gratitude goes also to my viva voce examiners Dr Rhydian Lewis (external) and Dr. Ender Özcan (internal). Their invaluable comments were included in the final version of this thesis.

My gratitude goes towards the academics who shared their data, experience and insights, Prof. Greet Vanden Berghe, Prof. Volker Nissen, Prof. David Murray Ryan and Matias Sevel Rasmussen. Special thanks to Prof. Patrick De Causmaecker for receiving me at Kulak in Kortrijk, Belgium for a short research visit.

The unique environment of the ASAP research group provided me with all the support both at an academical and personal level to complete this programme. Thanks to the many fellow PhD researchers with whom I shared this time at Nottingham, you helped this adventure to be a more enjoyable one. Among them: Rodrigo, Wasakorn, Haneen, Maria, Jonatã, Özgür, Urszula, James, Anas, Ahmed, Juan Pedro, Stefan, Monica, Mina, Imo, Raras, Binhui, Osman and Peng. Equally important, I would like to acknowledge the support provided by the administrative staff at the school of computer science, in particular Deborah Pitchfork and Christine Fletcher.

I could not have finished this programme without the constant support and motivation of my mother, Ana Bertha, thanks for always being there regardless of time and distance. Thanks to my sister, Ana Laura, for keeping me updated with the events at home. And, I would particularly like to thank Karolina for being that special person in my life whom I can always rely upon.

Contents

1 Introduction 1
1.1 Motivation and Scope 2
1.2 Thesis Contributions 3
1.2.1 Publications 4
1.2.2 Additional Planned Publications 5
1.2.3 Other Contributions 5
1.3 Thesis Overview 6
1.3.1 Chapter 2 6
1.3.2 Chapter 3 6
1.3.3 Chapter 4 7
1.3.4 Chapter 5 7
1.3.5 Chapter 6 7
1.3.6 Chapter 7 8
1.3.7 Chapter 8 8
2 Workforce Scheduling and Routing 9
2.1 Problem description 9
2.2 Main Characteristics of WSRP 11
2.2.1 Time windows 11
2.2.2 Transportation modality 12
2.2.3 Start and finish locations 12
2.2.4 Skills and qualifications 13
2.2.5 \quad Service time 13
2.2.6 Connected activities 14
2.2.7 Teaming 14
2.2.8 Clustering 15
2.3 Other Characteristics of WSRP 15
2.3.1 Multiple trips 15
2.3.2 Preparation time 15
2.3.3 Driving restrictions 16
2.3.4 Preferences 16
2.3.5 Heterogeneous Shifts 16
2.3.6 Rostering restrictions 17
2.3.7 Shared Transportation 17
2.3.8 Break scheduling 17
2.3.9 Number of workers 17
2.3.10 Overtime 18
2.3.11 Planning levels 18
2.4 Relation to the Vehicle Routing Problem 18
2.5 WSRP as a combinatorial problem 19
3 Background 21
3.1 Solution Methodologies 21
3.1.1 Exact Methods 22
3.1.1.1 Linear Programming 22
3.1.1.2 Constraint Programming 22
3.1.1.3 Branch \& Bound, Branch \& Price and Branch \& Cut 23
3.1.2 Heuristics Algorithms 24
3.1.2.1 Trajectory Methods 25
3.1.2.2 Simulated Annealing 25
3.1.2.3 Tabu Search. 26
3.1.2.4 Other Trajectories methods 27
3.1.2.5 Population-based methods 27
3.1.2.6 Ant Colony Optimisation 27
3.1.2.7 \quad Particle Swarm Optimisation 28
3.1.2.8 Other populations-based methods 28
3.1.3 Hybrid Methods 29
3.1.3.1 Matheuristics 29
3.2 Related Work 30
3.2.1 Vehicle routing problem with time windows 30
3.2.2 Personnel Scheduling 31
3.2.3 Workforce Scheduling and Routing 32
3.2.3.1 Home Health Care 33
3.2.3.2 Home Care 34
3.2.3.3 Scheduling Technicians 35
3.2.3.4 Security Personnel Routing and Rostering 37
3.2.3.5 Manpower Allocation 37
3.3 Summary 38
4 WSRP Benchmark 43
4.1 Introduction 43
4.2 Description of original data sets 44
4.2.1 VRPTW data set 44
4.2.1.1 Solomon's data set 44
4.2.1.2 Multi-objective VRPTW data set 45
4.2.2 Home health care data set 45
4.2 .3 Security guards patrolling data set 46
4.2.4 Technicians scheduling instance 46
4.3 Modifications to data sets 46
4.3.1 Adaptations to VRPTW data sets 47
4.3.1.1 Solomon's data set 47
4.3.1.2 Multi-objective VRPTW data set 48
4.3.2 Adaptations to home health care data set 48
4.3.3 Adaptations to security guards patrolling data set 49
4.3.4 \quad Adaptation to technicians scheduling instance 49
4.4 Analyses of data sets 50
4.4.1 Number of activities 50
4.4.2 Number of employees 51
4.4.2.1 Relationship between Visits and Employees 52
4.4.3 Employees' skills 54
4.4.4 Time windows 55
4.4.5 Service Time 57
4.4.6 Planning horizon 57
4.4.6.1 Ratio working capability/work demand 59
4.4.7 Teaming and time-dependent activities constraints. 60
4.5 Summary 61
5 Mathematical Programming Models 67
5.1 Introduction 67
5.2 IP Model 67
5.2.1 IP Model Description 68
5.2.2 Modifications to IP model 70
5.2.3 Experiments using the IP Model 71
5.2.3.1 Tackling the first objective 71
5.2.3.2 Overview of Results 72
5.2.3.3 Tackling the second objective 73
5.2.3.4 Experiment Design 74
5.2.3.5 Experimental Results 75
5.2.3.6 Review of the First objective: Varying time limit 76
5.2.3.7 Tackling the Third objective: Gurobi results 77
5.2.4 IP Model Remarks 77
5.3 MIP Model 79
5.3.1 From IP to MIP: model adaptations 80
5.3.1.1 Modelling of Teaming constraints 81
5.3.2 MIP Model description 81
5.3.2.1 Reduction in the number of variables 84
5.3.3 Experiments 84
5.3.3.1 Setting parameters and weights in the MILP 84
5.3.4 Results 86
5.3.5 Analysis of results 87
5.3.6 Gap analysis 91
5.3.6.1 Analysis of Feasible Results 92
5.4 Conclusions 94
6 A Greedy Heuristic for WSRP 97
6.1 Introduction 97
6.2 Solution Structure Representation 98
6.3 Design of the Greedy Heuristic 99
6.3.1 Bin-packing inspired approach 99
6.3.1.1 Parameter solCriterion values 103
6.3.1.2 Parameter listCriterion values 103
6.3.2 Broadening the search for idle time: GH2 104
6.3.3 Addressing time-dependent constraints: GH3 105
6.3.3.1 Functions for time-dependent activities constraints 106
6.3.4 Introducing a summary of candidate allocations: GH4 112
6.3.5 Branching: GH5 115
6.3.6 Optional Improvement: Multi-start 116
6.4 Experimental Results 118
6.4.1 GH1 Results 119
6.4.1.1 Results group classification 119
6.4.2 GH2 Results 121
6.4.2.1 Results group classification 121
6.4.3 GH3 Results 122
6.4.3.1 Results group classification 122
6.4.4 GH4 Results 124
6.4.4.1 Results group classification 124
6.4.5 GH5 Results 125
6.4.5.1 Results group classification 125
6.4.6 GH5 Results with maxBranching $=\{20,40$ and 50$\}$ 127
6.4.7 Best overall results 128
6.5 Conclusion 128
7 A Tabu Search Approach for WSRP 131
7.1 Introduction 131
7.2 OpenTS Framework 132
7.3 Tabu Search Description 134
7.3.1 Neighbourhood Moves 135
7.3.1.1 Insert 136
7.3.1.2 Insert for Time-dependent Constraints 137
7.3.1.3 Swap 138
7.3.1.4 Remove to Unassigned 139
7.3.1.5 Shift 140
7.3.2 Tabu Search Parameters 140
7.3.2.1 Evaluation Function 142
7.3.2.2 Initial solution 143
7.3.2.3 Tabu tenure 143
7.3.2.4 Aspiration Criteria 144
7.3.2.5 Perturbation 145
7.3.2.6 \quad Stop criteria: \# of Iterations and Computation Time 145
7.4 Experimental Results 145
7.5 Conclusion 154
8 Conclusions and Future Work 157
8.1 Introduction 157
8.2 Review of Contributions 158
8.2.1 WSRP Data Sets 158
8.2.2 Mathematical Models 158
8.2.3 Teaming Representation 159
8.2.4 Greedy Heuristic for WSRP 159
8.2.5 Tabu Search Implementation 160
8.2.6 Benchmark Results 161
8.2.6.1 Best Results 161
8.3 Future Work 161
Bibliography 165
Appendix A Data set summary 177
Appendix B Result of experiments - IP Model 185
B. 1 Results with teaming \& time-dependencies 185
B. 2 Results without teaming \& time-dependencies 188
B. 3 Teaming \& time-dependencies (limit 1 hour) 192
B. 4 Teaming \& time-dependencies (limit 4 hours) 193
Appendix C Detailed experiments results with MILP model 195
Appendix D Greedy Heuristic's Pseudo-code and Results 199
D. 1 GH2's pseudo-code 199
D. 2 Creation of Catalogue Index 200
D. 3 Results of Experiments with GH1 200
D. 4 Results of Experiments with GH2 202
D. 5 Results of Experiments with GH3 204
D. 6 Results of Experiments with GH4 206
D. 7 Results of Experiments with GH5 209
D. 8 Results of Experiments with GH5 211
Appendix E Results Tabu Search Configurations 217
E. 1 Tabu Search Results: Config. 1 217
E. 2 Tabu Search Results: Config. 2 221
E. 3 Tabu Search Results: Config. 3 225
E. 4 Tabu Search Results: Config. 4 229
E. 5 Tabu Search Results: Config. 5 233
E. 6 Tabu Search Results: Config. 6 237
E. 7 Tabu Search Results: Config. 7 241
E. 8 Tabu Search Results: Config. 8 245
E. 9 Tabu Search Results: Config. 9 249

Chapter 1

Introduction

This thesis is the product of four years of research on optimisation models and algorithms that can be applied to the scheduling and routing of employees. This first chapter introduces the background and motivation of the research programme. In addition, it provides an overview of the remaining chapters and discusses the contributions that this research makes to the field.

Workforce scheduling and routing refers to scenarios in which a group of skilled employees need to complete a series of activities. These activities are based at geographically different locations, thus requiring the employees to travel across the locations. As a result, adequate division of work between the employees is really important but often difficult to achieve by human planners. Creating a plan that assigns a subset of activities to different employees indicating the sequence of activities and starting time requires many considerations that depend on the nature of the scenario. For example, not every employee is qualified to perform every activity. The distance and time spent when travelling between locations differs depending on the means of transportation used by each employee. Employees' preferences regarding which activities to complete could be taken into account. If it is not possible for all activities to be completed due to an understaffed workforce, prioritising which activities to complete first, might be required. The previous description of the problem, although abstract, fits many real world scenarios such as: home care, home health care, field engineers, security guards patrolling, community midwives allocation, estate agents showcasing properties, and so on. The difference between traditional scheduling and routing problems in the literature is the human factor, i.e. the employees, who introduce variation in skills and preferences.

1.1 Motivation and Scope

The decision to pursue this area of research was taken after a seminar at The School of Computer Science at The University of Nottingham. The seminar was hosted by the Automated Scheduling, Optimisation and Planning (ASAP) research group. The ASAP research group carries out multi-disciplinary research into mathematical models and algorithms for a variety of real world problems (www.asap.cs.nott.ac.uk). The seminar was given by Professor Greet Vanden Berghe on the topic of hard combined combinatorial optimisation problems . The presented problem, one of several, referred to the difficulty encountered when trying to roster employees that are required to travel in order to perform certain tasks over a weekly period (Misir et al., 2011, 2015). Rostering or personeel scheduling is the process of building timetables for staff members within an organisation in order to satisfy the demand of good or services (Ernst et al., 2004b). Prof. Vanden Berghe argued that this combined problem of rostering and routing of labour was often needed by organisations and that more research should be directed to address it. The experienced on personnel rostering obtained by the author of this thesis previous the starting of his doctoral studies motivate him onto taking the challenge proposed by Prof. Vanden Berghe.

After an initial review of the literature, it was identified that before including a rostering component which included constraints that cover more than one working day e.g. maximum hours per week, it was necessary to schedule a single day of activities. This requires knowing which employees are on shift on that day and focusing on their routing while matching their skills with those required by the activities. The rostering component was meant to be included at a later stage during the research programme. Such stage did not occur and the entire research programme was spent on "daily problems that require scheduling and routing of employees".

Once the scope of the research had been decided, the first attempt to name the problem was proposed as Flexible Mobile Workforce Scheduling and Routing (FMWSR). The name focused on two characteristics of the employees involved in this type of scenarios: flexibility, in terms of skills, preferences and working times; and mobility, travelling to perform activities at customer locations, as opposed to residing in an office throughout the day. The term was later changed to Workforce Scheduling and Routing Problem (WSRP) for two reasons: to reflect the closeness of the problem to the VRP, and because WSRP conveys the wider applicability of the problem to real world scenarios. We hope the term becomes accepted by researchers working on this research topic.

1.2 Thesis Contributions

The research presented in this thesis contributes to the understanding of the workforce scheduling and routing problem by providing:

1. Five data sets, discussed in Chapter 4, comprising of 375 WSRP instances. The sources of the data sets include similar problems that can be modelled as a WSRP. The data sets available online at: http://www.cs.nott.ac.uk/~jac/ dataset.html
2. The adaptation of two mathematical models from the literature in order to tackle WSRP. The first model can be used when the requirement is that all activities presented in an instance need to be assigned to an employee schedule. The second model considers the fact that sometimes all activities cannot be allocated and tries to minimise the penalty incurred for the unassigned activities.
3. The modelling of teams using synchronisation constraints and virtual activities. In addition, a reduction in the number of variables in the underlying network of the MILP model is presented.
4. The design and development of a deterministic greedy heuristic for the WSRP. The heuristic provides good valid results for large instances using significantly less time than the mathematical solver. It relies on domain specific information and focuses on tackling complex activities first.
5. A tabu search implementation using OpenTS to tackle WSRP. The TS uses tailored moves to handle complex activities and adapts the tabu tenure after a number of non-improving iterations have passed. Insights into the parameter settings of the TS are provided.
6. Overall, the benchmark results obtained through the mathematical solver, the greedy heuristics, and the TS provide a starting point for comparison of new or adapted solution methods for WSRPs.

1.2.1 Publications

The following published articles have resulted from the research work presented in this thesis:

1. Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2012). A survey on workforce scheduling and routing problems. In Proceedings of the 9th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 283-302, Son, Norway

This publication introduces the workforce scheduling and routing problem by providing a survey of recent literature. The main characteristics of every WSRP are also defined along with many others found during the survey process. Chapters 2 and 3 cover the majority of the findings.
2. Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2014a). Computational study for workforce scheduling and routing problems. In ICORES 2014-Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems, pages 434-444

The publication covers the findings of Chapter 5 with regard to the integer linear programming model on a subset of the data sets.
3. Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2014b). Workforce scheduling and routing problems: literature survey and computational study. Annals of Operations Research, doi: 10.1007/s10479-014-1687-2

The journal paper includes a revised version of the survey by matching each of the main characteristics of the WSRP to some industry sectors. It also presents the complete data set used in the research programme. Finally, it contains benchmark results when using a mathematical solver to tackle the MILP model. Chapters 4 and part of Chapter 5.3 are based on the work presented in this publication.
4. Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2015). A greedy heuristic for workforce scheduling and routing with time-dependent activities constraints. In ICORES 2015 - Proceedings of the 4th International Conference on Operations Research and Enterprise Systems, pages 367-375, Lisbon, Portugal. INSTICC, Scitepress

This publication presents the fourth version of the greedy heuristic designed to tackle WSRP. It uses the benchmark results of publication 3 to compare and evaluate the heuristic. Part of Chapter 6 is included in this manuscript.
5. Laesanklang, W., Landa-Silva, D., and Castillo-Salazar, J. A. (2015). Mixed integer programming with decomposition to solve a workforce scheduling and routing problem. In ICORES 2015 - Proceedings of the 4th International Conference on Operations Research and Enterprise Systems, pages 283-293, Lisbon, Portugal. INSTICC, Scitepress

This publication presents a decomposition technique for tackling WSRP. The technique is not part of this thesis. My contribution to this publication is in the definition of the WSRP and support on the initial modelling of the problem. The publication is included as it is a clear extension on the work I initiated during my research programme. This is another publication on which the work described in Chapter 2 has been part of the contribution.

1.2.2 Additional Planned Publications

Two additional publications are being considered based on the results presented in this thesis.

1. Heuristic methods for the WSRP.

The planned publication will present the last version of the greedy heuristic described in Chapter 6 and another heuristic developed in collaboration with a visiting researcher, Dr Federico Alonso Pecina.
2. A Tabu Search approach for solving the WSRP.

This paper will present the tabu search implementation for solving WSRP. It will be based on the results obtained in Chapter 7 .

1.2.3 Other Contributions

The early findings of this research programme influenced the start of a Knowledge Transfer Partnership (KTP) ${ }^{1}$ between the University of Nottingham and Webroster Ltd. The KTP started in January 2014 and is due for completion in January 2016. The project aims to improve home care workforce utilisation by developing an adaptable software optimisation engine that solves any workforce management scenario that includes both rostering and routing.

[^0]The topic covered by this thesis has influenced three other research programmes at doctoral level. Currently, the first research programme is focusing on additional exact approaches via mathematical modelling with decomposition techniques for the WSRP (doctoral research programme of Wasakorn Laesanklang started in June 2012). The second research programme is investigating the multi-objective nature of WSRP (doctoral research programme of Rodrigo Pinheiro started in January 2013). Finally, the third research programme is focusing on evolutionary computation methods for the WSRP, particularly genetic algorithms (doctoral research programme of Haneen Algethami started in March 2013).

1.3 Thesis Overview

This section provides an overview of the contents of the remaining chapters of this thesis.

1.3.1 Chapter 2

This chapter is dedicated to defining the research problem. As stated in the motivation section, the WSRP has characteristics that can be applied to many real world scenarios. The WSRP's main characteristics are discussed in this chapter. In addition, other features encountered in similar problems are also reviewed. Finally, the WSRP is presented as a hard combinatorial optimisation problem through an example of the rapid growth of the search space.

1.3.2 Chapter 3

A review of the literature is performed in this chapter. The term WSRP is presented in this thesis although a great deal of similar work, often with different names, in different sectors has been discussed in the literature for some time. This chapter relates the WSRP to some of those already established problems. Furthermore, concepts required for the rest of the thesis are also discussed.

1.3.3 Chapter 4

This chapter presents five data sets gathered from different sources within Europe, including Belgium, Denmark and the UK. The source and the original format of the data sets are discussed. In addition, the changes to the five data sets in order to generate a total of 375 WSRP instances is also discussed. The generated instances are used for experiments in Chapters 5, 6, and 7.

1.3.4 Chapter 5

In this chapter two mathematical models are described. The first is an integer programming model (IP) that focuses on trying to assign all activities within a subset of the instances. The experiments only consider two data sets derived from the vehicle routing literature. A state of the art mathematical solver, Gurobi, is used to tackle the subset of instances. The solver is unable to provide integer feasible results for almost half of the instances, thus forcing the consideration of alternative models. The second is a mixed integer model (MIP) that considers the case when some activities cannot be performed due to an understaffed and unskilled workforce. The MIP model introduces a new objective function that includes a penalty for leaving activities unassigned among other considerations. The mathematical solver is used to obtain optimal, if possible, or feasible solutions that are used as a benchmark when comparing results in the remaining chapters.

1.3.5 Chapter 6

This chapter presents a deterministic greedy heuristic designed to obtain fast, good and valid solutions for larger instances. The greedy heuristic is discussed starting from its original design, inspired by a bin- packing representation. Four more improved versions of the heuristic are also discussed. The improvements of each version are: 1) broadening the search; 2) introducing specialised functions to address complex activities, i.e. activities having temporal dependencies on others; 3) search improvements through the creation of an index-type structure; and, 4) incorporating a branchingtype process to evaluate multiple solutions.

1.3.6 Chapter 7

This chapter uses the solution structure and tailored functions defined in Chapter 7 to create a set of neighbourhood moves. The moves are then integrated into a metaheuristic implementation, Tabu Search (TS). The TS was implemented using OpenTS, a Java Tabu Search framework part of the COIN-OR library. The use of TS improved the quality of the results for some instances. The features of the TS implementation are discussed. In addition, the configuration of the TS parameters is addressed.

1.3.7 Chapter 8

The final chapter presents a recapitulation of the most important aspects of the research contributions. It also summarises the results obtained by the solution method presented in this thesis. Finally, this chapter proposes areas for future research in the study of the WSRP.

Chapter 2

Workforce Scheduling and Routing

2.1 Problem description

Workforce scheduling and routing problems (WSRPs) refer to the scheduling of employees to a series of geographically scattered activities. Employees have different skills, which influence the activities they can perform. Activities require particular skills in order to be completed appropriately. It is expected that activities required are matched to the skills of employees who perform them. The aim of these activities is to benefit the clients of the employee organisation. These clients typically are based in multiple locations. As a result, employees need to travel to different locations in order to perform each of the activities assigned to them. When the distance between locations is significant, it is common to restrict assignments to regions. Regions can be defined by clustering according to various criteria, e.g. geography or priority. Employees use diverse means of transportation e.g. walking, private vehicle, public transport, bicycle, etc. to move across sites. Travelling time is considered employees' working time thus any reduction in it results in employees potentially performing more activities. Therefore, the workforce (set of employees) can be seen as the provider of services for clients. Each activity is given a time window, a range of time by which it needs to start. Depending on the type of industry, time windows can be strict or flexible; this depends on what is stipulated in the contractual terms between the organisation and its clients. Activities might require more than one employee for its completion, thus leading to the arrival synchronisation of two or more employees. In some cases, the order in which activities are performed matter, such scenarios create time-dependencies between activities. The dependencies could mean that one activity needs to start or finish at the same time as another activity or that there should be a certain time difference between the start (or completion) of related activities. The
working time of an employee is represented by two values start and end time. The working time of employees should be respected when assigning activities. Otherwise, the organisation incurs an additional expenditure i.e. extra time, which in many cases is paid at more than the normal rate. Every employee is assigned a subset of activities, each employee's schedule considers the duration of each activity and the travel time required to travel between locations. The main objective is to perform as many activities as possible with the given workforce adhering to the planning horizon.

The previous WSRP description is encountered in many industries, perhaps with a different name for employees e.g. nurses, carers, security guards, engineers, etc. and different name for the activities e.g. tasks, services, jobs, works etc. but they all refer to the same abstraction. Often, within the thesis an activity is referred as a visit. Therefore, the terms activity and visit can be considered interchangeably throughout the thesis. For example technicians visiting customers to perform installations (or repairs) of special equipment e.g. broadband installation, satellite television antenna setting. In such a scenario, a customer books a time slot depending on his availability and expects the technician to arrive within that time slot in order to complete the installation. That is the case of internet providers who send qualified engineers to install routers for their customers. Another example is carers assisting elderly citizens within a district. In this case, carers' visits last for a certain amount of time during which help with one or many tasks is provided. Tasks include help with bathing, cooking or doing groceries. If we replace the carer by a qualified nurse then the range of activities changes and the support now is not only addressed to elderly people but perhaps to anyone recovering from surgery. Other cases, involve the patrolling of building facilities by security guards. The guards arrive at a location and perform a round, a vigilant walk, in the surrounding area before moving on to another location. There are numerous other examples of employees that need to travel to different locations to perform their duties e.g. salesmen attending customer demonstrations, midwives assisting future mothers and newly born babies, estate agents travelling to showcase properties to prospective buyers, handymen performing repairs to several households in a day, etc.

There are some real world problems that have similar characteristics, but they are not considered WSRP in this thesis. One example is the case of the family of dial-a-ride problems. In dial-a-ride problems, a group of users request transportation between two locations (origin and destination) from a group of drivers (fleet of vehicles). Although the dial-a-ride problem involves routing of the vehicle fleet to several locations to pick up clients, there are conceptual differences with respect to the WSRP. The main difference is that in dial-a-ride the activity is transporting the clients from the origin to the destination. There is not significant work for the drivers at each of the locations
apart from picking up and leaving the customer. Another difference, the fleet of vehicles used for transportation is most of the times considered homogeneous. There is no matching of skills between the activity and the employee (driver) performing it. A classic dial-a-ride problem is the routing of taxis to several customers' request for transportation. Another example is the parcel delivering problem in which a group of messengers pick up and/or deliver parcels to different addresses. Similar to the dial-a-ride problem there is no significant duration to the activity at the different locations and there is no requirement for skill matching. Both the dial-a-ride and parcel delivery problems are well studied in the literature covering scheduling and routing techniques (Raff, 1983; Cordeau and Laporte, 2003; Parragh et al., 2008).

As the human component, employees add greater diversity of restrictions to WSRP. Some example of restrictions found in WSRP are: heterogeneous skills among the workforce; different working times in terms of duration and shifts; employees' preferences regarding which activities to perform or with whom to work in situations requiring them to work in teams; and recipients' preferences overriding those of the employees.

2.2 Main Characteristics of WSRP

2.2.1 Time windows

A time window indicates the time by which the activity needs to start. Time windows are commonly given by two values: an earliest starting time α and a latest starting time β. As a result, employee(s) performing an activity with an specific time window needs to adhere to its time restrictions. Time windows can also refer to finishing time, although starting time is the most common use. The difference given by $\beta-\alpha$ determines the flexibility of the time window. In some cases there is no flexibility, i.e. $\beta-\alpha=0$, which creates an exact starting time, also known in the literature as exact time window (Eveborn et al., 2009, pg. 27). In such cases the activity needs to start at an exact time in order to comply with the constraint. Exact time windows are reported to be limiting in the literature since they do not provide scope for variation. The opposite to exact time windows is not having time windows defined at all. In this case there is no explicit minimum starting time and maximum starting time. Nevertheless, in reality it means that α value is potentially equal to the start of the planning horizon and β to the end of it minus the duration of the activity, otherwise the completion time is after the end of the planning horizon. Activities with no given
time window are not constrained by a specific starting time as long as they are started and completed during the planning horizon.

Time windows are also used to indicate an employee working time. Every employee might have a different working time depending on his contractual arrangement. It is expected that all activities he performs are within his time window. In some cases employees' time window can be overridden in order to perform additional activities outside employees' working hours. Such decision comes at an extra cost, i.e. overtime payment, and when possible organisations try to avoid it, unless there is no other choice.

2.2.2 Transportation modality

Transportation modality refers to the means of transport that employees use when travelling between locations. Different transportation modalities provide different travelling times, i.e. walking to a location is expected to take more time than driving to it. Other external factors can influence travelling time such as traffic, and road closures. In some WSRP scenarios there is a range of means of transport, e.g. in home care, carers travel with their own car, by, public transport and walking. The type of transport can change during an employee route, e.g. in home health care nurses often use their own cars to move across the city or villages, but once at the destination they could park the vehicle at a central location and walk to visit several customers within the surrounding areas. If the cost of transportation is included in the objective function then clearly the means of travel affects the scheduling of employees.

2.2.3 Start and finish locations

Employees' start and finish locations differ across WSRP scenarios. Perhaps the simplest one is where all employees start and finish at the same location. Such arrangement is similar to the vehicles in the traditional vehicle routing problem (VRP). Another alternative is for each employee to start and finish their working day at their homes. This could have some advantages, for example if employees' homes are scattered across all activities' locations then assigning employees to visit those close to their homes reduces travel time. Similarly, the last activity of the day could be the nearest to the employee's home. Finally, a combination of the same starting location but different finishing locations seem to work for some home health care scenarios. An advantage of requiring all employees to start at one location i.e. main office or headquarters, is that they can be informed of and address any last minute changes to the
schedule. In some cases it is necessary to go to the main office for replenishment. After performing the last activity, employees could be allowed to go home straight away without needing to return to the main site. There are many factors that influence the start and finish locations of every member of the workforce. Some examples are: flexible arrangements; whether the travel time from home to the main office and back at the end of the day is considered payable; if employees use the company vehicles which need to be returned to the main site for maintenance or simply for insurance purposes, and so on.

2.2.4 Skills and qualifications

Skills act as filters for employees performing activities. In many scenarios employees cannot perform an activity unless they are trained to do so, therefore prohibiting their assignment is necessary. In some cases every member of the workforce can perform any activity. This is called an homogeneous skilled workforce, as opposed to an heterogeneous skilled workforce composed of employees with different skills that can only accomplish certain activities. Industries such as management consultancy and health care rely on their employees having a diverse set of unique skills to cover their clients' needs. In such industries, it is not cost effective to train all employees with the same skills as it often takes years to become a specialist in a field. Skills within the workforce can be cumulative or not. Cumulative skills allow two mediumskilled employees to perform the job of a highly-skilled employee since both employees' skills will accumulate. Other scenarios do not allow this accumulation of skills, i.e. an employee does or does not have the skills to perform an activity. The matching between employees' skills and activities can or cannot exist, i.e. treated as a boolean value. Alternatively, the matching can be given within a range, i.e. using a percentage value. Boolean matching tests whether an employee can perform an activity given his skills. Using a range provides a scale within skills for example, a senior level manager can perform the activities of a junior level manager but the opposite is not true.

2.2.5 Service time

Service time is equivalent to the duration of the activity when performed by an employee. It can vary depending on the skills and experience of the employee who perform the activity, but for the majority of WSRP scenarios it is previously estimated. There is an assumption regarding the service time/duration of activities in a WSRP. The service time of any activity should be less than the planning horizon, and
when possible, employees should perform more than one activity. If the service time is long enough that it only permits employees to perform one activity in a working day then the routing component of the problem is gone and the problem becomes a task allocation. Expected duration time is often used to plan the average number of activities employees must perform during the planning horizon. The service provider company is normally paid for this time.

2.2.6 Connected activities

Connected activities refer to the time dependency that activities have with other activities, e.g. two activities might need to start at the same time, or the start of an activity may depend on the completion of another one. These type of time-based restrictions are common in vehicle routing problems. The connected activities constraints as defined by Rasmussen et al. (2012) can be of five types: synchronisation, overlap, minimum difference, maximum difference and min+max difference. Synchronisation requires two or more activities starting at the same time or perhaps finishing at the same time. Overlap means that at any time two or more activities need to be performed simultaneously. Minimum difference is a certain time that must pass from the start of an activity to the commencement of another one. Maximum time gives a deadline by which an activity must start in relation to another activity's start time. Combining minimum difference and maximum difference produces a min + max difference. A min-max difference creates an additional time window on the dependent activity which also relies on the independent activity to set a starting time. Connected activities are not present in all WSRP but when they appear they tend to make the problem harder to solve. Rasmussen et al. (2012) argue that having connected activities instead of time windows gives the search more flexibility. Nevertheless, in some cases the use of both time windows and connected activities constraints is necessary.

2.2.7 Teaming

Team formation may be necessary due to the nature of the work to be carried out (Li et al., 2005). Some activities require more than one employee when performed. If team members remain unchanged throughout the planning horizon, the team as a whole can be scheduled as a single person, since for all activities the team travels together. If the team is only formed to tackle one activity, then synchronisation of the arrival of team members to the activity's location is necessary. The second option provides more flexibility and less cost since once the team finish the activity every
member can travel to a different location and continue on to other visits.

2.2.8 Clustering

Clustering refers to the grouping of a subset of the activities which have something in common. Clustering might be used for various reasons. One reason is employees' preferences regarding not travelling more than a certain number of miles away from home, in such case a cluster of possible activities is created for that employee. Another reason is when employees are designated to work only in certain regions that are close to an organisation site. Clusters can be used to reduce the number of activities requiring planning and solving, thus reducing the difficulty of the original problem.

2.3 Other Characteristics of WSRP

The eight characteristics mentioned in Section 2.2 are the principal ones of any workforce scheduling and routing problem. Perhaps with the exception of connected activities and clustering the other six are always present. Additionally, there are other features in this type of problems. The following paragraphs describe these additional features.

2.3.1 Multiple trips

This characteristic comes from the routing component of the problem. A trip is the set of visits that an employee is scheduled to perform before going back to his end destination. Multiple trips allow the employee to go back to the main site before starting another set of visits. This is not a very common feature but helps to model scenarios where an employee has a split shift, e.g. in the morning performing one set of visits and in the evening another set of visits, leaving the afternoon free.

2.3.2 Preparation time

In many scenarios preparation time is considered as part as the service time (duration) of the activity. However, in some industries monitoring the time after arriving to the location and before starting the activity is important in order to reduce it. Examples
of activities that are performed during preparation times include unloading materials, setting up equipment, etc.

2.3.3 Driving restrictions

Driving restrictions only apply when employees use vehicles for prolonged periods of time. It is a common requirement, and in some cases based on law, that after some time of continuous driving there should be a rest period e.g. in the UK after driving for 4.5 hours a break of 45 minutes is required.

2.3.4 Preferences

Preferences should influence the assignment of employees to certain activities. Depending on the sector, preferences can favour the employees or the recipients of the activity to be performed. Employee preferences are normally introduced as a benefit, a symbol that the organisation takes employees' wishes into account in an attempt to retain them. This is particularly important in industries with high employee turnover. Employee preferences can be in reference to the location of visits, the time of visits, the type of activity, etc. Recipient preferences are considered part of the service agreement provided by the organisation, e.g. in home care an elderly woman may prefer to be assisted by a female carer when bathing. Recipient preference can be as restrictive as to indicate which employee should perform the job. Preferences are sometimes difficult to satisfy and in the majority of scenarios are modelled as soft constraints.

2.3.5 Heterogeneous Shifts

Shifts indicate the availability of employees during certain periods of time through the planning horizon. In some cases it is assumed that employees are available to work all the planning horizon. In other cases, employees can start working at different times but are expected to remain busy until the end of the shift which could or not match the end of the planning horizon. Employees with split shifts add difficulty to the scheduling process as they have two starting times and two finishing times.

2.3.6 Rostering restrictions

When the planning horizon covers more than one day, there are inevitably some periods of inactivity. Scheduling a week of activities can be tackled by solving each day as a different problem. However, this approach does not guarantee finding the optimal solution to the weekly problem. Moreover, there are additional constraints that appear in such scenarios, e.g. employees cannot work more than 40 hours a week, or after working a late shift employees cannot be assigned a morning shift the following day. Restrictions of such nature, are known as Rostering constraints and need to be considered when planning for a prolonged period of time (Ernst et al., 2004b a).

2.3.7 Shared Transportation

Sometimes it is convenient to use one vehicle to transport multiple employees. It does not necessarily mean that employees are on the same team or that the activities they perform require more than one person. It is used as a means of reducing expenditure, i.e. when travelling costs have to be reimbursed. This requires synchronisation of employees arriving to the location of the vehicle.

2.3.8 Break scheduling

Having breaks during a prolonged working period might be a legal requirement. Breaks can be taken at the discretion of the employee after/before performing an activity and should not involve travelling time. In other words, travelling time cannot be counted as a break. In some industries breaks are scheduled as part of the plan of activities, e.g. home care. There could be flexibility regarding the way breaks are taken, e.g. employees could chose to take two 30-minute breaks during a day instead of one hour break.

2.3.9 Number of workers

In WSRPs the number of employees is limited. Nevertheless, the problem can be modelled as having an infinite number of employees. In such cases, all activities must be completed regardless of the number of employees used. The objective then is to complete the activities with the minimum number of employees. It is assumed
that if additional employees are required, the planner could use casual staff. Casual employees are commonly used for periods of high demand for activities.

2.3.10 Overtime

Overtime is defined as the time employees continue working once their shift has ended or once they have surpassed the number of hours per week that they are contracted to work. Overtime provides flexibility to cover extra activities or to compensate for unplanned employee absences. Overtime incurs extra cost, e.g. could equal pay at 1.5 times or even double the normal rate.

2.3.11 Planning levels

The planning level relates to the duration of the planning horizon. Therefore, a time period is associated with each planning level. WSRPs could be defined on a monthly, weekly or daily basis. Planning for a day may affect the week, e.g. if an employee works most of his hours on Monday and Tuesday his availability might be restricted for Friday. In cases like home health care allocation of resources are made at a weekly level, but details are planned on a daily basis.

2.4 Relation to the Vehicle Routing Problem

The routing component of the WSRP considers many different variants of the classical vehicle routing problem (VRP). In VRP the objective is to minimise the distance travelled by a set of vehicles when visiting a number of customers at different locations. Each customer must be visited only once by a vehicle and all visits should be performed. All vehicles start and end at the same location (depot). In VRP as in WSRP activities are spread across multiple locations that require vehicles travelling between them. Variants of the VRP are: the addition of time windows on visits' start time (VRPTW); visits are classified as "pick-up" when goods are collected at a certain locations and "delivery" when the previously collected goods are given to the recipient (VRPPD); capacities on the vehicles carrying goods (CVRP); presence of multiple depots where vehicles can return after performing visits (VRPMD); and multiple trips when replenishment is necessary forcing vehicles to go back to the depot (VRPMT). For more VRP variants refer to Toth and Vigo (1987); Desrochers et al. (1990); Golden et al. (2008)

2.5 WSRP as a combinatorial problem

Workforce scheduling and routing is a combinatorial optimisation problem. Finding the optimal assignment of routes to employees to complete all activities satisfying all restrictions is a challenging and difficult task. A simple approach for small-size instances is via enumeration. Enumeration analyses all possible employee routes and chooses those complying with all restrictions and offering the best objective function value.

Complete enumeration in workforce scheduling and routing is not an option for medium to large size problems due to the number of possibilities available that require consideration. The size of a WSRP is determined by the number of activities and the number of available employees. A medium size WSRP in this thesis has around 50 activities and 10 employees whereas a large size has more than 100 activities and 25 employees or more. A route is a sequence of visits to locations where activities are required. The number of possible routes is only affected by the number of activities. Table 2.1 and Figure 2.1 show the number of possible routes $\left(R_{n}\right)$ to consider in a WSRP as a function of n (number of visits/activities). For example if there is only one visit A to perform, then there are two routes to consider: the first one includes activity A and the second one is the empty route $\{A\},\{ \}$. For two activities A, B there are five routes to consider $\{A\},\{B\},\{A, B\},\{B, A\},\{ \}$. Notice that it is necessary to consider the order of activities. Hence $\{A, B\}$ is a different route than $\{B, A\}$. Finally, the empty set needs to always be considered as an additional route as it indicates a route where no activities are assigned. The number of possible routes R_{n} for n activities can be obtained using Equation (2.1).

$$
\begin{equation*}
R_{n}=\sum_{k=0}^{n}(n!) /(n-k)! \tag{2.1}
\end{equation*}
$$

This combinatorial explosion so far does not consider the employees. All routes may need to be evaluated for every employee to ensure the optimal solution has been found. Many routes in a given problem are invalid due to time related (time windows and time-dependencies) or skills based constraints.

The WSRP can be considered an NP-hard problem i.e. Non-deterministic polynomial time hard, as it is a combination of two NP-hard problems. The personnel scheduling problem (Brucker et al., 2011) and the vehicle routing problem with time windows (Lenstra and Rinnooy Kan, 1981).

\# Activities n	R_{n}	Factorial(n)
1	2	1
2	5	2
3	16	6
4	65	24
5	326	120
6	1957	720
7	13730	5040
8	109601	40320
9	986410	362880
10	8049701	3628800

Table 2.1: Shows number of routes R_{n} that can be generated based on the number of activities (n) present in a WSRP. Many routes would be infeasible due to time related constraints, but they are still part of the search space of the problem. As a means of comparison the factorial function is provided to demonstrate that the search space grows at a similar rate.

Figure 2.1: Shows the values of Table 2.1 in a graphical form. A comparison between the increase of possible routes to consider in a WSRP based on the number of activites n (+ ,in blue) and, the factorial function for the same n value. The rate of growth is similar.

Chapter 3

Background

The chapter provides background information on Workforce Scheduling and Routing Problems. In the first section, a review of solution methodologies is performed. The purpose of this review is to establish some common terminology which will be used throughout the thesis. The second section focuses on related work to the WSRP. A review of personnel scheduling and vehicle routing with time windows (VRPTW) as independent problems is provided. Following the description of both personnel scheduling and VRPTW a series of scenarios that present a combination of both problems are presented and discussed. Such problems are identified as potential WSRP as they present the characteristics defined in Chapter 2. In the last section, every discussed methodology is match to several surveyed papers as a way of informing the reader which approaches have been used when tackling WSRP.

3.1 Solution Methodologies

Using a similar approach to Bechtold et al. (1991) and Ernst et al. (2004a) the solution methods are grouped in three categories: exact methods including mathematical programming and constraint programming among other; and, heuristic algorithms including tailored heuristics and metaheuristics. A third category is included which covers hybrid methods as any method which uses both of the previous categories.

3.1.1 Exact Methods

Exact methods are capable of finding optimal solutions whilst guaranteeing their optimality (Burke and Kendall, 2014). Exact methods often require more computational time than heuristics, especially when large instances are being considered. Among other exact methods we can find: linear programming, constraint programming, and branching \& bound methods. These approaches are sometimes referred as classical techniques (Dowsland, 2014).

3.1.1.1 Linear Programming

A liner programming problem is an optimisation problem that can be modelled entirely by the use of linear expressions. There are two parts in an optimisation problem an objective function and a set of constraints/restrictions on the solution to the problem. In other words, both the objective function and constraints need to be linear expressions based on a set of decision variables. A feasible solution is one that satisfy the constraints defined in the problem. Due to their linear representation these problems can be solved by well known methods such as the Simplex type methods. The version of a linear program where the all variables are restricted to integers values is called integer linear program (IP). Moreover if in an IP the only values allowed for the variables are the yes or no type then it is known as a binary linear programming. If there is the case where some variables are continuous and other integers the problem becomes a Mixed integer linear program (MIP). (Dowsland, 2014, Brucker and Knust, 2006)

3.1.1.2 Constraint Programming

Constraint programming (CP) is an exact approach based on logic implications. When used to tackle optimisation problems, the set of variables must be linked by a set of constraints. The variables can only take their values from a finite set of integers. The constraints could be represented mathematically or through symbolic operators. Solving a CP requires interleaving two process, a propagation and a search. The previous with the aim of finding valid solution for the problem. The propagation stage consist of reducing the variables that wont lead to feasible solution. The search stage is triggered after the propagation one. The objective of the search is to fix inconsistent values in the variables. The search uses a tree based procedure that reduces the problem into subproblems (Talbi, 2009).

3.1.1.3 Branch \& Bound, Branch \& Price and Branch \& Cut

A way of guaranteeing that an optimal solution has been found is to analyse all possible solutions. Such process is called enumeration. For small problems enumeration is a feasible approach. Enumerating the solutions often helps to understand the structure of the problem. When enumerating it is common to use a tree based structure that represents all possible solutions. The tree could potentially hold all different possibilities of variable configurations. The root node of the tree holds branches for every variable depending on their finite number of values. The leaf nodes, i.e. those without children, in the tree represent final values that cannot be branched further. The strategy to search the tree could yield different results. The strategy needs to be defined at the beginning of the optimisation process. Common strategies include a depth-first approach which explores an specific area until a terminal node, i.e. leaf, is found and subsequently it backtracks to the nearest junction. Another strategy, known as breadth-first, explores the same level of the tree and whilst doing so, it is able to prune sections of the tree which given their configuration could not lead into feasible solutions. A depth-first strategy tends to find feasible solutions quickly but it neglects regions of the tree which might have better ones. A breadth-first strategy consumes a lot of memory resources but can compare across the tree and facilitates the removal of dominated subsolutions. (Lawler and Wood, 1966; Mitten, 1970; Hillier and Lieberman, 2010)

As the size of the problem increases, the size of the tree that contains all possible solution grows explosively. Branch and Bound aim to reduce the number of nodes to be analysed in the tree whilst still maintaining optimality. In the case of large problems, the algorithm is better if performing branching only in selected regions of the tree. The regions that are bounded, hence the name, for two values: an upper bound and an estimated lower bound. The branch and bound helps to prove that some partial solutions represented in the tree structure will not lead to optimal solutions hence discarding them from the search this process is called pruning.

Branch and Price refers to the combination of branch and bound and column generation methods. It consists on decomposing the original combinatorial optimisation problem into two types of sub-problems. A master problem and a pricing problem. It is a method commonly used to solve large inter programming models and mixed integer ones. (Feillet, 2010; Danna and Le Pape, 2005)

Branch and Cut uses branch and bound in combination with cutting planes techniques to gradually reduce the search space of the problem. Cutting planes iteratively refine a feasible set by adding linear constraints that satisfy all feasible integer points but
violate the current fractional value within the tree structure. (Mitchell, 2002; Martin, 2001)

A methodology that has been very useful to tackle WSRP is branch and price. Branch and price refers to using a branch and bound approach with column generation (Barnhart et al. 1998; Feillet, 2010). The advantage of using column generation is that the problem can be relaxed and solved with a reduced set of columns, which might not be an exhaustive enumeration of all possible routes for every employee, but at any time provides a solution if it exits. In the literature, the personnel scheduling constraints side of the problem is commonly solved by heuristics to generate columns. On the other hand, the routing component can be tackled via branching. Kallehauge et al. (2005) showed that the problem formulation can be decomposed into a master problem and a pricing problem. The master problem is a set partitioning problem and the subproblem a series of shortest path problems with resources constraints Irnich and Desaulniers, 2005; Feillet et al., 2004).

Models applied to VRPTW have also been aplied to WSRP, in particular multicommodity network flow models with time windows and capacity constraints. When using branch and price, many authors have modelled the master problem as either a set partitioning problem or as a set covering problem. There is not much difference between these two. In the first one, each customer is in one route only, whereas in the second one, more than one route could visit the same customer location.

3.1.2 Heuristics Algorithms

In this section a description of metaheuristics methods used in the tackling of workforce scheduling and routing is presented. For each metaheuristic a brief overview is performed and then reference to relevant work in the literature is provided.

Metaheuristics are high-level search methods which guide and influence other heuristics to increase their chances of finding good valid solutions in the search space. They offer a framework structure that is applicable to any domain which makes them non-problem specific. Metaheuristics use domain specific knowledge in their implementation(Osman and Laporte, 1996; Glover and Laguna, 1999, Voßet al., 1999).

Metaheuristics can be classified according to more than one criteria. Among the most common ones are the following: origin or inspiration of the algorithm therefore there are nature-inspired and non-nature inspired metaheuristics. Number of solutions simultaneously, single point search or population based. Single point search act over
only one solution trying to improve it with every iteration. Population based have many solutions which evolve by combining characteristics of the solutions to pass them to the next generation. Classification based on the objective function nature which could be static or dynamic. Number of neighbourhoods, most metaheuristics use one neighbourhood but the possibility of using more than one in order to change the topology of the space search is a way of differentiating metaheuristics. The final classification is whether memory structures are used or not. Memory-less metaheuristics perform iterations based only on their current state without remembering good solutions or regions with potential to explore ($\overline{\text { Blum and Roli, }}, 2003$)

3.1.2.1 Trajectory Methods

Trajectory methods refer to metaheuristics that focus on a direction of movement within the search space. Such a search process is seen as changes of stages in a discrete time. It all starts in an initial state and traverses the search space using a strategy until termination criteria have been achieved. The dynamic nature of the trajectory (path) depends on the algorithm, the problem representation and the problem instance. Trajectory methods are single point search metaheuristics.

Two of the most successful trajectory methods that have been applied in a wide range of application domains include simulated annealing and tabu search.

3.1.2.2 Simulated Annealing

Simulated annealing has its origins in the work by Kirkpatrick (1984) inspired by the annealing process of solids, i.e. the evolution of a solid in a heat bath in order to achieve thermal equilibrium. Given a current state of a solid with Energy E_{1} subsequent states can be generated by applying perturbations. If the energy difference of the next state is less or equal to 0 then the state is accepted, if the energy difference is greater than 0 , the state is accepted with certain probability ρ. Following that analogy, simulated annealing accepts deteriorations in cost with different values. The beginning of the search process with bigger values and as the search progresses only smaller deteriorations are accepted. Similar behaviour can be achieved by the use of a probability distribution which assigns low probability to large increments and high probability to small increments. The acceptance of worsening solutions is meant to escape local optima. The acceptance level is controlled by a temperature parameter T which is decreased as the search continues.

3.1.2.3 Tabu Search

Tabu Search (TS) is a popular metaheuristic when tackling combinatorial optimisation problems. TS acts on a single solution and tries to improve it by using memory structures. Memory allows the algorithm to keep track of explored regions in the search space and avoid cycles (going back to recently explored solutions). Memory also permits escaping local optima and exploring other regions in the search space. Memory can be of two forms: short memory and long memory.

Short memory is implemented via a tabu list of forbidden solutions. It is often costly to store entire solutions in the tabu list, thus it is more common to store attributes of such solutions or the moves used to generate the solutions. At every iteration the best neighbourhood solution is kept and its attributes/moves are added to the tabu list. In subsequent iterations such solutions (attributes/moves) are restricted. The length of the tabu list is called tabu tenure, and it decides how many iterations attributes/moves are forbidden. Eventually, an attribute/move stops being tabu and is taken into consideration to generate new solutions. The tabu tenure dictates whether the algorithm explores a region (small tenure) or it moves to other regions in the search space (big tenure) allowing diversification. The tabu tenure can be altered during the search process. By doing so, the TS algorithm could be more robust as it can control intensification stages with diversification ones. An intensification stage focuses on a single region in the search space as it might be promising for obtaining better results. Diversification is required when local optimum has been achieved and the algorithm requires to escape the current region and continue exploring the search space.

Long memory refers to the information collected throughout the search process and not only while some attributes/moves are restricted in the tabu list. Information regarding the number of attributes/moves that have been applied (frequency); the attributes/moves used in the last K iterations (recency); how good/bad solutions have been in regions of the search space (quality); and the influence of a certain decision during the search, e.g. changing the tabu tenure. The four principles of long term memory described earlier (frequency, recency, quality and influence) allow the algorithm trajectory to be strategically guided.

One additional concept in TS is the notion of an aspiration criteria. This refers to accepting a solution even when such solution's attributes/moves are marked as tabu. The most common aspiration criteria is when the solution obtained is better than the current best. The stop criterion can be either a number of iterations or computation time. If all improving moves are marked as tabu, i.e. no more moves are allowed, this
can also be used as a termination criterion.

3.1.2.4 Other Trajectories methods

There are other trajectory-based methods such as variable neighbourhood search (VNS) which introduces the concept of more than one neighbourhood structure. Changing the neighbourhood structure allows the metaheuristic to escape local optima. Guided local search alters the objective function during search thus changing the landscape of the search space. By doing so the algorithm escapes local optima and it is able to continue exploring the search space. Changing the objective function is achieved by the introduction of penalty and regularisation parameters. Iterated local search applies local search to an initial solution until a local optimum is found at that point the solution is perturbed (changed) and another stage of local search is applied. Perturbing the local optima helps to escape from it.

3.1.2.5 Population-based methods

Population-based metaheuristics act upon multiple solutions at a time, which allows the exploration of different regions of the search space simultaneously. The population is manipulated as time passes to focus on parts of the search space. The manipulation mechanism depends on the nature of the algorithm, e.g. in ant colony optimisation it is the pheromone track that ants leave as they explore promising regions. Many analogies with natural phenomena have inspired population-based method.

3.1.2.6 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a metaheuristic inspired in the behaviour of ants. Ants are able to find the shortest path between food sources and the colony. At early stages scout ants explore the surrounding in almost a randomised way. As soon as the scouts find a food source they secrete a pheromone that other ants can track. Other ants will then join in consuming the recently found food source. The more ants join a path the stronger the pheromone track becomes as it is reinforced by the ants. Then as new sources of food are found and the current source is consumed the pheromone track diminishes in intensity. The track of pheromone is modelled with a parametrised probabilistic model which allows the ant to decide which track to pursue. Ants represent a single solution that is being constructed and the components of good valid solutions can be seen as the food which ants try to incorporate into their
solution. Components in combinatorial optimisation problems such as the WSRP can be assignments or constraints. It depends on how the ant analogy is exploited. Ant Colony Optimisation includes Ant-Systems (Dorigo et al., 1996), Ant Colony System (Dorigo and Gambardella, 1997), and Max-Min Ant Systems (Stützle and Hoos, 2000). Although the general analogy is the same, the update of the pheromone trails differs in each of them.

3.1.2.7 Particle Swarm Optimisation

Particle Swarm optimisation (PSO) originated as a simulation on a simplified social system. Its creators wanted to graphically describe how a flock of birds moves (Eberhart and Kennedy, 1995). In PSO a solution is represented by a particle which moves towards the position of better solutions. Each particle is assigned a velocity parameter determining how fast it can move. Whilst moving to this better position other positions along the way could also be explored. Each particle keeps track of its current position and the position of its neighbours (other particles that are somehow adjacent to it topologically). The algorithm keeps track also of the best solution achieved, which changes as particles explore new regions of the search space. The tension between moving towards the local best (neighbourhood only) and the global best whilst varying the velocity at each iteration allows the algorithm to explore and find different solutions. PSO requires tuning on the following parameters: the number of particles, initial velocity and the change in velocity.

3.1.2.8 Other populations-based methods

Other population-based methods include Evolutionary Computation based Algorithms (Genetic Algorithms, Evolutionary Programming and Evolutionary Strategies) inspired by evolutionary theory (Talbi, 2009, chap. 3). These methods allow individuals to combine and mutate so as to form a new generation of better adapted individuals. The algorithms create a set of solutions which are then evolved using two process: mutation and recombination. Mutation perturbs a single solutions. Recombination takes some attributes of two or more solutions and creates a new one. The optimisation process is permitted by the introduction of a selection process which measures the fitness of a solution (individual) to pass to the next generation or to recombine with others to generate offspring. The principle follows the survival of the fittest in which only attributes that form parts of good solutions are passed from generation to generation. Mutation can be allowed and it is controlled by a mutation rate parameter which in many cases is responsible for the diversification across the search space.

When employing heuristics including metaheuristics and hyper-heuristics to solve the WSRP, there seems to be a tendency in the literature to use approaches based on swap (exchanges) and insertion operators. Depending on the method employ either memory is used to keep the best solutions so far or to remember which low-level heuristics are best applied in the stages of the search. Many solutions employ a constructive heuristic to generate a fast initial solution. There seems to be no solution method applied to different WSRP scenarios so far. Nevertheless, the operators used to generate neighbour solutions appear to be very similar in the different approaches.

3.1.3 Hybrid Methods

For the purpose of this Thesis a hybrid method is one that uses both exact methods and heuristics methods in its implementation. Hybrid methods are used when there are clear stages in the solution process and it can be identified that for example for one stage mathematical programming can be used and in a final stage a heuristic to try to improve upon the quality of the solution. The combination of each exact method and heuristic could lead to a plethora of approaches. Among the most common hybrid approaches in the literature are combining mathematical programming with any heuristic know as Matheuristics and combining constraint programming and heuristics.

3.1.3.1 Matheuristics

Most hybrid approaches try to combine the most appropriate algorithms depending on which part of the WSRP is being tackled (clustering, routing, matching skills, etc). For the routing part, it seems that the most used approaches are mathematical programming and constraint programming. This might be due to the significant advances in optimisation methods achieved recently for vehicle routing problems. Nevertheless, good heuristics methods, particularly those which provide fast initial solutions have also been employed. When matching employees to activities, the use of heuristics approaches appears to dominate.

3.2 Related Work

3.2.1 Vehicle routing problem with time windows

Given the similarities between workforce scheduling and routing problem (WSRP) and vehicle routing problems with time windows (VRPTW), researchers have successfully utilised VRPTW models and solution techniques to tackle WSRP-like scenarios. For example, home health care (Cheng and Rich, 1998; An et al., 2012; Nickel et al., 2012 , Akjiratikarl et al., 2006, 2007, Allaoua et al., 2013), patrolling of security officers (Misir et al., 2011; Chuin Lau and Gunawan, 2012), engineers/technicians on field (Günther and Nissen, 2012). These previous works cover: time windows, start/end location, skills, service time and transportation mode. Other characteristics such as connected activities, teaming and clustering have been researched to a lesser extent in the WSRP literature. There are some exceptions, for example, connected activities have been considered by Rasmussen et al. (2012), while teaming has been considered in Li et al. (2005) and Dohn et al. (2009).

The routing part in many problems considered here as examples of WSRP is based on the vehicle routing problem with time windows (VRPTW). In this problem the main objective is to minimise the total distance travelled by a set of vehicles serving customers spread across different locations. Every customer must be visited once by one vehicle. Each customer specifies a time window when the visit should happen. The delivery vehicle must arrive at the location within that specified time window. If the vehicle arrives before the earliest start time specified in the time window, it must wait until the time window opens to perform the delivery (Desrochers et al., 1992; Kallehauge et al., 2005). Extensions of the VRPTW include other features such as multiple depots, multiple trips and synchronisation of vehicles.

In VRPTW with multiple depots (MDVRPTW), the fleet of vehicles is distributed across several depots and each vehicle needs to return to the same depot from which it started once its deliveries have been completed. The formulation of this VRPTW variant (Desaulniers et al., 1998; Polacek et al., 2004) is applicable to workforce scheduling and routing as it permits associating each employee starting and ending location (home) to a different depot. It is also possible for every employee to start at the same location (main-depot) but to end their working day at a different location (home), although this scenario is not covered by the original MDVRPTW.

Another extension of the VRP allows multiple trips (Brandão and Mercer, 1998), also called, VRPTW with multiple use of vehicles (Azi et al., 2010) when using time
windows. In this scenario, vehicles are allowed to go back to the depot more than once during the planning horizon. It is often associated with perishable products in order to restock. In WSRP this applies to employees performing more than one trip on a day. A trip in this context involves a series of activities before going back to the main site. Sometimes employees might need to go back to the main site to replenish resources or to swap means of transportation as some vehicles might be restricted when accessing customers' locations (Brandão and Mercer, 1997).

Finally, another extension of VRPTW which is relevant to WSRP is the synchronisation of vehicles. Teaming can be modelled in the same way as two or more vehicles arriving simultaneously at a customer location Bredström and Rönnqvist, 2007, 2008). Synchronisation is just a type of temporal precedence constraint in VRP (Dohn et al., 2011). In WSRP if a client/recipient/patient should be visited more than once per day, the order of visits might matter, e.g. the installation and calibration of an antenna dish needs completion before technicians can install a satellite TV modulator. These activities could be performed by different technicians at different times but the order must be respected.

There are many solution methods proposed to tackle the VRPTW. When using exact approaches, researchers tend to model the problem as multi-commodity network flow problems (Desaulniers et al., 1998; Salani and Vaca, 2011) or following a set partitioning/covering formulation (Bredström and Rönnqvist, 2007). Such models have been tackled using constraint programming, branch and bound, and branch and price (column generation) (Barnhart et al., 1998; Desrosiers and Lübbecke, 2005). Other researchers use hybrid methods that employ heuristics for the generation of columns within a column generation setting (Bredström and Rönnqvist, 2008) or use heuristics to improve an initial solution found with mathematical programming (Fischetti et al., 2004). Alternative approaches include dividing the problem into smaller subproblems and then attempting to obtain a global solution using the results of each subproblem. This approach does not guarantee finding the overall optimal global solution but it is sufficient if the objective is to find valid solutions quickly (Desaulniers et al., 1998; Halvorsen-Weare and Fagerholt, 2013; Landa-Silva et al., 2011; Laesanklang et al., 2015).

3.2.2 Personnel Scheduling

Personnel scheduling refers to the allocation of employees into shifts in order to satisfy the demand of work which varies over time. Personnel scheduling problems are very important for the service industries e.g. call centres, hospital wards, policemen,
transportation personnel, etc (Pinedo, 2009). Baker (1976) classification of personnel scheduling problems includes: shift scheduling, days of scheduling and tour scheduling. Another classification by Bechtold et al. (1991) focuses on the solving methodology either: linear programming and heuristic based. Ernst et al. (2004b) expands further the classification and considers five stages. Every stage is independent and optional. The stages are: demand modelling which establishes the work to be performed; days off scheduling decides if an employee is present or not in any given day during the planning horizon; shift scheduling assigns employees which are available to a define working time; line of work constructions deals with constraints arising when building the shift pattern for any given period such as weekly or monthly; finally, task and staff assignments deal with the activities performed whilst employees are on shift. Ernst et al. (2004a) also provide a review of methods and techniques used in personnel scheduling. The methods are grouped into five categories: demand modelling, artificial intelligence methods (fuzzy set theory and expert systems), constraint programming, metaheuristics, and mathematical programming.

A more recent classification on personnel scheduling by Van den Bergh et al. (2013) includes related problems with regards to the setting or technical features of the problem. They surveyed a range of different personnel scheduling problems in the scientific literature and provided the characteristics of instances from the data sets used in those studies. For example for personnel characteristics, they differentiate types of availability i.e. full-time, part-time, casual. Another characteristic for the type of decisions for tasks, sequence, groups, time and other. Another characteristic includes solution techniques. They identified that some personnel scheduling problems present a combination of features with the vehicle routing problem, but such problems were not included in their classification as they recognised that it was a different research field. It is precisely these combined problems that are the focus of this thesis.

3.2.3 Workforce Scheduling and Routing

In this section some of the problems tackled in the literature that can be considered as a type of workforce scheduling and routing problem (WSRP) are reviewed. The intention is to illustrate the variety and importance of WSRP scenarios in the realworld. Each subsection focuses on a problem domain and the solution methods that have been used in the literature to tackle it. Distinction is made between exact, heuristics and hybrid methods.

3.2.3.1 Home Health Care

Bertels and Fahle (2006) describe home health care (HHC) as visiting and nursing patients at their home. Patients' preferences regarding the time of visit are respected as much as possible, as they should not be kept waiting. Additionally, nurses have time limitations on the number of working hours per day or the starting and ending time. In HHC, transportation modality is present when nurses travel (car, public transport or walking) to visit more than one patient. The start and end location can vary. Nurses can depart from their homes or from a central health care office, and end their day once they return home or in some cases at the last visited patient's location. A diverse set of skills and qualifications usually exists among nurses. Health care organisations often cannot afford to have nurses trained in all procedures. Therefore the use of highly qualified nurses should be restricted to tasks that demand those skills. Nursing tasks can vary in duration (service time), e.g. from a 10 -minute injection to a 45 minutes for physical therapy. Time-dependent nursing activities can arise when administering medication, e.g. the first dose is applied in the morning followed by another dose three hours later. Some activities require more than one nurse at the same time, e.g. handling a person with epilepsy. In such cases, nurses can be synchronised to arrive at the location at the same time. Clusterisation is used by the organisation providing health care to avoid nurses having to travel overly long distances.

Other characteristics of HHC include nurses' preferences and shift types. Also, it is desirable to avoid changing which nurses visit particular patients because patients and nurses develop a bond that is usually good to maintain. Cheng and Rich (1998) explore the use of casual nurses. Their work does not consider different skills and qualifications but instead, they propose a matching method in which a pairing, patient-nurse, is either feasible or not. The objective in their work is to reduce the amount of overtime and part-time work employed.

HHC has been tackled mainly with hybrid approaches. For example combining mixed integer programming with heuristics for either the routing or the scheduling component (Begur et al., 1997). Another example of combining two approaches is when using constraint programming to obtain a good feasible solution and in a second stage applying a series of metaheuristics including simulated annealing and tabu search (among others) to improve the quality of the solution (Bertels and Fahle, 2006).

Among the pure heuristics methods is the application of variable neighbourhood search by Trautsamwieser and Hirsch (2011). Exact methods have also been used, particularly branch and price, using a set partitioning formulation for the master
problem. The model includes real variables for the scheduling of the activities, and binary variables for deciding whether an activity is performed by a specific employee or not. The pricing problem is an elementary shortest path (Barnhart et al., 1998; Bredström and Rönnqvist, 2007). An extension of such models includes the addition of side constraints in the master problem (Dohn et al., 2008). Not all models for the set partitioning part have both real and binary variables, for example pure integer models are also used by Kergosien et al. (2009). The addition of cuts on the time windows improves the branch and price approach and turns it into a branch cut and price which has lead to good results in VRP (Fukasawa et al. 2006) and hence applied later to HHC as a result (Trautsamwieser and Hirsch, 2014)

3.2.3.2 Home Care

The home care problem, also called domiciliary care, refers to the provision of community care service by local authorities to their constituents (Blais et al., 2003; Akjiratikarl et al., 2006; Borsani et al., 2006; Thomsen, 2006; Akjiratikarl et al., 2007; Justesen and Rasmussen, 2008; An et al., 2012). The aim is to schedule care workers across a region in order to provide care tasks within a time window while reducing travel time. This problem is related to the HHC problem described earlier (Bertels and Fahle, 2006; Cheng and Rich, 1998). The difference is that HHC involves helping people for a relatively short period of time to recover after hospitalisation. Home care however usually refers to helping elderly and/or disabled people to perform their daily activities such as shopping, bathing, cleaning, and cooking, etc. Eveborn et al., 2009). Once a person starts receiving home care support it is likely that he remains receiving such care for a long time.

Home carers usually start travelling from home to deliver support at their predefined destinations using their own transport arrangements (mixed transportation modality) and return home at the end of the day. In some cases reported in the literature, care workers do not start from their home but from a home care office as last minute changes to their schedules are possible and need to be agreed before starting the working day (Eveborn et al., 2009). In some cases, travel time is considered as work hours and hence the objective is to reduce the time used not providing care. In other cases, like the work by Dohn et al. (2008), the objective is to maximise the quality level of care service provided. Reducing cost, although important, is not usually the main objective. Dohn et al. (2008) study the problem as a variant of the VRP with time windows. Although not as much as in HHC, there are some skills and qualifications required in home care when caring for others, e.g. health and safety, handling people with dyslexia, etc. Service time is standardised and it only varies due to the experience
of the carer or difficulties with the person receiving care. Time-dependent activities also exist in home care, e.g. taking a shower before grocery shopping. Teaming is usually not present as carers tend to be synchronised to perform difficult tasks, e.g. assisting a heavy person. Clustering is based on municipal borders to clearly define which authority (e.g. council, district, etc.) is responsible for each area.

Additional features of home care include prioritising visits. Usually there is not enough personnel to perform all visits in a single day. Therefore, visits are rescheduled or even cancelled in the worst case. Deciding which visit is not carried out is part of the problem. For example, it is more important to assist someone with his diabetes medication than to help another person in grocery shopping. The shift patterns are either given by contracts or expressed as preferences by carers. Many organisations emphasise respecting carers' preferences to increase staff retention. Also, tolerance on time windows to perform care tasks can vary widely, e.g. 5 minutes tolerance for critical medical activities, 15 minutes to 2 hours tolerance for support activities, etc.

Home care problems have been solved using all three exact, heuristics and hybrid approaches. Among the exact methods we find linear programming (De Angelis, 1998). Mixed integer linear programming is also used on assignment and scheduling models of home care problems. The assignment model is used when new visits are introduced and the scheduling model is used to generate weekly visits (Borsani et al., 2006). Heuristic methods include local search based on simple heuristics, metaheuristics like tabu search (Blais et al., 2003), evolutionary approaches such as particle swarm optimisation Akjiratikarl et al., 2006, 2007) and agent-based modelling (Itabashi et al., 2006). Other methods include hyper-heuristics (Misir et al., 2010). Among all heuristic methods the solving strategy seems to be similar to generate a good initial solution followed by local improvement procedures. Common neighbourhood moves include insertion, removal and swaps to interchange both activities among workers and activities in an employee's route. The combination of a set partitioning model and a repeated matching algorithm, to find suitable pairs of employees and routes in a hybrid approach has also been used to tackle home care (Eveborn et al., 2006, 2009). Matheuristics, combine mathematical programming with metaheuristics have also been used to tackle home care (Allaoua et al., 2013).

3.2.3.3 Scheduling Technicians

Some telecommunication companies require scheduling employees to perform a series of installation and maintenance jobs. In the literature, this problem is referred to as technician and task scheduling problem (Cordeau et al. 2010), field workforce
scheduling (Lesaint et al., 2003), field technician scheduling problem (Xu and Chiu, 2001), technicians routing and scheduling problem (TRSP) (Pillac et al., 2011; Kovacs et al., 2012; Pillac et al., 2013) and technician-dispatching problem (Weigel and Cao, 1999). In this sector, commitments on time to perform the jobs are enforced, resulting in strict time windows. Technicians need to carry equipment so it is common to use company vehicles to travel from one customer location to the next one. Technicians start and end at the company premises, although in some cases they are allowed to take home the company car depending on the location of the first job the following day. Technicians are often highly skilled and this can be related to their experience and training. As a result companies define levels of seniority (e.g. junior technician, supervisor, etc.) among their workforce. Those seniority levels to some extent help to estimate the service time required to complete the job. Activities tend to be independent from each other within the same day, but in a wider time frame there are some connections between them. In this scenario, teams are often formed with the aim of having a balanced set of personnel with as many skills as possible. Teaming also helps technicians to learn from each other, hence improving their performance. Companies with many branches across different regions use clustering to assign jobs to each branch when the scheduling is done centrally for all branches.

The scheduling of technicians has been solved using heuristics approaches, particularly a fast constructive heuristic to reach valid solutions (Xu and Chiu, 2001). Then, local heuristics based on destroy and repair moves are used to improve the solutions (Ropke and Pisinger, 2006). Different heuristics are used depending on the stage of the problem that is is being tackled: activities allocation to employees, skill matching, and routing (Cordeau et al., 2010). Greedy randomise adaptive search procedure (GRASP) has been successfully applied in this domain (Hashimoto et al., 2011). Moreover, evolutionary approaches like particle swarm optimisation have been reported to find good enough solutions for instances of 300 employees (Günther and Nissen, 2012).

Among exact methods mathematical programming models focusing on the nature of a diverse set of skills among the workforce is reported by Firat and Hurkens (2012). Additionally, combining constraint programming with branch-and-price is reported to obtain promising results (Cortés et al., 2014) when including information regarding the maximum number of repairs (services) per day for technicians.

Finally, a parallel Matheuristic used by Pillac et al. (2013) hybridises constructive heuristics, parallel adaptive large neighbourhood search (ALNS) with mathematical programming to tackle fictitious extended instances based on the Solomon benchmarks.

3.2.3.4 Security Personnel Routing and Rostering

In this problem, a round of visits are performed by security personnel to several customer premises in different locations over a 24 -hour period (Misir et al., 2011). Many organisations outsource security guard duties only when premises are closed, while in other cases security is outsourced at all times. Round visits must be performed at the contracted time, often given as a time window. Security personnel often use vehicles to go from one location to the next one and then walk once they get to the facility but are required to check several buildings. Security guards often have their own home as the start and end of the working shift. In Misir et al. (2011) the authors mention 16 types of skills that the company records for its workforce and some visits require enforcing those skills. The duration (service time) of each visit can vary but it should be within a time window in which the visit must finish. Visits are independent from each other. Customers are divided into regions (clustering), so that security guards living nearby are assigned to each region to reduce travelling time. In this industry, contract terms vary considerably leading to many different additional constraints. Although not mentioned in the scenario, it is not unreasonable to assume that teams of two or more guards are used.

A mathematical programming approach was used by Chuin Lau and Gunawan (2012) when solving a similar problem that involved security teams to patrol different underground stations within the network. Hyper-heuristics is another method that has been applied to this problem by using two different heuristics selection methods, simple random and adaptive dynamic, followed by an improvement heuristic (Misir et al., 2011).

3.2.3.5 Manpower Allocation

The manpower allocation problem (Lim et al., 2004) refers to assigning servicemen to a set of customer locations to perform predefined activities e.g. repairs, inspections, sales, promotions, etc. The objectives are to minimise the number of servicemen used, minimise the total travel distance, minimise the waiting time at service points, and maximise the number of activities assigned. The manpower allocation problem therefore can be seen as another example of WSRP. Manpower allocation with time windows is particularly relevant since customers explicitly define when the workforce is required. There is no mention of transportation modality so it is assumed all servicemen use the same type of transport. Every serviceman starts and finishes his working day at the control centre. Skills among the workforce are assumed to be the same, making no difference on who performs the service.

There are restrictions on the number of hours each employee can work. Waiting time, the time that servicemen have to wait at a customer location before the start of the time window, is included within the service time making it vary accordingly. Li et al. (2005) add job teaming constraints, where a team is assembled at every location and work cannot start unless all members of the team have arrived. More recently, a variation of the manpower allocation problem was tackled in the context of scheduling teams to do ground handling tasks in major airports (Dohn et al., 2009). In the work by Li et al. (2005) teams are set at the beginning and do not change over the working day. Additional characteristics include teams having mandatory breaks within certain time windows, hence breaks are treated as just another visit. Three types of solution methods have been identified in the manpower allocation literature. An exact method uses integer programming, based on a set covering formulation which is solved with branch and price (Dohn et al., 2009). Metaheuristics including tabu search, simulated annealing and squeaky wheel optimisation have also been applied (Lim et al., 2004, Cai et al., 2013). Finally, Li et al. (2005) relaxed an integer programming formulation of a network flow model to obtain lower bounds. The upper bounds were obtained using constructive heuristics and simulated annealing was the main component of their solution framework.

3.3 Summary

In Table 3.3, row 1 associates each surveyed source with a domain problem mentioned in Section 3.2 while row 2 indicates the main technique used for its solution.

Table 3.1: Characteristics overview in WSRP

MILP Mixed integer linear programming, ILP Integer linear programming, INLP Integer non-linear programming, SPP Set partitioning problem,
MCNFP Multi-commodity network flow problem, TS Tabu search, PSO Particle swarm optimisation, SA Simulated annealing, C. Hybrid

SNT 'IL paseq squa.ov 0
6. TS 7. PSO 8. SA 9. SWO

ио!̣est!umado ${ }^{\circ} \mathrm{O}$

$\#$	Characteristics	@
2	Solution method employed:	

н. TS
н. TS
C. MILP, Constructive
O. MILP
O. INLP
H. TS
H. TS, SA, SWO
C. ILP, Constructive, SA
H. PSO
C. MILP, SA, TS
O. MILP
C. ILP, SPP, Matching
H. Agents
H. PSO
O. ILP, SPP
O. ILP, SPP
C. MILP, heuristics
O. ILP, SPP
C. SPP, Repeat matching
O. ILP
H. LNS, VLNS, ALNS
H. Hyper-heuristics
O. ILP, SPP
H. Hyper-heuristics
H. LNS, Clustering
O. MCNFP

The scheduling of employees with 'flexible' arrangements and 'mobility' is of great importance in many scenarios. Many types of personnel scheduling problems have been tackled in the literature (Baker, 1976; Miller, 1976; Golembiewski and Proehl Jr, 1978; Cheang et al., 2003; Ernst et al., 2004b; Alfares, 2004). This thesis is focused on workforce scheduling problems in which personnel is considered flexible (in terms of tasks and working times) and mobile (travelling is required in order to do the job). By mobility we refer specifically to those cases in which moving from one location to another takes significant time and therefore reducing the travel time could potentially increase productivity.

Chapter 4

WSRP Benchmark

4.1 Introduction

In this chapter the data set used for all experiments and computational studies is presented. The data set is the result of gathering published data from related problems that have some of the characteristics discussed in chapter 2. Once the data set was obtained, some changes had to be performed, e.g. adding constraints or information that was not included in the original source.

During the review of the literature on WSRP related topics, it was found that the majority of research in this field had been performed using generated data sets. Therefore, in order to reuse the work of previous researchers, some generated data sets needed to be considered. In addition, it was also important to obtain additional data sets based on real world scenarios in order to relating to the applicability of the WSRP in industry. In total, five data sets were obtained, two generated data sets from the VRPTW literature and three real world data sets obtained through contacting the authors of related publications.

The data sets required some adaptations because in their original form they were not compatible with each other, e.g. they had different units for distance and time. Some of the main features listed on chapter 2 were not present in all data sets, e.g. no teaming required or time-dependent activities constraints. The aim of the adaptations was to generate uniform instances that could be used when performing experiments.

4.2 Description of original data sets

The aim of this section is to provide an overview of the original data set obtained from WSRP-like problems. This section describes them as they were originally published.

4.2.1 VRPTW data set

Given the close relationship between the vehicle routing problem with time windows (VRPTW) and workforce scheduling and routing (WSRP) two data sets from the literature of VRPTW are included. The first data set is the one by Solomon which has been widely studied. The second data set is from a study of the multi-objective aspect of VRPTW (Castro-Gutierrez et al., 2011).

4.2.1.1 Solomon's data set

Solomon's data set consists of 56 instances. Each instance contains 100 visits. The instances are classified according to the duration of the planning horizon and the location of the visits. In total there are six groups of instances R100, R200, C100, C200, RC100 and RC200. The initial letter in the name of the groups refers to the type of distribution of visits used within the groups' instances. Groups R100 and R200 have a random visits distribution within the given area. Groups C100 and C200 present identifiable clusters of activities within the instances. Groups RC100 and RC 200 combine random visit distribution with the presence of some clusters of visits. Groups R100 and RC100 have a short planning horizon between 230 and 240 minutes. In contrast, groups RC200, R200, C100 and C200 present a planning horizon of more than 900 minutes. In every instance there are different configurations of time windows for visits, some visits have an exact time window, others a flexible one and in some cases the time window is the same size as the planning horizon, i.e. not explicitly indicated. Solomon included instances with short service time (10 minutes) in groups R100, R200, RC100 and RC200 and long service time (90 minutes) in groups C100 and C200. There is not a defined set of vehicles per instance, because part of the objective of the VRPTW is to minimise the number of vehicles used to cover all 100 visits. Distances and travelling times are the same in absolute value. The matrix defining such values is symmetrical, i.e. the distance from location A to B is the same as from B to A. Distances are also Euclidean, i.e. the length of the line which connect to points.

4.2.1.2 Multi-objective VRPTW data set

The data set originally comes from a distribution company based in Tenerife, Spain (Castro-Gutierrez et al., 2011). It is structured in a similar way as the Solomon data set. The key differences are that distances and times values are based on information obtained via Google maps in contrast to simply euclidean values. As a result, in this data set distances and times values are different and non-symmetric. The distribution company has five types of customers, each type has its own time window profile for its required visits. The five types are: 1) Customers that are available through all the planning horizon ($0-480 \mathrm{~min}$); 2) Customers who prefer morning arrivals ($0-160 \mathrm{~min}$), afternoon deliveries (160-320 min) and late times (320-480 min); 3) Customers with similar distribution morning, afternoon and late but with a shortened time windows (130 minutes) respectively for morning (0-130), afternoon (175-305) and late (350480); 4) Customers with even more restricted time window arrangement (100 minutes) for morning $(0,100)$, afternoon $(190,290)$ and late $(380,480)$; and 5$)$ The final group of customers consists of random selection among the previously defined time windows. Instances are grouped depending on the number of customers they contain, either 50,150 and up to 250 . In total combining three different sizes (number of activities) times five different time window profiles ($1,2,3,4$ and 5) giving 15 instances in total within the data set.

4.2.2 Home health care data set

The origin of these instances relates to a couple of home health care real scenarios based on two Danish municipalities (Rasmussen et al., 2012). This is perhaps the most complete of the data sets in terms of WSRP's characteristics being provided. It includes skills for employees. There are four different main skills that are distributed among the carers. In addition, real average times in seconds and distances in meters are given. This is the only data set that contains preferences of both employees and recipients. Moreover, activities have an associated priority level. The priority is used because it is recognised in the industry that not all the activities can be performed in a day. Priority level might be increased as days pass without performing the corresponding activity. Finally, some instances contain time-dependent activities constraints. In total there are 11 instances in this data set.

4.2.3 Security guards patrolling data set

The data set describes the work of a set of security guards performing patrolling rounds in several locations. It has activities through out a month. The information originally comes from a Belgian company (Misir et al., 2011). The data set is divided into six districts. Each district with a range of security guards and different number of visits (patrolling round locations). It records up to 16 different skills for the security guards which provide a good range of skill matching against activities. Security guards are available 24 hours and they must start and end their work at home.

4.2.4 Technicians scheduling instance

Originally from a British Telecom Laboratories problem the only instance in this category described the assignment of 118 technicians to perform 250 dispersedly located jobs. The instance is used in the work of Günther and Nissen (2012). The distance and time matrices can be obtained following a simple formula. The duration of the jobs varies from 10 up to 513 minutes. It is the only dataset that provides average activities' duration that vary depending on the technicians' expertise. Time windows are only of three types: morning, afternoon and no preference which cover a mix of the previous two. Technicians are contracted for eight hours with different starting and finishing working times. There are 11 servicing centres and each of the technicians must start and end their working day at the designated one. Qualifications are present in this instance. Some activities can only be performed by a single employee, other simpler activities can be carried out by up to 107, thus giving a good distribution of activity-employee matchings.

4.3 Modifications to data sets

In the previous section 4.2 the original source and a brief description of every data set was provided. Although all referred problems in the data sets have WSRP features, they all differ. For example only the home health care (HHC) data set includes timedependent activities requirements. There are no preferences being given for employees (vehicles) on both of the VRPTW based data sets. In this section the changes and additions to all data sets are described. When possible their original features are kept in order to preserve their domain characteristics. The changes are required since all instances will be used for the mathematical models and algorithms for workforce
scheduling and routing problems presented in this thesis.

4.3.1 Adaptations to VRPTW data sets

4.3.1.1 Solomon's data set

Solomon's data set does not include a defined set of employees (vehicles). Therefore, a given set of vehicles is created per instance. For each of the 56 instances with 100 activities, 20 employees are assigned, i.e a fifth of the number of activities. The proportion value was decided following conversations with a service organisation within the UK home care sector, and it also matches the assumption by Bredström and Rönnqvist (2008). The organisation average visit duration is 50 minutes. Employees' shift duration is eight hours (480 minutes) with a break one break (60 minutes), or two breaks (30 minutes). Taking this into account, the mean number of visits per employee per day x is obtained by solving the equation $50 x+30(x+1)+60=480$, where $x+1$ is the number of trips in a route including the last trip to the employee's final destination. And, 30 minutes is the average time between visits, which include travelling and idle time. The result is $x=4.875$ rounded to 5 . Additionally, two versions of each of the 56 instances were created. A version with only 25 activities and a version with 50 activities. Following the same proportion (1/5) of defined employees, instances with 25 activities are given five employees and ten employees for those with 50 activities.

The original data set did not provide any skill requirement between employees and visits. Therefore, the inclusion of a single skill against activities is introduced. The single skill is assigned to every employee with certain level of expertise. All activities required having this skill to some degree level. As a result, only some employees are able to perform all activities.

The working time for all employees is set equal to the time horizon.
Some activities were changed to require two workers instead of one. A probability was set to 0.1 for two employees and 0.9 for one.

Time-dependent activities constraints were included in the data set with the following procedure. Each activity has a 0.25 probability to be related with a time-dependent constraint with the subsequent activity. The order of activities is maintained according to the original data set. Different probabilities were assigned to each type of time-dependent constraint among the five defined in section 2.2.6. Probabilities are:
synchronisation (0.35), overlap (0.35), minimum difference (0.1), maximum difference (0.1) and min-max difference (0.1). The values for synchronisation and overlap were deliberately larger than the other three as these two are more common timedependent constraints. As it will be discussed later in Chapter 5 scenarios where teams are required are modelled via synchronisation constraints. Validation was required when choosing among the five types in order to avoid creating time-dependent constraints that otherwise would be impossible to adhere too. For example creating a synchronisation constraint between two activities that that have non-overlapping time windows.

Employee's preferences are added in the form of a matrix defining the preference of each employee towards performing each activity. Four preference levels were created $(0.2)(0.5)(0.8)(1.0)$ the bigger the value the stronger the preference.

4.3.1.2 Multi-objective VRPTW data set

Given the similarities with Solomon's data set, similar adaptations were performed, e.g. the introduction of a unique skill in order to match activities with employees. The same probability (0.1) was used to test if an activity should require more than one employee, i.e. a team. The addition of time-dependent activity constraints as described earlier with a 0.25 probability for an activity to be included in one of such constraints. The same probabilities were used for each type of constraint should the activity have one: synchronisation (0.35), overlap (0.35), minimum difference (0.1), maximum difference (0.1) and min-max difference (0.1). Finally, employee preferences using the same four preference levels (0.2) (0.5) (0.8) (1.0) were assigned in a random manner.

4.3.2 Adaptations to home health care data set

This data set contains most of the main characteristics. As a result, no major additions were made. Nevertheless, some minor changes were necessary. The first one included changing the time matrix, which was provided in seconds, to minutes so that it matched the rest of the data sets. The nine skills included in the data set were kept but their level was normalised to a value between 0.0 and 1.0 for both employees and activities. Finally, the priority levels, indicated by numbers in the original data set, were mapped to descriptive words with different penalty factors, low (1.0), medium (2.0), high (10.0) and urgent(20.0). The rationale for assigning such values is to give priority to urgent activities. In this sector, failing to deliver activities with high or
urgent priority can have serious repercussions to the health or the recipient, hence the chosen values.

4.3.3 Adaptations to security guards patrolling data set

The original data set provides information for a month of activities and some rostering constraints. These constraints were removed. From the six districts with monthly activities, 180 instances were generated. The instances reflect each day within a month (30 days) for each of the districts, i.e. 30 days $\times 6$ districts $=180$ instances. The activities included in a day were those which required to be in that specific date or which overlap the time window of the original visit. For example, in the original data set there are requirements such as "a visit to location X must be carried out between the Wednesday 5th and Friday 7th of November". Then, only in those three day instances corresponding to the 5th, 6th and 7th the activity is included. Similarly, with employees' availability. For every day in a district, all employees available during that day are part of the instance. Such a procedure resulted in 30 independent instances for every district with some difference regarding the number of employees and activities.

Similarly to previous data sets, some activities were changed to require two employees, but in this data set the probability increased to 0.2 in comparison to 0.1 used in the VRPTW based ones. Finally, the same mechanism to include time-dependent activities constraints as described earlier is used in this data set. Nevertheless, in this case the same probability is used (0.20) for all five types of constraints.

4.3.4 Adaptation to technicians scheduling instance

Some activities were changed to require two employees instead of only one. Inclusion of time-dependent activities constraints, giving all types the same probability of being chosen (0.20).

The average time duration of every activity is used regardless of the employee that performs it. Contrary to the original data set in which an evaluation function determines given the employee skills the duration of the activities. No preferences were added to this instance.

4.4 Analyses of data sets

This section provides an analysis of all data sets. The overall analysis focuses on the following features: number of activities, number of employees, skills distribution, time windows present, duration of activities, planning horizon, activities requiring teams and distribution of time-dependent constraints. Such information helps to understand the structure of the instances after their adaptation.

In future sections and chapters each data set is referred to by the following acronyms: Solomon's data set (Sol), multi-objective VRPTW's data set as (Mov), home health care data set as (HHC), security guards patrolling data set as (Sec) and technicians scheduling (Tech). In addition some figures and tables present the symbol (\#) which indicates number of.

4.4.1 Number of activities

The number of activities is one of many factors that provides an indication of how hard it is to solve an instance. In the VRP literature, the number of visits is constantly increased as better techniques to solve harder combinatorial optimisation problems are tested. Even, in travelling salesman (TSP), results are reported on the number of locations the salesman has to visit. Given the similarities with VRPTW, the number of activities in a WSRP relates directly with the size of the search space. As discussed in section 2.5, as the number of activities increases, the number of routes to consider grows at a rate similar to a factorial function.

Table 4.1 shows the minimum, mean, maximum, and standard deviation of number of activities in all data sets. The minimum number of activities in all instances is 25. The largest instance is 10 times bigger with 250 activities. Figure 4.1 shows the distribution of instances that have the same number of activities across all four data sets. For example, it can be noticed that the procedure used to divide the monthly district instances, in the security guards patrolling data set, produced a varied range of daily instances with 26 activities up to 210. In the figure, the distribution of the three sizes of instances regarding number of activities is shown for the Sol's data set. Three bar charts corresponding to 25,50 and 100 activities are presented. Similarly with Mov's data set a similar pattern of three different types but this time of 50, 150 and 250 activities.

\# Instances	Data Set	$\operatorname{Min}(x)$	$\operatorname{Mean}(x)$	$\operatorname{Max}(x)$	Std. Deviation
$\mathbf{1 8 0}$	Sec	26	108.04	210	53.39
168	Sol	25	58.33	100	31.27
15	Mov	50	150.00	250	84.51
11	HHC	60	101.90	153	25.01
1	Tech	250	250.00	250	-

Table 4.1: Summary of number of activities (x) in each data set. Note, Tech's data set consists of one instance therefore no standard deviation is provided

Figure 4.1: Shows the distribution of instances that have the same number of activities per each data set (Sec, Sol, Mov, HHC)

4.4.2 Number of employees

The second characteristic that directly relates to the size of the search space is the number of employees available in the workforce. Every possible route has to be tested against each employee in order to guarantee the optimum solution as a result increasing the number of employees results in more comparisons. In other related problems, such as the VRPTW, the number of vehicles (employees) is not as important as the number of visits, the main reason is that if all vehicles (employees) are seen as homogeneous then there is no need to test the all possible routes to all of the employ-
ees. Testing one is enough, since the rest are equivalent in the model. A diversified workforce in which employees cannot be easily classified in profiles, i.e. one profile applying to more than one employee, represents more difficulties for a human planner. The more information that is stored and used about employees when planning, the lower the possibilities of having "model" employees. Opposite from vehicles, ships, containers, etc. when people are involved there are always attributes of uniqueness.

Table 4.2 presents a summary of the number of employees in each data set. The smallest number of employees in an instance is five, and the largest one has 171.

The data sets assume that if an employee is present then he is available to be scheduled. In other workforce related problems such as Staff Scheduling and Rostering (Ernst et al., 2004b) one stage of the search involves deciding whether the employee could work on a particular day depending on his availability. Therefore, the number of employees available is often greater than the number reported in Table 4.2. In such cases it usually refers to the whole workforce of an organisation and not only those who are available during the planning horizon. Even though employees' availability is assumed in the data set, employees can still remain unassigned due to other factors such as skills. Employees' skills could be insufficient to perform any of the activities, making them unavailable for assignment purposes. More about employees' skills is discussed in section 4.4.3.

Figure 4.2 shows the distribution of instances that have the same number of employees. It is noticeable that the distribution is similar to the one observed in Figure 4.1. Sec data set has a more diverse range of instances with a different number of employees. In contrast both VRPTW-based data sets are just a proportion (0.20) of the number of activities.

\# Instances	Data Set	$\operatorname{Min}(y)$	$\operatorname{Mean}(y)$	$\operatorname{Max}(y)$	Std. Deviation (y)
180	Sec	6	26.63	52	13.32
168	Sol	5	11.66	20	6.25
15	Mov	38	104.00	171	56.20
11	HHC	7	9.18	15	2.08
1	Tech	118	118.00	118	-

Table 4.2: Summary of number of employees (y) in each data set. Note, Tech data set only has one instance, therefore no standard deviation is provided

4.4.2.1 Relationship between Visits and Employees

The ratio between the number of activities per employee could be used as a fairness measure when assigning activities to employees, i.e. even distribution of activities

Figure 4.2: Shows the distribution of instances that have the same number of employees in each data set (Sec, Sol, Mov, HHC)
among employees. For example, if the ratio is $5: 1$, then the scheduling procedure could limit the number of activities assigned for every employee to $5+/$ - some deviation, e.g. 1 , in such case then all routes assigned to employees could have a minimum of four and a maximum of six. Table 4.3 provides the minimum, mean, maximum and standard deviation of the ratio in the instances of every data set. The ratio varies depending on the data set. HHC and Sec ratios are four and five activities per employee. On the contrary, Mov and Tech ratios, indicate less than two activities per employee. Particularly Mov, it appears to have almost one employee per activity, if that was the case, then employee-routes will only consider one location apart from the start and end destination. In such case the problem becomes a task-allocation with no routing component as every employee is required to travel to one location. Ratios close to 1.0, e.g. (1.46) for Mov combined with a small average duration of activities might indicate that some of the instances are over staffed. The original source of the Mov data set (Castro-Gutierrez et al.) confirmed that their instances have more vehicles than required. The Mov data set was not changed as having over staffed instances could be a valid scenario in the real world. HHC presents the highest ratio 11.77 which might indicate that the duration of the activities in HHC are shorter, the shift
times longer or a combination of both. Later it was found that in real world home health care scenarios it is common not to complete all activities in a single day due to the reduced size of the workforce.

\#Instances	Data set	$\operatorname{Min}(x / y)$	$\operatorname{Max}(x / y)$	$\operatorname{Mean}(x / y)$	Std. Deviation (x / y)
168	Sol	5.00	5.00	5.00	0.00
15	Mov	1.31	1.46	1.41	0.06
11	HHC	8.57	11.77	11.05	1.31
180	Sec	4.00	4.42	4.07	0.00
1	Tech	1.73	1.73	1.73	$-a$

Table 4.3: Minimum, mean, maximum and standard deviation of the ratio (number of activities per employee) (x / y) for each data set is shown. ${ }^{a}$ Only one instance so no standard deviation is provided.

4.4.3 Employees' skills

Skills restrict which activities employees can perform. A complement to the previous ratio (activities per employees) could be obtained if we consider the percentage of activities that employees can perform given their skills rather than just dividing activities/employees. Table 4.4 shows the percentage of activities that an employee can perform. Employees in HHC can perform more than 95% of the activities. In contrast, the most qualified employee in Tech can only perform a third of the activities. There are some instances in Sol and Mov which contain employees that due to their skills are unable to perform any activity (0.0%). Employees unable to perform any activity should be removed during the pre-processing stage of any solution method used. The only exception, is in the case of apprentices who by themselves have insufficient skills to do a task on their own and could follow a master to learn his trade. Figure 4.3 shows the distribution of instances that have similar percentage of activities that can be performed for the average employee when skills are considered. The percentage is shown per data set (Sec, Sol, Mov, HHC).

\#Instances	Data Set	Min	Mean	Max
168	Sol	0.00%	71.66%	100.00%
15	Mov	0.00%	72.41%	100.00%
11	HHC	95.81%	98.60%	100.00%
180	Sec	33.48%	87.73%	98.59%
1	Tech	22.44%	24.51%	34.63%

Table 4.4: Percentage of the activities employees cover when taking skills into consideration. The percentage is shown for every data set.

Figure 4.3: Shows the distribution of instances that have similar percentage of activities that can be performed for the average employee when skills are considered. The percentage is shown per data set (Sec, Sol, Mov, HHC)

4.4.4 Time windows

The size of the time window determines the degree of flexibility that each activity has for its start time. An exact time window could be seen as too restrictive. On the contrary, if there is no time window then the possibilities for assignment could be many. Table 4.5 shows average time window size in minutes for all data sets. Sec and Sol present the most diverse time window sizes. Sec for example has an average of minimum time window size of 117 minutes and an average maximum size of 613 minutes. Similarly, for Sec seven minutes as average of minimum time window size and 1214 minutes as maximum size. In contrast, HHC present activities which require an exact time (0 time window duration).

Figure 4.4 shows the distribution of the average time window sizes in every instance for each of the data sets. Sec presents the most diverse range. The majority of Sol instances the time window is exact, i.e. 0. There is a clear division of two average time window sizes for Mov and HHC, i.e. a small size and a big size as there is nothing
in between the two extreme bar charts. For Mov the small size is 100 minutes and the big one around 400 minutes. Small size in HHC refers to below 70 minutes and big more than 100 minutes.

\#Instances	Data Set	Min	Mean	Max
168	Sol	116.96	358.13	613.35
15	Mov	192.00	204.34	270.00
11	HHC	0.00	68.03	263.63
180	Sec	7.16	460.94	1214.41
1	Tech	720.00	867.50	1440.00

Table 4.5: Mean Time window size in each data set. Minimum and Maximum values are calculated per instances and then the mean of all the minimum/maximum values per data set is shown.

Figure 4.4: Shows the distribution of instances according to their time window duration for every data set (Sec, Sol, Mov, HHC)

4.4.5 Service Time

The service time, i.e. duration of activities, determines the number of effective working hours employees have to provide. If activities are short, then it is expected that the proportion of the travel time increases because it means employees spend more time travelling than providing continuous effective work. One activity of two hours in some cases is preferred to two activities of one hour with travelling required. Activities' duration varies across sectors. In many cases, services are between 15 minutes to one hour maximum. In other cases, activities could be as long as the entire employee's shift. Table 4.6 contains information regarding the average activities' duration for each data set. Sol data set presents no variance between the minimum and maximum which implies that most activities have the same duration in the instances. Mov mean duration of activities is just under 22 minutes. HHC presents a mean activities' duration as short as five minutes up to almost 90 minutes. In contrast, Sec the minimum average duration of activities is around one hour, and the maximum average duration is 14.5 hours. In the latter, an employee assigned such a prolonged activity will only perform this activity. Activities with long duration, similar to the planning horizon, could be assigned separately, and not in the same process of activities that require routing involved. It is only within the Sec instances that this characteristic is encountered.

Figure 4.5 shows the distribution of average time duration of activities per instances in all data sets. Similar to other previous characteristics Sec presents more diversity. The remaining three (Sol, Mov and HHC) have clear distinction in the average values.

\#Instances	Data Set	Min	Mean	Max
168	Sol	34.28	34.28	34.28
15	Mov	10.00	21.16	30.00
11	HHC	5.45	26.27	87.27
180	Sec	62.41	409.83	864.58
1	Tech	10.00	150.34	417.00

Table 4.6: Contains average activities' duration within each data set. Time is given in minutes

4.4.6 Planning horizon

The size of the planning horizon is an important aspect of the WSRP as it restricts the number of activities that can be performed and often determines the maximum employee working time. In all instances employees are available during the whole

Figure 4.5: Shows the distribution of mean activities' duration within the instances of each data set (Sec, Sol, Mov, HHC)
planning horizon, i.e. their working time is equivalent to the planning horizon. Table 4.7 shows that for the majority of instances the average planning horizon is less than 24 hours (1440 minutes). Only Sol contains some instances above of more than 24 hours with a 2.3 days planning horizon. Clearly shown in Figure 4.6, all instances in Mov and HHC have the same planning horizon: eight hours for Mov and 23 hours for HHC. It is interesting that Sec almost has all instances with the same planning horizon (1440 minutes). There are a few exceptions where the planning horizon is of 25 hours (1500 minutes), this seemed odd as the division of the original monthly district-instances was made on a 24 hour basis. But after further investigation, the exception are days of 25 hours, which can only happen when the date coincides with a day in which daylight savings were adjusted by moving the clocks backward and effectively gaining an hour. Taking that into consideration only Sol present a range of different planning horizon going from four hours up to 2.3 days.

\#Instances	Data Set	Min	Mean	Max	Std. Deviation
168	Sol	230	1100.07	3390	1015.32
15	Mov	480	480.00	480	0.00
11	HHC	1380	1380.00	1380	0.00
180	Sec	1440	1442.00	1500	10.80
1	Tech	1380	1380.00	1380	-

Table 4.7: Distribution of planning horizon duration within each data set. Time is given in minutes

Figure 4.6: Shows the distribution of planning horizon duration across all data sets (Sec, Sol, Mov, HHC)

4.4.6.1 Ratio working capability/work demand

An estimate of the number of hours required to complete all activities could be obtained by multiplying the number of activities by their duration. Such a value provides the effective hours, i.e. time working on activities. The real working time of the instance is only known when all travelling times are known. The available working time of the workforce is estimated as the number of employees multiplied by the percentage
of activities that the average employee can perform based on skills multiply by his shift time (in this case planning horizon). Table 4.8 provides the ratio between the established working capability of the workforce and the work demand for every data set. Sol and HHC have a ratio of about 4.5 times available working capability to perform all the activities required. Mov has even more, eleven times more working capability than required. Although just an estimate, it was previously confirmed that the Sec data set was over staffed, and a ratio of 11.38 confirms it. In contrast, the ratio of Sec is below 1.0 which means that for some of these instances not all activities can be performed because there are not enough qualified employees available to cover all activities.

$\#$	Data Set	$\mu_{\text {Activities }} * \mu_{\text {Duration }}$	$\mu_{\text {Employees }} * \mu_{\text {skill }} * \mu_{\text {TimeHorizon }}$	Ratio
168	Sol	2000.00	9197.81	4.59
15	Mov	3175.33	36150.40	11.38
11	HHC	2677.66	12493.51	4.66
180	Sec	44280.44	33693.81	0.76

Table 4.8: Ratios between the established working capacity of the workforce and the work demand

The previous ratio is just an estimate, other factors such as the number of synchronised activities or the number of employees required, need to be considered in order to increase confidence in whether all activities in an instance can be performed. Both considerations determine that a number of employees must perform an activity at the same time, so if an activity requires a team of four, but there are only three employees in the workforce then such activity will not be performed regardless of the instance having spare working time at other time periods.

4.4.7 Teaming and time-dependent activities constraints

These two features vary across the data set. They are considered together because a teaming requirement can be modelled using synchronised constraints (time-dependent of type synchronisation). For example, if an activity requires a team of three employees, that can be modelled with two synchronised constraints. Table 4.9 presents a summary on the presence of teams and time-dependent activities constraints within the data sets. Synchronisation and overlapping occur in the majority of instances. Min-max type is found only in Mov and Sec. Apart from HHC, the rest of the data sets contain instances with activities that required two employees to be performed.

Figure 4.8 shows the distribution on the number of time-dependent activities con-

$\#$	Data Set	$\mu_{\text {Sync }}$	$\mu_{\text {Over }}$	$\mu_{\text {Min }}$	$\mu_{\text {Max }}$	$\mu_{\text {Min-max }}$	$\mu_{\text {Team }(2)}$
168	Sol	2.66	2.99	0.66	2.00	0.00	6.00
15	Mov	5.40	5.53	4.00	3.33	3.33	14.66
11	HHC	0.90	0.18	0.00	0.00	0.00	0.00
180	Sec	3.31	3.24	4.30	4.07	4.41	21.89

Table 4.9: Average number of time-dependent activities constraints and number of employees required per activity across all data sets (Sol, Mov, HHC, Sec)
straints. There is one graph for each of the following types of constraints: synchronisation (Sync), overlapping (Over), minimum difference (Min), maximum difference (Max) and minimum-maximum difference (MinMax) for every data set Sec, Mov, Sol and HHC. Not every type of constraint is present in each data set, e.g. MinHHC, Max-HHC, MinMax-HHC, MinMax-Sol. Moreover, Tech does not contain any time-dependent constraints; hence no graph is required for this data set.

Figure 4.7: Showing the distribution of time-dependent activity constraints of type synchronisation and overlap for the HHC data set.

4.5 Summary

In this chapter the data sets used in this PhD thesis were presented. Details regarding the original source of each data set were provided. In addition, the additional features and modifications performed were also explained. Finally, analyses of: number of activities, employees, skills, time windows, duration of activities, planning horizon, teaming and time-dependent activities constraints was provided for each of data set. In the following chapters, the adapted instances are used to experiment with the models and algorithms presented in this thesis. When appropriate, references to the

Figure 4.8: Showing the distribution of time-dependent activity constraints of type synchronisation, overlap, minimum, maximum and min-max difference for Sec.
analysis performed in this chapter are used to convey research findings.
Table 4.10 provides a summary of the characteristics added, removed or changed for each data set as a reference.

In Appendix A, Table A. 1 contains detail information regarding number of activities,

Figure 4.9: Showing the distribution of time-dependent activity constraints of type synchronisation, overlap, minimum and maximum difference for the Sol data set.
number of employees, employees's coverage of activities based on skills, mean time window duration, mean service time, planning horizon duration and number of timedependent constraints for each instances. The table is the base data from which the summary information presented in this chapter was obtained.

Figure 4.10: Showing the distribution of time-dependent activity constraints of type synchronisation, overlap, minimum, maximum and min-max difference for Mov.

Characteristic	Sol	Mov	HHC	Sec	Tech
Number of employees	A	-	-	C	-
Additional instances	A	-	-	C	-
Skills definition/addition	A	A	-	-	-
Employees working time	A	-	-	-	-
Activities requiring Teams	A	A	-	A	A
Preferences addition	A	A	-	A	-
Connected activities constraints	A	A	-	A	A
Time horizon definition	-	-	-	A	-

Table 4.10: Summary of characteristics that were added (A) or changed (C) from the original data set.

Chapter 5

Mathematical Programming Models

5.1 Introduction

This chapter adapts two mathematical models from the literature. The first is an Integer Linear Programming Model (IP) used in the Vehicle Routing Problem with Time Windows (VRPTW). The second is a Mixed Integer Linear Programming Model (MIP) which among other features allows activities to be left unassigned. It will be clear that the MIP expands on the features of the IP. The chapter is divided in two sections, each of them covering one of the two models.

5.2 IP Model

In the IP model all activities in the instances should be feasible scheduled and performed in order to obtain a feasible result, i.e. a schedule indicating which employees are performing which subset of activities indicating their sequence and starting time. This approach may present problems, highlighted during the analysis of the entire data set in the previous chapter, in that some instances do not have enough employees to cover all activities. Nonetheless, for other instances it should be possible to assign all activities, since it appears there is enough working time available to perform them.

This section covers the following three objectives. The first one is to use Bredström and Rönnqvist (2008) VRPTW model to tackle WSRP by performing the necessary
modifications to include all additional constraints. The second objective is to assess if WSRP problems are more difficult in comparison to VRPTW ones. A comparison is useful in order to ascertain whether WSRP requires less computational effort to solve than VRPTW. If this is case, then current approaches to tackle VRPTW should suffice. If WSRP is harder to solve than VRPTW, the need for new/adapted models and algorithms is justified. The third objective is to discuss the results of the mathematical solver (Gurobi) when tackling WSRPs using the IP Model.

5.2.1 IP Model Description

Given the requirement of assigning all activities, the Bredström and Rönnqvist (2008) model presents the following advantages compared to other models available in the literature. The Korsah et al. (2010) model includes waiting times in the definition. Waiting times are the idle periods in which employees are neither performing activities nor travelling, e.g. when arriving to a location before the time window opening employees are required to wait until it occurs. Such approach greatly increases the number of variables that are generated for the model. In smaller instances, i.e. with less than 25 activities and an equal or smaller number of employees, this is not an important issue as the solver can handle it, but one observed difficulty reported in the literature for VRPTW when using mathematical solvers refers to the amount of memory being used for big models, i.e. more than 100 activities. Knowing waiting times, although desirable as a performance indicator, it is not necessary when the aim is to cover all activities. Another model by Rasmussen et al. (2012) considers that in some cases assigning all activities is not possible and therefore introduces additional variables to allow the possibility of unassigned activities. Their approach is discussed in the next section (see Section 5.3). The IP model is as follows:
min

$$
\begin{equation*}
\alpha_{p} \sum_{k \in K} \sum_{(i, j) \in A} c_{i k} x_{i j k}+\alpha_{T} \sum_{k \in K} \sum_{(i, j) \in A} T_{i j} x_{i j k} \tag{5.1}
\end{equation*}
$$

$$
\begin{align*}
\sum_{k \in K} \sum_{j:(i, j) \in A} x_{i j k}=1 & \forall i \in N, \tag{5.2}\\
\sum_{j:(o, j) \in A} x_{o j k}=\sum_{j:(j, d) \in A} x_{j d k}=1 & \forall k \in K, \tag{5.3}\\
\sum_{j:(i, j) \in A} x_{i j k}-\sum_{j:(j, i) \in A} x_{j i k}=0 & \forall i \in N, \quad \forall k \in K, \tag{5.4}\\
t_{i k}+\left(T i j+D_{i}\right) x_{i j k} \leq t_{j k}+b_{i}\left(1-x_{i j k}\right) & \forall k \in K, \quad \forall(i, j) \in A, \tag{5.5}\\
a_{i} \sum_{j:(i, j) \in A} x_{i j k} \leq t_{i k} \leq b_{i} \sum_{j:(i, j) \in A} x_{i j k} & \forall k \in K, \quad \forall i \in N, \tag{5.6}\\
a_{i}^{k} \leq t_{i k} \leq b_{i}^{k} & \forall k \in K, \quad \forall i \in o, d, \tag{5.7}\\
\sum_{k \in K} t_{i k}=\sum_{k \in K} t_{j k} & \forall(i, j) \in P^{s y n c}, \tag{5.8}\\
\sum_{k \in K} t_{i k}+p_{i j} \leq \sum_{k \in K} t_{j k} & \forall(i, j) \in P^{\text {prec },} \tag{5.9}\\
x_{i j k} \in\{0,1\} & \forall k \in K, \quad \forall(i, j) \in A, \tag{5.10}\\
t_{i k} \in \mathbb{Z}_{+} & \forall k \in K, \quad \forall i \in N . \tag{5.11}
\end{align*}
$$

In this model, N is the set of activities' locations. The node o refers to the starting point of the employees. Node d denotes the final destination of employees after completing their activities. In this model nodes (o and d) represent the same node if the starting and ending location is the same, but still two nodes are required due to the nature of the model, i.e. based on network flow. Set A contains all the locations in N plus the two extra locations for starting and ending nodes. If the start and end location are different for every employee then employees' starting and ending locations are also included in A. The set of all available employees is represented by K. Every activity i defines a time window on its starting time. The time window is given by a_{i} (earliest start time) and b_{i} (latest start time). Activity i 's duration is given by D_{i}. Travel time between location i and j is considered in the integer variable $T_{i j}$. Variable $t_{i k}$ is a binary variable that indicates whether employee k performs the activity at location i. Note, if two or more activities have the same location but cannot be performed on the same visit then additional variables for every activity are required due to the nature of the model. Employee k 's working time is given by a_{i}^{k} (start time) and b_{j}^{k} (end time). The constant $E_{i j}$ considers the travelling time between locations i and j plus the duration of activity at i, i.e. $E_{i j}=T_{i j}+D_{i}$. Using such a constant assumes that as soon as an employee finishes an activity he starts travelling for his next assignment immediately. If the employee arrives at the next location early, before the opening of the time window, he has to wait.

The objective function (5.1) has two components. The first component is the cost of
assigning activities to employees. Such cost is given by $c_{i k}$ for activity i performed by employee k. The second component is the travel time of all employees when performing their visits. Both components have a weight factor. The cost component's weight is α_{p}, and for travel time component is α_{T}. Such weights can be set accordingly depending on the units being used or the importance given to any of the components. Using weighted sums as objective function has the advantage of allowing more than one aspect of the WSRP to be considered e.g. employees' costs and travel time. Weights can be adjusted depending on which component has more relevance for a given scenario. A disadvantage of weighted sums is the loss of a common unit of measure i.e. money and time. In addition, sometimes a negative value in a component's sum could diminish the result of another component. In multi-objective optimisation weighted sums are often used. Nevertheless, it has disadvantages as sometimes it fails to locate Pareto optimal solutions (Ward Athan and Papalambros, 1996).

The constraints are described as follows. All visits must be performed (constraint 5.2). All employees must start (leave) from location o and return to location d (constraint 5.3). Constraint (5.4) maintains flow conservation, i.e. once an employee visits a location represented by a node, to perform an activity, he must leave the location. Constraint (5.5) ensures that the integer variable capturing the start time of activity i is less than the next activity j which the employee performs, avoiding cycles. Each visit's time window must be met, constraint (5.6) enforces the start time to be within the time window $\left(a_{i}^{k}-b_{j}^{k}\right)$. Visits should be performed during employee's working time (5.7). Synchronisation constraints (5.8) are necessary for every pair of visits that need to be synchronised. Other types of time-dependent activities constraint are enforced in (5.9). Decision variable $x_{i j k}=1$ when employee k travels from location i to j, it assumes it performs the activity at i. Or, $x_{i j k}=0$ if the employees does not use that segment of the graph, i.e. does not perform activity i and travel towards j. Constraint (5.10) restricts such variables to be binary. Variables recording the starting time of activities are positive integers (constraint 5.11).

5.2.2 Modifications to IP model

There are some modifications to the Bredström and Rönnqvist (2008) model. The first one considers using positive integers instead of real variables to record the starting time of activities (5.11). Such changes allow the representation of the starting time in minutes or seconds depending on the accuracy required. In some sectors, recording to the nearest 15 -minute period is enough. As shown in the analysis of the instances (chapter (4) the majority of the instances have a planning horizon of less than 24
hours. Using an accuracy in minutes gives 1440 possible values for such variables $\left(t_{i k}\right.$ represents a given minute in the planning period).

Another modification to the original model is in the objective function (5.1), the removal of a balancing component and its associated weight (see Bredström and Rönnqvist, 2008, pg. 25). Such a balancing component could be included when factors like fairness on service time or workload for every employee are taken into account. Fairness on assignments of activities has different meanings depending on the sector. It might be a balance assignment of working time, or the same number of visits per employee, or each employee performing their preferred visits to a certain degree etc. Within the instances such notion is not included or mentioned. As a result, the balancing component was removed, leaving the objective function only with cost and travel time.

5.2.3 Experiments using the IP Model

The aim of the experiments is to obtain optimal solutions if possible. Since the IP model is based on the VRPTW problem, only the data sets based on such problem are used (Sol and Mov). Another reason for using only those data sets, is that the model requires to complete all activities in the instances. From the analysis performed on the Sec data set, it is concluded that in many instances there are not enough employees available to perform all activities, as consequence the Sec data set was discarded in the experiments in this section.

The weights used in the objective function α_{p} and α_{T} are given both the same value, in this case (0.5) since no particular additional component is more important than the other one.

The experiments were carried out using Gurobi solver version 5.1 and executed on a X64-based PC running Microsoft Windows 7 Enterprise with 2 Duo CPU (3.16 GHz) and four gigabytes of RAM.

5.2.3.1 Tackling the first objective

The objective of tackling WSRP with a model based on VRPTW is investigated by performing the following experiments. Both data sets Sol and Mov are solved by a commercial solver (Gurobi) in order to obtain optimal, and if not possible, at least good integer feasible solution. No time limit was set for the solver, therefore the
optimisation process stops when finding the optimum value, when the solver runs out of memory, or when the solver proves the instance being integer infeasible.

5.2.3.2 Overview of Results

The experiments used in total 183 instances (Sol and Mov). The solver was not able to load instances of 150 and 250 activities due to the size of the model (the amount of memory required), such instances belong to the Mov data set and in total are 10, five of each number of visits. For the remaining ones 173, Table 5.1 shows the overall results. There were four types of results among the 173 instances: instances for which the solver found optimal solutions (Optimal), instances for which the solver reported as infeasible (Infeasible), instances where the solver run out of memory (OoM) without giving any result, and instances where the solver reported errors (Error).

From Table 5.1 we observed that optimal solutions were only reported in two instances both with 25 activities. It took 67 hours for the longest one to find the optimal solution and 21 hours for the shortest one. Almost half of the instances of 25 and 50 visits run out of memory when searching for the optimal solution, nevertheless feasible solutions were found. The time by which the solver reports the first available solution is provided in parentheses. It is noticeable that the first feasible solution is reported as fast as eight seconds and maximum of four hours, mean computation time is between 10.5 (for 25 visits instances) and 5365 (for 50 visits instances) seconds. Infeasible solutions could be identified almost immediately, in less than one second after the optimisation commences, but for other cases after 45 hours.

The overall observation is that these WSRP instances are computationally difficult to solve for the mathematical solver with this IP formulation. More importantly, it is observed that for a good proportion of them no feasible solution was obtained. For example, none of the 100 activities instances was solved. It is clear that for instances of that size the solver using this model is not a good option as solution method.

Figure 5.1 shows the gap reduction of an optimal instance found by the mathematical solver. The outer graph represents all time required to achieve optimality (241620 seconds). The inner graph only shows the first two hours (7200 seconds) which in this case is the amount of time required for the solver to achieve almost a 10% gap. Reducing the gap further takes the solver 65 additional hours. Hence, setting a maximum time limit of two hours for further experiments is a reasonable compromise. It should be remembered that the instances represent daily planning problems where two hours waiting for a result from the solver is a significant but manageable time.

Total	Size	Outcome	\# Instances	$\operatorname{Min}(t)$	$\operatorname{Mean}(t)$	$\operatorname{Max}(t)$	$\operatorname{Std} \operatorname{Dev}(t)$
56	25	Infeasible	30^{a}	0	5417.80	162340	29637.88
		Optimal	2^{a}	79072	160346.00	241620	114938.79
				(8)	(10.50)	(13)	(3.53)
		OoM	21^{a}	38430	117198.48	348129	75519.83
			(188)	(2329.08)	(9293)	(2599.13)	
		Error	3^{a}	-	-	-	-
61	50	Infeasible	31^{a}	0	24.29	331	73.49
		Optimal	0^{a}	-	-	-	-
		OoM	$26^{a, b}$	1651	67294.31	269150	61362.68
			(63)	(5365.00)	(14898)	(8273.17)	
		Error	4^{a}	-	-	-	-
56	100	Infeasible	53^{a}	0	55.64	123	32.27
		Optimal	0^{a}	-	-	-	-
		OoM	0^{a}	-	-	-	-
	Error	3^{a}	-	-	-	-	

Table 5.1: Summary of the outcome infeasible, optimal, out of memory (OoM) reported by Gurobi. Computation times t (Minimum, Mean, Maximum, Standard Deviation) are in seconds. Times in parenthesis show when the solver found the first feasible solution when available. ${ }^{a}$ Sol data set. ${ }^{b}$ Mov data set.

In the next round of experiments we concentrate in the 25 and 50 visits size instances.

5.2.3.3 Tackling the second objective

Two of the constraints, 5.8 and 5.9, are included to tackle the case when activities require more than one employee and when activities have time-dependent relationships. It could be argued that the presence of these two additional type of constraints could make the search easier since the search space is reduced. Or, it might be the case that introducing the constraints makes the problem computationally harder to search because, although the search space might be reduced, it might also be divided in small separated feasible areas, and finding those areas could be more difficult. A way of testing whether Teaming and time-dependent activities constraints make the search easier or more difficult for the solver is to use the same model with some instances that include those constraints and other instances that do not include them and compare results.

Optimal instance solver performance

Figure 5.1: Gap reduction as computation time progresses in a case in which the mathematical solver found the optimal solution. The optimal solution is reported after 241620 seconds (approximately 67 hours) but a considerable gap reduction is achieved during the first two hours, as shown in the close up

5.2.3.4 Experiment Design

The experiments use only the instances of activities size of 25 and 50 within the Sol (112 instances) data set. Two runs of experiments are performed. The first run has no changes of the instances. In the second run, all teaming and time-dependent activities constraints are removed from the instances. For both runs of experiments the same IP model, computer and mathematical solver settings are used. The time limit set was 15 minutes. This time limit differs from the suggested two hours from the first objective as the purpose is to see the effect of having time-dependent activities or not and not to find the optimum value. The same objective function is used (5.1). At the end of both experiment runs a comparison is made to identify which group of instances the solver achieves better results. Such comparison might provide guidance in answering whether teaming and time-dependent activities constraints make the search more difficult or not.

5.2.3.5 Experimental Results

To facilitate the report of experiments we divided the instances according to the original Solomon groups, i.e. C100, C200, R100, R200, RC100, RC200. Table 5.2 shows the number of instances in each group for which the solver found a feasible solution. The solver found more feasible solutions in all groups where the version was without Teaming and Time-dependent Activities Constraints (TTC). In total there were 59 feasible solutions compared with 26 for the version with TTC constraints.

TTC Constraints	C100 (18)	C200 (16)	R100 (24)	R200 (22)	RC100 (16)	RC200 (16)	Total (112)
With TTC	10	8	0	4	0	4	26
Without TTCs	13	13	3	12	8	10	59

Table 5.2: Number of feasible solutions found in every group. Values in parentheses indicate the number of instances per group. Teaming and time-dependent activities constraints (TTC)

The version without the teaming and time-dependent constraints finds more feasible solutions (59) compared to the version that includes them (26). Although better results are obtained the version without constraints still remains a difficult problem for the solver since just 59 out of 112 instances could be solved. Table B. 1 (see Appendix B section B.1) provides details of the results of each instance with TTC constraints. The results include best objective, lower bound found, and the respective gap. It also shows whether the solver identifies the instance as infeasible. The solver reported overall: 26 instances with feasible solutions, out of which seven were optimal ones; seven instances were infeasible; and, for the remaining 79 instances, the solver time out without reporting any feasible solution. Similarly, Table B. 2 (see Appendix B section B.2) provides detail of individual instances for the version without TTC constraints. The solver found feasible solutions for 59 instances, out of which 15 were optimal. There were two infeasible instances. And, for the remaining 51 instances the solver timed out without reporting any feasible solutions. There are 26 instances that have feasible values for both experiments (with and without TTC), the solver obtains the same results for seven of them. These seven are the optimal ones reported with TTC. For the rest, the version without TTC achieves a better gap. A series of Figures showing the reduction in gap as computation time progresses for both experiments runs is included in Appendix B for results with TTC refer to B.1, B.2, B.3, B.4 for results without TTC refer to B.5, B.6, B.7, B.8, B.9, B.10.

Regarding infeasible results in both experiments, two instances are infeasible due to the lack of employees to cover all activities, whether because there are not enough
or they do not have the required skills. The remaining five infeasible instances are due to conflicts when introducing TTC, particularly those constraints that require the simultaneous performance of two different activities, because they require two or more employees available at a specific time.

5.2.3.6 Review of the First objective: Varying time limit

In the experiments of section 5.2.3.2 there was no limit in computation time, in the hope that the solver could eventually find optimal solutions. In this section, three additional time limits are used for instances with 25 and 50 visits. The time limits are 15 minutes, 60 minutes and 240 minutes. The need for repeating the experiments with an specific time limit was to obtain more information regarding instances that run out of memory in the previous section. 5.2.3.2.

Results from section 5.2.3.5 for instances with TTC with time limit of 15 minutes are re-used here. There are 79 instances for which the solver timed out after 15 minutes providing no result, for those instances only the time limit is increased to an hour. Table B. 3 (see Appendix B section B.3) shows detailed results of individual instances. The solver only found three instances with new feasible solutions. Figure B. 11 (Appendix B) shows the gap reduction of the three instances, notice how the x -axis starts around 2000 seconds.

There are still 76 instances for which the solver does not provide any information apart from the lower bound. A third increase in time limit is performed (240 minutes). The number of minutes is chosen to maintain the same ratio (four times) as for the previous two set of experiments (15 to 60) and (60 to 240). Table B. 4 (see Appendix B section B.4) contains detailed information for each instance. The solver found 16 new feasible solutions. The new results belong to all groups except R100. Figures B.12, B. 13 and B. 14 also in Appendix Billustrate the gap reduction for the 16 instances. Among all groups R100 contains instances with shorter time horizon with respect to the other groups. The duration of the time horizon is equivalent to employees working time. In other words, instances in R100 have the same work with less resources (employeeshours). For the same reason six out of seven infeasible instances belong to that group R100.

5.2.3.7 Tackling the Third objective: Gurobi results

Gurobi provides information regarding the current gap achieved while performing the optimisation. In the experiments, Gurobi is set up to report the gap reduction every 15 seconds. When a gap reduction is achieved, the method used is reported by the solver. The objective in this set of experiments is to identify which method is used by Gurobi when finding better solutions for each instance. For every new feasible solution Gurobi reports whether the solution was found by branching or by heuristics as specified in the reference manual of the solver Inc. (2013). If most of the time new feasible solutions are found by heuristics, it would justify developing a tailored one for WSRP. In all previous experiments, without exemption Gurobi found more gap improvements when using heuristics. It is expected that MIP heuristics find more feasible solutions than the branching process for the VRPTW. The adaptations to the data set and modification of the VRPTW model to tackle WSRP have similar results. In fact, the number of times a heuristic within Gurobi finds a better solution is in general larger for instances that include the additional constraints in the WSRP instances.

Table 5.3 summarises the number of times a gap reduction was achieved for every group of instances in all experiments. The table has four rows but split in two parts vertically, each part has three groups of instances. Note that the second row in each part, marked with $\left(^{*}\right)$, refers to all instances without the teaming and time-dependent activities constraints. The third row in each part shows the 79 instances that timed out after 15 minutes in the first set of experiments but then executed for up to 60 minutes. The number in parentheses after the time limit is the number of instances used in that set of experiments. In all groups there are more gap reductions achieved by heuristics than by branching (H / B values).

5.2.4 IP Model Remarks

The computational experiments performed in this section provide solid evidence that WSRP instances are more challenging to solve using the IP model and mathematical solver under the described conditions than their VRPTW counterpart, from which they were generated. Table 5.4 summarizes the results of this section. The generated WSRP instances are more difficult to solve due to the additional teaming and time-dependent activities constraints (similar results are reported by Rasmussen et al. (2012)). Additionally, it is found that WSRP instances with clustered visiting locations tend to be easier to solve according to the gap percentage reported by the solver

Time(\#)	C100	H/B	C200	H/B	R100	H/B
$15 \mathrm{~m}(112)$	10	$26 / 16$	8	$27 / 11$	0	$0 / 0$
*15m(112)	13	$50 / 12$	13	$71 / 19$	3	$10 / 5$
$60 \mathrm{~m}(79)$	0	$-/-$	0	$-/-$	0	$-/-$
$240 \mathrm{~m}(112)$	14	$95 / 23$	10	$83 / 23$	0	$0 / 0$
Time(\#)	R200	H/B	RC100	H/B	RC200	H/B
$15 \mathrm{~m}(112)$	4	$25 / 10$	0	$0 / 0$	4	$57 / 14$
*15m(112)	12	$75 / 21$	8	$48 / 25$	10	$99 / 20$
$60 \mathrm{~m}(79)$	2	$8 / 1$	1	$3 / 2$	0	$-/-$
$240 \mathrm{~m}(112)$	11	$196 / 27$	2	$11 / 1$	8	$126 / 15$

Table 5.3: Summary of methods used by Gurobi during the optimisation process. Columns H/B report the number of gap reductions within a group of instances that are achieved with Heuristics (H) or Branching (B). Within every group the number of instances with feasible solutions is reported.
in the experiments.

The computation time limit for a mathematical solver to find good feasible solutions for the generated WSRP instances in data sets (Sol and Mov) needs to be more than one hour. Considering only the 45 instances for which feasible solutions are found, the solver took less than an hour for 29 instances. For the remaining 16, feasible solutions are found within one to four hours. Nevertheless, for 90% of 45 instances, feasible solutions are found within two hours and five minutes. Adding two more hours of computational time achieved only 10% more feasible solutions. This is not practical, hence it is suggested to use a maximum computation time of two hours when solving WSRP instances with planning horizon of one day.

TTC	Time	C100 (18)	C200 (16)	R100 (24)	R200 (22)	RC100 (16)	RC200 (16)	Total (112)
Without TTC	15 min	$13(8)$	$13(4)$	$3[2]$	$12(1)$	$8(1)$	$10(1)$	$59(15)[2]$
With TTC	15 min	$10(5)$	$8(2)$	$0[6]$	4	$0[1]$	4	$26(7)[7]$
With TTC	60 min	$10(5)$	$8(2)$	$0[6]$	6	$1[1]$	4	$29(7)[7]$
With TTC	240 min	$14(5)$	$10(2)$	$0[6]$	11	$2[1]$	8	$45(7)[7]$
Unknown		4	6	18	11	13	8	60

Table 5.4: Summary of experiments. Number of instances for which the solver achieves feasible solutions. Values in parentheses () in the header row refer to the total of instances in the group. Values in parentheses () within the data indicate the number of optimal solutions. Values in brackets [] report the number of infeasible solutions within the group

5.3 MIP Model

In this section, the IP Model (see section 5.2) is changed to one that allows activities to be left uncovered (unassigned). It is clear from the results obtained in the experiments that if the constraint that forces all activities to be assigned is not relaxed (see constraint 5.2), the solver would not be able to provide feasible results for some scenarios, i.e. understaffed ones. The solver on the IP model does not provide information on the number of activities that could not be performed as the result is the same whether one activity or hundreds are left unassigned, i.e. an infeasible solution.

The scheduling variables $t_{i k}$ are changed to rational values rather than integer ones as this action could benefit the solver. Fewer integer variables reduce the memory requirements of the branch and bound tree. The MIP model introduces another set of binary decision variables for every activity per employee. This model, although requiring more memory resources when tackled by a mathematical solver, provides feasible solutions for the majority of instances as a feasible solution now can include unassigned activities unlike in the IP version. There are some instances that remain unsolvable due to their size with the hardware configuration used, i.e. the solver cannot load them. Nonetheless, the solver provides lower bounds and reports on the gap between such lower bounds and the best feasible solution found for each instance. A method for reducing the number of variables in models that include Teaming requirements is discussed. The experiments with the MIP model use all five data sets (Sol, Mov, Sec, HHC and Tech) for a total of 375 instances. The difference in the experiment settings is that the solver is now allowed to run for only two hours for each instance, unlike the unlimited execution time that was used before (see section 5.2 .3 .1 . Finally, results are provided using a new objective function. The change in the objective function was necessary to include penalties for unassigned activities. In addition, the new objective function could also consider other characteristics, that became apparent at a later stage during the research programme, such as employees' preferences and activities' priorities. The results of this chapter establish a benchmark for the remaining solution approaches in the following two chapters 6 and 7 .

Services industries such as home health care (HHC) Bostel et al., 2008) and technicians in the field (Doerner and Hartl, 2008) present unexpected visits added to a daily plan. These visits are often the result of emergency situations. For example, in HHC, it could be taking an elderly patient to the hospital after reporting signs of a possible hearth attack. Or, in the services sector, it could mean attending a burst water pipe at a customer location so as to prevent water wastage. In the services industry activities are a top priority and are often priced accordingly. That means
the customers have the right to solicit an immediate response to their emergency. Addressing these emergency visits is normally addressed in three ways: 1) via the use of casual (agency) employees; 2) through overtime of current members of the workforce; and, 3) allocating low priority activities to another day and fitting in the emergency activities instead. Which approach to choose depends on the circumstances and the industry. Choosing one approach does not preclude using the others. However, if the objective includes cost-reduction, then delaying a low priority task in order to attend an emergency does not have an immediate associated cost compared to the other two approaches, i.e. one day's casual hire or overtime. Casual workers tend to be paid at a much higher rate and overtime in the services industry is often also paid at a premium (Van den Bergh et al., 2013, pg. 370). It is necessary to allow activities to be unassigned in order to support the solution method for which low priority visits should be delayed in order to address emergency activities.

5.3.1 From IP to MIP: model adaptations

The decision to provide a model that allows for activities to be left unassigned is based on two reasons. The first reason relates to instances in data set Sec where there is clearly insufficient employee-hours available to cover all activities (see 0.76 ratio in Table 4.8). Insufficient employee-hours results in an infeasible instance. Moreover, the solver does not provide a partial solution that at least performs as many activities as possible. The second reason is that there are instances neither with feasible solution nor lower bound that are not reported as infeasible. The solver seems to struggle with this type of instances. It is worth investigating the causes of such difficulty. A model that allows for unassigned activities could not result in instances having infeasible solution due to the lack of skilled employees or working hours in general. Using the MIP model, the solver provides feasible solutions almost immediately, as an empty solution, i.e. with no activities assigned, is still regarded as a feasible one, heavily penalised, but feasible. An additional observation from the previous chapter was that the solver was unable to provide a gap for some instances after four hours of computation time. The MIP model helps to distinguish instances reported infeasible due to time related constraints from understaffed instances.

The previous integer variables $t_{i k}$, that capture the time unit when activities start, can benefit from being modelled as a continuous variables. Relaxing the integer constraints in such variables facilitates the solver's computational effort. In addition, the values in many of the instances' time matrices are given as rational values which often results in precision issues due to rounding when treated as integers. Since time
is continuous, it ought to be modelled in the same way. Finally, a pure integer model tends to be harder to tackle for the mathematical solver than if some variables are rational numbers. The mathematical solver uses branch and bound to solve integer models. By reducing the number of integer variables the number of possible branches in the underlying branch and bound tree is also reduced as a result.

5.3.1.1 Modelling of Teaming constraints

Teaming constraints, as discussed in section 2.2.7, involve two or more employees when performing an activity. An approach to tackle such constraints is to use timedependent synchronisation constraints. A synchronisation constraint allows two activities to start at the same time, each of them with its own employee. In general, the synchronisation constraints restrict the commencement of two activities, but allow for different finish times. The two activities can then finish at different times. By starting at the same time they cannot use the same employee. Using this concept, Teaming constraints can be modelled by creating virtual duplicate activities. A virtual activity is an exact replica of the original activity, i.e. same time window restrictions, same duration, same skills requirements, same location, etc. The number of virtual activities to be created is the required number of employees in the Team minus one. After these virtual activities are introduced, synchronisation constraints are added between every pairing of the original activity with a virtual one. Such approach guarantees that different employees are scheduled at the same start time to perform the original activity (through the virtual ones). For example, if activity A_{0} requires a Team of three employees, two virtual activities are created A_{1} and A_{2}. Then two synchronisation constraints are incorporated, i.e. A_{0} 's start time $=A_{1}$'s start time and A_{0} 's start time $=A_{2}$'s start time. A third constraint could be included, A_{1} 's start time $=A_{2}$'s start time, although it is clearly redundant.

5.3.2 MIP Model description

In this section an adaptation of the model by Rasmussen et al. (2012) is presented. The model introduces a new set of binary variables and changes the scheduling integer variables to fractional ones. The additional variables indicate whether an activity is or is not performed regardless of the employee. Therefore the number of extra binary variables is given by the number of activities. More variables might be required when an activity needs more than one employee, since that creates virtual activities. Adding these variables allows the model to mark activities as unassigned whilst maintaining
feasibility of the solution.

$$
\begin{array}{rr}
\omega_{1} \sum_{k \in K} \sum_{i \in N^{k}} \sum_{j \in N^{k}} C_{i j}^{k} x_{i j}^{k}+\omega_{2} \sum_{k \in K} \sum_{i \in C} \sum_{j \in N^{k}} \delta_{i}^{k} x_{i j}^{k}+\omega_{3} \sum_{i \in C} \gamma_{i} y_{i} \\
\sum_{k \in K} \sum_{j \in N^{k}} x_{i j}^{k}+y_{i}=1 & \forall i \in C, \\
\sum_{j \in N^{k}} x_{i j}^{k} \leq \rho_{i}^{k} & \forall k \in K, \quad \forall i \in C, \\
\sum_{j \in N^{k}} x_{0^{k}, j}^{k}=1 & \forall k \in K, \tag{5.13}\\
\sum_{i \in N^{k}} x_{i, n^{k}}^{k}=1 & \forall k \in K, \\
\sum_{i \in N^{k}} x_{i h}^{k} \min _{\sum_{j \in N^{k}} x_{h j}^{k}=0} & \forall k \in K, \quad \forall h \in C, \\
\alpha_{i} \sum_{j \in N^{k}} x_{i j}^{k} \leq t_{i}^{k} \leq \beta_{i} \sum_{j \in N^{k}} x_{i j}^{k} & \forall k \in K, \quad \forall i \in C \cup\left\{0^{k}\right\}, \\
\alpha_{n^{k}} \leq t_{n^{k}}^{k} \leq \beta_{n^{k}} & \forall k \in K, \\
t_{i}^{k}+s_{i j}^{k} x_{i j}^{k} \leq t_{j}^{k}+\beta_{i}\left(1 m_{i n} x_{i j}^{k}\right) & \forall k \in K, \quad \forall i, j \in N^{k}, \\
\alpha_{i} y_{i}+\sum_{k \in K} t_{i}^{k}+p_{i j} \leq \sum_{k \in K} t_{j}^{k}+\beta_{j} y_{j} & \forall(i, j) \in P, \\
x_{i j}^{k} \in\{0,1\} & \forall k \in K, \quad \forall i, j \in N^{k}, \\
t_{i}^{k} \in \mathbb{R}_{+} & \forall k \in K, \quad \forall i \in N^{k}, \\
y_{i} \in\{0,1\} & \forall i \in C .
\end{array}
$$

The constraint requiring all activities to be performed (constraint 5.2 in the IP model) is changed to include the binary variables y_{i} which indicate if activity i is assigned to an employee (constraint 5.13). A value of 1 indicates that the activity is left uncovered, whereas a value of 0 means the activity has been assigned. Continuous variables t_{i}^{k}, hold activity i 's start time by employee k, these are made real positive values instead of integer ones as previously discussed (constraint 5.23).

The set C represents customer locations. Constant O^{k} holds the starting location of employee k and n^{k} corresponds to the ending location for k. This configuration supports different start and end locations for each employee. The employees' set is K. $N^{k}=C \cup\left\{0^{k}, n^{k}\right\}$ is the set of available locations for employee k. Notice how it includes his starting and ending location. Time window restrictions on activity i are given by α_{i} for earliest start time and β_{i} for latest start time. The value $\rho_{i}^{k}=1$
indicates if employee k can perform activity i in terms of skill matching. Nevertheless, it can also be used to forbid an allocation between employee and activity. Travel time between two locations i and j is given by $s_{i j}^{k}$ for employee k. If the data contains different travel time for every employee depending on his means of transportation, then each $s_{i j}^{k}$ may be different. These variables already include the duration of activity i taking into account the experience employee k might have. If we assume that times are the same regardless of employee, we can use a single variable for all employees. If activities' duration are the same regardless of who performs them, then a single value can be used ($s_{i j}$) instead of one for each employee. Employee k starting time is given by $\alpha_{n^{k}}$ and finishing working time by $\beta_{n^{k}}$. All connected activities (synchronisation, overlap, minimum, maximum, min-max) constraints are given in set P. Every member of P is a pair of activities i and j subject to a type of time-dependent constraint given by a constant value $p_{i j}$. The values for $p_{i j}$ are assigned according to Table 5.5. Finally, binary variables $x_{i j}^{k}$ are set to 1 if employee k travels from location i to j and set to 0 otherwise (5.22).

Type	$p_{i j}$	$p_{j i}$
Synchronisation	0	0
Overlap	- (duration j)	(duration i)
Minimum difference	minimun difference value	not applicable
Maximum difference	not applicable	-(maximum difference value)
Min-Max difference	minimun difference value	-(maximum difference value)

Table 5.5: Values assigned to $p_{i j}$ and $p_{j i}$ obtained from (Rasmussen et al., 2012)

The objective function (5.12) is integrated by the cost $C_{i j}^{k}$, the preference δ_{i}^{k} that employees (k) have when performing activities (i) and the priority of the visit i given by γ_{i}. Cost $C_{i j}^{k}$ could be defined depending on what is needed to be reduced, i.e. distance, time, money, etc. Priorities γ_{i} provide a way of differentiating important activities from those which might be left unassigned for another period. The weights $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ can be adjusted to give more relevance to any of the three components of the objective function.

Constraint 5.13 means that visits are either performed or left unassigned. Activities can only be assigned to employees with the skills to perform them (constraint 5.14). Employees must start from their initial location and return to their final location (constraints 5.15 and 5.16). Constraint 5.17 ensures employees cannot stay at a customer location and forces them to leave until they reach their final location, i.e. flow conservation. Time windows of visits must be satisfied (constraints 5.18 and 5.20). All activities performed by employee k should start and end during his starting and ending working times (5.19). Every type of connected activities generates a constraint
that is enforced by equation 5.21. Scheduling variables are restricted to be real positive since they capture the starting time of activities (5.23). Finally, if an activity i is not performed binary decision variables y_{i} is set to 1 and 0 otherwise.

5.3.2.1 Reduction in the number of variables

A mathematical model that uses fewer variables and still produces the same results is generally considered a better one. The same can be said about the constraints: a tighter representation that still enforces all the constraints is preferable. The number of experiments in section 5.2.3.2 in which the solver ran out of memory (see Table 5.1 for details) represented 25% of the used instances. In the MILP model the number of variables is increased due to the addition of the binary variables capturing if an activity is or is not performed. As a result, a mechanism that could reduce the number variables and tighten the model was sought. The solution came in the representation of activities that required two or more employees.

The modelling strategy for Teams has been explained earlier (see 5.3.1.1), the addition of virtual activities results in additional segments in the network. Such segments need a binary variable per employee to indicate whether the segment will be utilised $\left(x_{i j}^{k}\right)$. The segments connect all activities (nodes) to each other, it is the constraints that prevent some segments from being used. The segments connecting an original activity to its virtual activities and vice versa can be omitted. The rationale involving such action considers that if an employee is performing the original activity then it is clear that he cannot be moved to a virtual activity since it represents the same. As a result, even though employees are able to reach and leave both the original and virtual activity, it cannot happen that they leave the original to go to a virtual one or vice versa. The prohibition is achieved by never creating extra binary variables $\left(x_{i j}^{k}\right)$ between neither the original and the virtual ones, nor the virtual ones themselves. Such approach is represented in Figure 5.2.

5.3.3 Experiments

5.3.3.1 Setting parameters and weights in the MILP

In this set of experiments the MIP model presented in section 5.3.2 is used to solve the 375 instances in all five data sets. The solver time limit is set to two hours, based in the value discussed in Figure 5.1.

Figure 5.2: Activity 2 in red represents a virtual node. Segments in the network $x_{2, v 2}$ and $x_{v 2,2}$ are removed from the model, since once an employee enters either the original or virtual activity 2 , it cannot move to the other. Therefore, it is possible to reduce the number of binary variables used. Prohibited segments are highlighted in red

The cost value $C_{i j}^{k}$ in the objective function is calculated as travel time plus distance from i to j to make dependent on the location of the activity and its duration. $C_{i j}^{k}$ differs from the previous cost $c_{i k}$ in the IP Model. In the IP model $c_{i k}$ depends on the activity i and the employee k. Whereas in the MIP model the cost $C_{i j}^{k}$ varies depending the starting point i and the ending point j and the employee k. The latter representation is more flexible since it can represent diverse means of transportation for the segment, or some relationship between the origin and destination.

The weights $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$ are calculated as in Rasmussen et al. (2012). Such weights favour the allocation of all activities when possible by setting $\omega_{3}>\omega_{2}>\omega_{1}$. Assigning all activities is no longer a hard constraint but a soft one, it therefore needs to be included in the objective function. Nevertheless, if possible, the model should seek to prefer all activities to be allocated. As a result, the penalty of unassigned activities should be the biggest one (see 5.27). The second in importance is employees' preferences component penalty (see 5.26). Finally, the third factor is related to the cost with a weight of 1 (see 5.25). The values are given by the expression:

$$
\begin{array}{r}
\omega_{2}=\sum_{k \in K} \sum_{i \in N^{k}} \sum_{j \in N^{k}} C_{i j}^{k} \\
\omega_{3}=\omega_{2}|C| \max _{k \in K, i \in C} \delta_{i}^{k}
\end{array}
$$

5.3.4 Results

This section presents an analysis of the results achieved by the mathematical solver. The analysis classifies the results of the solver in five categories and matches such results with the following characteristics of the data sets: number of employees, number of activities, ratio activities/employees, time window size, ratio planning horizon/mean activity duration, activities requiring teams and time-dependent constraints. In addition, graphs summarising the percentage gap are also discussed. The reader is referred to Tables C.1 and C.2 in Appendix C which show individual instance results provided by the mathematical solver. Both tables include best objective value, best lower bound obtained, the gap reported by Gurobi, the computation time and the category assigned for each of the instances.

The results of the mathematical solver can be classified in five categories. The first category, "Unloadable", is assigned to instances that due to the size of the instance, i.e. number of variables and constraints, the solver was unable to load the model as it runs out of memory during the loading process. The second category, "OutOfMemory", relates to instances in which the solver starts the optimisation process but runs out of memory before the two hours of computation time. The solver provides neither a lower bound nor a feasible solution. The third category, "No solution", includes those instances where the solver completes the time limit, a lower bound was found but no feasible solution is reported. The fourth category "Optimal", is where the solver reports optimality. Finally, the last category "Non-Optimal" is for instances for which a feasible solution (non-optimal), a lower bound and a gap are provided by the solver. The 375 instances are distributed among the five categories in the following manner: 6 are "Unloadable", 13 in "OutOfMemory", 18 have "No Solution", 34 included in "Optimal" and 304 in "Non-Optimal".

The Unloadable category contains instances with the largest number of activities and employees as all have 250 activities and 171 employees. Instances in the OutOfMemory category present 150 or more activities but less than 250 . They also have more than 41 employees. They are part of Mov and Sec data sets. The instances in the No

Solution category have between 90 and and 201 activities and more than 20 but less than 50 employees. All instances in this group belong to Sec. The Optimal category includes instances with up to 100 activities and a maximum number of employees of 38. Optimal instances are the majority in Sol data set but there are five of Mov and one of HHC. The instances for which feasible non-optimal solutions are found (Non-Optimal category) vary from 25 activities up to 201 activities with a average of 82, and number of employees ranging from five employees to 50 with a mean of 19.

5.3.5 Analysis of results

Figure 5.3 provides five box plot graphs, each referring to one of the five categories defined for the MILP results. The graphs consider the number of employees for each category. A clear tendency can be seen as the median number of employee for each category increases with respect to the previous categories. The categories are ordered depending the type of result. In general, optimal solutions are achieved for instances where the number of employees is small. Instances that belong to the Out of Memory and Unloadable categories have the largest number of employees.

Number of Employees

Figure 5.3: Box plot showing lower quartile, median and upper quartile on the number of employees for each of the five categories defined (optimal, non-optimal, no solution, out of memory and unloadable)

Figure 5.4 illustrates how the number of activities in the instances are distributed among the five different categories of results. Similar to number of employees, the figure shows a tendency of increase in the median value of activities relating to the results of the solver. The majority of optimal instances have fewer than 50 activities and those for which the solver could find a feasible non-optimal solution are concentrated between 50 and 100 activities. The previous two categories present outliers. It is worth noting how close the instances of the No Solution group are to the Out of

Memory one; the median is almost the same. It can be said that since instances in the No Solution category have not found any solution after two hours, it is more likely that if more time is given to the solver they might result in running out of memory. As with the number of employees, it seems a large number of activities also makes instances unloadable for the solver.

Number of Activities

Figure 5.4: Box plot showing lower quartile, median and upper quartile on the number of activities for each of the five categories defined (optimal, non-optimal, no solution, out of memory and unloadable)

Figure 5.5 shows the distribution of the ratio between the number of activities and the employees available to perform them for each category. A ratio of five activities per employee is the median value for optimal instances and from there the tendency seems to be the lower the ratio the more difficult for the solver. This could be explained as a lower ratio indicates more employees for the same number of activities, it requires the solver to evaluate more possibilities. But given the categories Out of Memory and Unloadable medians, it can be said that knowing the ratio by itself does not help if at least another value, e.g. number of employees or activities, is not known. For example in a small instance with 20 activities and two employees the ratio is the same as one instance with 200 activities and twenty employees, i.e. ratio is 10 . However, the one with 200 activities might not be able to be loaded by the solver.

Figure 5.6 shows the distribution of the mean time window size across the five categories. Although when observing the figure the longer the mean time window size the more difficult the instances, there are a few more outliers compared to the previous figures. A larger mean time window size means there are more possibilities to assign a different starting time, which can be seen as more options to consider, therefore more difficult for the solver. But, small mean time windows size can also be difficult because it restricts the search. The box plot uses the mean time window size, but since the mean does not provide a sense of dispersion, it is left for further investigation the

Figure 5.5: Box plot showing lower quartile, median and upper quartile on the ratio (activities/employees) for each of the five categories defined (optimal, non-optimal, no solution, out of memory and unloadable)
case of whether the same time window for all activities could be easier to solve than some activities presenting large, medium and small time window sizes but both with the same mean. A similar investigation on the distribution of different time window sizes for the VRPTW found evidence for such a case (Castro-Gutierrez et al., 2011).

Figure 5.6: Box plot showing lower quartile, median and upper quartile on the average duration of time window for each of the five categories defined (optimal, non-optimal, no solution, out of memory and unloadable)

Figure 5.7 presents another ratio distribution. The ratio between the planning horizon of an instance and the mean duration of activities. A smaller ratio as observed makes the instance more difficult for the solver, but more information is required in order to contextualise this ratio. The ratio itself does not require knowing number of activities or employees in order to be calculated. If these two features remain unchanged a reducing ratio means more work due to three possibilities. The first possibility is the
increase in the mean duration of activities. The second possibility is the shortening of the planning horizon. A third possibility considers a combination of the previous two.

Figure 5.7: Box plot showing lower quartile, median and upper quartile on the ratio (planning horizon duration/mean activities duration) for each of the five categories defined (optimal, non-optimal, no solution, out of memory and unloadable)

Figures 5.8 and 5.9 show the distribution of teams and time-dependent activities constraints across the five categories. Both figures are similar in structure since teams are implemented as time-dependent constraints between activities and their virtual counterparts. Overall the observation is that instances with more time-dependent constraints tend to be harder for the solver.

Figure 5.8: Box plot showing lower quartile, median and upper quartile on the number of teams for each of the five categories defined (optimal, non-optimal, no solution, out of memory and unloadable)

Figure 5.9: Box plot showing lower quartile, median and upper quartile on the number of time-dependent activities constraints for each of the five categories defined (optimal, non-optimal, no solution, out of memory and unloadable)

5.3.6 Gap analysis

Out of the 375 instances, the solver found feasible solutions for 338 of them (Optimal + NonOptimal categories). It is observed that the larger instances are part of the Unloadable category. These are five of the Mov data set (250 activities) and the single Tech instance. The instances in OutOfMemory are those with 150 or more activities which are not part of the Unloadable category, mainly belonging to Mov (150 activities) and Sec data sets. However, this is not a definitive indication of the difficulty of the instance with this model and solver because some scenarios with more than 150 activities were solved, although in those cases the number of employees was less than 100. The largest number of activities in an instance that the solver found a solution for was 200 activities and 50 employees.

We identify groups of instances based on the number of employees, as shown in Figure 5.10, where the number of instances in each group is given. For example, HHC_9 refers to the eight instances from HHC data set that have nine employees. Because the Sec instances have greater variety in the number of employees (see Figure 4.1) they are grouped in ten clusters (from Sec_10 to Sec_55, adding five employees for every new cluster). Each instance is assigned to the closest upper cluster, e.g. instances in Sec with six or seven employees are assigned to cluster Sec_10 and instances with eleven employees are assigned to cluster Sec_15.

Groups
Figure 5.10: Groups of instances based on number of employees.

5.3.6.1 Analysis of Feasible Results

During the optimisation process, the solver provides information about the gap between the lower bound and the current feasible solution (if it exists). Such gap for the 338 solved instances is shown in Figure 5.11, where it can be observed that there is a widespread range of values across the instances. The figure uses an identifier of each instance in the horizontal axis, these identifiers are allocated according to the data set they belonged to: Sol [1, 168]; Sec [169, 348]; Mov [349, 363]; HHC [364, 374], Tech [375], some indexes are not used since they belong to instances in categories (Unloadable, Out of Memory and No solution). It is noticeable that optimality was achieved for some of the Sol and Mov instances (gap value of zero). However, for Sec the solver reported a gap of more than 50% in most of the cases (see Fig. 5.12).

Figure 5.11: Percentage gap values for 356 instances where the solver found feasible solutions.

In order to achieve a better understanding of the difficulty of the WSRP, the gap results for the instances in each data set are split. Figure 5.12 shows the gap results for the instances by data set. It is clearer that the Sec instances are more difficult to solve given the larger number of high gap values reported. This can be confirmed in the corresponding box plot in Figure 5.13 which shows a median of 67%. However, low gap values were reported for the Sol instances with a median of just above 20%. For the mayority of HHC instances the gap value is between 40% and 70%. The results shown for the Mov data sets are for the five instances with 50 activities and 38 employees. For all of them an optimal solution was found.

Figure 5.12: Distribution of gap percentage values reported for each instance in each data set.

Figure 5.13: Aggregated gap percentage values reported for the instances in each data set.
Figure 5.14 plots the gap values reported for all instances within different clusters with respect to the number of employees. Looking at the three HHC groups it is clear that the smaller the size of the workforce, the better the gap value achieved. A similar observation can be made for the Sec instances: the achieved gap value worsens
as the number of employees increases. Note that this tendency is not clear for the Sol instances. Looking at the box plot of the Sol group in Figure 5.15 we can see that 50% of the instances with ten employees (Sol_10) report a gap value below 5%. Also, 50% of the instances with five employees (Sol_5) report a gap of 15%. That is, more instances in Sol_10 report a better gap than instances in Sol_5.

Figure 5.14: Distribution of gap percentage values reported for each instance grouped by data set and number of employees.

Figure 5.15: Aggregate gap percentage values reported for each group of instances according to the number of employees.

5.4 Conclusions

The change from a IP to a MIP model helped to obtain a better understanding of WSRPs. The MIP model allows activities to be unassigned which can provide feasible results for understaffed instances. Such approach is needed, for example, when reassigning low priority activities in order to cover an emergency one. Even though
activities can be unassigned, it does not mean that this is desirable. As a result, it is necessary to apply the biggest weight for the unassigned component in the objective function. By doing so, the mathematical solver is forced to try as much as possible to assign all activities as unassigned activities come at a huge penalty. The new objective function includes employees' preferences.

Regarding the results, it can be concluded that integer feasible solutions are found for instances with up to 200 activities. The number of activities and employees influences the difficulty encountered by a mathematical solver. Either of the two values is required when contextualising both ratios (activities/employees and planning horizon/mean activity duration) as measures of difficulty for the solver. The more teaming and time-dependent activities constraints there are in an instance makes it harder for the solver to tackle. Gap percentages, between the best solution reported and the lower bound found by the solver, are smaller overall in the Sol data set than in the Sec one. The best objective values acquired, for almost all instances (338 only), establish a benchmark for future solution methods. Future methods should attempt to improve their quality of results via: finding better objective values for the minimisation problem; and/or, reducing the amount of time required to obtained the same quality level of results reported in this chapter's benchmark.

Chapter 6

A Greedy Heuristic for WSRP

6.1 Introduction

In the previous chapter, exact methods were presented using two mathematical models. In this chapter, a new solution approach to tackling WSRP is discussed: a Greedy Heuristic (GH). This new solution approach is based on heuristic methods which do not guarantee finding the optimal solution for a problem, but are widely used when tackling hard combinatorial optimisation problems. One advantage is that they are tailored for each domain problem. Heuristic methods can use more information to strategically drive the search. The disadvantages often faced by heuristic methods are that they might get trapped in local optimum when searching for better solutions, and they cannot guarantee finding optimal solutions. Therefore, it is important to have benchmark results from the mathematical solver, because such results allow comparison between the exact methods and the heuristic ones (Rees, 1996; Burke and Kendall, 2005).

Greedy heuristics are procedures based on consecutive decisions that where possible lead to progressively better results until no further improvement can be achieved. The term Greedy Heuristics can be used interchangeably with Constructive Heuristics, or Successive Augmentation Algorithms (Talbi, 2009, pg. 26). Greedy heuristics rely on some information about the domain of the problem and often obtain good feasible results in a short time. However, greedy heuristics do not guarantee finding optimal solutions. In some cases, the results obtained by them are far from the optimum one. In fact, even if an optimal solution is found, greedy heuristics will not know is optimal. The greedy heuristic presented in this chapter is deterministic, i.e. it provides the same result as long as the instance and parameters are the same Burke
and Kendall, 2005, pg. 10). The last version of the heuristic introduces a random choice which is controlled.

This chapter describes a deterministic greedy heuristic (GH) which developed from a bin-packing problem analogy. Five versions of GH are discussed. For every version of GH, experiments are presented using all 375 instances. The result of the experiments is analysed and improvements to the next version justified. GH was designed iteratively and every version builds on the improvements of the previous ones. Before starting the description of GH the data structure used for all versions is presented.

6.2 Solution Structure Representation

In this section the solution representation of a WSRP is discussed. A solution to the WSRP must provide the subset of activities that each employee performs along with the order in which the activities are executed. It should also indicate the number of activities that are left unassigned, if any.

The data structure proposed for the WSRP is represented in Figure 6.1. The main array contains nodes of employees. The number of employees is defined in the problem instances. The configuration resembles the matrix configuration proposed by Mankowska et al. (2014). In addition, there is one extra node in the main array, the node holding unassigned visits. Every employee-node contains a list of visits which the employee is assigned to perform. The employee's list of visits is kept in ascending order according to the earliest starting time of the activities. In the figure, green rectangles represent activities' durations, gray rectangles depict travelling time between locations, and idle time is shown in yellow rectangles. The last blue rectangle on each list of visits represents the travelling time back to the employee's final destination. Activities in the unassigned array node have no particular order. The employee's list of activities contains two types of nodes. The first type is scheduled activity nodes. Each scheduled activity node contains information regarding its starting time, ending time, duration, and time window restrictions. The second type is travelling nodes which hold the starting and ending travel time between two locations. Idle times are not stored in the data structure. Idle times are computed when required. For every scheduled activity node there is one travelling node which has an ending time equal to the starting time of the scheduled activity. The decision to store travelling time nodes between scheduled activity nodes is in order to reduce computation and to facilitate constraint evaluation.

Figure 6.1: Solution structure for WSRP: an array of lists. The main array contains nodes for every employee in the workforce plus an additional node for the unassigned activities. Every employee has a list of activities. Lists are kept in order according to the activities' starting time except the one where unassigned activities are held i.e. it is a set.

6.3 Design of the Greedy Heuristic

The final version of GH included the improvements obtained iteratively from its inception. In this section the major differences between versions of GH are discussed. Every change performed was aimed at improving the quality of the final solution. The GH initial solution procedure was inspired by the bin-packing problem Schwerin and G. 1997).

6.3.1 Bin-packing inspired approach

The first version of GH, henceforth referred to as GH1, is based on the bin-packing problem. In the bin-packing problem there are a number of objects with different dimensions. The objects need to be packed into a finite number of bins. Every bin has limited capacity, once one bin is full another bin needs to be used. The binpacking problem objective is to minimise the number of bins used when packing all the objects.

GH1 considers the activities as one-dimensional objects and every employee as a bin. Employees' working time can be seen as bins' capacity. After assigning all activities across all employees, each bin holds the activities of one employee. An additional bin
is required to keep the unassigned activities. Using the bin-packing analogy in WSRP relates to the concept of an employee's "full" schedule.

The analogy makes it simple to understand, although applying it to WSRP means there are several issues to consider. One issue is that not all activities could be assigned to all employees due to the skill-related restrictions, whereas in the classic bin-packing problem all bins can be used as long as they have space (Dawande et al., 2000). However, there are versions of bin-packing with assignment restrictions. Another issue with GH1 is that the representation of activities' start time is not taken into account. As long as the duration of all activities in a bin fits into the employees working time, i.e. the activities are "packed" into the employee, the solution is feasible, but such an approach cannot work for WSRP. As a result, the activities have to store their own starting time. The next issue is that activities within bins (employees) have to remain sorted to guarantee that the ascending order of start and end times is maintained. Activities can be sorted before starting the assignment process using their minimum starting time. The final issue is enforcing the time windows and time-dependent constraints. Therefore, GH1 does not address the time-dependent constraints. Time windows are enforced when selecting the employee that the activity should be assigned.

```
Algorithm 1 Greedy Heuristic 1 (GH1)
    procedure Solve
        visitList \(\leftarrow \operatorname{COPY}(\) visits \()\)
        sol \(\leftarrow\) NewSolutionStructure ()
        Sort(visitList, listCriterion)
        while \(\neg \operatorname{EMPTY}(v i s i t L i s t)\) do
            Sort (sol, solCriterion)
            \(v \leftarrow \operatorname{REmove}(\) visitList, 0 )
            \(c a n \leftarrow \operatorname{AllocPossible}(v, s o l)\)
            Sort(can)
            if \(\neg \operatorname{Empty}(\) can \()\) then
                \(c \leftarrow \operatorname{REMOVE}(c a n, 0)\)
                InClude ( \(c, s o l\) )
                \(i \leftarrow v . r e q u i r e d\)
                for \(i>1\) do
                    if \(\neg \operatorname{EMPTY}(\) can \()\) then
                \(c \leftarrow \operatorname{REMOVE}(\) can, 0\()\)
                INCLUDE ( \(c, s o l\) )
                    else
                        Unallocate \((v, s o l)\)
        else
                Unallocate \((v, s o l)\)
```

```
function \(\operatorname{AllocPossibleAny}(v, s o l)\)
```

function $\operatorname{AllocPossibleAny}(v, s o l)$

```
function \(\operatorname{AllocPossibleAny}(v, s o l)\)
    for \(n \leftarrow\) sol.nodes do
    for \(n \leftarrow\) sol.nodes do
    for \(n \leftarrow\) sol.nodes do
        \(e \leftarrow n . e m p\)
        \(e \leftarrow n . e m p\)
        \(e \leftarrow n . e m p\)
        if \(\neg \operatorname{Perform}(e, v)\) then
        if \(\neg \operatorname{Perform}(e, v)\) then
        if \(\neg \operatorname{Perform}(e, v)\) then
            next
            next
            next
        if \(\neg \operatorname{EMPTY}(n . s c h)\) then
        if \(\neg \operatorname{EMPTY}(n . s c h)\) then
        if \(\neg \operatorname{EMPTY}(n . s c h)\) then
                \(w \leftarrow \operatorname{LastAvWindow}\) (n.sch)
                \(w \leftarrow \operatorname{LastAvWindow}\) (n.sch)
                \(w \leftarrow \operatorname{LastAvWindow}\) (n.sch)
                \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
                \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
                \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
                if \(\neg \mathrm{NIL}(c a)\) then
                if \(\neg \mathrm{NIL}(c a)\) then
                if \(\neg \mathrm{NIL}(c a)\) then
                \(\operatorname{ADD}(c a n, c a)\)
                \(\operatorname{ADD}(c a n, c a)\)
                \(\operatorname{ADD}(c a n, c a)\)
            else
            else
            else
                for \(w \leftarrow 1, n . s c h\) do
                for \(w \leftarrow 1, n . s c h\) do
                for \(w \leftarrow 1, n . s c h\) do
                    \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
                    \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
                    \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
                    if \(\neg \operatorname{NIL}(c a)\) then
                    if \(\neg \operatorname{NIL}(c a)\) then
                    if \(\neg \operatorname{NIL}(c a)\) then
                    \(\operatorname{ADD}(c a n, c a)\)
                    \(\operatorname{ADD}(c a n, c a)\)
                    \(\operatorname{ADD}(c a n, c a)\)
        \(w \leftarrow \operatorname{LastAvWindow}\) (n.sch)
        \(w \leftarrow \operatorname{LastAvWindow}\) (n.sch)
        \(w \leftarrow \operatorname{LastAvWindow}\) (n.sch)
        \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
        \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
        \(c a \leftarrow \operatorname{Enough}(w, v . w i n, e)\)
        if \(\neg \mathrm{NIL}(c a)\) then
        if \(\neg \mathrm{NIL}(c a)\) then
        if \(\neg \mathrm{NIL}(c a)\) then
                \(\operatorname{ADD}(c a n, c a)\)
```

 \(\operatorname{ADD}(c a n, c a)\)
    ```
                \(\operatorname{ADD}(c a n, c a)\)
```

Algorithm 1 provides the pseudo-code of the GH1. This algorithm changes in later versions (GH2 to GH5) but there are components that remain the same throughout.

A description of the non-changing features is provided. In line (2) a copy of the visits is created and stored in the variable visitList. An empty solution structure is created by using the NewSolutionStructure procedure (line 3). An empty solution only has employee nodes. The variable visitList is sorted according to listCriterion, a parameter explained later in section 6.3.1.2 (line 4). The sorting determines the order in which every visit is processed by the algorithm. The while loop (line 5) continues until visitList is empty, i.e. all visits have been either assigned or left unallocated. The main array order determines how the algorithm attempts to assign an activity to an employee. After each iteration, the solution structure sol is sorted according to solCriterion. The values available for the sorting criterion solCriterion are explained in section 6.3.1.2. The first visit is removed from visitList and kept in v (line 7). The procedure AllocPossible (Algorithm 1) finds possible allocations for visit v in the solution structure sol. The procedure ensures that candidate allocations are for employees with the right skills to perform the activities, and that the activities can be fitted in the assigned employee schedule whilst enforcing time window constraints. AllocPossible verifies if v can fit between the last visit in an employee schedule and the end of his working time. The function returns a list of candidate allocations after searching sol (line 8).

```
Algorithm 2 Greedy Heuristic
    function AllocPossible \((v, s o l) \quad 19: \quad z \leftarrow w \cdot s t+t t\) AntNew
    function AllocPossible \((v\), sol \()\)
        for \(n \leftarrow\) sol.nodes do
            \(e m \leftarrow n . e m p\)
            if Perform \((e m, v)\) then
                \(w \leftarrow \operatorname{LastAvWindow}(n)\)
                \(c w \leftarrow \operatorname{Clash}(v . w i n, w)\)
            else
                return false
            if \(c w . d u r>0\) then
                \(r(v) \leftarrow t t A n t N e w+v . d u r+d t t\)
            else
                return false
            if \(r(v) \leq w . d u r\) then
                \(s \leftarrow c w . s t-t t A n t N e w\)
                \(e \leftarrow w . e t-t t A n t P o s-v . d u r-d t t{ }_{34}:\)
                \(c n 1 \leftarrow s>w . s t\)
                \(c n 2 \leftarrow c w . s t \leq e\)
                if \(\operatorname{AND}(c n 1, c n 2)\) then
```

$z \leftarrow w . s t+t t A n t N e w$
if v.est $>z$ then
st $\leftarrow v . e s t$ $i t \leftarrow s t-z$
else
$s t \leftarrow w . s t+t t A n t N e w$
it $\leftarrow 0$
$z \leftarrow w . e t-t t A n t P o s$
if $v . l s t<z$ then $f t \leftarrow v . l s t-s t$
else $f t \leftarrow z-s t$
$c a \leftarrow \operatorname{NewCA}(s t, i t, f t, e m)$
$\operatorname{ADD}(c a n, c a)$
return true else
return false
else
return false

A candidate allocation is a data structure that holds information on where to insert an activity within an employee's list of visits. A candidate allocation contains: a reference to the employee; a proposed start time for activity v; flexible time by which
the start time can be delayed and still be a valid allocation; and the idle time which represents the time wasted by the allocation if the proposed start time is used.

Figure 6.2: A candidate allocation contains: the proposed start time for an activity; flexible time by which the activity can be delayed for; the idle time before the proposed start time; and a reference to the employee for which the allocation can be applied.

Figure 6.2 illustrates a candidate allocation. Employee 1 has idle time from 11:30 until 15:00 as shown in the figure (second yellow rectangle). Activity 5, which duration is one hour, can fit within the available idle time. The activity's time window is set from 10:00 to 14:30 (represented in the red line). The idle time starts at the end of activity 2 (11:30), which is already in the employee's schedule. The travel time between activity 2 and activity 5 locations is 10 minutes. As a result, the start time of activity 5 can be set to $11: 40$. The flexible time considers both the time window of the activity and the remaining idle time. The latest start time of activity 5 according to its time window is $14: 30$. If such time is used, the activity would end at 15:30 which is beyond the end of idle time (15:00). Therefore, using the end of the idle time as a reference (15:00), activity 5's duration is subtracted from the end of the idle time. The result leaves 14:00 as the maximum start time of activity 5 that fits the idle time and adheres to the activity 5's time window. The difference between the maximum start time found and the start time established previously is 140 minutes, which becomes the value of the flexible time. The idle time component of the candidate allocation is set to zero since there is no wastage of time before the proposed start time of the activity.

After obtaining a collection of candidate allocations, the algorithm sorts the collection using the candidates' start time in ascending order (Algorithm1, line 9). Other sorting criterial could be considered apart from the start time, e.g. idle time or flexible time. The next statement in the algorithm verifies that there are available candidates (line 10). If there are no candidates then v is left in the unassigned node by calling the function Unallocate. If there are candidates, the first candidate is removed from the collection of candidates and kept in c. The candidate information is used to
include v in sol by calling the function Include (lines 11 and 12). If v only requires one employee then the procedure moves to the next iteration. If on the contrary, more employees are required, a subsequent loop (line 14) iterates removing the next candidate available from candidates and including it in sol until all employees required are assigned (line 14 to 19). If at any time the candidate list becomes empty whilst still requiring employees then all previous allocations of v are removed and v is left in the unassigned node (line 19). All the candidates assigned within the inner loop need to have the same start time as the first assigned candidate, otherwise the team members will not be synchronised in order to start the activity.

6.3.1.1 Parameter solCriterion values

The solCriterion (Algorithm 1 line 6) parameter establishes the sorting criterion of the main array of employees. The possible values for the parameter are: one based on the remaining available time in an employee schedule and another based on the size of the list of activities within each node of the main array.

Remaining time sorts the solution list in descending order based on the time left available for every employee. The time available is calculated from the last visit until the end of the employees' shift. It aims to reduce the number of employees since it avoids using a new employee unless the available time of the previous ones are full or no other allocation is possible. If the sorting is ascending, activities are balanced across all possible employees with the right skills.

Solution size orders the nodes in the solution's main array in ascending order based on the number of visits that employees have assigned. When two nodes have the same number of visits, the second criterion is the remaining time left from the termination of the last visit until travelling back to the employees' final destination.

6.3.1.2 Parameter listCriterion values

The second parameter listCriterion (Algorithm 1 line 4) that can be changed within GH1 is the criterion for the initial sorting of the activities, i.e. the order in which they are processed by the heuristics. The possible values are described as follows:

Duration sorts visits in descending order based on the duration of the activity (v.dur).

Latest finish time sorts visits in ascending order based on the latest time the visit
can finish according to its time window. The sorting parameter is obtained when adding v.let.

Latest start time sorts visits in ascending order based on the latest time the visit can start according to its time window. The sorting parameter is $v . l s t$.

Earliest finish time sorts visits in ascending order based on the earliest time the visit can finish according to its time window. The sorting parameter is v.eet.

Earliest start time sorts visits in ascending order based on the earliest time the visit can start according to its time window. The sorting parameter is v.est.

Number of employees sorts visits in decreasing order based on the number of employees required. The parameter for sorting is v.req.

Density sorts visits in decreasing order based on the density factor. The density factor is obtained by adding the number of employees required plus the number of connected activities constraints that the visit is involved in. The aim is to process those activities which are complex first and leave the simple ones at the end. The number of employees in the team is modelled using synchronisation constraints.

6.3.2 Broadening the search for idle time: GH2

GH2 improves GH1 by broadening the scope of AllocPossible. The AllocPosSIBLE procedure in GH1 only searches available idle time between the last assigned activity and the end of the employee's working time. However, there might be other idle times within the employee schedule. Such "hidden" idle times appear as a result of enforcing time window in activities that cannot start earlier. Figure 6.3 shows a solution structure with three employees. If a new activity v is next for assignment the AllocPossible only evaluates idle times 3,6 , and 8 . The improved version, a procedure called AllocPossibleAny (1) considers all idle times (1-8), thus increasing the options for assigning v. An updated version (GH2's pseudo-code) of the heuristic refer to appendix D.1.

Thus far, GH1 and GH2 have not addressed time-dependent activity constraints, although in many instances their presence makes solutions provided by GH1 and GH2 infeasible. The following section incorporates functions to deal with time-dependant activities.

Figure 6.3: shows a set of idle time for a workforce consisting of three employees. Using AllocPossible considers only idle times 3,6 and 8 . The search can be broadened to include consideration of idle times $1,2,4,5$ and 7 . This extension is perfromed by the AllocPossibleAny procedure.

6.3.3 Addressing time-dependent constraints: GH3

The improvements in this section tackle the handling of the time-dependent constraints. In order to apply such improvements it is necessary to differentiate when an activity is independent or simple, i.e. its start time is not restricted by any other constraint apart from its own time window, or dependent and complex. An activity becomes dependent if it requires knowing the start time of another activity in order to establish its own start time. There is the case of time-dependent activities. GH3 is shown in Algorithm 3. Lines 1 to 7 are similar to the Algorithm 1. The call to the Process method (line 8) delegates the assignment of visit v into the solution structure sol. The method Process returns a list of related visits (lrv), i.e. related by a time-dependent constraint. For every related visit of v (see while loop in line 10), the algorithm delegates the assignment of the related visit $v 2$ to the ProcessDep method which updates $l r v$ to remove the currently assigned and incorporate new related visits of $v 2$ (line 12). Finally, $v 2$ needs to be removed from the visitList as it has already been assigned.

```
Algorithm 3 Greedy Heuristic 3 (GH3)
    procedure Solve
        visitList \(\leftarrow \operatorname{COPY}(V)\)
        sol \(\leftarrow\) NewSolutionStructure ()
        Sort(visitList,listCriterion)
        while \(\neg \operatorname{EMPTY}(\) visitList) do
            SORT(sol,solCriterion)
```

7:
8: $\quad l \leftarrow \operatorname{Process}(v)$
9: \quad if l.size >0 then
10: \quad while $\neg \operatorname{EMPTY}(l)$ do 11: $\quad v 2 \leftarrow \operatorname{GET}(l, 0)$
12: $\quad l \leftarrow \operatorname{ProcessDep}(v, v 2, l)$ 13: \quad Remove(visitList,v2)

Algorithm 4 shows both Process and ProcessDep. The Process method finds a list of candidate allocations by calling AllocPossibleAny (line 2). It sorts the
candidates (line 3). If there are available candidate allocations by always removing the first one and considers it to include activity v in the solution structure (lines 4 to 6). Then it checks the number of employees required by v, and if it is more than one, it iterates the remaining candidate allocations by always removing the first one and including it in the solution structure (sol) (lines 7 to 14). If at any iteration there are not enough candidates for the required number of employees, then v is unassigned from all its previous allocations since an activity cannot be assigned partially to less than the number of employees required. Finally, once v has been assigned, the GetRelated procedure searches for the related activities of v. Related activities are those involved in a time-dependent constraints with v. The list of related activities $l r v$ is returned by the procedure.

The ProcessDep method assigns activities in the lrv in a similar way as Process. In addition, it enforces any time-dependent constraints by restricting the start time of dependent activities using the function Considerre .

```
Algorithm 4 Greedy Heuristic 3 (GH3): Process and ProcessDep methods
    procedure \(\operatorname{Process}(v) \quad\) 1: \(\operatorname{procedure~} \operatorname{ProcessDep}(v, v 2, l r v)\)
        \(c a n \leftarrow \operatorname{AllocPossibleAny}(v, s o l) \quad 2: \quad c a n \leftarrow \operatorname{AllocPossibleAny}(v 2, s o l)\)
        Sort(candidates)
        ConsiderRC \((v, v 2, c a n)\)
        if can is not empty then
        if \(c a n\) is not empty then
            \(c \leftarrow\) can.remove( 0 )
            \(\operatorname{Sort}(c a n)\)
            Include \((c, s o l)\)
            \(i \leftarrow v\).required
            \(c \leftarrow\) can.remove \((0)\)
            Include ( \(c, s o l\) )
                for \(i>1\) do
            \(i \leftarrow v\).required
                    if can is not empty then
            for \(i>1\) do
                    \(c \leftarrow\) can.remove \((0)\)
                if can is not empty then
                    \(\operatorname{InClUDE}(c, s o l)\)
                    else
                        Unallocate \((v, s o l)\)
        \(l r v \leftarrow \operatorname{GetRelated}(v)\)
                                Unallocate \((v, s o l)\)
        return lrv
                \(c \leftarrow\) can.remove \((0)\)
                        \(\operatorname{Include}(c, s o l)\)
            else
    15: return lrv
```


6.3.3.1 Functions for time-dependent activities constraints

The ConsiderRC procedure tries to assign a starting time to a dependent activity by using the starting time of the independent activity, which it relates to, and the rules imposed by the type of time-dependent constraint. There are five types: overlap, synchronisation, minimum difference, maximum difference and min-max difference. The procedure first identifies which type of constraint is required. The procedures are based on the insertion heuristics proposed by Solomon (1987) for the VRPTW. These are extended to address the time dependent constraints. Similar extensions
have been proposed by Xu and Chiu (2001) for a field technician scheduling problem, and by Mankowska et al. (2014) for home health care routing. The novelty is that the proposed procedures can handle time windows and time-dependent activities at the same time.

```
Algorithm 5 Selecting Time-Dependent Function
    procedure ConsiderRC \((v, v 2, c a n)\)
        for \(c \leftarrow 1\), can do
            if \(\operatorname{RC}(v, v 2)=\) SYNC then
                \(\operatorname{Sync}(v, v 2\), can, can \(2, c)\)
            else if \(\mathrm{RC}(v, v 2)=\) OVERLAP then 11 :
                \(\operatorname{Overlap}(v, v 2, c a n, c a n 2, c)\)
                7: \(\quad\) else if \(\operatorname{RC}(v, v 2)=\) Min then
        8: \(\quad \operatorname{Minimum}(v, v 2, c a n, c a n 2, c)\)
            else if \(\operatorname{RC}(v, v 2)=\) Max then
        \(\operatorname{Maximum}(v, v 2\), can, can \(2, c)\)
    else if \(\operatorname{RC}(v, v 2)=\) MinMax then
        \(\operatorname{MinMax}(v, v 2\), can, can2, \(c)\)
        return \(\operatorname{can} 2\)
```

The overlap constraints validate that a new time window formed by the start time of the candidate allocation, plus the duration of the dependent activity $v 2$, clashes with v, i.e. it overlaps time wise. If such clash exists, then there is an opportunity for both activities to overlap, and the candidate allocation is added to a second list of candidate allocations can 2 , which in addition to adhering to the time window of $v 2$, can comply with the overlap constraint with v. If there is no clash, then the procedure uses the flexible time of the candidate allocation to delay its starting time as much as possible, i.e. $c . s t=c . s t+c . f t$. If the new delayed starting time exceeds the start time of v then it indicates that an overlap can be achieved by assigning some intermediate value. The candidate allocation is updated with a new delayed starting time and added to those candidates which comply with the overlap constraint (can2). For the pseudo-code of the function refer to the Algorithm 0 line 1. Figure 6.4 illustrates the handling of overlap type constraints.

| Algorithm 6 Overlap | | |
| :---: | :---: | :---: |
| | 13: | $s t=v . s t-v 2 . d u r$ |
| 1: procedure $\operatorname{Overlap}(v, v 2$, can, can2, c) | 14: | $d t=s t-c . s t$ |
| 2: $\quad w 2 \leftarrow \mathrm{NEWW}(c . s t, c . s t+v 2 . d u r)$ | 15: | $f t=c . f t-d t$ |
| 3: $\quad c w \leftarrow \operatorname{Clash}(v . w i n, w 2)$ | $16:$ | $f M=v . e t-s t$ |
| 4: if $c w$ is not nil then | 17: | if $f t \leq f M$ then |
| 5: $\quad a f=c . s t+c . f t$ | 18: | rft |
| 6: \quad if $c w . e t \leq a f$ then | 19: | else |
| 7: \quad c.ft $=$ cw.et - c.st | 20: | $r f t \leftarrow f M$ |
| 8: \quad can2.add (c) | 21: | $i t=c . i t+d t$ |
| 9: else | 22: | c.st $\leftarrow s t$ |
| 10: if $($ c.st $+v 2 . d u r)<v . s t$ then | 23: | c.ft $\leftarrow r f t$ |
| 11: $\quad t m p \leftarrow c . s t+v 2 . d u r+c . f t$ | 24: | c.it $\leftarrow i t$ |
| 12: if $t m p \geq v . s t$ then | 25: | can2.add(c) |

In the synchronisation type, the candidate allocation's start time (c.st) for $v 2$ needs

Figure 6.4: Test of time-dependent type overlap between a candidate allocation for $v 2$ and independent visit v. The pseudo-code is in Algorithm 0
to be the same time as v 's start time (v.st). Therefore, the procedure verifies if $v . s t$ is equal to $c . s t$. If the values are not the same, then it considers using the flexible time of the candidate allocation (c.ft) to make c.st the same as v.st. Using the flexible time, a maximum start time $m s t$ for the candidate allocation is obtained. Next, it is verified if $v . s t$ is between the two values c.st and $m s t$. If it is, then a new $c . s t$ is set accordingly to enforce the synchronisation constraint. For the pseudo-code of the function refer to Algorithm 0 line 1. Figure 6.5 depicts the steps previously defined.

| Algorithm 7 Synchronisation | | |
| :--- | :--- | :--- |
| | $5:$ | $d t=v . s t-c . s t$ |
| 1: procedure $\operatorname{SYNC}(v, v 2$, can, can $2, c)$ | $6:$ | $f t=0$ |
| 2: $\quad m S t \leftarrow c . s t+c . f t$ | $7:$ | $i t=c . i t+d t$ |
| 3: if $c . s t \leq v . s t$ AND $v . s t \leq m s t$ then | $8:$ | $c \leftarrow \operatorname{NEWCA}(s t, i t, f t, e m p)$ |
| 4: $\quad s t=v . s t$ | $9:$ | $\operatorname{can2.add(c)}$ |
| | | |

In the minimum difference constraint type, $v 2$ is required to start at least $r c V$ time units after the commencement of v. With a shift similar to the synchronisation type, the function tests whether the candidate allocation's start time is greater than v 's start time plus the time units $(r c V)$, i.e. $c . s t \geq v . s t+r c V$. If it is greater, then the current candidate allocation is a valid one, and is added to the list can2. If it is not greater, the possibility of using the candidate allocation's flexible time by testing if $c . s t+c . f t \geq v . s t+r c V$ is considered. If the latest test is true, then there are some values of $c . s t$ that can comply to the minimum difference constraint. The

Figure 6.5: Test of time-dependent type synchronisation between a candidate allocation for $v 2$ and independent visit v. The pseudo-code is in Algorithm 0
candidate allocation structure is updated accordingly to a new $c . s t$ with flexible time reduced. The reader is referred to Algorithm 0 line 1 for the pseudo-code version of the procedure. Figure 6.6 demonstrates how the minimum difference function operates.

Figure 6.6: Test of time-dependent type minimum difference between a candidate allocation for $v 2$ and independent visit v. The pseudo-code is in Algorithm 0

The maximum difference type requires $v 2$'s start time to fall between the start time

```
Algorithm 8 Minimum Time Difference
    procedure \(\operatorname{Minimum}(v, v 2, c a n, c a n 2, c)\)
        \(r c V \leftarrow \operatorname{GETRCVAL}()\)
        if \(v 2\) is dependat then
                \(s f t \leftarrow c . s t+c . f t\)
                if \(c . s t \geq v . s t+r c V\) then
                can2.add (c)
                else if \(s f t \geq v . s t+r c V\) then
                \(d t \leftarrow s f t-(v . s t+r c V)\)
                \(s t \leftarrow(v . s t+r c V)\)
                \(c . f t \leftarrow d t\)
11:
12:
13 :
14:
15:
\(16:\)
17:
18:
19:
20:
```

```
```

 \(c . i t \leftarrow(c . i t+v . s t+r c V-c . s t)\)
    ```
```

 \(c . i t \leftarrow(c . i t+v . s t+r c V-c . s t)\)
 c.st \(\leftarrow s t\)
 c.st \(\leftarrow s t\)
 can2.add (c)
 can2.add (c)
 else
else
if $(c . s t+r c V) \leq v . s t$ then
if $(c . s t+r c V) \leq v . s t$ then
$d t \leftarrow(v . s t-r c V)-c . s t$
$d t \leftarrow(v . s t-r c V)-c . s t$
if $d t<c$.ft then

```
    if \(d t<c\).ft then
```

```
        \(c . f t \leftarrow d t\)
```

 \(c . f t \leftarrow d t\)
 \(c . i t \leftarrow c . i t+d t\)
 \(c . i t \leftarrow c . i t+d t\)
 can2.add(c)
    ```
    can2.add(c)
```

of v and at most a new deadline defined by the addition of some time units $r c V$, i.e. $v . s t+r c V$. If the candidate allocation's start time is not between the two values, then it is only appropriate to attempt to delay c.st by using the flexible time c.ft if $c . s t$ is less than $v . s t$. If the candidate allocation's starting time (c.st) is already after $v . s t+r c V$ then that candidate allocation becomes invalid as the shifting with flexible time only allows delays. In this case, shifting forward the independent visit could work, but that depends on whether such activity can be delayed as it is assumed that it has already been set and it might be involved in other time-dependent constraints or on the limit of its time window. The pseudo-code for this function is available in Algorithm 0 line 1. Figure 6.7 illustrates the maximum difference function procedure.

Figure 6.7: Test of time-dependent type maximum difference between a candidate allocation for $v 2$ and independent visit v. The pseudo-code is in Algorithm 0

```
Algorithm 9 Maximum Time Difference
    procedure Maximum \((v, v 2\), can \(, \operatorname{can} 2, c) \quad 23\) :
        \(r c V \leftarrow \operatorname{GETRCVAL}() \quad 24:\)
        if \(v 2\) is dependat then 25 :
            \(s f t \leftarrow c . s t+c . f t \quad 26:\)
            cn \(1 \leftarrow v . s t \leq\) c.st \(\quad 27:\)
            \(c n 2 \leftarrow c . s t \leq(v . s t+r c V) \quad 28:\)
            if \(\operatorname{AND}(c n 1, c n 2)\) then 29 :
                \(s f t \leftarrow c . s t+c . f t\)
            if \(s f t \geq(v . s t+r c V)\) then 31 :
                \(c . f t \leftarrow s f t-(v . s t+r c V) \quad 32:\)
            \(\operatorname{can2.add}(c) \quad 33:\)
            else if \(v . s t \leq s f t\) then
            \(s t \leftarrow c . s t\)
            \(d t \leftarrow c . s t+c . f t-v . s t\)
                35:
                36:
            c.st \(\leftarrow v . s t \quad 37:\)
            if \(s f t \leq v . s t+r c V\) then \(\quad 38\) :
                c.ft \(\leftarrow d t \quad 39:\)
            else 40:
            \(c . f t \leftarrow r c V\)
                41:
            c.it \(\leftarrow c . i t+c . s t-s t\)
            42:
            can2.add(c)
                43:
                            44:
else
    \(s f t \leftarrow c . s t+c . f t\)
        \(c n 1 \leftarrow c . s t \leq v . s t\)
            \(c n 2 \leftarrow v . s t \leq(c . s t+r c V)\)
            if \(\operatorname{AND}(c n 1, c n 2)\) then
        if \(v . s t \leq s f t\) then
            \(c . f t \leftarrow c . f t-(s f t-v . s t)\)
                            30 :
10:
```

$s t \leftarrow c . s t$
c.st $\leftarrow v . s t$ 37:
if $s f t \leq v . s t+r c V$ then 38 :
c.ft $\leftarrow d t \quad 39:$
else
$c . f t \leftarrow r c V$
40:
41:
c.it $\leftarrow c . i t+c . s t-s t$

42
43
44:

```
        else
            \(t 1 \leftarrow c . s t>v . s t\)
            \(t m p \leftarrow c . s t+c . f t+r c V\)
            if \(\neg(t 1\) AND \(t m p<v . s t)\) then
                \(s t \leftarrow c . s t\)
                c.st \(\leftarrow v . s t-r c V\)
                if \(s f t \leq v . s t\) then
                    \(d t \leftarrow s f t-(v . s t-r c V)\)
            \(c . f t \leftarrow d t\)
            c.it \(\leftarrow c . i t+c . s t-s t\)
            can2.add(c)
        else
            c. \(f t \leftarrow r c V\)
                    c.it \(\leftarrow c . i t+c . s t-s t\)
                    can2.add(c)
```

else

$$
s f t \leftarrow c . s t+c . f t
$$

$$
c n 1 \leftarrow c . s t \leq v . s t
$$

$$
c n 2 \leftarrow v . s t \leq(c . s t+r c V)
$$

$$
\text { if } \operatorname{AND}(c n 1, c n 2) \text { then }
$$

$$
\text { if } v . s t \leq s f t \text { then }
$$

$$
c . f t \leftarrow c . f t-(s f t-v . s t)
$$ can2.add(c)

The combined type minimum-maximum (min-max) difference can be seen as an additional time window imposed on $v 2$ which depends on the v 's start time. The new imposed time window defines a minimum starting time of $v . s t+r c V 1$ and a maximum starting time of $v . s t+r c V 2$. It is assumed that $r c V 1 \leq r c V 2$. Similarly, with the maximum difference type, and due to the restriction on the shifting movement in the candidate allocation's starting time, only cases where $c . s t \leq v . s t+r c V 1$ are considered, when c.st does not comply with the new imposed time window. If c.st complies with $(v . s t+r c V 1) \leq c . s t \leq(v . s t+r c V 2)$ then the constraint is enforced by the current configuration. If $c . s t<(v . s t+r c V 1)$ and then there is flexible time to consider, a delay of $c . s t$ may enforce the constraint. The pseudo-code of this function is available in appendix 0 line 1. Figure 6.8 shows the procedure of min-max described in this paragraph.

Figure 6.8: Test of time-dependent type minimum-maximum difference between a candidate allocation for $v 2$ and independent visit v. The pseudo-code is in Algorithm 0

6.3.4 Introducing a summary of candidate allocations: GH4

The next improvement GH4 focuses on the available candidate allocations that have comply with both time window and time-dependent constraints. If there are more candidate allocations than number of employees required for the activity to be assigned $(v 2)$, the algorithm determines which candidate allocation to choose. Another factor to consider is that not all candidate allocations cover the same time frame, and in the case when more than one employee is required, the candidate allocations need to

```
Algorithm 10 Minimum-Maximum Time Difference
    procedure \(\operatorname{MinMax}(v, v 2\), can , can \(2, c)\)
        \(r c V 1 \leftarrow \operatorname{GETRCVAL}(\) min \()\)
        \(r c V 2 \leftarrow \operatorname{GEtRCVAL}(\) max \()\)
        if \(v 2\) is dependat then
            \(m n \leftarrow v . s t+r c V 1\)
            \(m x \leftarrow v . s t+r c V 2\)
            \(s f t \leftarrow c . s t+c . f t\)
            \(c n 1 \leftarrow m n<c . s t\)
            \(c n 2 \leftarrow c . s t \leq m x\)
            if \(\operatorname{AND}(c n 1, c n 2)\) then
                if \(s f t \geq m x\) then
                    \(c . f t \leftarrow c . f t-(s f t-m x)\)
                can2.add(c)
            else if \(m n \leq s f t\) then
                \(s t \leftarrow c . s t\)
                \(d t \leftarrow s f t-(v . s t+m n)\)
                c.st \(\leftarrow m n\)
                if \(m n+d t \geq m x\) then
                    c.ft \(\leftarrow m x-m n\)
```

be synchronised. As a result, the improvement is to create a catalogue of candidate allocations covering different time frames and enable the algorithm to choose a time frame that has all employees required. Figure 6.9 illustrates a collection of candidate allocations for $v 2$. The candidate allocations (A, B, C, D and E) satisfy $v 2$'s time window constraint. If $v 2$ requires only one employee, any of the candidates could be an appropriate selection. However, if $v 2$ requires two employees, the only possible combinations are the following pairs: A \& C, A \& E, C \& E, and D \& E with an adequate starting time that matches both of the selected candidates in each pair. An impossible combination, for example, is A \& B, the main reason being that both candidate allocations are for the same employee (Employee 1) and $v 2$ requires two different ones. The pair also clearly does not overlap in time. Another impossible combination is $\mathrm{B} \& \mathrm{C}$ since both do not overlap at any time so as to start $v 2$ at the same time. The resulting catalogue structure captures in a better way all the possible options for allocations, allowing a better selection of an appropriate $v 2$'s start time.

The catalogue structure shown at the bottom of Figure 6.9 is created as follows: every candidate allocation provides the start time and end time in which it can hold the activity. For example, in the Figure 6.9 candidate allocation, A provides 12:00 as a start time and 14:10 as the limit. All such time values are collected in a list (dcList) and sorted in ascending manner. In the figure the blue lines show the limits of every candidate allocation and provide the time confirming the list dcList. Then every
candidate allocation that covers a time frame defined by consecutive nodes in the list $d c L i s t$ are added to the node by a reference. Such additions mean that for the time defined by each of the nodes (12:00, 12:10, 14:00, etc.) in the list, a collection of candidate allocations is kept forming the catalogue. Once the catalogue is formed, it is easier to identify, if for example three employees are required for $v 2$, that the only available time where it is possible is from 14:00 (inclusive) until 14:10 (exclusive). The pseudo-code for the creation of the catalogue structure can be found in appendix D.2.

Figure 6.9: A catalogue structure creation from a collection of candidate allocations for visit $v 2$.

The updated version of the procedures Process and ProcessDep, that includes the construction of the catalogue to choose which candidate allocations are assigned to the solution, is shown in pseudo-code 11 .

The statements after the formation of the Catalogue structure (line 4 in Process and line 6 in ProcessDep), choose the last index that has enough candidate allocations as employees required and continues with the heuristic. The statement that follows verifies if there is index with that requirement (lines 5 and 6 respectively).

In the following section the remaining candidate allocations that could provide alternative solutions are explored to some degree.

```
Algorithm 11 Greedy Heuristic 4 (GH4) with call to function Catalogue to index
candidate allocations.
    procedure \(\operatorname{Process}(v)\) 1: \(\operatorname{procedure} \operatorname{ProcessDep}(v, v 2\), lrv \()\)
        cand \(\leftarrow \operatorname{AllocPossibleAny}(v, s o l)\)
        cover \(\leftarrow\) Catalogue \((\mathbf{c a n})\)
        can \(\leftarrow\) cover.getLast()
        if can is not empty then
            \(c \leftarrow\) can.remove (0)
            Include ( \(c\), sol)
            \(i \leftarrow v\).required
            for \(i>1\) do
                if can is not empty then
                    \(c \leftarrow\) cand.remove \((0)\)
                    Include ( \(c\), sol)
                else
                    Unallocate \((v, s o l)\)
        \(l r v \leftarrow \operatorname{GetRelated}(v)\)
        return lrv
```

```
    can \(\leftarrow \operatorname{AllocPossibleAny}(v 2, s o l)\)
```

 can \(\leftarrow \operatorname{AllocPossibleAny}(v 2, s o l)\)
 Considerrc \((v, v 2\), can \()\)
 Considerrc \((v, v 2\), can \()\)
    ```
    if can is not empty then
```

 if can is not empty then
 cover \(\leftarrow\) Catalogue \((\mathbf{c a n})\)
 cover \(\leftarrow\) Catalogue \((\mathbf{c a n})\)
 can \(\leftarrow\) cover.getLast()
 can \(\leftarrow\) cover.getLast()
 \(c \leftarrow\) can.remove (0)
 \(c \leftarrow\) can.remove (0)
 Include (\(c, s o l\))
 Include (\(c, s o l\))
 \(i \leftarrow v 2\).required
 \(i \leftarrow v 2\).required
 for \(i>1\) do
 for \(i>1\) do
 if can is not empty then
 if can is not empty then
 \(c \leftarrow\) can.remove (0)
 \(c \leftarrow\) can.remove (0)
 Include (\(c\), sol)
 Include (\(c\), sol)
 else
 else
 Unallocate \((v\), sol \()\)
 Unallocate \((v\), sol \()\)
 return lrv
    ```
    return lrv
```


6.3.5 Branching: GH5

The final improvement (GH5) to the greedy heuristic considers multiple options when choosing a node from the catalogue structure. All nodes within the catalogue hold possible configurations of a visit to be assigned to the solution structure. Previously (in GH4), only one is chosen but any of them could work if containing enough candidate allocations for the number of employees required. If the solution structure is copied and each copy is given a different option from the catalogue, many more options can be analysed. This branching procedure allows GH5 to analyse $m x B$ options where $m x B \leq$ catalogue.size. After analysing the options the best improvement (minimisation) in the objective function can be chosen. The best one is defined by the option that reduces the minimisation objective function value the most. Such a branching procedure can be seen as performing local searches with every activity to a certain extent.

Branching the solution structure requires cloning so that each clone can be evaluated with the different options. Once the best one is obtained, the clones can be discarded and the next iteration for assignment of an activity commences. Or each option can continue the search process independently in the hope that compromising on choosing the best one earlier in the search process might result in a better final result as the search progresses. The only problem with such an approach is that for large size scenarios the memory requirements of the computer are rapidly filled.

Including this sort of branching requires the addition of another parameter to GH5 mentioned earlier, the maxBranching $(m x B)$. This parameter limits the possibilities that are analysed during the branching. In other words, it limits the size of the neighbourhood. If maxBranching is bigger than the possibilities of assignment (catalogue nodes) then all possibilities are considered. But, if maxBranching is less than the number of available nodes in the catalogue then only maxBranching nodes are considered. The choice of which nodes are considered is a random one. The pseudorandom generator is fed with the same seed so as to maintain deterministic results when repeating experiments, but the seed can be changed if required.

Allowing the evaluation of a neighbourhood of possible allocations changes the pseudocode of the heuristic. The final pseudo-code presenting all the different additions to the original bin-packing inspired heuristic is presented in Algorithm 12. Similarly updates to Process and ProcessDep are presented in Algorithm 13.

```
Algorithm 12 Greedy Heuristic 5 (GH5)
    procedure Solve \(\quad 15: \quad S \leftarrow \operatorname{ProcessDep}(v, v 2, l)\)
        visitList \(\leftarrow\) copy of visits \((V) \quad 16: \quad\) visitList.remove \((v 2)\)
        sol \(\leftarrow\) NewSolutionStructure 17: solToEval.addAll \((S)\)
        Sort(visitList, listCriterion) 18: else
        while visitList is not empty do 19:
            Sort(sol, solCriterion)
            Initialise (solToEval)
            \(v \leftarrow\) visitList.remove (0)
            solutions \(\leftarrow \operatorname{Process}(v)\)
            for \(s c \leftarrow 1\), solutions do
                \(l \leftarrow s c . l r v\)
                if l.size \(>0\) then
                while \(\neg \operatorname{EMPTY}(l)\) do
                        \(v 2 \leftarrow \operatorname{GET}(l, 0)\)
                            if best \(\neg-1\) then
    sol \(\leftarrow\) best.sol
```


6.3.6 Optional Improvement: Multi-start

As discussed earlier in subsections 6.3.1.1 and 6.3.1.2, the parameters solCriterion and listCriterion determine the order in which employees and activities are evaluated in the main cycle of GH. Other factors, discussed in previous sections, alter the next activity in line for assignment by GH. One of the factors is if an activity has timedependent constraints then all the related activities are processed immediately after the independent one and then removed from the visitList. Another factor is if an employee has neither the skills nor the time to perform an activity the next employee is evaluated, "next" means the following node in the solution structure sol. Such move-

```
Algorithm 13 Greedy Heuristic 5 (GH5): Process and ProcessDep
procedure ProcessDep \((v, v 2, l r v)\)
procedure \(\operatorname{Process}(v)\)
    can \(\leftarrow \operatorname{AllocPossibleAny}(v 2, s o l)\)
    ConsiderRC \((v, v 2, c a n)\)
    if can is not empty then
        cover \(\leftarrow\) CanTimeIndex (can)
        for \(d c \leftarrow 1\), cover do
        if \(v\).required \(>d\) c.eCover then
                cover.remove (dc)
        if coveris not empty then
        solutions
        if cover.size > MxPar then
                rem \(\leftarrow\) cover.size \(-M x P a r\)
                for \(r \leftarrow 1\), rem do
            \(i \leftarrow \operatorname{RAND}\) (cover.size)
            cover.remove( \(i\) )
        for \(d c \leftarrow 1\), cover do
                scenario \(\leftarrow\) Clone ()
                solutions.add(scenario)
        for \(i \leftarrow 1\), solutions.size do
            \(s \leftarrow\) solutions.get \((i)\)
                can \(\leftarrow\) cover.get \((i)\).can
                \(c \leftarrow\) can.remove(0)
                Include ( \(c, s . s o l\) )
                \(i \leftarrow v 2\).required
                for \(i>1\) do
                    if \(\neg \operatorname{EMPTY}(\) can \()\) then
                \(c \leftarrow\) cand.remove \((0)\)
                InClude ( \(c, s . s o l)\)
                    else
                Unallocate ( \(v, s . s o l)\)
        \(s . l r v \leftarrow \operatorname{GetRelated}(v)\)
        return solutions
```

ment is likely to be overridden if any of AllocPossibleAny, ConsiderRC and Catalogue functions are used, as these functions/procedures designate a collection of possible employees in one way or another. The running time of GH1-GH4 versions of the greedy heuristic (running times discussed in more detail in the Results section 6.4) are within milliseconds and for GH5 within seconds. The advantage of such short running time when compared to the two hours given to the mathematical solver, is that any version of the greedy heuristic could be restarted and run with different initialisation parameters. Therefore, additional improvements could be made if allowing the heuristic to re-start with different values for solCriterion and listCriterion and retaining only the best one. Such approach is discussed in the experiments in Section 6.4. Moreover, a multi-start approach could take advantage of a cluster environment or multiple processor units.

6.4 Experimental Results

The greedy heuristic (GH) has been developed in Java. Five different versions of the greedy heuristic are analysed (GH1 - GH5). Every version matches one of the improvements mentioned in section 6.3: GH1 refers to the original bin-packing inspired heuristic; GH2 introduces the broadening of search for inter idle time; GH3 incorporates the functions tailored to tackle time-dependent activities constraints; GH4 introduces the catalogue of candidate allocations; and, GH5 includes local search for a limited number of possible solutions, i.e. temporary branching.

Regarding the parameters of the GH, solCriterion and listCriterion, every combination is tested and the best result provided. For GH5 the additional parameter maxBranching is evaluated with four different values: 10, 20, 40, 50. The values represent the maximum number of candidate solutions that will be considered.

Every version of GH is compared to the benchmark results obtained by the mathematical solver using the MILP model from chapter 5.3. The summarised results for every version of GH are presented in this chapter using a table with descriptive statistics and a graphical representation. Both the tables and graphs seek to illustrate the observations and findings. However, for the individual instance result of each of the 375 instances using all versions of GH, the reader is referred to Appendices D. 3 to D. 8 for closer scrutiny if desired.

The gap reported in this section is calculated according to equation 6.1. The principle is the following, because it is a minimisation problem, in every comparison between
the solver and a version of the greedy heuristic the best result(smallest objective function value) is subtracted from the worst result (largest objective function value) and normalised according to the best result. Absolute value of the denominator is necessary to avoid providing negative gaps.

$$
\begin{equation*}
\text { gap }=(\text { Worst }- \text { Best }) / A B S(\text { Best }) \tag{6.1}
\end{equation*}
$$

6.4.1 GH1 Results

Table D. 1 (see Appendix D.3) provides the value of the objective function obtained using GH1 and the running time in milliseconds. If the solution obtained is infeasible due to constraint violations, the instances are reported as "-".

The results are compared against those obtained by the mathematical solver (reported in chapter 5.3). GH1 obtains better results based on the value of the objective function (equation 5.12) for 124 instances out of the 375 , whereas the mathematical solver obtains better results for 173. It also finds solutions for 78 instances but such solutions are infeasible due to violation in the time-dependent constraints, as GH1 does not guarantee complying with them.

6.4.1.1 Results group classification

In order to provide a comparison of GH1 against the solver results, it is necessary to classify the results. Six groups are created: group 1 where the solver obtains an optimal solution; group 2 where the solution obtained by the solver is better than the solution obtained by GH1, but such solution is not optimal; group 3 where GH1 is better than the solver results. Therefore, groups $1,2,3$ have results for both methods GH1 and solver. Group 4 is where only GH1 results are available; group 5 is where only solver values are available and group 6 is where neither the solver nor GH1 could obtain a feasible result. The proposed group division allows three comparisons. The first one compares how good GH1 is against known optimal values. The second is how far each method is from the other where the optimal value is unknown. Finally, it compares the number of instances for which GH1 can find a solution but the solver is unable to do so, and vice versa.

Using the proposed group classification, Table 6.1 shows the number of instances in each group. It is known from the results obtained by the MILP model (see Chapter
5.3) that there are 34 instances with known optimal values. However, Group 1 in this classification only contains 23 instances. The 11 missing instances are not in group 1 because they are part of group 5, as there is no result provided by GH1 for them. Table 6.1 also shows descriptive statistics regarding the gap between the value obtained by the solver and by GH1.

The gap value can only be calculated for groups where both results are available, i.e. groups $1,2,3$. The gap calculation for groups 1 and 2 is (GH1-Solver) $/ A B S$ (Solver) and for group 3 is (Solver $-G H 1) / A B S(G H 1)$ based on the previously defined function 6.1.

| Group | \# Instances | Min | Q1 | Median | Q3 | Max | Mean | Std Dev |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Group 1 | 23 | 30.43% | 69.19% | 396.93% | 1502.52% | 70683.53% | 5703.13% | 16719.20% |
| Group 2 | 150 | 0.78% | 37.22% | 156.13% | 798.15% | 20171.73% | 717.62% | 1886.85% |
| Group 3 | 93 | 1.45% | 27.85% | 59.55% | 82.04% | 146.77% | 58.80% | 34.26% |
| Group 4 | 31 | | | | | | | |
| Group 5 | 72 | | | | | | | |
| Group 6 | 6 | | | | | | | |

Table 6.1: Summary of GH1 result values compared to the mathematical solver. The number of instances in each group is shown. Groups are according to definition in 6.4.1.1 The minimum, first quartile, median, third quartile, maximum, mean and standard deviation of the gap are shown for groups 1,2 and 3 . Groups 4,5 and 6 do not have values for both methods (GH2 or solver) so the gap cannot be obtained.

Figure 6.10 displays the gap as appropriate for groups 1, 2 and 3. It is observed that for Group 1 the best gap achieved by GH1 is of 30% from the optimum (see row 1 in Table 6.1). The best gap achieved in Group 2 is less than 1% but the mean is of 700%. Overall, the solver values when compared to GH1 (Group 3) are closer to GH1 values than the values of GH1 when compared to the solver (Group 2), which suggests that the solver is not far from the value obtained by GH1 when GH1 is better but GH1 is not so close to the solver results when the solver is better.

Figure 6.10: Computed gaps for groups 1,2 and 3 when using GH1

6.4.2 GH2 Results

In this section the results obtained by GH2 are presented. Such results are also compared to the solver ones, in a similar way as in section 6.4.1. The main difference between GH1 and GH2 is that GH2 explores any available idle times within the working time of employees, in comparison to GH1 which only attemps to assign them after the last performed activity. Therefore, the search space available to GH2 is bigger than GH1, which might result in a better outcome.

The GH2 version finds better results than the solver for 92 instances. The results obtained for 131 instances are infeasible due to the violations of time-dependent constraints. GH2 does not handle time-dependent constraints.

6.4.2.1 Results group classification

The results are classified into six groups as defined in the previous section. Group 1 contains optimal solutions that are known and GH2 has a feasible comparable value. Group 2 includes the non-optimal solver results that are better than the ones found by GH2. Group 3 has results where GH2 is better. Groups 1, 2, 3 assume there are results for both methods in order to allow the comparison. Group 4 contains instances where only GH2 results are available. Group 5 includes instances where only the solver reports feasible results. And, in group 6 neither GH2 nor the solver find feasible results. Table 6.2 contains the number of instances in each group and information about the gap between the values obtained by GH2 and the solver. The gaps are computed as defined in 6.4.1.1.

| Group | \# Instances | Min | Q1 | Median | Q3 | Max | Mean | Std Dev |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Group 1 | 15 | 30.43% | 61.48% | 108.79% | 138.22% | 28673.03% | 2360.64% | 7343.83% |
| Group 2 | 116 | 0.78% | 35.54% | 95.41% | 391.74% | 11036.11% | 499.07% | 1287.68% |
| Group 3 | 76 | 1.30% | 26.62% | 66.01% | 88.04% | 146.77% | 60.57% | 36.15% |
| Group 4 | 16 | | | | | | | |
| Group 5 | 131 | | | | | | | |
| Group 6 | 21 | | | | | | | |

Table 6.2: Summary of GH2 result values compared to the mathematical solver. The number of instances in each group is shown. Groups are according to the definition in 6.4.2.1 The minimum, first quartile, median, third quartile, maximum, mean and standard deviation of the gap are shown for groups 1,2 and 3 . Groups 4,5 and 6 do not have values for both methods (GH2 or solver) so the gap cannot be obtained.

Only considering the number of instances in Groups (3 and 4) it can be said that GH2 is worse than GH1 since GH1 has 124 instances with better results than the solver compared to 92 of GH2. However, there is a rise in the number of infeasible solutions obtained by GH2 (131) compared to GH1 (78). In total, 52 more instances with infeasible solution are presented in GH2. It could be argued that expanding the search
space available to the greedy heuristic without addressing time-dependent constraints does not improve the number of instances with a better objective value. However, the gap in groups 1 and 2 for GH2 decreases in comparison to GH1, suggesting that even though the number of instances with better results for GH2 is less than GH1, their quality is better (mean of group 1 in Table 6.2 is smaller than the one of group 1 in Table 6.1). The solver gaps (Group 3) increase from the second quartile onwards with respect to GH1. Such an increase also indicates that the quality of solutions achieved by GH2 increases. Figure 6.11 displays the gap for groups 1, 2 and 3. Table D.2 (see Appendix (D.4) contains the objective function value and computation time obtained by GH2 for all 375 instances, where time is given in milliseconds.

Figure 6.11: Computed gaps for groups 1,2 and 3 when using GH2.

6.4.3 GH3 Results

This section presents the results of running version GH3 of the heuristic against the mathematical solver. GH3 is the first version that handles time-dependent constraints, hence it is able to find feasible results for all 375 instances. GH3 obtains better results for 178 instances out of the 375 .

6.4.3.1 Results group classification

Results for GH3 are classified in four groups. Group 1 are instances for which an optimal solution is known. Group 2 are instances where the solver obtains better feasible solutions than GH3 although such solutions are not optimal. Group 3 have instances where GH3 obtains better results than the solver. And, Group 4 contains instances where results from GH3 are the only ones available, as the solver either
runs out of memory or cannot load the instance due to its size. Table 6.3 shows the number of instances in each of the defined groups. In addition, Table 6.3 also contains the minimum, first quartile, median, third quartile, maximum, mean and standard deviation of the gap between the values of GH3 and the solver for groups for which the gap can be computed, i.e. groups 1, 2 and 3 . The gap is computed as explained in section 6.4.1.1.

| Group | \# Instances | Min | Q1 | Median | Q3 | Max | Mean | Std Dev |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Group 1 | 34 | 30.43% | 65.28% | 113.36% | 233.38% | 28673.03% | 1517.42% | 5262.85% |
| Group 2 | 163 | 0.71% | 50.14% | 125.26% | 236.91% | 9669.11% | 339.49% | 934.30% |
| Group 3 | 141 | 3.33% | 40.30% | 86.94% | 147.90% | 30039.00% | 1478.82% | 4806.81% |
| Group 4 | 37 | | | | | | | |

Table 6.3: Summary of GH3 result values compared to the mathematical solver. The number of instances in each group is shown. Groups are according to definition in 6.4.3.1 The minimum, first quartile, median, third quartile, maximum, mean and standard deviation value of the gap are shown for groups 1,2 and 3 . Group 4 has only results for GH3 so a gap value cannot be included.

The gap value for Group 1 decreases when compared to those obtained by GH2, which indicates that the quality of the solutions obtained by GH3, although still with a minimum of 30% overall, is increasing. In Group 2, quartiles Q1 and Q2 increase with respect to the values obtained by GH2. However, the third quartile Q3, the maximum gap and the mean are reduced. GH3 increases the number of instances with feasible solutions by 54 compared to GH1 and 86 compared to GH2. Interestingly, it is the solver gap to GH3 (Group 3) that increases overall, which indicates that the quality of solutions is improving. Figure 6.12 shows the gap values for Groups 1, 2 and 3.

Table D. 3 (see Appendix D.5) includes the objective value obtain by GH3 for all 375 instances with the corresponding computation time in milliseconds. The average computational time for GH3 is 1.34 milliseconds with a standard deviation of 2.53.

6.4.4 GH4 Results

In this section results obtained by GH4 are presented. GH4 finds feasible solutions for all 375 instances, out of which 186 are better than the solver, almost 50%. The improvements in this version include the catalogue of candidate solutions which allows the heuristic to choose better in most cases. In terms of the number of instances with better results than the solver, it only finds 8 more compared to GH3.

6.4.4.1 Results group classification

The results are classified in a similar manner as with GH3. Group 1 contains instances with known optimal values obtained by the solver. Group 2 contains instances where the solver values are better than GH4. Group 3 includes instances for which GH4 obtains better results. Finally, Group 4 only has results for GH4. Table 6.4 provides information regarding the number of instances in each of the groups. Additionally it shows the minimum, first quartile, median, third quartile, maximum, average and standard deviation of the gap for Groups 1, 2 and 3.

| Group | \# Instances | Min | Q1 | Median | Q3 | Max | Mean | Std Dev |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Group 1 | 34 | 5.35% | 60.43% | 75.06% | 139.91% | 20730.50% | 1030.28% | 3809.34% |
| Group 2 | 155 | 1.03% | 32.87% | 66.27% | 121.26% | 3028.72% | 166.27% | 407.69% |
| Group 3 | 149 | 0.91% | 60.71% | 100.72% | 196.31% | 27373.41% | 2047.36% | 5422.88% |
| Group 4 | 37 | | | | | | | |

Table 6.4: Summary of GH4 result values compared to the mathematical solver. The number of instances in each group is shown. Groups are according to definition in 6.4.4.1 The minimum, first quartile, median, third quartile, maximum, mean and standard deviation value of the gap are shown for Groups 1,2 and 3 . Group 4 only has results for GH4 so gap values cannot be included.

As GH4 finds feasible results for all instances, Group 1 remains with the same number of instances compared to GH3. What can be observed, however, is that the minimum gap obtained was reduced to 5%. Group 1 shows a reduced gap when compared to GH3. Eight instances are shifted from Group 2 to Group 3 compared to the results obtained by GH3. 50% of instances in Group 2 have a gap of 67% or less compared to the value of the solver. The gaps in Group 3 continue to increase as the solutions from the heuristic (GH4) continue to improve. Figure 6.13 shows the gap value for Groups 1, 2 and 3. Table D.4 (see Appendix D.6) shows the objective function value obtained using GH4 and the computation time in milliseconds. The average computational time increased to 2.21 milliseconds, even the maximum observed is still below 1 second, i.e. 85 milliseconds.

Figure 6.13: Gaps

6.4.5 GH5 Results

This section presents the results obtained by version GH5 of the greedy heuristic. This version, as with GH3 and GH4, obtains feasible results for all 375 instances. Moreover, it achieves better results than the mathematical solver for 203 instances out of the 375 , which is 17 instances more than GH4. Therefore, it is the first version of the greedy heuristic that has more than 50% of instances with results better than the solver. All previous versions select the best candidate allocation for an activity to include in the solution structure, i.e. one level forward. This GH5 version evaluates two levels forward by cloning the solution structure to evaluate all candidate allocations options. GH5 then compares all the clones after an additional iteration and chooses the best value obtained so far. This is particularly important when assigning dependent activities, because they are constrained by the possibilities of their independent counterparts. GH5 also utilises a parameter which defines the number of candidate allocations that are considered during the two level forward evaluation. The results shown in this section correspond to the maxBranching parameter set to 10. In the next section the parameter is increased.

6.4.5.1 Results group classification

Results are classified using a similar approach as with GH3 and GH4, by forming four groups. Group 1 includes instances with known optimal values obtained by the mathematical solver. Group 2 contains instances where the solver value after 2 hours is better than GH5. Table 6.5 shows the number of instances in each group. It also shows the minimum, first quartile, median, third quartile, maximum, mean and
standard deviation of the gap for groups 1,2 and 3 .

| Group | \# Instances | Min | Q1 | Median | Q3 | Max | Mean | Std Dev |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Group 1 | 34 | 10.92% | 39.23% | 53.52% | 73.56% | 6323.37% | 478.61% | 1383.52% |
| Group 2 | 138 | 0.92% | 20.88% | 32.63% | 58.81% | 775.09% | 55.00% | 84.07% |
| Group 3 | 166 | 2.36% | 74.26% | 113.85% | 398.10% | 90936.22% | 2387.09% | 8656.99% |
| Group 4 | 37 | | | | | | | |

Table 6.5: Summary of GH5 result values compared to the mathematical solver. The number of instances in each group is shown. Groups are according to definition in 6.4.5.1 The minimum, first quartile, median, third quartile, maximum, mean and standard deviation value of the gap are shown for Groups 1,2 and 3 . Group 4 has only results for GH5 so gap values cannot be included.

Both mean gaps in Group 1 and 2 are reduced in comparison with GH4, which is a result of the improved quality of the solutions. As expected, the solver gaps grow in comparison to the heuristic. Figure 6.14 shows the gap value for Groups 1, 2 and 3. It is noticeable in the figure that Group 2 gaps concentrate at the bottom, 75% of the instances in this group achieve a gap of less than 60%. Table D.5 (see Appendix D.7) presents the objective value obtain with GH5, computational time used in milliseconds is also shown.

In reference to computational time, there is a significant increment compared to the average time of previous versions of the heuristic, from 2.21 milliseconds in GH4 to 1069 milliseconds (1 second) in GH5. Nevertheless, such time is still far from the two hours required by the solver. The maximum time spent in an instance was under 1 minute.

Figure 6.14: Gaps

6.4.6 GH5 Results with maxBranching $=\{20,40$ and 50$\}$

In this section the results when increasing the parameter maxBranching are presented. In section 6.4.5 such parameter was set to 10 . In this section results with values of 20 , 40 and 50 are presented. Every increase aims to double the value of the parameter. However, when attempting to increase it to 80 , some instances started running out of memory. As a result, 50 was chosen as the maximum parameter value used here that provides results for all instances. It is recognised that perhaps a different programming language or improvements on the implementation of the heuristic could prevent the out of memory error.

Table D.6 (see Appendix D.8) presents the objective function value obtained for each instance and the computational time in milliseconds for GH5 with maxBranching parameter set to 20,40 and 50 .

Table 6.6 provides a summary of the results obtained when using GH5 with maxBranching set to 20,40 , and 50 . Group 1 across the different configurations of the maxBranching parameter seem to suggest that the mean of the gap remains approximately the same (478%). Similar results are presented in Group 2, where the mean does not change much across all configurations, in this case with a value of 53%. Regarding Group 3, it is observed that the configuration with the smaller gap on average is with maxBranching $=40$.

| Ver | G | $\#$ | Min | Q1 | Median | Q3 | Max | Mean | Std Dev |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 20 | 1 | 34 | 10.917% | 39.227% | 51.481% | 73.561% | 6323.371% | $\mathbf{4 7 8 . 2 5 2} \%$ | 1383.635% |
| 40 | 1 | 34 | 10.917% | 39.227% | 51.481% | 73.561% | 6323.371% | $\mathbf{4 7 8 . 3 1 8} \%$ | 1383.615% |
| 50 | 1 | 34 | 10.917% | 39.227% | 51.481% | $\mathbf{7 3 . 0 4 2 \%}$ | 6323.371% | $\mathbf{4 7 8 . 2 9 7} \%$ | 1383.621% |
| 20 | 2 | 137 | 0.921% | 18.704% | $\mathbf{3 1 . 2 0 2} \%$ | 56.168% | 775.090% | $\mathbf{5 3 . 4 7 8} \%$ | 83.981% |
| 40 | 2 | 137 | 0.921% | 18.704% | $\mathbf{3 1 . 6 4 4} \%$ | 56.168% | 775.090% | $\mathbf{5 3 . 3 6 0} \%$ | 83.996% |
| 50 | 2 | 137 | 0.921% | 18.704% | 31.644% | 56.168% | 775.090% | $\mathbf{5 3 . 3 3 7} \%$ | 84.002% |
| 20 | 3 | 167 | 2.729% | 75.835% | $\mathbf{1 1 3 . 2 1 2 \%}$ | 387.628% | 104351.684% | $\mathbf{2 0 8 9 . 0 0 2} \%$ | 8612.728% |
| 40 | 3 | 167 | 2.729% | 75.054% | $\mathbf{1 1 1 . 9 0 8 \%}$ | 387.628% | 96239.209% | $\mathbf{2 0 0 7 . 8 5 0} \%$ | 8008.893% |
| 50 | 3 | 167 | 2.729% | 75.054% | $\mathbf{1 1 1 . 9 0 8 \%}$ | 387.628% | 96239.209% | $\mathbf{2 0 1 0 . 1 3 8 \%}$ | 8010.609% |

Table 6.6: Summary of GH5 result values compared to the mathematical solver. The number of instances in each group is shown. Groups are according to definition in 6.4.5.1 The minimum, first quartile, median, third quartile, maximum, mean and standard deviation value of the gap are shown for Groups 1,2 and 3 . Group 4 has only results for GH5 so gap values cannot be included.

Running time for GH5 depends on the maxBranching parameter. Table 6.7 shows the minimum, first quartile, median, third quartile, maximum, average and standard deviation of the computation time for each configuration. The minimum, Q1, median and Q3 values increase as the maxBranching increases. The maximum running time was observed when using GH5_40 (5138199, i.e. 85 min).

| Version | Min | Q1 | Median | Q3 | Max | $\\|$ | Mean |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| GH5(10) | 0.00 | 9.00 | 55.00 | 337.50 | 54208.00 | 1069.70 | 5061.76 |
| GH5(20) | 0.00 | 10.00 | 60.00 | 710.00 | 164208.00 | 2318.52 | 12465.40 |
| GH5(40) | 0.00 | 10.00 | 71.00 | 1112.00 | 5138199.00 | 25262.96 | 305065.40 |
| GH5(50) | 0.00 | 9.00 | 74.00 | 1178.00 | 545000.00 | 5087.46 | 34360.10 |

Table 6.7: Running time of GH5 with different values for maxBranching parameter. Time is given in milliseconds.

6.4.7 Best overall results

In this section all results previously presented in this chapter are used to compare against the solver in order to obtain the minimum objective function value for each instance thus far. Out of the 375 instances, the solver obtains best results for 169. For the remaining 206 instances, a version of GH is better. The distribution of the best results across the different versions of GH is shown in Table 6.8. In many cases more than one version achieves the same result. If that is the case, the instances are counted for all versions that obtained the best objective value. According to the table GH5 with parameter maxBranching set to 40 obtains the best results. Contrary to the observation in section 6.4.6 regarding the average gap staying the same with different values of maxBranching, it is clear that increasing such parameter provides better quality results. The main reason why the gap mean seems unchanged is that the improvements are relatively small so they do not greatly affect the gap. It is also unexpected that setting maxBranching to 40 provides the almost the same number as using 50. Perhaps this is because the maximum number of candidate allocations is not always evaluated throughout the search. In many cases the configuration might allow 50 candidate allocations to be considered but during the search process such number might never be required or in rare occasions. It is also interesting that regardless of the value assigned to maxBranching, GH5 is clearly better than the previous versions (GH1-GH4).

| GH1 | GH2 | GH3 | GH4 | GH5(10) | GH5(20) | GH5(40) | GH5(50) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 5 | 2 | 4 | 70 | 97 | 106 | 105 |

Table 6.8: Different versions of the greedy heuristic (GH1-GH5_50) and the number of instances with the best result achieved.

6.5 Conclusion

In this chapter a greedy heuristic (GH) to tackle workforce scheduling and routing problems was presented. Five version of the heuristic were discussed. GH1 was inspired by the bin-packing problem. GH2 increased the search space but failed to
find more instances with best result than GH1 for failure to support time-dependent constraints. As a result, it was necessary to create specialised procedures/functions to deal with the each type of time-dependent constraints that relate two or more activities. After the introduction of such functions, GH3 was able to find feasible solutions for all 375 instances. Further improvements are achieved when incorporating a catalogue structure of candidate allocations as options when assigning activities to the solution. GH4 was enabled to choose the best option by using the catalogue. The introduction of branching, i.e. multiple options, prove satisfactory as the quality of the results improved. The improvement was little in terms of the percentage of gaps achieved.

The use of specialised functions to tackle time-dependent constraints leads to better results. Figure 6.15 summarizes the types of moves that each function performs. Regarding computation time, the average in GH5 with maxBranching set to 50 takes just above 5 seconds. A single instance was reported to last up to 85 minutes in GH5 with maxBranching set to 40 . The greedy heuristic in its different versions obtains better results than the solver for 206 out of the 375 instances (54\%). GH5 with maxBranching set to 40 is the version that achieves the majority of best results 106 .

In the next chapter the specialised functions are merged with some neighbourhood moves. The moves are integrated into a Tabu Search implementation seeking to achieve better results than those obtained by the Greedy Heuristic in its multiple versions.

Figure 6.15: Examples of moves for every time-dependent constraint

Chapter 7

A Tabu Search Approach for WSRP

7.1 Introduction

In this chapter a Tabu Search (TS) framework is used to develop an algorithm that tackles WSRP. TS was chosen among other metaheuristics because it is among the most studied and mature of the metaheuristics Glover, 1989, 1990b a; Glover and Laguna, 1999). There is ample related literature on the success of TS when tackling combinatorial optimisation problems (Bozkaya et al., 2003; Gendreau and Potvin, 2014). In particular, TS has been widely applied to VRP and its related problems, i.e. VRPTW, MDVRP, etc., Brandão and Mercer, 1997, Cordeau et al., 2001, Gendreau et al., 2008) which have many similarities to the WSRP. As explained in section 3.1.2 metaheuristics are high level methods which guide a series of heuristics or strategies that take advantage of the domain of the problem. As found in the previous chapter, the functions to handle time-dependent constraints were the factor that improved the results the most before applying multiple evaluations through branching. In this chapter, those functions are converted into move operators and incorporated in a TS algorithm.

In chapter 6, it was found that a local-search type procedure improves the quality of the results for the WSRP instances (GH5). It is expected that by using a well known metaheuristic such as TS, the results could be further improved. In this chapter, OpenTS (Harder et al., 2004) is used to implement the algorithm. A description of the OpenTS framework is discussed. OpenTS is developed in the Java programming language, which is the same language used to develop the elements of the Greedy

Heuristic. Given OpenTS flexibility, most of the code can be reused when developing the TS algorithm. As a result, the effort is focused on the neighbourhood moves and the parameters of the TS, rather than an implementation of the metaheuristic from scratch.

The moves used in the TS algorithm include: an insertion move for simple activities, another insertion move for activities with time-dependent constraints, i.e. complex activities; a swap move for simple activities in the same route or across different routes; a remove move that unallocates an activity and places it to the unassigned list; and a shift move that attempts to delay an activity in order to establish a new start time for the activity.

7.2 OpenTS Framework

OpenTS is a Java Framework designed to implement the TS metaheuristic. OpenTS is part of the COIN-OR (COmputational INfrastructure for Operations Research) project. The project aims to support the development of open-source software for operations research in order to speed the development and deployment of models, algorithms and computational research. In addition, the project supports the peer reviewing of its software across its users in the hope of continuously improving its tool set. Many publications have used COIN-OR software. The INFORMS (INstitute For Operations Research and Management Sciences) annual meeting has tracks that focus on contributions and applications to the COIN-OR project's tool set. For more information please refer to the project's website (www.coin-or.org)

OpenTS is flexible and easy to use as it handles all the underlying routines of a TS implementation, e.g. add/remove moves/attributes from the tabu list, acceptance criteria inclusion and event signalling at every iteration. OpenTS allows focusing on programming domain specific rules in an object-oriented manner. It requires the user to create both the solution structure for the problem to be tackled, and the neighbourhood moves, and also to define the evaluation function (Harder et al., 2004).

Figure 7.1 describes the functionality provided by OpenTS. The framework is provided with an initial solution. This solution can be obtained through an external algorithm or in many cases via a random solution generation procedure. After this initial step, the move manager interface, based on the library of moves that are provided for the specific problem, generates all possible neighbourhood moves. For example, in the case of VRPTW, a move can be a swap of two visits. As a result, the move

Figure 7.1: OpenTS stages during one iteration
manager creates all possible swaps between two visits according to the current state of the solution. The second stage is the evaluation of each produced move. OpenTS provides template classes (structures) to build objective function evaluators. The objective function considers the move and returns the new objective function value as if the move would have been applied. The procedure is performed for all the moves generated in the previous stage. An important factor is that at this point the structure of the solution has not changed, only the end result of the objective function is considered if a particular move is taken. The next step is to reject all moves which have been previously marked as tabu (prohibited). It could be argued that this step should be performed before evaluating the impact on the objective function in order to reduce the number of unwanted evaluations. However, the reason for discarding the tabu moves attributes after their evaluation, is the aspiration criteria. If it is the case that one move is tabu, but provides a better objective function value than the best value obtained thus far, then the move could be considered. Once the best move has been chosen, it is applied to the current solution in order to change the data structure. The evaluated objective function value becomes the current objective value and the recently changed data structure becomes the new current solution. At this point, OpenTS starts a new iteration, unless an ending criteria has been accomplished. Ending criteria are commonly based on: number of iterations, number of objective function evaluations, computation time, gap percentage and number of non-improving iterations.

7.3 Tabu Search Description

In this section the details of the implementation for the designed TS algorithm are discussed. The approach taken for the development of the TS algorithm was to follow the sample scenario provided by the documentation of OpenTS. The documentation had some helpful insights because it is based in a travelling salesman problem (TSP) (Harder, 2004).

The following are some design considerations that were followed whilst developing the TS algorithm. The considerations are important in order to understand how components of the TS algorithm function.

1. The solution structure used is the same as the one utilised in the Greedy Heuristics, i.e. a main array of employees and a list of activities which each employee performs, and an additional set node that contains the unassigned activities.
2. The procedure should start with an empty solution.
3. The objective function remains the same as the one used in chapters 5.3 and 6 , that is based on penalising unassigned activities, aiming to adhere to employees' preferences and reducing the cost (travel time and distance).
4. All the constraints in the model formulation of section 5.3 .2 are treated as hard constraints.
5. Only valid solutions are considered at all times during the searching process. A valid or feasible solution is one which satisfies all hard constraints. An empty solution, one where no activities have been assigned, is considered a valid solution.
6. As a result of the previous consideration, the designed moves guarantee producing valid neighbour solutions.
7. The number of iterations is used as one criterion for the termination of the search. However, under no circumstance any search should run for more than two hours. This two-hour parameter was established in Chapter 5 as the maximum computation time for the mathematical programming solver when tackling WSRP with daily planning horizon.
8. The moves should rely on some of the procedures developed for the Greedy Heuristic, e.g. AllocPosibleAny, Clash, Enough and ConsiderRC.

7.3.1 Neighbourhood Moves

The neighbourhood moves presented in this section expand on the work of Xu and Chiu (2001) and Mankowska et al. (2014). Xu and Chiu (2001) proposed four moves: (1) addition which adds an activity into an employee schedule; (2) exchange takes two activities, each of them assigned to different employees, and attempts to reassign them; (3) change reassigns a single activity to another employee; and, (4) swap exchanges an unassigned activity from one already assigned leaving the later unassigned. Mankowska et al. (2014) proposed four move operators for problems that contain time-dependent activities: (1) intra-shift and (2) intra-swap maintain the activities assigned to the same employee by moving one at a time or swapping two; (3) inter-shift and (4) inter-swap consider reassigning the activities to different employees. The moves distinguish two types of services i.e. activities, single and double. The latter one in the context of WSRP is an activity which needs more than one employees and/or has a time-dependency with another activity.

The moves considered in the TS must only involve feasible solutions, as a result they need to test that the process change in the solution structure maintains feasibility. Given the number of constraints in the WSRP definition, and in order to facilitate the description of the developed moves, activities are classified according to two criteria. The first criterion is whether or not the activity requires a team for its completion, i.e. more than one employee is necessary to perform the activity. The second criterion, is that an activity is complex, i.e. contains time-dependent constraint with another activity, or it is simple, if it does not have time-dependencies. There are four combinations due to the two criteria. The combinations and some considerations for each case within the moves are explained as follows:

Simple without teaming: The activities are the simplest ones regarding the design of the neighbourhood moves. These activities can be moved to any employee that has the skill to perform them and that can obey to the activities' time-window.

Simple with teaming: These activities are handled as having time-dependent constraints of the synchronisation type with their virtual copies. As a result, any neighbourhood move needs to consider that the activity requires to be assigned to more than one employee. At the beginning of the search, this multiple assignment might be easy but it becomes more difficult when all employees already have some assigned activities.

Complex without teaming: These activities have different degrees of difficulty depending on the type of time-dependent constraint they are part of. For ex-
ample, a minimum time only restricts an activity to begin after some time has passed from the commencement of another one. Whereas a synchronisation type requires the same time for both activities, thus limiting the search space. Activities in this group will always require additional validations to ensure the neighbourhood moves do not violate the time-dependent constraints.

Complex with teaming: These activities are the most difficult to handle because they require consideration of other activities due to the time-dependent constraint and the additional synchronisation constraints with their own virtual activities. For example, moving an activity in this category often requires creating the space necessary in more than one employees' schedule in addition to validating that all other constraints (time windows, working time, skill-matching) remain feasible.

Every neighbourhood move can be enabled/disabled by using the appropriate parameter within the TS algorithm.

7.3.1.1 Insert

The Insert move consists in taking an activity from the unassigned list and placing it into an employee's list of activities. The move sets the activity's start time whilst ensuring that other constraints are satisfied. This move is only applicable to activities in the Simple category.

The move relies in the AllocPossibleAny procedure to find a series of candidate allocations for the activity. Each candidate allocation results in at least one possible insert move. The parameter insert.precision determines whether more than one insert move can be created from one candidate allocation structure, assuming the candidate allocation's flexible time is greater than zero. The parameter insert.precision uses the flexible time component in the candidate allocation to create different moves by shifting forward (delaying) the start time and proposing a collection of insert moves with different start times. For example, consider a call to AllocPossibleAny for an activity x that produces a candidate allocation with the following components: start time of 12:00, flexible time equal to 80 minutes, proposed assignment to Employee A, and zero idle time. If the value of insert.precision is 30 minutes, the produced insert moves are the following:

1. insert x in A schedule at 12:00
2. insert x in A schedule at 13:00
3. insert x in A schedule at 12:30
4. insert x in A schedule at 13:20

Four valid insert moves are proposed from the candidate allocation. Notice that the last one with start time at 13:20 does not have the same time difference of 30 minutes as the previous ones, stated in the insert.precision parameter, such insert move is included because 13:20 is the latest possible time allowed by the candidate allocation structure, i.e. $12: 00+80 \mathrm{~min}=13: 20$. It is generalised that regardless of the insert.precision parameter value, if the candidate allocation's flexible time is greater than zero, such candidate allocation will produce at least two insert moves. The first insert move has the start time indicated in the candidate allocation. The second insert move defines a new start time that is equal to the candidate allocation's start time plus flexible time. If the flexible time is zero, only one move is created.

The smaller the value of insert.precision the more insert moves could be generated. Careful consideration must be taken when setting this parameter to a small value. It is better to start with a big value and gradually reduce it due to the impact on the performance of the search when this move is enabled.

7.3.1.2 Insert for Time-dependent Constraints

This insert move, referred as insertcca, is designed to handle complex activities. It uses the AllocPossibleAny procedure to generate a list of candidate allocations. In addition, it reduces the number of candidate allocations by using the ConsiderRC procedure which validates that the time-dependent constraints are satisfied. This validation is achieved by adjusting the starting time, if necessary, and reducing the flexible time in the candidate allocation structure. If a candidate allocation cannot comply with the constraints, it is no longer considered. Once both procedures have been called, if there are still candidate allocations remaining, each of them is used to generate at least one insertcca move.

The generation of the insertcca moves from the candidate allocations uses a similar procedure as the one described for the insert move in the last section 7.3.1.1. However, the insertcca move type has its own parameter to handle the number of moves being generated: insertcca.precision, described in subsection 7.3.2.

The design decision to split the insert moves into two different types, one for complex and another for simple activities is based purely on performance. If a scenario does not consider time-dependent constraints, the insertcca move type can be disabled as only the insert type is necessary.

7.3.1.3 Swap

The Swap move takes two activities that are already assigned and exchanges them within the solution structure. The swap move only acts upon Simple without Teaming activities because of the number of validations that are required when exchanging two activities. As a result, if no two activities are found with such characteristic, no moves are generated. This move is inspired by other swap moves in different problems such as those for the VRP (Potvin and Rousseau, 1995; Golden et al., 2008).

The procedure to generate swap moves is as follows: firstly, all possible swaps between two activities are generated. At this point no constraints are checked. In order to generate the possible swaps moves, each assigned activity is enumerated. The maximum number of potential swaps to evaluate is given by the following expression: maxSwaps $=($ assignedActivities $*($ assignedActivities -1$) / 2$. For example, Figure 7.2 shows assigned activities that are enumerated from one to six. According to the expression, the maximum possible swap movements is: $6 *(5) / 2$, i.e. 15 . All resulting possible swap moves are:

1. Swap 1 for 2
2. Swap 2 for 3
3. Swap 3 for 5
4. Swap 1 for 3
5. Swap 2 for 4
6. Swap 3 for 6
7. Swap 1 for 4
8. Swap 2 for 5
9. Swap 4 for 5
10. Swap 1 for 5
11. Swap 2 for 6
12. Swap 4 for 6
13. Swap 1 for 6
14. Swap 3 for 4
15. Swap 5 for 6

Secondly, every potential swap move is tested against all relevant constraints such as skill-matching, time windows, working time, etc. If the swap move relates activities within the schedule of the same employee, e.g. 1 and 3 in Figure 7.2, the skill check is not necessary. Thus far the swap moves are incomplete because there is no indication whether both swapped activities will remain with their respective start time, or whether they can be updated accordingly. Start times are allocated to the swapped activities once it is ensured that skill-matching and that activities can be interchangeable in their respective employee's scheduled. Start times will depend on the time window configurations, swapped activities' duration and idle time availability.

Thirdly, if there could be different combinations of the start time of the swapped activities, then the parameter swap.precision determines the number of swap moves that can possibly be generated. For example, if swapping Act 2 and Act 5 in Figure
7.2 is valid in terms of skills, the following checks are also required:

1. Test if Act 2's duration, plus travel time from Act 4's location to Act 2's location, plus travel time from Act 2's location to Act 6's location, can fit in the time length of Act 6's start time minus Act 4's end time.
2. Test if Act 5's duration, plus travel time from Act 1's location to Act 5's location, plus travel time from Act's 5 location to Act's 3 location, can fit in the time length of Act 3's start time minus Act 1's end time.
3. If both previous tests are passed, time windows are verified for both activities.
4. Two candidate allocation-type structures are created: one for each swapped activity. The candidate allocations are used to set the start time. If flexible time is greater than zero then other combinations of start times can be generated.

Figure 7.2: Swap move example

7.3.1.4 Remove to Unassigned

This move type removes an activity from its current employees' schedules and places the activity in the unassigned node of the solution structure. The move can be applied to all activities, i.e. complex and simple. In the case of simple without teaming activities, the procedure removes the activity and updates the employee travel and distance components as they are no longer required. It also penalises the objective function for not covering the activity within the solution. In the case of activities with teaming, the procedure needs to ensure that all employees are considered when updating travel times and distance. The procedure also ensures that only a single representation of the activity is added to the unassigned list despite the number of employees who might have had it assigned.

The remove move is used as part of a perturbation procedure when the search seems to no longer find improvements in the local neighbourhood, i.e. the algorithm is possibly stuck in some local optimum.

7.3.1.5 Shift

The shift move type delays the start time of an assigned activity. The move does not change the employee that performs the activity. It is only applicable to Simple (with or without Teaming) assigned activities. In order to generate all possible shift moves, the procedure iterates through the solution structure and tests the ability of each activity to be delayed whilst still complying to all constraints.

The procedure to generate shift moves uses the parameter shift.precision to determine the size of the proposed shift. For example in Figure 7.3, assume Activity 2's starting time is 12:00 pm, as shown, it can be shifted forward (orange rectangle). The shifting block length is 60 minutes. As a result, Table 7.1 lists the set of shift moves that are generated depending on the value of shift.precision. The values being considered for shift.precision are: $5 \mathrm{~min}, 10 \mathrm{~min}, 15 \mathrm{~min}$ and 30 min , although in the TS configuration they are inputted in milliseconds.

| 300000
 5 min | 600000
 10 min | 900000
 15 min | 1800000 30 min |
| :---: | :---: | :---: | :---: |
| Shift 2 to 12:05 | Shift 2 to 12:10 | Shift 2 to 12:15 | Shift 2 to 12:30 |
| Shift 2 to 12:10 | Shift 2 to 12:20 | Shift 2 to 12:30 | Shift 2 to 13:00 |
| Shift 2 to 12:15 | Shift 2 to 12:30 | Shift 2 to 12:45 | - |
| Shift 2 to 12:20 | Shift 2 to 12:40 | Shift 2 to 12:60 | - |
| Shift 2 to 12:25 | Shift 2 to 12:50 | - | - |
| Shift 2 to 12:30 | Shift 2 to 13:00 | - | - |
| : | - | - | - |
| Shift 2 to 13:00 | - | - | - |

Table 7.1: Possible shift moves for Activity 2 with starting time 12:00 pm depending on the value given to the parameter shift.precision. Values are shown for $5 \mathrm{~min}, 10 \mathrm{~min}, 15$ min and 30 min in milliseconds.

\section*{| Activity 1 | Travel 1-2 | Activity 2 | Shifting ? | Travel 2-3 | Activity 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Figure 7.3: Shift move example

7.3.2 Tabu Search Parameters

The TS algorithm has other parameters apart from the ones already mentioned for the moves. The parameters can be set in order to alter the behaviour of the metaheuristic. The following list describes each parameter.

Number of Iterations (integer): This parameter establishes the number of iterations the tabu search will perform before stopping. An iteration is described earlier in the chapter in Figure 7.1. An iteration's duration varies from instance to instance, and the duration might not be constant during the search.

Time Limit (milliseconds): It restricts the amount of computation time given to the TS algorithm. The algorithm checks after the end of each iteration if it has surpassed its time limit. If it has not, then another iteration is allowed. If it has, the search process stops. The algorithm cannot guarantee that it will stop exactly at the specified time since the check is only performed at the end of an iteration which varies in duration.

Iteration Threshold ($0.0-1.0$): It is a parameter used in combination with the number of iterations. It determines the number of non-improving iterations that can occur before partially restarting the allocation process. For example, if the number of iterations is 1000 , and the iteration threshold parameter is set to 0.2 , then $1000 \times 0.2=200$. Non-improving iterations are allowed to occur before a diversification method is used. When the iteration threshold is reached it is assumed that the search has been trapped in local optimum. Once the diversification method is triggered the internal counter is restarted. Every time a new best solution is found the counter is reset as well.

Forced Remove ($0.0-1.0$): It is the probability that each assigned activity has to be removed and placed in the unassigned list during the diversification method. The diversification method consists in iterating through all assigned activities and testing given this probability if each activity is unassigned.

The tabu list is implemented as multiple lists, one for each of the move operators (see Section 7.3.2.3). Therefore, there is an initialisation parameter for the size of each list:

Initial Insert Tenure (integer): sets the initial tabu list size for the insert-type moves. It includes insert and insertcca.

Initial Remove Tenure sets the initial tabu list size for the remove type moves.
Initial Swap Tenure (integer): sets the initial tabu list size for the swap type moves.

Initial Shift Tenure (integer): sets the initial tabu list size for shift type moves. The next set of parameters enabled/disabled the use of a specific move.
insert.include (boolean): It determines if the insert move is enabled.
insertcca.include (boolean): It determines if the insertcca move is enabled. remove.include (boolean): It determines if the remove move is enabled.
swap.include (boolean): It determines if the swap move is enabled.
shift.include (boolean): It determines if the shift move is enabled.
Update Tenure After (integer): This parameter represents the number of iterations that must pass before the tenure of all tabu lists is updated. After this number of iterations have passed, each tabu list tenure is updated to the average number of movements generated for each type during the x most recent iterations. Where x is the initial tenure of each tabu list.
insert.precision (milliseconds): It determines the number of insert moves depending on the presence of flexible time in the candidate allocation structure used to generate the move.
insertcca.precision (milliseconds): It determines the number of insertcca moves depending on the presence of flexible time in the candidate allocation structure used to generate the move.
swap.precision (milliseconds): It determines the number of swap moves depending on the presence of flexible time in the candidate allocation structure used to generate the move.
shift.precision (milliseconds): It determines the number of shift moves depending on the presence of flexible time in the candidate allocation structure used to generate the move.

7.3.2.1 Evaluation Function

The evaluation function is the same utilised in the MIP and Greedy Heuristic (see Equation 5.12). The values of the weights $\omega_{1}, \omega_{2}, \omega_{3}$ are calculated as described in Equations 5.25, 5.265.27. The weights change the emphasis on a given component within the evaluation function, which comprises of three components: cost, employees' preferences and assigned activities. Therefore the weights are calculated per instance. Only ω_{1} remains the same for all instances with a value of (1). The weight ω_{2} is the sum of all assignations and weight $\omega 3$ is ω_{2} times the number of visits times the value of the maximum preference within the instance. The values can be computed in advance as the data required is known before the searching process commences. Due to the number of evaluations of this function, it was necessary to implement delta
functions, i.e. increments/decrements values that could be added/subtracted from the objective function to update its value. The use of delta functions avoids having to compute the objective value from scratch.

7.3.2.2 Initial solution

The algorithm can start from an empty solution, i.e. no activities assigned, as it is still considered a valid solution. Alternatively, the algorithm can start with a solution provided by another heuristic. However, the algorithm cannot start with a randomly generated solution, unless the solution is tested for feasibility first. A random assignment of activities is unlikely to generate a feasible initial solution. As a result, random initialisation could compromise one of the design considerations of this TS which is to always maintain feasibility of solutions throughout the searching process.

If the TS starts with an empty solution it uses the insert and insertcca moves until no further inserts can be made. A successful insert move reduces greatly the objective function as the penalty for unassigned activities gets smaller. It should be remembered that the weight associated with unassigned activities is the biggest one (see section 5.3.3.1).

In early experiments the TS was obtaining better results if started with an empty solution than when initialised with the best solution obtained by the Greedy Heuristic. This observation motivated the addition of a diversification (partially destroying) the current solution after a number of iteration without improvement.

7.3.2.3 Tabu tenure

The tabu tenure refers to the size of the tabu list. In OpenTS a basic interface to create a tailored tabu list is provided. The implementation of the list is based on storing the moves that have been used recently. Moves' storage is performed by keeping the hash code of the move in an array. The verification of whether a move is tabu or not is performed by comparing the hash code of the candidate move to the stored hash codes. Hash code encoding has the advantage of being quick to verify as only comparison between two integers values is required. The disadvantage is the loss of information when performing the encoding which could lead to two moves having the same hash code. Additionally, in some cases, two moves that have the same outcome, have different hash codes, thus potentially allowing a move that should have been
banned. For example, Swap 1 for 2 and Swap 2 for 1 have different hash codes but clearly the moves are equivalent.

The tabu list is implemented as multiple lists. One list for each type of neighbourhood move. However, insert and insertcca share the same tabu list. A multiple list approach allows better control on which moves can be enabled/disabled during the search. In a single list approach, two different types of moves can have the same hash code, thus by each type of move having its own list such a scenario is prevented. Multiple lists also allow for different sizes of lists for each type of move. For example, at any iteration, the maximum number of Remove moves marked as tabu should never be greater than the number of activities in the instance. Whereas the number of shift type moves, when using a small shift.precision value, could be thousands. Another advantage of multiple lists is when disabling a move during the search process, the tabu list of the disabled move can be "frozen", i.e. its state conserved, for when it is enabled again. Otherwise, if using a single tabu list, moves from the disabled type remain in the list until enough iterations have passed to drop them out entirely.

All tabu lists are dynamically adapted after a number of iterations defined by Update Tenure After parameter. The size of each tabu list is determined by the average number of moves that were generated for evaluation in the last X iterations ($X=$ Update Tenure After parameter value). For example, if the procedure to generate all possible shift type moves has had the following historic number of different shift moves previously generated: 278, 375, 267, 300, 434 and the Update Tenure After parameter is set to five, then after five iterations the tenure of the shift tabu list is $(278+375+267+300+434) / 5$, i.e. 330 . The purpose of such modification in the size of the tabu lists is to help the search process. It is expected that if recurrent iterations have generated larger sizes of different moves then the corresponding move's tabu list remains large allowing the use of as many as possible. On the opposite, if the number of moves is small then the size of the tabu list reduces allowing moves to be reused quicker. The procedure is inspired from the adaptive tabu tenure of Devarenne et al. (2008).

7.3.2.4 Aspiration Criteria

The aspiration criteria used in the TS algorithm is Best Solution Found. In other words, if applying a move that is currently marked as tabu generates a new best objective value, such move is allowed despite being prohibited.

7.3.2.5 Perturbation

The TS incorporates a perturbation function that allows the search to partially restart after a period in which no improvements are made. In other TS implementations the diversification is obtained by handling the tabu tenure, aspiration criteria and tabu restrictions. In such applications infeasible solutions tend to be allowed which help the search to escape local optima. Given the design decision of not allowing infeasible solutions at any stage during the search, there are cases in which the algorithm gets stuck in local optimum despite: using multiple tabu lists and dynamic resetting of the tenures. After noticing such behaviour, the introduction of a perturbation stage that allowed the search to partially restart was introduced. As described earlier, the perturbation consists of testing whether each assigned activity is to be removed subject to the probability given by ForcedRemove parameter.

7.3.2.6 Stop criteria: \# of Iterations and Computation Time

The number of iterations and computation time are the two parameters the TS uses to stop exploring for better solutions. In the experiment settings different values for number of iterations are explored. In respect of computation time there is a maximum limit established of 2 hours. The limit was decided in order to match the maximum computation time allowed to the solver. Therefore, there are two termination criteria for the tabu search: the tested number of iterations or two hours of computation time, whichever occurs first.

7.4 Experimental Results

The objective of this set of experiments is to detect the best parameter settings for the TS algorithm yielding the best results considering all problem instances. Table 7.2 contains the parameter value settings being considered. The value for each parameter is fixed incrementally investigating how one parameter setting is affected by the setting of others. There are other parameters within the TS algorithm that remain the same. For example, all moves were allowed at all times thus insert.include, insertcca.include, remove.include, swap.include and shift.include are enabled. All tabu tenures are initialised with a value of 10 (Initial Insert Tenure, Initial Remove Tenure, Initial Swap Tenure and Initial Shift Tenure).

Nine configurations of parameters were chosen using the possible values of Table
7.2. The nine configurations were not set in advance. It was an exploratory set of parameters. In other words, given the results of the initial configuration the next configuration was decided based on some analysis which is described in the following paragraphs. The results of each configuration are compared to the best known results for each instance. The best known results are the ones obtained either though the mathematical solver or any version of the Greedy Heuristic.

| Parameter | Values |
| :--- | :--- |
| Number of Iterations | $1000,10000,50000,100000$ |
| Time Limit | 1 hour, 2 hours |
| Iteration Threshold | $0.0001,0.025,0.05,0.1,0.2$ |
| Forced Remove | $0.3,0.5,0.75,1.0$ |
| Update Tenure After | $10,20,50,100$ |
| insert.precision | 1 minute, 10 minutes, 15 minutes, 30 minutes |
| insertcca.precision | 1 minute, 5 minutes, 10 minutes, 15 minutes |
| swap.precision | 1 minute, 5 minutes, 10 minutes, 15 minutes |
| shift.precision | 1 minute, 5 minutes, 10 minutes, 15 minutes |

Table 7.2: Parameter value settings.

The first configuration of values (see Table 7.3) was chosen based on experience of the performance of the greedy heuristic and common values encountered in the TS literature of VRPTW. For example, a common value for the number of iterations is 10000 as in (Cordeau et al., 2001). The time limit was set equivalent to experiments with the mathematical solver (2 hours). The iteration threshold at 5% meant that if after 500 iterations the best result does not improve, the perturbation method is initiated. A value of 50% probability of being removed for each assigned task guarantees enough perturbation without destroying the solution. Setting the tenure update after 100 iterations limits the maximum number of tenure adjustments to 100 . The value for the precision of insert moves (30 min) allows few evaluation moves at the beginning of the search as in most of the instances the planning horizon is one day. In the worst case if the time window of an activity matches the planning horizon, it means 48 possible moves for such activity. For insertcca the precision was five minutes because the time-dependent constraints already restrict greatly the possible time assignment. Thus, opting to increase the number of this type of moves. Swap and shift precision were set arbitrarily.

The results for each instance using the initial configuration can be found in the Appendix E.1. Overall, when compared to the best known results of an instance, the TS algorithm finds improvements for 82 instances out of the 375 . The initial configuration obtains feasible solutions for only 373 instances. Two ran out of memory without even creating a first iteration due to the number of moves that are required to be analysed. The objective function value of these two instances is reported as

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 10000 | insert.precision | 30 minutes |
| Time Limit | 2 hours | insertcca.precision | 5 minutes |
| Iteration Threshold | 0.05 | swap.precision | 10 minutes |
| Forced Remove | 0.50 | shift.precision | 5 minutes |
| Update Tenure After | 100 | | |

Table 7.3: Parameter values for the first configuration.
empty solution which is still a valid one. 352 instances finished all iterations (10000) but 16 timed out after achieving two hours of search. The average computation time for those instances which completed all the iterations was 1022 seconds.

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 1000 | insert.precision | 30 minutes |
| Time Limit | 2 hours | insertcca.precision | 5 minutes |
| Iteration Threshold | 0.05 | swap.precision | 10 minutes |
| Forced Remove | 0.50 | shift.precision | 5 minutes |
| Update Tenure After | 100 | | |

Table 7.4: Parameter values for the second configuration.

A second configuration was used (see Table 7.4). The individual results for all instances obtained using the second configuration can be found in the Appendix E.2. This configuration used the majority of the same values as the initial configuration but reduced the number of iterations to 1000 . The reason was to verify the quality of solutions obtained by decreasing the iterations. It could be argued that observing the trace of the objective function over time from the results of the initial configuration could provide such verification. Nevertheless, the number of iterations before perturbation (obtained through the Iteration Threshold parameter) depends on the number of iterations defined, and by reducing the number of iterations from 10000 to 1000, we also affect the number of iterations before perturbation to 50 . Therefore, a simple verification only by tracing might not yield the same results. Overall, only 32 instances obtained better results when compared to the best known solutions. The maximum time used for an instance to complete the 1000 iterations was 6053 seconds whereas the minimum was 2 seconds.

It was observed that decreasing the number of iterations reduces the number of best solutions from 82 to 32 . Therefore it is reasonable to conclude that a third configuration with the same parameter values but increasing the number of iterations to 100000 (tenfold the initial configuration) might also increase the number of best solutions. The third configuration (see Table 7.5) obtained 100 best solutions. Going from 1000 to 10000 iterations increase the number of best solutions more than double (32 to

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 100000 | insert.precision | 30 minutes |
| Time Limit | 2 hours | insertcca.precision | 5 minutes |
| Iteration Threshold | 0.05 | swap.precision | 10 minutes |
| Forced Remove | 0.50 | shift.precision | 5 minutes |
| Update Tenure After | 100 | | |

Table 7.5: Parameter values for the third configuration.
82). But applying the same rate of increment again only yield an increase of 10% (82 to 100). Moreover, it was observed that the number of instances reaching the time limit before completing the 100000 iterations was 165 which is ten times more than in the first configuration. It could be argued that if more instances had finished all their iterations, perhaps there might be more than 100 best solutions. Nonetheless increasing the time limit is not an option as the maximum value for computational time established was two hours. As a result the remaining of the configurations are aimed at testing other parameters that have remain the same.

The minimum computation time for an instance, using the third configuration, that completed all iterations was 35 seconds, a maximum of 7122 seconds (almost two hours) and average of 2054 seconds (34 min). The individual results for each instance can be found in the Appendix E. 3 .

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 1000 | insert.precision | 15 minutes |
| Time Limit | 1 hour | insertcca.precision | 1 minutes |
| Iteration Threshold | 0.10 | swap.precision | 5 minutes |
| Forced Remove | 0.75 | shift.precision | 5 minutes |
| Update Tenure After | 10 | | |

Table 7.6: Parameter values for the fourth configuration.

The fourth configuration (see Table 7.6) considers 1000 number of iterations. It reduces the computation time to one hour (3600 seconds) and increases the threshold to 10% rather than 5% as in the last three configurations. This setting gives more iterations to explore local areas before perturbation might occur. In the worst case, this configuration creates ten perturbations. Since the number of perturbations is reduced, the probability of an activity being unassigned increases to 0.75 , as a way of compensating for the decrease in perturbation cycles. The idea is to make sure that when a perturbation occurs, the change in the solution structure is more drastic than in previous configurations, thus increasing the chance of moving away to a different area of the search space. In addition, the number of times the tabu tenures are adjusted is increased by reducing the update tenure parameter to ten. Some precision
parameters are changed: insert.precision is set to 15 min , insertcca.precision set to 1 min and swap.precision set to 5 min . Those settings have the effect of producing more moves in every iteration. When comparing the fourth configuration to the second one 14 instances ran out of memory during the search after producing some feasible results in comparison to two instances. 343 instances finish all 1000 iterations before the hour of computation time and 12 instances ran of time before completing 1000 iterations. In the second there was no instance reaching the time limit before completing the iterations which confirms that reducing the precision parameters creates more moves to consider and increases the time spent in completing one iteration. All the results of using the fourth configuration in the TS across all instances are in the Appendix E. 4

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 1000 | insert.precision | 15 minutes |
| Time Limit | 1 hour | insertcca.precision | 5 minutes |
| Iteration Threshold | 0.025 | swap.precision | 5 minutes |
| Forced Remove | 0.750 | shift.precision | 1 minutes |
| Update Tenure After | 50 | | |

Table 7.7: Parameter values for the fifth configuration.

The fifth configuration (for individual results refer to Appendix E.5) increases the insertcca.precision parameter back to 5 min and changes the shift.precision to 1 minute whilst maintaining the same time limit and number of iterations. It sets the update tenure parameter to 50 , but reduces the percentage of iterations that must be passed with non-improving results to trigger the perturbation to a value of 0.025 . Such configuration reduces the instances that ran out of memory to three. 353 instances finish 1000 iterations within one hour and 15 instances ran out of time before achieving 1000 iterations. Nevertheless, this configuration only achieves 5 best solutions when compared to the best known, the lowest number among all the configurations considered until now.

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 1000 | insert.precision | 1 minute |
| Time Limit | 1 hour | insertcca.precision | 1 minute |
| Iteration Threshold | 0.20 | swap.precision | 1 minute |
| Forced Remove | 0.75 | shift.precision | 1 minute |
| Update Tenure After | 20 | | |

Table 7.8: Parameter values for the sixth configuration.

It was observed that decreasing the value of the precision parameters increases the number of moves. In some cases the moves are so many that the program runs out of
memory. To verify this observation a sixth configuration sets the precision parameters to their lowest value, 1 minute, for all four precision parameters. The rest of the parameters are: number of iterations 1000; computation time one hour; iteration threshold 0.20 ; forced remove 0.75 ; and number of iterations for tenure adjustment 20. This configuration only produces results for 271 instances, the rest (103) ran out of memory without producing any preliminary feasible results. 58 out of the 271 ran out of memory after producing a preliminary result. Therefore, increasing the number of moves in one iteration might lead the algorithm to run out of memory. The memory issue could be solved by increasing it or with a different implementation of the TS which handles memory more efficiently. Only 169 instances complete the 1000 iterations within one hour. 44 instances ran out of time before completing the 1000 iterations. Results are available in Appendix E. 6

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 1000 | insert.precision | 10 minutes |
| Time Limit | 1 hour | insertcca.precision | 10 minutes |
| Iteration Threshold | 0.01 | swap.precision | 10 minutes |
| Forced Remove | 0.90 | shift.precision | 10 minutes |
| Update Tenure After | 25 | | |

Table 7.9: Parameter values for the seventh configuration.
A seventh configuration of parameters is considered. In this occasion all precision parameters are set to ten minutes. The number of iterations is 1000 and one hour is assigned as time limit. The iteration threshold is reduced to 0.01 , thus allowing for more perturbations cycles as only 10 non-improving iterations must pass. Also, the probability of removal is set to 0.90 and the adjustment of tenures is configured after 25 iterations. The seventh configuration aims to scan different regions of the search space as not enough time is spent in any region and the perturbation is so significant that it is almost like a full restart. 368 instances obtain results. The rest ran out of memory without finishing a single iteration. Among the 368, no instance runs out of memory, instances either complete the 1000 iterations within time (334) or finish the computation time (34). The result of this configuration for all instances can be found in the Appendix E.7. This configuration yields the worst results so far in terms of best solutions found, only two.

The eighth configuration seeks to evaluate the lowest iteration threshold assigned (0.0001). The number of iterations is defined as 50000 which allows only five nonimproving iterations before a perturbation cycle starts. However, the probability of an activity to become unassigned is set to 0.30 (forced remove) in order to maintain the majority of the solution's structure. Tenures are updated after 50 iterations. Precision parameters are maintained at ten minutes, with the exception of swap.precision,

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 50000 | insert.precision | 10 minutes |
| Time Limit | 1 hour | insertcca.precision | 10 minutes |
| Iteration Threshold | 0.0001 | swap.precision | 15 minutes |
| Forced Remove | 0.3000 | shift.precision | 10 minutes |
| Update Tenure After | 50 | | |

Table 7.10: Parameter values for the eighth configuration.
which value is 15 minutes. 368 instances obtain feasible results. The rest ran out of memory without finishing one iteration. Out of the 368, no instance ran out of memory. The instances either complete the 50000 iterations (161) or ran out of computation time (207). Individual results per instances are available in the Appendix E. 8 .

| Parameter | Value | Parameter | Value |
| :--- | :--- | :--- | :--- |
| Number of Iterations | 10000 | insert.precision | 15 minutes |
| Time Limit | 1 hour | insertcca.precision | 15 minutes |
| Iteration Threshold | 0.025 | swap.precision | 15 minutes |
| Forced Remove | 1.000 | shift.precision | 15 minutes |
| Update Tenure After | 10 | | |

Table 7.11: Parameter values for the final configuration.

The final configuration sets the number of iterations to 10000 , computation time to one hour. A value of 0.025 is assigned to the iteration threshold. Such value allows 250 non-improving iterations before a perturbation cycled can be called. The probability for being removed is set to 1.0 , in other words, producing a complete restart. Tabu tenures are adjusted after ten iterations. The precision parameters are all set to 15 minutes. This configuration obtains 371 instances with feasible results, only 3 ran out of memory without performing an iteration. One instance ran out of memory after some iterations. 320 instances finish the 10000 iterations and 50 ran out of computation time. Refer to Appendix E. 9 for each instance' results using the ninth configuration of parameters for the TS.

Table 7.12 shows a summary of the experiments' results. It divides the results of each configuration into four groups: 1) Out of Memory with no iterations performed (empty solution); 2) Out of Memory with intermediate valid solutions; 3) Instances where all iterations were completed, in accordance with its parameter value configuration; and 4) Instances which reach the time limit but do not complete all iterations but have some intermediate results. When appropriate each group presents descriptive statistics (minimum, maximum, mean and standard deviation) on the number of iterations and computation time. Focusing on the first group the relevant fact is that
in the sixth configuration 103 instances did not complete a single iteration due to the number of moves generated. In the second group, two configurations (7th and 8th) did not experience problems with memory once at least one iterations had passed. Even though the number of iterations is different, one having 1000 and another 50000 the common parameters values are those involved with the number amount of moves generated per iteration. In the third group the fourth configuration seems to have a good balance of best solution achieved (21), time limit of one hour with almost all instances (343) finishing the 1000 iterations using an average time of 8 minutes. In the fourth group the second configuration seems to be the best as the set of parameters allow all instances that did not ran out of memory to finish within the time limit. But, once againg like in the third group, the fourth configuration is offers good results as well using half of the time.

| Result | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No iterations(OoM) | 1 | 1 | 1 | 5 | 3 | 103 | 6 | 6 | 3 |
| Success | 373 | 373 | 373 | 369 | 371 | 271 | 368 | 368 | 371 |
| OoM with iterations | 5 | 2 | 1 | 14 | 3 | 58 | 0 | 0 | 1 |
| Min time (seconds) | 543 | 254 | 3456 | 225 | 277 | 7 | - | - | 1244 |
| Max time (seconds) | 2030 | 320 | 3456 | 2131 | 2727 | 3401 | - | - | 1244 |
| Mean time (seconds) | 1229.00 | 287.00 | 3456.00 | 760.00 | 1282.66 | 709.32 | - | - | 1244.00 |
| StDev time (seconds) | 621.58 | 33.00 | 0.00 | 528.62 | 1047.20 | 882.62 | - | - | 0.00 |
| Min iterations | 718 | 248 | 5218 | 21 | 21 | 5 | - | - | 4002 |
| Max iterations | 5089 | 811 | 5218 | 981 | 369 | 884 | - | - | 4002 |
| Mean iterations | 3080.00 | 529.50 | 5218.00 | 589.78 | 163.66 | 119.53 | - | - | 4002.00 |
| StDev iterations | 1398.00 | 281.50 | 0.00 | 291.93 | 148.82 | 199.58 | - | - | 0.00 |
| All iterations | 352 | 371 | 207 | 343 | 353 | 169 | 334 | 161 | 320 |
| Min time (seconds) | 5 | 2 | 35 | 2 | 3 | 4 | 3 | 24 | 6 |
| Max time (seconds) | 6359 | 6053 | 7122 | 3104 | 3478 | 3284 | 3583 | 3590 | 3525 |
| Mean time (seconds) | 1022.52 | 324.00 | 2054.03 | 487.15 | 600.97 | 839.10 | 518.78 | 1330.80 | 804.07 |
| StDev time (seconds) | 1243.68 | 618.68 | 2004.49 | 657.26 | 688.91 | 884.71 | 877.98 | 1048.43 | 1002.64 |
| Run out of Time | 16 | 0 | 165 | 12 | 15 | 44 | 34 | 207 | 50 |
| Min iterations | 2123 | - | 3657 | 243 | 213 | 135 | 392 | 518 | 1745 |
| Max iterations | 8865 | - | 99572 | 913 | 983 | 975 | 990 | 48982 | 9880 |
| Mean iterations | 5118.75 | - | 43980.63 | 549.91 | 639.73 | 544.79 | 716.35 | 14753.90 | 6620.96 |
| StDev iterations | 2194.85 | - | 26182.28 | 202.25 | 257.49 | 253.53 | 168.85 | 12723.20 | 2553.09 |

Table 7.12: Descriptive statistics for computation time and number of iterations for each of the nine configurations of parameters tested. The first section provides overall number of instances for which the configurations achieved feasible results. The second section groups the instances that ran out of memory but had already provided feasible solutions, time is also provided. The third section shows descriptive statistics on the instances that completed the iterations given in their configurations. The fourth section groups the instances that did not complete the iterations and utilised all the time limit specified.

Tables 7.13 and 7.14 show the minimum, maximum and mean gap for each of the nine configuration of parameters. The gap is calculated against the best known result so far for each instance, i.e. either through the mathematical solver or any version of the Greedy Heuristic. Gap excludes instances that ran out of memory without a single iteration. The results are divided into two groups for each of the nine parameter configurations. The first group presents gap statistics on those instances for which the TS obtained better results, i.e. a reduction in the objective function value. The second group presents similar descriptive statics for the set of instances where the
previously known results are better. In the first group the gap is from the previous results to the new ones obtained by the TS. In the second group the gap is from the TS's results to the best known.

The ninth configuration obtain the best average gap (146\%) when compared to the best known results. For all configurations the secong group shows that at least one instance obtain almost the same results as the best known.

| Concept | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Total | 373 | 82 | 373 | 32 | 373 |
| Tabu Search | 0.1419% | 0.1064% | 0.4838% | 369 | 371 |
| MinGap | 290.8042% | 153.1308% | 329.7287% | 153.1365% | $7.0 .498 \%$ |
| MaxGap | 35.2706% | 13.8169% | 36.0135% | 14.0964% | 2.2323% |
| MeanGap | 69.1821% | 27.5752% | 75.5370% | 31.7691% | 2.2757% |
| StdGap | 291 | 341 | 273 | 348 | 7 |
| Solver OR GH | 0.0000% | 0.0000% | 0.0000% | 0.0000% | 0.0000% |
| MinGap | 15435.4673% | 12188.5217% | 15285.6225% | 12138.5745% | 15335.5726% |
| MaxGap | 147.6775% | 171.8170% | 166.1693% | 180.7306% | 249.4354% |
| MeanGap | 971.0024% | 854.6415% | 1037.9040% | 866.2459% | 1179.3180% |
| StdGap | | | | | |

Table 7.13: Gap results for all tabu search experiments

| Concept | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | ---: | ---: | ---: | ---: |
| Total | 271 | 368 | 368 | 371 |
| Tabu Search | 38 | 2 | 22 | 29 |
| MinGap | 0.0177% | 0.7781% | 0.2386% | 1.0215% |
| MaxGap | 147.5379% | 2.5250% | 17.1611% | 186.5938% |
| MeanGap | 24.8566% | 1.6515% | 7.1545% | 24.4333% |
| StdGap | 34.0050% | 0.8734% | 6.3988% | 42.9280% |
| Solver OR GH | 233 | 366 | 346 | 342 |
| MinGap | 0.0000% | 0.0000% | 0.0000% | 0.0000% |
| MaxGap | 16084.8698% | 19531.6276% | 12740.5511% | 15335.5754% |
| MeanGap | 964.8761% | 275.5043% | 222.2268% | 146.3689% |
| StdGap | 2245.2111% | 1333.6382% | 990.4192% | 930.5249% |

Table 7.14: Gap results for all tabu search experiments

7.5 Conclusion

Table 7.15 contains the parameters setting of each of the nine configurations.

| Parameter | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| number of iterations | 10000 | 1000 | 100000 | 1000 | 1000 | 1000 | 1000 | 50000 | 10000 |
| computation time | 7200 | 7200 | 7200 | 3600 | 3600 | 3600 | 3600 | 3600 | 3600 |
| iteration threshold | 0.0500 | 0.0500 | 0.0500 | 0.1000 | 0.0250 | 0.2000 | 0.0100 | 0.0001 | 0.0250 |
| forced remove | 0.5000 | 0.5000 | 0.5000 | 0.7500 | 0.7500 | 0.7500 | 0.9000 | 0.3000 | 1.0000 |
| update tenure after | 100 | 100 | 100 | 10 | 50 | 20 | 25 | 50 | 10 |
| insert.precision | 30 min | 30 min | 30 min | 15 min | 15 min | 1 min | 10 min | 10 min | 15 min |
| insertcca.precision | 5 min | 5 min | 5 min | 1 min | 5 min | 1 min | 10 min | 10 min | 15 min |
| swap.precision | 10 min | 10 min | 10 min | 5 min | 5 min | 1 min | 10 min | 15 min | 15 min |
| shift.precision | 5 min | 5 min | 5 min | 5 min | 1 min | 1 min | 10 min | 10 min | 15 min |

Table 7.15: Setting of parameters for each of the nine considered configurations for the TS.

Using 1000 iterations obtains best results for 38 instances (Config. 6), but also as few as 2 instances (Config. 7). The difference between those two configurations is the precision parameters. Config. 6 uses lower values for the precision parameters, which increases the diversity of moves. It allows the moves to explore time differences of one minute. Whereas in Config. 7, the moves are restricted to ten-minute variations. Config. 8 uses similar precision parameters but increases iterations to 50000 . The increase on iterations obtains 22 instances with better results, but is still lower than 38 obtained by only using 1000 iterations with small precision values (Config. 6). It is clear that more iterations can help to obtain better results as shown in Configurations 1 , 2 , and 3 where the parameters remain the same, only adjusting the number of iterations tenfold. Findings for Config. 2 (1000 iterations) is 32 best results; for Config. 1 (10000 iterations) 82 best results; and for Config. 3 (100000 iterations) 100 better results. However, when using 100000 iterations, 45% percent of the instances do not finish within the two hour limit. Two hours is the computation time that guarantees all instances completing at least 1000 iterations. In configurations where computation time was limited to one hour and as low as 1000 iterations, there were still instances that ran out of computation time (Configurations 4, 5, 6, and 7).

Configurations 4, 5, 6 and 7 all have 1000 iterations and one hour computation limit. Out of those configurations, the worst obtaining best results is Config. 7 with only two and the best is Config. 6 with 38 . Configurations 4 and 5 can be considered transitional configurations between Config. 7 towards Config. 6. Configuration 4 reduces (insertcca.precision) to one minute and obtains 21 instances with best results. Whereas Configuration 5 reduces (shift.precision) and obtains only 7 instances with best results. It seems that insertcca.precision, if set as low as possible, produces better results. This could be because the move type insertcca is the only move that acts on activities with time-dependent constraints. As a result, it helps to find better arrange-
ments in the solution structure for such activities with time-dependent constraints. It was experimentally proven that such constraints make the WSRP instances more difficult to tackle (see 5.2.3.3). Thus, the behaviour of the TS, judging from the results obtained, seems to indicate that the move type insertcca which focuses on time-dependent activities constraints, is more useful when finding best results.

The overall conclusion in terms of the TS implementation is that increases to the number of iterations increases the quality of the results obtained. However, after 10000 iterations some instances take a great deal of time to improve the quality of the results. It seems that the parameter insertcca.precision, which controls the number of insert moves for activities with time-dependent constraints, makes a difference on producing better results when set with low values.

In terms of the continuation of the work of previous chapters, it can be concluded that the tailored functions, developed to tackle activities with time-dependent constraints for the greedy heuristic (versions GH3 - GH5), work well when transformed into neighbourhood moves. The results obtained by using such neighbourhood moves in a Tabu Search implementation confirm it.

Chapter 8

Conclusions and Future Work

8.1 Introduction

This thesis presents optimisation models and algorithms to tackle Workforce Scheduling and Routing Problems (WSRPs). The WSRP considers a set of employees who are required to travel across multiple customer locations in order to perform job related activities. Each employee can have different skills and qualifications which determine the activities that the employee can perform. In addition, employees can have different starting and ending locations for a working day. For example, employees could start from the same location, i.e. the organisation's main office, and end their working day by returning home, or alternatively they could start their working day from home. In WSRP, employees are not subject to the same means of transportation. The most common modes of transportation are: private vehicles, company vehicles, public transport, e.g. bus or train, bicycle, and by foot, i.e. walking. The activities vary in terms of skills requirements. As a result, a skill-matching between the activities and employees is needed. Activities have associated time windows which dictate the activities' possible starting time. Time windows should be respected when assigning employees. In addition, some activities might require more than one employee, i.e. a team. Finally, activities might also have time-dependency relationships with other activities. The time-dependencies can be of five different types: synchronisation, overlap, minimum difference, maximum difference and minimum-maximum (min-max) difference. The WSRP combines features from the general employee scheduling problem and from vehicle routing problems. This combination of scheduling and routing makes it a hard combinatorial optimisation problem.

8.2 Review of Contributions

In this section a revision of the main contribution of this thesis is provided.

8.2.1 WSRP Data Sets

Five data sets were obtained from different WSRP-like problems. The data sets were adapted to reflect the main characteristics of a WSRP. The adaptation generated 375 instances. The data sets were presented in Chapter 4. An analysis of the configuration of the data sets was performed. The analysis confirmed the diversity regarding instances with different number of employees, activities and configurations of time windows.

The complete data set is available at: http://www.cs.nott.ac.uk/~jac/dataset. html

8.2.2 Mathematical Models

Two mathematical models were adapted from the literature to address WSRP. The first model, an Integer Linear Programming (ILP), focused on assigning all activities listed in an instance. The ILP objective function included the cost of assigning employees to activities and the travel time. A mathematical solver, Gurobi, was used to solve the model in a subset of the instances. For 50% of the instances the solver could not provide feasible results. The reason was because some instances were understaffed as there were not enough employee-working hours to cover all activities. In addition, for the instances where the solver could find optimal solutions, the majority of the gap reduction (90%) was performed during the first two hours of computation time. The figure of two hours was adopted as the maximum computation time allowed because it is a reasonable time to wait for a solution in a daily problem. The second model, a Mixed Integer Linear Programming (MILP), allows activities to be left unassigned by incorporating a penalty cost in the objective function. This change meant that all instances could be used including the understaffed ones. The MILP also incorporated employees' preferences on activities. The MILP objective function included a cost of assignment defined by travel time and distance, employees' preferences and the penalty for unassigned activities. Activities were given a priority level in order to address activities that favour the assignment of emergency activities over low priority ones. A benchmark of results was produced that included feasible solutions for 338
instances. The solver runs out of memory in the remaining instances due to their size in terms of number of activities and employees.

8.2.3 Teaming Representation

Synchronisation constraints were used in activities that require a team of employees forcing them to arrive at the same time. The procedure consists of creating virtual copies of an activity with a team requirement. The virtual activities have the same requirements as the original one. Then a synchronisation constraint is enforced for every resulting pair between the original and its virtual activities. Such an approach increased the size of the model as it incorporates more activities resulting in an expanded network. A reduction in the number of variables in the mathematical model was introduced. The reduction eliminated edges in the underlying network. The removed edges represent unrealistic transitions between an activity and its virtual counterparts. Employees performing the original activities cannot transit to the virtual ones as they represent the same thing. As a result, the variables in the model that represent such edges can be eliminated for all employees, reducing the model size.

8.2.4 Greedy Heuristic for WSRP

The most difficult of the contributions was the designed and development of a greedy heuristic (GH) for the WSRP. GH was designed to use as much as possible the information provided by the instances to quickly identify configurations that lead to good feasible results. Five versions of GH were discussed. GH1 was inspired by the bin-packing problem. GH2 expands the searching space available to assign activities by including intermediate idle times. GH3 incorporates tailored functions for each of the five types of time-dependent constraints which lead to obtaining feasible solutions for all instances. GH4 introduces a catalogue of allocation options when assigning activities. Finally GH5 used branching in order to copy the solution structure and investigate more than one allocation option. The different versions of GH rely on tackling time-dependent activities as soon as they appear, in other words, prioritising complex activities. The tailored functions for each type of time-dependent constraints were difficult to design as they had to consider all other constraints when evaluating allocation options.

8.2.5 Tabu Search Implementation

A Tabu Search (TS) implementation using OpenTS was developed to tackle WSRP. OpenTS is a Java framework that supports the development of TS algorithms. OpenTS provides the interface to handle the manipulation of the tabu list, the evaluations of the objective function and other events occurring during an iteration of the algorithm. The implementation efforts focused on five neighbourhood moves: insert, insertcca, remove, swap and shift. The moves maintain feasible solutions when applied to a known solution, if possible. The moves could also be used to construct a feasible solution starting with no activities assigned. The TS implemented a multiple tabu list approach. For each type of move one tabu list was used. Such an approach allowed more flexibility when enabling/disabling the usage of move types. A mechanism was introduced that adjusted the tabu tenures of the lists based on the mean number of feasible moves being created in previous iterations. The number of previous iterations can be changed as it is a parameter that needs to be defined. Every neighbourhood move has an associated precision parameter that decreases/increases the number of potential moves that are generated during an iteration of the TS. Those precision parameters can be used to intensify the search. Despite these parameters the TS was getting trapped in local optimum. To avoid this, a diversification mechanism was introduced that partially destroyed the solution by unassigning activities subject to a probability. The diversification mechanism is triggered after a number of nonimproving iterations has completed. Both the probability of unassignment and the number of non-improving iterations are parameters that can be set in the TS. Nine different configurations of parameters were tested. The experiments show that the more iterations performed the better results can be found, but after 10000 iterations the improvements take much longer to occur. The duration of an iteration is not constant as it depends on the number of available moves that require evaluation in an iteration. The number of moves also relates to the size of the instance and the parameters being used. In such circumstances it was shown that only 1000 iterations for all instances could be guaranteed in two hours of computation time. The TS runs out of memory in some instances because of the number of moves that are generated in an iteration, a characteristic also present in the experiments with the mathematical solver. It was found that the insertcca move type yields better results when configured to small values. Such move type is the only one dealing with activities with time-dependent constraints, which reinforces previous findings that tackling this kind of activities first leads to significant improvements in the overall results.

8.2.6 Benchmark Results

The best results obtained by the mathematical solver (MILP model), the greedy heuristic and the tabu search implementation provide a benchmark that will facilitate future comparisons for other solution methods for the WSRP. Three publications have already used the benchmarked results to some extent.

8.2.6.1 Best Results

Chapters 5.3, 6. 7 focused on different methods of tackling WSRP. The methods included mathematical programming, a greedy heuristic and tabu search. Such chapters used the same objective function and instances. Table 8.1 presents the number of instances for each method where the best objective function value was found among the 375 instances.

| Solution Method | Number of Instances | Total |
| :--- | :--- | :--- |
| Mixed Integer Linear Programming Model | 140 | 140 |
| Greedy Heuristic v. 1 | 2 | |
| Greedy Heuristic v. 2 | 2 | |
| Greedy Heuristic v. 3 | 2 | |
| Greedy Heuristic v. 4 | 0 | 165 |
| Greedy Heuristic v. 5 (10) | 32 | |
| Greedy Heuristic v. 5 (20) | 41 | |
| Greedy Heuristic v. 5 (40) | 42 | |
| Greedy Heuristic v. 5 (50) | 44 | |
| Tabu Search Configuration 1 | 27 | |
| Tabu Search Configuration 2 | 2 | |
| Tabu Search Configuration 3 | 65 | |
| Tabu Search Configuration 4 | 1 | |
| Tabu Search Configuration 5 | 0 | |
| Tabu Search Configuration 6 | 14 | |
| Tabu Search Configuration 7 | 0 | |
| Tabu Search Configuration 8 | 11 | |
| Tabu Search Configuration 9 | 6 | |

Table 8.1: Summary of results achieved from the optimisation models and algorithms presented in this thesis. The number of instances where the best result known was found is shown.

8.3 Future Work

In this section a series of ideas for future work are described, firstly with regards to the WSRP definition and how it could be extended. Secondly a description of possible
solution methods that can be used that were not considered in this thesis but that might produce good outcomes. Thirdly the problem of implementation is addressed, perhaps using a different implementation of both the greedy heuristic and the TS could increase the quality of results obtained.

In terms of the workforce scheduling and routing problem description, a clear continuation of work is to consider the case of multiple working days in the planning horizon. Further research in such a direction would have to incorporate Rostering type constraints, i.e. if an employee works two night shifts in a row, he is not eligible for a third night shift. Other rostering constraints will depend on the sector for which the problem is applied, i.e. the requirements of nurse rostering are not the same as those for lorry driver rostering. Another work extension could be focusing on producing balanced/fairer schedules for employees. In fact, there are already some publications related to medium to long term planning of home health care scheduling and routing (Matta et al., 2014, Carello and Lanzarone, 2014, Cappanera and Scutella, 2014)

In terms of the solution methods for tackling WSRP, other approaches should be explored. These include: constraint programming (Rendl et al., 2012) and column generation (Trautsamwieser and Hirsch, 2014). The rationale is that WSRPs can be heavily constrained due to the activities' time windows and the time-dependent constraints. A great deal of the effort spent on this research programme was in maintaining feasibility by satisfying the constraints. This makes a strong case for the use of constraint programming approaches. Column generation, i.e. branch and price, has proven to be a successful method for tackling huge mixed-integer models such as the MIP model version of WSRP. Another method could include an hybridisation approach (Di Gaspero and Urli, 2014, Masmoudi and Mellouli, 2014) such as Matheuristics which combine aspects of mathematical programming and heuristics methods. Finally, a range of methods that has not been included in this thesis but has also reported good results in similar problems, such as the variants of the VRP, is Greedy Randomised Adaptive Search Procedure GRASP Ait Haddadene et al., 2014). In fact the different version of the Greedy Heuristic could be translated into a GRASP algorithm. GRASP is a multi-start metaheuristic which combines two stages: a construction and a local search one (Resende and Ribeiro, 2003). The construction stage build a feasible solution that then is passed to the local search component to evaluate further. The greedy heuristic could be considered the construction stage and then apply a local search the TS for example. At the end of Chapter 7 the manual setting of parameters based on the results of previous configuration could be included in a learning mechanism i.e. Reactive GRASP. The multi-start characteristic of GRASP and other heuristics could benefit of a parallel approach.

The major benefit of implementing a parallel approach is to speed the search procedure allowing multiple processors to work at the same time in parts of the algorithm that do not need to run in a serial manner. According to Crainic and Toulouse (2003) there are three different types of parallelism in heuristic methods. The first type is used in concurrent execution of the operations within the algorithms. As a result, the last version of the Greedy Heuristic (GH5) could benefit of this type since many possible candidate solutions could be evaluated concurrently. The second type refers to the decomposition of the decision variables often implemented in a master-slave framework. Early work using decomposition for WSRP seems to be promising already (Laesanklang et al., 2015). Finally, the third type of parallelism refers to executing concurrent heuristics which might not be the same, or perhaps the same, but with different initialisation parameters. This last type could be used in the Greedy Heuristic to start different versions at the same time or even the Tabu Search using different configurations.

With reference to continuing the work started with the greedy heuristics, possible improvements can be made if incorporating a backtracking mechanism which supports more than just the two levels used in the branching version of the heuristic (GH5). Incorporating backtracking might contradict the notion of greediness though. GH5 when performing branching was only able to explore two levels forward and then was forced to choose the best improving solution whilst discarding the other options, otherwise it risks running out memory. A parallel approach already discussed in the previous paragraph could allow multiple processes to continue the search with the discarded options, which might find better solutions as the searching process progresses.

Regarding the TS implementation, there are three options for future work. The first option is updating the swap and shift move types to handle activities with timedependent constraints. As the results from Chapter 7 showed, the insertcca move seems to influence the most with regards to the quality of the results obtained. This could be explained because insertcca is the only move that affects time-dependent constraints. Therefore, extending the support for such constraints to other moves may also help to obtain better results. The second option is the addition of repair moves that could be included in order to allow infeasible solutions during the search. The repair moves will try to change the infeasible solution to a valid one. Another application of repair moves is that they could be applied to a current valid solution that suddenly has to be changed due to some external factor, the moves will then try to correct the solution ideally with minimal disruption. The third option for future work includes incorporating a learning mechanism which allow the TS to update some of the parameters that are static, e.g. adapting/tuning the precision parameters for
the moves at different stages of the search. The introduction of a learning mechanism could lead to the usage of other high level methods such as Hyper-heuristics. Hyperheuristics are applicable to many domain problems, as they separate the domain information from the search process. They are adaptive methods, since they chose at any time during the search process the best heuristic to use depending on the state of the search (Burke et al., 2003). Hyper-heuristics generate an online score of the performance of the low-level heuristics chosen by the heuristic selection method, which in many cases is a metaheuristic. All scored based selection techniques require five components: initial scoring, memory adjustment, strategy for selection, score update rules for improvement and worsening. Another type of Hyper-heuristics create heuristics based on low-level components and once generated the new heuristics prevail for future use and participate in the generation of others (Burke et al., 2013).

Finally, the majority of the work for in this thesis was performed using a weighted sum for the objective function that heavily favoured the assignment of activities over employees' preferences or cost. However, given the difference of the sectors where WSRP can be applied, e.g. home care, retail, service industry, etc. the case for devoting research to the multi-objective nature of the problem also seems to be a sound direction to progress this research.

Bibliography

Ait Haddadene, S. R., Labadie, N., and Prodhon, C. (2014). Grasp for the vehicle routing problem with time windiws, synchonization and precedence constraints. In Proceeding of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications.

Akjiratikarl, C., Yenradee, P., and Drake, P. R. (2006). An improved particle swarm optimization algorithm for care worker scheduling. In Proceedings of the 7th Asia Pacific Industrial Engineering and Management Systems Conference 2006, pages 457-466.

Akjiratikarl, C., Yenradee, P., and Drake, P. R. (2007). Pso-based algorithm for home care worker scheduling in the uk. Computers \& Industrial Engineering, 53(4):559583.

Alfares, H. K. (2004). Survey, categorization and comparison of recent tour scheduling literature. Annals of Operations Research, 127(1-4):145-175.

Allaoua, H., Sylvie, B., Létocart, L., and Wolfler Calvo, R. (2013). A matheuristic approach for solving a home health care problem. Electronic note in Discrete Mathematics, 41:471-478.

An, Y.-J., Kim, Y.-D., Jeong, B., and Kim, S.-D. (2012). Scheduling healthcare services in a home healthcare system. Journal of the Operational Research Society, 63:1589-1599.

Azi, N., Gendreau, M., and Potvin, J.-Y. (2010). An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles. European Journal of Operational Research, 202(3):756-763.

Baker, K. R. (1976). Workforce allocation in cyclical scheduling problems: A survey. Journal of the Operational Research Society, 27(1):155-167.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3):316-329.

Bechtold, S., Brusco, M. J., and Showalter, M. (1991). A comparative evaluation of labour tour scheduling methods. Decision Science, 22(4):683-699.

Begur, S. V., Miller, D. M., and Weaver, J. R. (1997). An integrated spatial dss for scheduling and routing home-health-care nurses. Interfaces, 27(4):35-48.

Bertels, S. and Fahle, T. (2006). A hybrid setup for a hybrid scenario: combining heuristics for the home health care problem. Computers \& Operations Research, 33(10):2866-2890.

Blais, M., Lapierre, S. D., and Laporte, G. (2003). Solving a home-care districting problem in a urban setting. Journal of the Operational Research Society, 54(11):1141-1147.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268-308.

Borsani, V., Matta, A., Sommaruga, F., and Beschi, G. (2006). A home care scheduling model for human resources. In Service Systems and Service Management, 2006 International Conference on, volume 1, pages 449-454.

Bostel, N., Dejax, P., Guez, P., and Tricoire, F. (2008). Multiperiod planning and routing on a rolling horizon for field force optimization logistics. In Golden, B., Raghavan, S., and Wasil, E., editors, The Vehicle Routing Problem: Last Advances and New Challanges, pages 503-525. Springer US.

Bozkaya, B., Erkut, E., and Laporte, G. (2003). A tabu search heuristic and adaptive memory procedure for political districting. European Journal of Operational Research, 144(1):12-26.

Brandão, J. and Mercer, A. (1997). A tabu search algorithm for the multi-trip vehicle routing and scheduling problem. European Journal of Operational Research, 100(1):180-191.

Brandão, J. and Mercer, A. (1998). The multi-trip vehicule routing problem. Journal of the Operational Research Society, 49(8):799-805.

Bredström, D. and Rönnqvist, M. (2007). A branch and price algorithm for the combined vehicle routing and scheduling problem with synchronization constraints. Technical report, NHH Dept. of Finance \& Management Science Discussion Paper No. 2227/7.

Bredström, D. and Rönnqvist, M. (2008). Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. European Journal of Operational Research, 191(1):19-31.

Brucker, P. and Knust, S. (2006). Complex Scheduling, chapter 2, pages 23-90. Springer.

Brucker, P., Qu, R., and Burke, E. (2011). Personned scheduling: Mmodel and complexity. European Journal of Operational Research, 210(3):467-473.

Burke, E., Gendreau, M., M., H., Kendall, G., G., O., Ozcan, E., and Qu, R. (2013). Hyper-heuristics: a curvey of the state of the art. Journal of the Operational Research Society, 64.

Burke, E., Kendall, G., Newal, J., Hart, E., Ross, P., and Schulenburg, S. (2003). Hyper-Heuristics: An emerging direction in modern search technologies, chapter 16, pages 457-474. Kluwers Academic Publising.

Burke, E. K. and Kendall, G. (2005). Search Methodologies: Introductory tutorial in optimization and desicion support techniques, chapter 1, pages 5-18. Springer, 1st edition.

Burke, E. K. and Kendall, G. (2014). Search Methodologies: Introductory tutorial in optimization and desicion support techniques, chapter 1, pages 5-18. Springer, 1st edition.

Cai, Y., Zhang, Z., Guo, S., Qin, H., and Lim, A. (2013). A tree-based tabu search algorithm for the manpower allocation problem with time windows and job-teaming constraints. In Proceedings of theTwenty-Third international joint conference on Artificial Intelligence.

Cappanera, P. and Scutella, M. G. (2014). Joint assignment, scheduling, and routing modles to home care optimization: A pattern-based approach. Transportation Science.

Carello, G. and Lanzarone, E. (2014). A cardinality-constrained robust model for the assignment problem in home care services. European Journal of Operational Research, 236(2):748-762.

Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2012). A survey on workforce scheduling and routing problems. In Proceedings of the 9th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 283302, Son, Norway.

Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2014a). Computational study for workforce scheduling and routing problems. In ICORES 2014-Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems, pages 434-444.

Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2014b). Workforce scheduling and routing problems: literature survey and computational study. Annals of Operations Research, doi: 10.1007/s10479-014-1687-2.

Castillo-Salazar, J. A., Landa-Silva, D., and Qu, R. (2015). A greedy heuristic for workforce scheduling and routing with time-dependent activities constraints. In ICORES 2015 - Proceedings of the 4th International Conference on Operations Research and Enterprise Systems, pages 367-375, Lisbon, Portugal. INSTICC, Scitepress.

Castro-Gutierrez, J., Landa-Silva, D., and Moreno-Perez, J. (2011). Nature of realworld multi-objective vehicle routing with evolutionary algorithms. In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on, pages 257 -264 .

Cheang, B., Li, H., Lim, A., and Rodrigues, B. (2003). Nurse rostering problems-a bibliographic survey. European Journal of Operational Research, 151(3):447-460.

Cheng, E. and Rich, J. L. (1998). A home health care routing and scheduling problem.
Chuin Lau, H. and Gunawan, A. (2012). The patrol scheduling problem. In Proceedings of the 9th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 175-192, Son, Norway.

Cordeau, J.-F. and Laporte, G. (2003). The dial-a-ride problem (darp): Variants, modeling issues and algorithms. Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(2):89-101.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic for vehicle routing problems with time windows. Jornal of the Oper, Journal of the Operational Research Society, 52:928-936.

Cordeau, J.-F., Laporte, G., Pasin, F., and Ropke, S. (2010). Scheduling technicians and tasks in a telecommunications company. Journal of Scheduling, 13(4):393-409.

Cortés, C. E., Gendreau, M., Rousseau, L. M., Souyris, S., and Weintraub, A. (2014). Branch-and-price and constraint programming for solving a real-life technician dispatching problem. European Journal of Operational Research, 238:300-312.

Crainic, T. G. and Toulouse, M. (2003). Parallel Strategies for Meta-heuristics, chapter 17, pages 475-513. Kluwers Academic Publising.

Danna, E. and Le Pape, C. (2005). Branch-and-price heuristics: A case study on the vehicle routing problem with time windows. In Dasaulniers, G., Desrosiers, J., and

Solomon, M. M., editors, Column Generation, chapter 4, pages 99-129. Springer US.

Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F., and Ravi, R. (2000). Approximation aalgorithmsf the multiple knapsack problem with assignment restrictions. Journal of Combinatorial Optimization, 4(2):171-186.

De Angelis, V. (1998). Planning home assistance for aids patients in the city of rome, italy. Interfaces, 28(3):75-83.

Desaulniers, G., Lavigne, J., and Soumis, F. (1998). Multi-depot vehicle scheduling problems with time windows and waiting costs. European Journal of Operational Research, 111(3):479-494.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with time windows. Operations research, 40(2):342354.

Desrochers, M., Lenstra, J. K., and Savelsbergh, M. W. P. a. (1990). A classification scheme for vehicle routing and scheduling problems. European Journal of Operational Research, 46(3):322-332.

Desrosiers, J. and Lübbecke, M. E. (2005). A primer in column generation. In Desaulniers, G., Desrosiers, J., and Solomon, M. M., editors, Column Generation, chapter 1, pages 1-32. Springer.

Devarenne, I., Mabed, H., and Caminada, A. (2008). Adaptive Tabu Tenure Computation in Local Search, chapter 1, pages 1-12. Springer Berlin Heidelberg.

Di Gaspero, L. and Urli, T. (2014). A cp/lns approach for multi-day homehome schedulling problems. In Hybrid Metaheuristics, chapter 1, pages 1-15. Springer International Publishing.

Doerner, K. F. and Hartl, R. F. (2008). Health care logistics, emergency preparedness, and disaster relief: New challenges for routing problems with a focus on the austrian situation. In Golden, B., Raghavan, S., and Wasil, E., editors, The Vehicle Routing Problem: Last Advances and New Challanges, pages 527-550. Springer US.

Dohn, A., Kolind, E., and Clausen, J. (2009). The manpower allocation problem with time windows and job-teaming constraints: A branch-and-price approach. Computers \& Operations Research, 36(4):1145-1157.

Dohn, A., Rasmussen, M. S., Justesen, T., and Larsen, J. (2008). The home care crew scheduling problem. In Sheibani, K., editor, Proceedings of the 1st International

Conference on Applied Operational Research, volume 1 of Lecture Notes in Management Science, pages 1-8. Institute for Operational Research, System Design and Financial Services, Tadbir.

Dohn, A., Rasmussen, M. S., and Larsen, J. (2011). The vehicle routing problem with time windows and temporal dependencies. Networks, 58:273-289.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53-66.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a colony of cooperative agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1):29-41.

Dowsland, K. A. (2014). Classical Techniques, chapter 2, pages 19-65. Springer, 2nd edition.

Eberhart, R. C. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceeedings of the sixth international symposium on micro machine and human science, pages 39-43.

Ernst, A., Jiang, H., Krishnamoorthy, M., Owens, B., and Sier, D. (2004a). An annotated bibliography of personnel scheduling and rostering. Annals of Operations Research, 127:21-144.

Ernst, A., Jiang, H., Krishnamoorthy, M., and Sier, D. (2004b). Staff scheduling and rostering: A review of applications, methods and models. European journal of operational research, 153(1):3-27.

Eveborn, P., Flisberg, P., and Rönnqvist, M. (2006). Laps care - an operational system for staff planning of home care. European Journal of Operational Research, 171(3):962-976.

Eveborn, P., Rönnqvist, M., Einarsdóttir, H., Eklund, M., Lidén, K., and Almroth, M. (2009). Operations research improves quality and efficiency in home care. Interfaces, 39(1):18-34.

Feillet, D. (2010). A tutorial on column generation and branch-and-price for vehicle routing problems. 4OR: A Quarterly Journal of Operations Research, 8(4):407-424.

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004). An exact algorithm for the elementary shortest path problem with resource constraints: Applications to some vehicle routing problems. Networks, 44(3):216-229.

Firat, M. and Hurkens, C. A. J. (2012). An improved mip-based approach for a multi-skill workforce scheduling problem. Journal of Scheduling, 15(3):363-380.

Fischetti, M., Polo, C., and Scantamburlo, M. (2004). A local branching heuristic for mixed-integer programs with 2-level variables, with an application to a telecommunication network design problem. Networks, 44(2):61-72.

Fukasawa, R., Lysgaard, J., Poggi de Aragao, M., Reis, M., Uchoa, E., and Werneck, R. F. (2006). Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, 106(3):491-511.

Gendreau, M. and Potvin, J.-Y. (2014). Tabu search. In Burke, E. K. and Kendall, G., editors, Search Methodologies Introductory Tutorials in OPtimization and Decision Support Techniques, chapter 9, pages 243-263. Springer.

Gendreau, M., Potvin, J.-Y., Bräysy, O., Hasle, G., and Lokketangen, A. (2008). Metaheuristics for the vehicle routing problem and its extensions: A categorized bibliography. In The Vehicle Routing Problem Latest Advances and New Challenges, pages 143-169. Springer.

Glover, F. (1989). Tabu search-part 1. ORSA Journal on Computing, 1(3):190-206.
Glover, F. (1990a). Tabu search-part ii. ORSA Journal on Computing, 2(1):4-32.
Glover, F. (1990b). Tabu search: A tutorial. Interfaces, 20(4):74-94.
Glover, F. and Laguna, M. (1999). Tabu Search. Springer US.
Golden, B., Raghavan, S., and Wasil, E., editors (2008). The Vehicle Routing Problem: Latest advances and new challenges. Springer.

Golembiewski, R. and Proehl Jr, C. (1978). A survey of the empirical literature on flexible workhours: Character and consequences of a major innovation. Academy of Management Review, 3(4):837-853.

Günther, M. and Nissen, V. (2012). Application of particle swarm optimization to the british telecom workforce scheduling problem. In Proceedings of the 9th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012), pages 242-256, Son, Norway.

Halvorsen-Weare, E. and Fagerholt, K. (2013). Routing and scheduling in a liquefied natural gas shipping problem with inventory and berth constraints. Annals of Operations Research, 203:167-186.

Harder, R. (2004). OpenTS Tutorial - Traveling Salesman Problem.

Harder, R. W., Hill, R. R., and Moore, J. (2004). A java universal vehicle router for routing unmanned aerial vehicles. International Transactions in Operational Research, 11:259-275.

Hashimoto, H., Boussier, S., Vasquez, M., and Wilbaut, C. (2011). A grasp-based approach for technicians and interventions scheduling for telecommunications. Annals of Operations Research, 183:143-161.

Hillier, F. S. and Lieberman, G. J. (2010). Introduction to Operations Research. McGraw-Hill.

Inc., G. O. (2013). Gurobi Optimizer, Reference Manual version 5.5. Gurobi Optimization Inc.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In Desaulniers, G., Desrosiers, J., and Solomon, M. M., editors, Column Generation, chapter 2, pages 33-65. Springer.

Itabashi, G., Chiba, M., Takahashi, K., and Kato, Y. (2006). A support system for home care service based on multi-agent system. In Information, Communications and Signal Processing 2005 Fifth International Conference on, pages 1052-1056.

Justesen, T. and Rasmussen, M. S. (2008). The home care crew scheduling problem. Master's thesis, Informatics and Mathematical Modeling, Technical University of Denmark Department of Computer Science, University of Copenhagen.

Kallehauge, B., Larsen, J., Madsen, O. B. G., and Solomon, M. M. (2005). Vehicle routing problem with time windows. In Desaulniers, G., Desrosiers, J., and Solomon, M. M., editors, Column Generation, chapter 3, pages 67-98. Springer.

Kergosien, Y., Lente, C., and Billaut, J.-C. (2009). Home health care problem, an extended multiple travelling salesman problem. In Blazewicz, J., Drozdowski, M., Kendall, G., and McCollum, B., editors, Proceedings of the 4 th Multidisciplinary International Scheduling Conference: Theory and Applications (MISTA 2009), pages 85-92.

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics, 34(5/6):671-680.

Korsah, G. A., Stentz, A., Dias, M. B., and Fanaswala, I. (2010). Optimal vehicle routing and scheduling with precedence constraints and location choice.

Kovacs, A. A., Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2012). Adaptive large neighborhood search for service technician routing and scheduling problems. Journal of Scheduling, 15:579-600.

Laesanklang, W., Landa-Silva, D., and Castillo-Salazar, J. A. (2015). Mixed integer programming with decomposition to solve a workforce scheduling and routing problem. In ICORES 2015 - Proceedings of the 4th International Conference on Operations Research and Enterprise Systems, pages 283-293, Lisbon, Portugal. INSTICC, Scitepress.

Landa-Silva, D., Wang, Y., Donovan, P., and Kendall, G. (2011). Hybrid heuristic for multi-carrier transportation plans. In Proceedins of the 9th Metaheuristics International Conference (MIC2011), pages 221-229.

Lawler, E. L. and Wood, D. E. (1966). Branch-and-bound methods: A survey. Operations Research, 14(4):699-719.

Lenstra, J. K. and Rinnooy Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling problems. Networks, 11:221-227.

Lesaint, D., Voudouris, C., Azarmi, N., Alletson, I., and Laithwaite, B. (2003). Field workforce scheduling. BT Technology Journal, 21(4):23-26.

Li, Y., Lim, A., and Rodrigues, B. (2005). Manpower allocation with time windows and job-teaming constraints. Naval Research Logistics, 52(4):302-311.

Lim, A., Rodrigues, B., and Song, L. (2004). Manpower allocation with time windows. Journal of the Operational Research Society, 55:1178-1186.

Mankowska, D. S., Meisel, F., and Bierwirth, C. (2014). The home health care routing and scheduling problem with interdependent services. Health Care Management Science, 17:15-30.

Martin, A. (2001). General mixed integer programming: Computational issues for branch-and-cut algorithms. In Jünger, M. and Naddef, D., editors, Computational Combinatorial Optimization, Lecture Notes in Computer Science, chapter 1, pages 1-25. Springer Berlin Heidelberg.

Masmoudi, M. and Mellouli, R. (2014). Milp for synchronized-mtsptw: application to home healhealth scheduling. In Control, Decision and Information Technologies (CoDIT).

Matta, A., Chahed, S., Sahin, E., and Dallery, Y. (2014). Modemodel home care organisations from and operations management perspective. Flexible Services and Manufacturing Journal, 26(3):295-319.

Miller, H. (1976). Personnel scheduling in public systems: a survey. Socio-economic planning sciences, 10(6):241-249.

Misir, M., Smet, P., and Vanden Bergue, G. (2015). An analysis of generalised heuristics for vehicle routing and personnel rostering problems. Journal of the Operational Research Society, 66(5):858-870.

Misir, M., Smet, P., Verbeeck, K., and Vanden Bergue, G. (2011). Security personnel routing and rostering: a hyper-heuristic approach. In Proceedings of the 3rd International Conference on Applied Operational Research, ICAOR11, Istanbul, Turkey, 2011, pages 193-206.

Misir, M., Verbeeck, K., De Causmaecker, P., and Vanden Bergue, G. (2010). Hyperheuristics with a dynamic heuristic set for the home care scheduling problem. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 18-23.

Mitchell, J. E. (2002). Branch-and-cut algorithms for combinatorial optimization problems, chapter 3, pages 53-65. Oxford University Press.

Mitten, L. G. (1970). Branch-and-bound methods: General formulation and properties. Operations Research, 18(1):24-34.

Nickel, S., Schröder, M., and Steeg, J. (2012). Mid-term abd short-term planning support for home health care services. European Journal of Operational Research, 219:574-587.

Osman, I. H. and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations Research, 63:513-623.

Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008). A survey on pickup and delivery problems. Journal fr Betriebswirtschaft, 58(1):21-51.

Pillac, V., Guéret, C., and Medaglia, A. L. (2011). On the technician routing and scheduling problem. In Proceedings of the IX Metaheuristics International Conference (MIC 2011), Udine, Italy, July 25-28.

Pillac, V., Guéret, C., and Medaglia, A. L. (2013). A parallel matheuristic for the technician routing and scheduling problem. Optimization Letters, 7:1525-1535.

Pinedo, M. L. (2009). Planning and Scheduling in Manufacturing and Services, chapter 13, pages 317-343. Springer-Verlag New York.

Polacek, M., Hartl, R. F., Doerner, K., and Reimann, M. (2004). A variable neighborhood search for the multi depot vehicle routing problem with time windows. Journal of Heuristics, 10(6):613-627.

Potvin, J.-Y. and Rousseau, L. M. (1995). An exchange heuristic for routeing problems with time windows. Journal of the Operational Research Society, 46:1433-1446.

Raff, S. (1983). Routing and scheduling of vehicles and crews: The state of the art. Computers \mathcal{E}^{2} Operations Research, 10(2):63-211.

Rasmussen, M. S., Justesen, T., Dohn, A., and Larsen, J. (2012). The home care crew scheduling problem: Preference-based visit clustering and temporal dependencies. European Journal of Operational Research, 219(3):598-610.

Rees, C. R. (1996). Modern heuristic techniques. In Rayward-Smith, V. J., Osman, I. H., Reeves, C. R., and Smith, G. D., editors, Modern Heuristic Search Methods, pages 1-25. Wiley, New York.

Rendl, A., Prandtstetter, M., Hiermann, G., Puchinger, J., and Raidl, G. (2012). Hybrid heuristics for multimodal homehome scheduling. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems.

Resende, M. G. and Ribeiro, C. C. (2003). Greedy Randomized Adaptive Search Procedures, chapter 8, pages 219-249. Kluwers Academic Publising.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4):455-472.

Salani, M. and Vaca, I. (2011). Branch and price for the vehicle routing problem with discrete split deliverables and time windows. European Journal of Operational Research, 213(3):470-477.

Schwerin, P. and G., W. (1997). The bin-packing problem: A problem generator and some numerical experiments with ffd packing and mtp. International Transactions in Operational Research, 4(5-6):377-389.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time windows constraints. Operations Research, 35(2):254-265.

Stützle, T. and Hoos, H. H. (2000). Max-min ant system. Future Generation Computer System, 16(8):889-914.

Talbi, E.-G. (2009). Metaheuristics From Design to Implementation. John Wiley \& Sons.

Thomsen, K. (2006). Optimization on home care. Master's thesis, Department of informatics and Mathematical Modelling (IMM), Technical University of Denmark (DTU).

Toth, P. and Vigo, D. (1987). The vehicle routing problem, volume 9. Society for Industrial and Applied Mathematics.

Trautsamwieser, A. and Hirsch, P. (2011). Optimization of daily scheduling for home health care services. Journal of Applied Operational Research, 3(3):124-136.

Trautsamwieser, A. and Hirsch, P. (2014). A branch-price-and-cut approach for solving the medium-term home health care planning problem. Networks, 64:143-159.

Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., and De Boeck, L. (2013). Personnel scheduling: A literature review. European Journal of Operational Research, 226:367-385.

Voß, S., Martello, S., Osman, I. H., and Roucairol, C., editors (1999). Mete-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers.

Ward Athan, T. and Papalambros, P. Y. (1996). A note on weighted criteria methods for compromise ssolution in multi-objective optimization. Engineering Optimization, 27(2):155-176.

Weigel, D. and Cao, B. (1999). Applying gis and or techniques to solve sears technician-dispatching and home-delivery problems. Interfaces, 29(1):112-130.

Xu, J. and Chiu, S. Y. (2001). Effective heuristic procedures for a field technician scheduling problem. Journal of Scheduling, 7:495-509.

Appendix A

Data set summary

Table A.1: Shows for each instance information regarding number of employees (Emp), employees's coverage of activities based on skills (Skill), number of activities (Act), mean activity duration ($\mu \mathrm{Act}$), mean time window duration ($\mu \mathrm{TW}$), planning horizon duration (PH) and number of time-dependent constraints (T.D.C.). In the last column the timedependent constraints are ordered as follow: synchronisation, overlapping, minimum time difference, maximum time difference and min-max time difference.

| Instance | Emp | Skill | Act | μ Act | μ TW | PH | T.D.C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10_District0 | 13 | 0.83 | 52 | 282.12 | 415.38 | 1440 | $2,0,3,0,2$ |
| 10_District1 | 29 | 0.96 | 118 | 531.48 | 501.47 | 1440 | $3,5,4,4,6$ |
| 10_District2 | 13 | 0.95 | 52 | 368.94 | 452.71 | 1440 | $1,1,0,2,2$ |
| 10_District3 | 14 | 1. | 58 | 384.57 | 405. | 1440 | $1,1,2,2,2$ |
| 10_District4 | 39 | 0.97 | 159 | 425.38 | 485.89 | 1440 | $2,2,6,5,5$ |
| 10_District5 | 39 | 0.96 | 156 | 532.5 | 496.58 | 1440 | $1,5,5,7,6$ |
| 11_District0 | 7 | 0.7 | 31 | 298.06 | 498.39 | 1440 | $2,0,3,1,1$ |
| 11_District1 | 28 | 0.99 | 112 | 529.82 | 494.59 | 1440 | $2,4,1,4,10$ |
| 11_District2 | 9 | 0.95 | 37 | 387.57 | 527.81 | 1440 | $0,1,3,1,0$ |
| 11_District3 | 13 | 1. | 53 | 332.55 | 485.09 | 1440 | $4,0,2,2,2$ |
| 11_District4 | 38 | 0.94 | 153 | 477.45 | 487.99 | 1440 | $1,3,4,6,6$ |
| 11_District5 | 34 | 0.91 | 136 | 522.46 | 423.63 | 1440 | $3,0,9,4,6$ |
| 12_District0 | 14 | 0.47 | 57 | 296.84 | 362.11 | 1440 | $1,3,1,3,1$ |
| 12_District1 | 41 | 0.97 | 164 | 492.8 | 499.1 | 1440 | $6,1,8,9,5$ |
| 12_District2 | 15 | 0.83 | 61 | 369.34 | 435.11 | 1440 | $4,0,3,1,0$ |
| 12_District3 | 17 | 0.97 | 71 | 334.44 | 428.03 | 1440 | $4,1,3,1,4$ |
| 12_District4 | 47 | 0.92 | 190 | 434.76 | 514.06 | 1440 | $5,5,6,4,8$ |
| 12_District5 | 46 | 0.95 | 187 | 508.07 | 435.8 | 1440 | $4,8,6,7,6$ |
| 13_District0 | 14 | 0.43 | 58 | 317.07 | 457.76 | 1440 | $2,2,0,1,2$ |
| 13_District1 | 34 | 0.99 | 138 | 499.46 | 519.22 | 1440 | $2,5,8,4,3$ |
| 13_District2 | 16 | 0.94 | 64 | 316.17 | 387.63 | 1440 | $2,0,4,5,1$ |
| 13_District3 | 19 | 0.99 | 78 | 345.77 | 452.68 | 1440 | $4,3,2,4,5$ |
| 13_District4 | 40 | 0.9 | 161 | 435.47 | 519.27 | 1440 | $10,2,11,6,9$ |
| 13_District5 | 42 | 0.94 | 168 | 464.11 | 457.76 | 1440 | $5,5,11,8,4$ |
| 14_District0 | 11 | 0.45 | 44 | 268.64 | 448.64 | 1440 | $4,2,3,1,0$ |
| 14_District1 | 33 | 1. | 134 | 477.09 | 526.66 | 1440 | $4,4,6,8,4$ |
| 14_District2 | 13 | 0.89 | 55 | 396.82 | 456.4 | 1440 | $4,2,3,2,1$ |
| 14_District3 | 17 | 0.99 | 71 | 343.52 | 430.24 | 1440 | $3,2,1,4,2$ |
| 14_District4 | 41 | 0.95 | 167 | 468.14 | 509.86 | 1440 | $6,6,3,7,8$ |
| 14_District5 | 42 | 0.94 | 169 | 486.04 | 429.75 | 1440 | $6,6,6,10,9$ |

Table A. 1 - continued from previous page

| Instance | Emp | Skill | Act | μ Act | $\mu \mathrm{TW}$ | PH | T.D.C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15_District0 | 12 | 0.58 | 51 | 258.24 | 410.29 | 1440 | 3,4,1,0,2 |
| 15_District1 | 32 | 0.97 | 130 | 511.85 | 499.95 | 1440 | 6,4,3,5,7 |
| 15_District2 | 14 | 0.87 | 58 | 334.4 | 375.5 | 1440 | 4,1,4,2,0 |
| 15_District3 | 19 | 1. | 78 | 320.58 | 388.27 | 1440 | 4,1,6,6,1 |
| 15_District4 | 40 | 0.95 | 163 | 413.37 | 519.28 | 1440 | 4,2,2,6,7 |
| 15_District5 | 39 | 0.98 | 157 | 495.38 | 477.89 | 1440 | 3,4,3,6,5 |
| 16_District0 | 13 | 0.38 | 54 | 287.78 | 425.56 | 1440 | 3,4,2,2,0 |
| 16_District1 | 32 | 0.93 | 128 | 506.13 | 448.12 | 1440 | 6,1,6,2,2 |
| 16_District2 | 13 | 0.81 | 54 | 424.44 | 441.24 | 1440 | 2,1,3,1,3 |
| 16_District3 | 17 | 0.96 | 68 | 344.12 | 387.46 | 1440 | 4,2,2,1,4 |
| 16_District4 | 41 | 0.92 | 166 | 443.58 | 516.63 | 1440 | 3,4,5,9,9 |
| 16_District5 | 43 | 0.94 | 175 | 485.14 | 485.86 | 1440 | 6,5,8,2,6 |
| 17_District0 | 12 | 0.42 | 48 | 312.5 | 448.75 | 1440 | 3,6,2,1,0 |
| 17_District1 | 31 | 0.93 | 125 | 532.44 | 498.05 | 1440 | 4,6,2,4,3 |
| 17_District2 | 14 | 0.95 | 58 | 391.55 | 478.19 | 1440 | 2,3,3,4,0 |
| 17_District3 | 15 | 1. | 63 | 361.9 | 397.97 | 1440 | 4,2,3,2,1 |
| 17_District4 | 38 | 0.98 | 155 | 421.35 | 467.46 | 1440 | 5,5,5,3,7 |
| 17_District5 | 36 | 0.98 | 146 | 544.42 | 475.63 | 1440 | 1,3,8,8,4 |
| 18_District0 | 6 | 0.51 | 26 | 267.69 | 399.23 | 1440 | 0,0,1,2,2 |
| 18_District1 | 31 | 0.92 | 127 | 526.77 | 502.38 | 1440 | 6,3,5,6,7 |
| 18_District2 | 8 | 0.85 | 33 | 331.36 | 377.03 | 1440 | 2,1,0,0,1 |
| 18_District3 | 12 | 1. | 49 | 396.12 | 475.41 | 1440 | 2,0,1,3,4 |
| 18_District4 | 36 | 0.95 | 147 | 435.41 | 514.48 | 1440 | 5,8,9,4,5 |
| 18_District5 | 31 | 0.98 | 126 | 544.88 | 492.79 | 1440 | 2,6,6,4,8 |
| 19_District0 | 12 | 0.66 | 49 | 268.16 | 427.35 | 1440 | 2,0,4,2,0 |
| 19_District1 | 36 | 0.97 | 146 | 506.71 | 536.45 | 1440 | 3,7,4,7,6 |
| 19_District2 | 15 | 0.86 | 62 | 394.35 | 490.52 | 1440 | 5,2,1,2,0 |
| 19_District3 | 17 | 0.92 | 69 | 325.87 | 436.41 | 1440 | 0,4,6,3,4 |
| 19_District4 | 52 | 0.94 | 210 | 443.07 | 535.21 | 1440 | 5,7,8,11,7 |
| 19_District5 | 47 | 0.88 | 191 | 503.09 | 441.56 | 1440 | 7,7,10,9,10 |
| 1_District0 | 18 | 0.6 | 73 | 303.7 | 427.6 | 1440 | 6,2,4,6,0 |
| 1_District1 | 44 | 0.93 | 176 | 490.65 | 539.47 | 1440 | 6,8,10,4,9 |
| 1_District2 | 19 | 0.8 | 78 | 390.19 | 500.27 | 1440 | 4,1,5,4,2 |
| 1_District3 | 22 | 0.95 | 90 | 341.5 | 400. | 1440 | 2,5,2,2,3 |
| 1_District4 | 51 | 0.98 | 204 | 431.1 | 495.33 | 1440 | 6,3,10,3,9 |
| 1_District5 | 49 | 0.96 | 197 | 489.14 | 469.41 | 1440 | 3,8,11,9,6 |
| 20_District0 | 13 | 0.39 | 53 | 290.38 | 392.83 | 1440 | 2,3,3,3,1 |
| 20_District1 | 33 | 0.88 | 135 | 511.33 | 509.44 | 1440 | 1,5,1,3,7 |
| 20_District2 | 12 | 0.96 | 49 | 353.27 | 442.65 | 1440 | 3,1,3,1,3 |
| 20_District3 | 18 | 0.99 | 74 | 297.97 | 408.84 | 1440 | 2,3,3,1,6 |
| 20_District4 | 41 | 0.91 | 165 | 418.73 | 537.35 | 1440 | 3,3,4,5,5 |
| 20_District5 | 44 | 0.93 | 178 | 471.74 | 455.26 | 1440 | 7,2,9,5,11 |
| 21_District0 | 15 | 0.65 | 60 | 265. | 407.75 | 1440 | 2,1,7,2,1 |
| 21_District1 | 34 | 0.99 | 139 | 495. | 477.45 | 1440 | 2,5,7,6,8 |
| 21_District2 | 13 | 0.98 | 55 | 402. | 569.44 | 1440 | 2,1,1,1,0 |
| 21_District3 | 21 | 0.99 | 84 | 378.21 | 478.75 | 1440 | 1,0,4,1,4 |
| 21_District4 | 39 | 0.96 | 159 | 456.6 | 552.64 | 1440 | 4,2,10,7,8 |
| 21_District5 | 42 | 0.93 | 171 | 490.7 | 482.4 | 1440 | 4,4,6,7,4 |
| 22_District0 | 14 | 0.5 | 56 | 297.32 | 454.02 | 1440 | 1,2,2,4,6 |
| 22_District1 | 33 | 1. | 132 | 494.77 | 449.71 | 1440 | 4,4,4,7,4 |
| 22_District2 | 16 | 0.91 | 65 | 359.31 | 417.09 | 1440 | 1,2,1,3,1 |
| 22_District3 | 18 | 1. | 75 | 327.6 | 370.8 | 1440 | 4,1,5,3,4 |
| 22_District4 | 40 | 0.89 | 162 | 441.94 | 498.28 | 1440 | 3,4,3,11,8 |
| 22_District5 | 41 | 0.98 | 165 | 505.45 | 485.45 | 1440 | 1,3,7,5,8 |
| 23_District0 | 10 | 0.32 | 42 | 292.86 | 412.86 | 1440 | 2,0,3,0,3 |
| 23_District1 | 35 | 0.96 | 141 | 503.72 | 484.36 | 1440 | 3,6,7,4,4 |

Table A. 1 - continued from previous page

| Instance | Emp | Skill | Act | μ Act | μ TW | PH | T.D.C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23_District2 | 15 | 0.78 | 62 | 386.85 | 412.35 | 1440 | 6,0,3,3,2 |
| 23_District3 | 17 | 0.99 | 69 | 381.3 | 415.43 | 1440 | 1,3,2,2,3 |
| 23_District4 | 42 | 0.97 | 168 | 452.41 | 493.39 | 1440 | 7,6,4,7,5 |
| 23_District5 | 46 | 0.98 | 186 | 495.73 | 444.99 | 1440 | 9,5,4,6,4 |
| 24_District0 | 14 | 0.5 | 56 | 305.36 | 418.13 | 1440 | 3,1,1,5,2 |
| 24_District1 | 31 | 0.95 | 126 | 535.6 | 466.72 | 1440 | 8,2,6,3,5 |
| 24_District2 | 10 | 0.88 | 43 | 392.09 | 351.26 | 1440 | 0,0,2,1,3 |
| 24_District3 | 16 | 1. | 64 | 345. | 480.11 | 1440 | 2,3,4,1,3 |
| 24_District4 | 41 | 0.96 | 165 | 429.09 | 512.81 | 1440 | 5,9,6,10,4 |
| 24_District5 | 36 | 0.95 | 145 | 542.28 | 461.27 | 1440 | 5,6,2,5,7 |
| 25_District0 | 6 | 0.81 | 26 | 286.15 | 437.31 | 1500 | 1,1,2,1,2 |
| 25_District1 | 28 | 1. | 113 | 530.44 | 529.57 | 1500 | 5,0,4,4,6 |
| 25_District2 | 7 | 0.86 | 28 | 358.39 | 406.61 | 1500 | 1,1,1,1,0 |
| 25_District3 | 11 | 0.98 | 46 | 415.43 | 553.37 | 1500 | 2,1,0,2,1 |
| 25_District4 | 38 | 0.96 | 154 | 448.15 | 523.25 | 1500 | 4,3,7,9,7 |
| 25_District5 | 30 | 0.97 | 123 | 565.61 | 519.94 | 1500 | 2,3,5,6,2 |
| 26_District0 | 16 | 0.66 | 65 | 296.77 | 416.54 | 1440 | 3,3,4,4,3 |
| 26_District1 | 41 | 0.96 | 164 | 506.34 | 474.51 | 1440 | 2,2,9,11,1 |
| 26_District2 | 17 | 0.82 | 69 | 378.7 | 437.71 | 1440 | 2,2,4,6,2 |
| 26_District3 | 23 | 0.98 | 92 | 352.83 | 423.75 | 1440 | 5,3,7,1,1 |
| 26_District4 | 52 | 0.95 | 210 | 462.14 | 513.28 | 1440 | 4,2,10,16,9 |
| 26_District5 | 48 | 0.98 | 193 | 485.98 | 496.85 | 1440 | 6,3,10,8,8 |
| 27_District0 | 15 | 0.58 | 60 | 248.5 | 362. | 1440 | 3,3,1,3,4 |
| 27_District1 | 34 | 0.94 | 138 | 512.39 | 539.02 | 1440 | 1,6,4,4,12 |
| 27_District2 | 14 | 0.9 | 56 | 356.79 | 499.68 | 1440 | 1,4,0,3,2 |
| 27_District3 | 15 | 0.98 | 60 | 299.75 | 356.62 | 1440 | 2,2,0,4,4 |
| 27_District4 | 43 | 0.93 | 174 | 411.55 | 525.29 | 1440 | 3,4,6,7,10 |
| 27_District5 | 42 | 0.96 | 169 | 489.05 | 462.19 | 1440 | 4,5,4,9,5 |
| 28_District0 | 13 | 0.53 | 55 | 316.91 | 468.27 | 1440 | 1,1,1,4,2 |
| 28_District1 | 34 | 0.93 | 137 | 490.84 | 558.82 | 1440 | 1,2,7,4,5 |
| 28_District2 | 13 | 1. | 52 | 385.96 | 361.27 | 1440 | 1,1,2,3,4 |
| 28_District3 | 21 | 1. | 86 | 323.72 | 443.02 | 1440 | 5,4,1,1,7 |
| 28_District4 | 40 | 0.97 | 162 | 419.72 | 477.96 | 1440 | 5,2,7,6,5 |
| 28_District5 | 40 | 0.96 | 161 | 487.73 | 459.49 | 1440 | 3,2,8,5,9 |
| 29_District0 | 11 | 0.53 | 44 | 278.18 | 400.23 | 1440 | 2,1,0,2,2 |
| 29_District1 | 29 | 0.96 | 116 | 467.97 | 462.79 | 1440 | 4,8,4,3,6 |
| 29_District2 | 14 | 0.93 | 58 | 366.72 | 513.72 | 1440 | 4,1,4,2,2 |
| 29_District3 | 17 | 0.99 | 69 | 348.04 | 430.54 | 1440 | 1,4,2,1,5 |
| 29_District4 | 32 | 0.94 | 130 | 443.88 | 551.76 | 1440 | 5,5,5,0,5 |
| 29_District5 | 41 | 1. | 166 | 478.46 | 457.35 | 1440 | 2,11,4,5,6 |
| 2_District0 | 15 | 0.72 | 60 | 274.5 | 402.75 | 1440 | 4,0,1,3,3 |
| 2_District1 | 40 | 0.96 | 163 | 507.42 | 456.02 | 1440 | 6,5,9,8,3 |
| 2_District2 | 16 | 0.91 | 66 | 348.86 | 426.45 | 1440 | 1,2,1,3,6 |
| 2_District3 | 21 | 0.98 | 86 | 350.76 | 452.35 | 1440 | 5,5,3,3,0 |
| 2_District4 | 47 | 0.95 | 190 | 454.11 | 503.68 | 1440 | 5,5,8,8,5 |
| 2_District5 | 50 | 0.96 | 201 | 492.54 | 458.01 | 1440 | 4,11,6,10,11 |
| 30_District0 | 9 | 0.44 | 38 | 285. | 401.05 | 1440 | 1,2,2,3,2 |
| 30_District1 | 25 | 0.99 | 103 | 512.48 | 439.14 | 1440 | 5,4,5,6,3 |
| 30_District2 | 11 | 0.86 | 47 | 392.23 | 416.49 | 1440 | 1,1,2,1,2 |
| 30_District3 | 14 | 0.98 | 59 | 349.07 | 385.17 | 1440 | 5,0,2,2,2 |
| 30_District4 | 30 | 0.89 | 121 | 410.45 | 512.78 | 1440 | 6,5,4,3,8 |
| 30_District5 | 27 | 0.95 | 111 | 485. | 484.78 | 1440 | 6,4,5,2,8 |
| 3_District0 | 13 | 0.61 | 54 | 296.11 | 429.17 | 1440 | 3,2,1,1,2 |
| 3_District1 | 33 | 0.96 | 135 | 532.11 | 546.27 | 1440 | 4,3,3,6,9 |
| 3_District2 | 16 | 0.91 | 64 | 389.77 | 402.88 | 1440 | 3,1,4,1,1 |
| 3_District3 | 21 | 1. | 85 | 365.12 | 446.12 | 1440 | $3,2,2,5,2$ |

Table A. 1 - continued from previous page

| Instance | Emp | Skill | Act | μ Act | $\mu \mathrm{TW}$ | PH | T.D.C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3_District4 | 50 | 0.97 | 200 | 438.08 | 517.79 | 1440 | 2,4,7,5,9 |
| 3_District5 | 45 | 0.96 | 183 | 519.26 | 486.88 | 1440 | 6,3,8,6,8 |
| 4_District0 | 10 | 0.4 | 40 | 290.25 | 411.38 | 1440 | 1,4,0,1,1 |
| 4_District1 | 33 | 0.93 | 132 | 560.68 | 510.51 | 1440 | 4,4,3,2,4 |
| 4_District2 | 10 | 0.83 | 41 | 377.93 | 457.12 | 1440 | 2,0,1,0,3 |
| 4_District3 | 11 | 0.98 | 47 | 329.36 | 500.57 | 1440 | 3,4,0,1,2 |
| 4_District4 | 45 | 0.94 | 182 | 432.12 | 542.96 | 1440 | 5,7,7,7,7 |
| 4_District5 | 37 | 0.95 | 151 | 544.47 | 476.22 | 1440 | 6,4,5,8,5 |
| 5_District0 | 14 | 0.39 | 56 | 277.5 | 392.14 | 1440 | 3,3,2,1,2 |
| 5_District1 | 36 | 0.97 | 144 | 500.42 | 497.02 | 1440 | 1,2,7,5,15 |
| 5_District2 | 13 | 0.89 | 53 | 371.89 | 443.91 | 1440 | 2,5,1,2,3 |
| 5_District3 | 19 | 0.96 | 76 | 345.2 | 378.55 | 1440 | 3,5,3,2,3 |
| 5_District4 | 47 | 0.93 | 188 | 476.49 | 516.78 | 1440 | 1,7,4,6,9 |
| 5_District5 | 50 | 0.93 | 201 | 491.57 | 456.59 | 1440 | 7,3,7,7,10 |
| 6_District0 | 15 | 0.52 | 60 | 279.5 | 399.75 | 1440 | 1,3,4,3,0 |
| 6_District1 | 38 | 1. | 155 | 463.16 | 458.94 | 1440 | 3,8,10,3,10 |
| 6_District2 | 17 | 0.82 | 70 | 341.14 | 435.41 | 1440 | 3,2,3,2,3 |
| 6_District3 | 16 | 1. | 67 | 356.19 | 438.81 | 1440 | 2,2,2,2,4 |
| 6_District4 | 42 | 0.93 | 171 | 415.26 | 518.11 | 1440 | 2,7,11,6,6 |
| 6_District5 | 44 | 0.93 | 177 | 499.07 | 458.13 | 1440 | 3,5,10,7,8 |
| 7_District0 | 12 | 0.73 | 49 | 288.98 | 464.08 | 1440 | 2,1,0,3,0 |
| 7_District1 | 38 | 0.94 | 153 | 480.1 | 516.32 | 1440 | 6,4,4,3,5 |
| 7_District2 | 13 | 0.89 | 55 | 381.27 | 488.44 | 1440 | 2,4,3,3,1 |
| 7_District3 | 20 | 1. | 82 | 323.23 | 395.12 | 1440 | 6,2,7,1,1 |
| 7_District4 | 41 | 0.91 | 167 | 443.08 | 484.75 | 1440 | 7,3,5,4,10 |
| 7_District5 | 45 | 0.96 | 181 | 469.97 | 471.66 | 1440 | 4,6,5,9,13 |
| 8_District0 | 12 | 0.54 | 49 | 274.29 | 425.51 | 1440 | 3,3,3,1,3 |
| 8_District1 | 32 | 0.98 | 130 | 533.65 | 485.18 | 1440 | 1,4,7,6,4 |
| 8_District2 | 13 | 0.71 | 53 | 341.89 | 371.89 | 1440 | 1,0,4,3,1 |
| 8_District3 | 18 | 1. | 74 | 348.24 | 485.27 | 1440 | 5,1,4,4,5 |
| 8_District4 | 41 | 0.92 | 166 | 428.22 | 456.27 | 1440 | 7,7,6,3,5 |
| 8_District5 | 40 | 0.9 | 162 | 508.33 | 491.94 | 1440 | 4,7,9,4,7 |
| 9_District0 | 12 | 0.5 | 51 | 301.18 | 399.41 | 1440 | 0,2,1,2,3 |
| 9_District1 | 31 | 0.96 | 124 | 519.07 | 471.94 | 1440 | 3,3,5,3,5 |
| 9_District2 | 13 | 0.87 | 53 | 428.77 | 370.6 | 1440 | 1,4,2,2,1 |
| 9_District3 | 22 | 0.98 | 89 | 359.83 | 389.22 | 1440 | 2,5,5,2,3 |
| 9_District4 | 44 | 0.96 | 178 | 423.62 | 516.72 | 1440 | 6,3,9,5,8 |
| 9_District5 | 37 | 0.97 | 151 | 522.42 | 470.36 | 1440 | 1,5,4,9,6 |
| C101_100t_20w | 20 | 0.75 | 100 | 90. | 60.76 | 1236 | 1,0,1,3,0 |
| C101_25t_5w | 5 | 0.6 | 25 | 90. | 60.44 | 1236 | 0,0,0,1,0 |
| C101_50t_10w | 10 | 0.8 | 50 | 90. | 60.14 | 1236 | 0,0,1,2,0 |
| C102_100t_20w | 20 | 0.75 | 100 | 90. | 325.69 | 1236 | 7,4,1,3,0 |
| C102_25t_5w | 5 | 0.6 | 25 | 90. | 359.44 | 1236 | 0,1,0,1,0 |
| C102_50t_10w | 10 | 0.8 | 50 | 90. | 336.6 | 1236 | 0,5,1,2,0 |
| C103_100t_20w | 20 | 0.75 | 100 | 90. | 588.49 | 1236 | 9,5,1,3,0 |
| C103_25t_5w | 5 | 0.6 | 25 | 90. | 611.6 | 1236 | 0,2,0,1,0 |
| C103_50t_10w | 10 | 0.8 | 50 | 90. | 590.44 | 1236 | 1,5,1,2,0 |
| C104_100t_20w | 20 | 0.75 | 100 | 90. | 852.94 | 1236 | 11,5,1,3,0 |
| C104_25t_5w | 5 | 0.6 | 25 | 90. | 781.48 | 1236 | 0,3,0,1,0 |
| C104_50t_10w | 10 | 0.8 | 50 | 90. | 908.04 | 1236 | 1,5,1,2,0 |
| C105_100t_20w | 20 | 0.75 | 100 | 90. | 121.61 | 1236 | 1,3,1,3,0 |
| C105_25t_5w | 5 | 0.6 | 25 | 90. | 121.08 | 1236 | 0,2,0,1,0 |
| C105_50t_10w | 10 | 0.8 | 50 | 90. | 120.38 | 1236 | 1,1,1,2,0 |
| C106_100t_20w | 20 | 0.75 | 100 | 90. | 156.15 | 1236 | 1,1,1,3,0 |
| C106_25t_5w | 5 | 0.6 | 25 | 90. | 73.72 | 1236 | 0,0,0,1,0 |
| C106_50t_10w | 10 | 0.8 | 50 | 90. | 94.36 | 1236 | 0,0,1,2,0 |

Table A. 1 - continued from previous page

| Instance | Emp | Skill | Act | μ Act | $\mu \mathrm{TW}$ | PH | T.D.C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C107_100t_20w | 20 | 0.75 | 100 | 90. | 180. | 1236 | 2,3,1,3,0 |
| C107_25t_5w | 5 | 0.6 | 25 | 90. | 180. | 1236 | 0,2,0,1,0 |
| C107_50t_10w | 10 | 0.8 | 50 | 90. | 180. | 1236 | 1,1,1,2,0 |
| C108_100t_20w | 20 | 0.75 | 100 | 90. | 243.28 | 1236 | 4,4,1,3,0 |
| C108_25t_5w | 5 | 0.6 | 25 | 90. | 242.16 | 1236 | 0,2,0,1,0 |
| C108_50t_10w | 10 | 0.8 | 50 | 90. | 240.78 | 1236 | 1,1,1,2,0 |
| C109_100t_20w | 20 | 0.75 | 100 | 90. | 360. | 1236 | 6,4,1,3,0 |
| C109_25t_5w | 5 | 0.6 | 25 | 90. | 360. | 1236 | 0,2,0,1,0 |
| C109_50t_10w | 10 | 0.8 | 50 | 90. | 360. | 1236 | 1,2,1,2,0 |
| C201_100t_20w | 20 | 0.75 | 100 | 90. | 160. | 3390 | 0,1,1,3,0 |
| C201_25t_5w | 5 | 0.6 | 25 | 90. | 160. | 3390 | 0,1,0,1,0 |
| C201_50t_10w | 10 | 0.8 | 50 | 90. | 160. | 3390 | 0,2,1,2,0 |
| C202_100t_20w | 20 | 0.75 | 100 | 90. | 937.74 | 3390 | 6,4,1,3,0 |
| C202_25t_5w | 5 | 0.6 | 25 | 90. | 1032.28 | 3390 | 0,2,0, , 0 |
| C202_50t_10w | 10 | 0.8 | 50 | 90. | 969.42 | 3390 | 0,5,1,2,0 |
| C203_100t_20w | 20 | 0.75 | 100 | 90. | 1714.82 | 3390 | 9,5,1,3,0 |
| C203_25t_5w | 5 | 0.6 | 25 | 90. | 1778.6 | 3390 | 0,3,0,1,0 |
| C203_50t_10w | 10 | 0.8 | 50 | 90. | 1716.36 | 3390 | 1,5,1,2,0 |
| C204_100t_20w | 20 | 0.75 | 100 | 90. | 2492.58 | 3390 | 11,5,1,3,0 |
| C204_25t_5w | 5 | 0.6 | 25 | 90. | 2277.4 | 3390 | 0,3,0,1,0 |
| C204_50t_10w | 10 | 0.8 | 50 | 90. | 2650.24 | 3390 | 1,5,1,2,0 |
| C205_100t_20w | 20 | 0.75 | 100 | 90. | 320. | 3390 | 5,3,1,3,0 |
| C205_25t_5w | 5 | 0.6 | 25 | 90. | 320. | 3390 | 0,1, $, 1,0$ |
| C205_50t_10w | 10 | 0.8 | 50 | 90. | 320. | 3390 | 0,2,1,2,0 |
| C206_100t_20w | 20 | 0.75 | 100 | 90. | 486.64 | 3390 | 7,3,1,3,0 |
| C206_25t_5w | 5 | 0.6 | 25 | 90. | 464.52 | 3390 | 0,2,0, , , 0 |
| C206_50t_10w | 10 | 0.8 | 50 | 90. | 480.48 | 3390 | 0,5,1,2,0 |
| C207_100t_20w | 20 | 0.75 | 100 | 90. | 612.32 | 3390 | 6,3,1,3,0 |
| C207_25t_5w | 5 | 0.6 | 25 | 90. | 742. | 3390 | 0,2,0,1,0 |
| C207_50t_10w | 10 | 0.8 | 50 | 90. | 790.8 | 3390 | 1,4,1,2,0 |
| C208_100t_20w | 20 | 0.75 | 100 | 90. | 640. | 3390 | 9,3,1,3,0 |
| C208_25t_5w | 5 | 0.6 | 25 | 90. | 640. | 3390 | 0,2,0,1,0 |
| C208_50t_10w | 10 | 0.8 | 50 | 90. | 640. | 3390 | 1,5,1,2,0 |
| R101_100t_20w | 20 | 0.75 | 100 | 10. | 10. | 230 | 1,0,1,3,0 |
| R101_25t_5w | 5 | 0.6 | 25 | 10. | 10. | 230 | 0,0,0,1,0 |
| R101_50t_10w | 10 | 0.8 | 50 | 10. | 10. | 230 | 0,0,1,2,0 |
| R102_100t_20w | 20 | 0.75 | 100 | 10. | 57.39 | 230 | 6,4,1,3,0 |
| R102_25t_5w | 5 | 0.6 | 25 | 10. | 63.44 | 230 | 0,1, $, 1,0$ |
| R102_50t_10w | 10 | 0.8 | 50 | 10. | 59.24 | 230 | 0,5,1,2,0 |
| R103_100t_20w | 20 | 0.75 | 100 | 10. | 102.99 | 230 | 9,5,1,3,0 |
| R103_25t_5w | 5 | 0.6 | 25 | 10. | 106.88 | 230 | 0,2,0,, , 0 |
| R103_50t_10w | 10 | 0.8 | 50 | 10. | 102.62 | 230 | 1,5,1,2,0 |
| R104_100t_20w | 20 | 0.75 | 100 | 10. | 148.31 | 230 | 11,5,1,3,0 |
| R104_25t_5w | 5 | 0.6 | 25 | 10. | 136.64 | 230 | 0,3,0,1,0 |
| R104_50t_10w | 10 | 0.8 | 50 | 10. | 157.4 | 230 | 1,5,1,2,0 |
| R105_100t_20w | 20 | 0.75 | 100 | 10. | 30. | 230 | 6,0,1,3,0 |
| R105_25t_5w | 5 | 0.6 | 25 | 10. | 30. | 230 | 0,0,0,1,0 |
| R105_50t_10w | 10 | 0.8 | 50 | 10. | 30. | 230 | 0,1,1,2,0 |
| R106_100t_20w | 20 | 0.75 | 100 | 10. | 72.39 | 230 | 9,4,1,3,0 |
| R106_25t_5w | 5 | 0.6 | 25 | 10. | 77.84 | 230 | 0,1, $, 1,1,0$ |
| R106_50t_10w | 10 | 0.8 | 50 | 10. | 74.04 | 230 | 0,5,1,2,0 |
| R107_100t_20w | 20 | 0.75 | 100 | 10. | 112.99 | 230 | 10,5,1,3,0 |
| R107_25t_5w | 5 | 0.6 | 25 | 10. | 116.48 | 230 | 0,2,0,1,0 |
| R107_50t_10w | 10 | 0.8 | 50 | 10. | 112.62 | 230 | 1,5,1,2,0 |
| R108_100t_20w | 20 | 0.75 | 100 | 10. | 153.31 | 230 | 11,5,1,3,0 |
| R108_25t_5w | 5 | 0.6 | 25 | 10. | 143.04 | 230 | 0,3,0,1,0 |

Table A. 1 - continued from previous page

| Instance | Emp | Skill | Act | μ Act | $\mu \mathrm{TW}$ | PH | T.D.C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R108_50t_10w | 10 | 0.8 | 50 | 10. | 161.4 | 230 | 1,5,1,2,0 |
| R109_100t_20w | 20 | 0.75 | 100 | 10. | 58.89 | 230 | 6,2,1,3,0 |
| R109_25t_5w | 5 | 0.6 | 25 | 10. | 58.36 | 230 | 0,1,0,1,0 |
| R109_50t_10w | 10 | 0.8 | 50 | 10. | 58.94 | 230 | 0,3,1,2,0 |
| R110_100t_20w | 20 | 0.75 | 100 | 10. | 86.5 | 230 | 9,4,1,3,0 |
| R110_25t_5w | 5 | 0.6 | 25 | 10. | 83.28 | 230 | 0,3,0,1,0 |
| R110_50t_10w | 10 | 0.8 | 50 | 10. | 86.44 | 230 | 1,3,1,2,0 |
| R111_100t_20w | 20 | 0.75 | 100 | 10. | 93.1 | 230 | 10,5,1,3,0 |
| R111_25t_5w | 5 | 0.6 | 25 | 10. | 93.72 | 230 | 0,2,0,1,0 |
| R111_50t_10w | 10 | 0.8 | 50 | 10. | 95.46 | 230 | 1,5,1,2,0 |
| R112_100t_20w | 20 | 0.75 | 100 | 10. | 117.64 | 230 | 12,5,1,3,0 |
| R112_25t_5w | 5 | 0.6 | 25 | 10. | 116.44 | 230 | 0,3,0,1,0 |
| R112_50t_10w | 10 | 0.8 | 50 | 10. | 117.76 | 230 | 1,5,1,2,0 |
| R201_100t_20w | 20 | 0.75 | 100 | 10. | 115.96 | 1000 | 2,0,1,3,0 |
| R201_25t_5w | 5 | 0.6 | 25 | 10. | 113.72 | 1000 | 0,0,0,1,0 |
| R201_50t_10w | 10 | 0.8 | 50 | 10. | 116.46 | 1000 | 0,0,1,2,0 |
| R202_100t_20w | 20 | 0.75 | 100 | 10. | 328.81 | 1000 | 7,4,1,3,0 |
| R202_25t_5w | 5 | 0.6 | 25 | 10. | 352.56 | 1000 | 0,1,0,1,0 |
| R202_50t_10w | 10 | 0.8 | 50 | 10. | 339.96 | 1000 | 0,5,1,2,0 |
| R203_100t_20w | 20 | 0.75 | 100 | 10. | 541.66 | 1000 | 9,5,1,3,0 |
| R203_25t_5w | 5 | 0.6 | 25 | 10. | 554.96 | 1000 | 0,2,0,1,0 |
| R203_50t_10w | 10 | 0.8 | 50 | 10. | 541.54 | 1000 | 1,5,1,2,0 |
| R204_100t_20w | 20 | 0.75 | 100 | 10. | 751.26 | 1000 | 11,5,1,3,0 |
| R204_25t_5w | 5 | 0.6 | 25 | 10. | 694.48 | 1000 | 0,3,0,1,0 |
| R204_50t_10w | 10 | 0.8 | 50 | 10. | 794.32 | 1000 | 1,5,1,2,0 |
| R205_100t_20w | 20 | 0.75 | 100 | 10. | 240. | 1000 | 6,2,1,3,0 |
| R205_25t_5w | 5 | 0.6 | 25 | 10. | 240. | 1000 | 0,1,0,1,0 |
| R205_50t_10w | 10 | 0.8 | 50 | 10. | 240. | 1000 | 0,2,1,2,0 |
| R206_100t_20w | 20 | 0.75 | 100 | 10. | 422.39 | 1000 | 9,4,1,3,0 |
| R206_25t_5w | 5 | 0.6 | 25 | 10. | 444.64 | 1000 | 0,1,0,1,0 |
| R206_50t_10w | 10 | 0.8 | 50 | 10. | 429.64 | 1000 | 0,5,1,2,0 |
| R207_100t_20w | 20 | 0.75 | 100 | 10. | 602.99 | 1000 | 10,5,1,3,0 |
| R207_25t_5w | 5 | 0.6 | 25 | 10. | 617.68 | 1000 | 0,2,0,1,0 |
| R207_50t_10w | 10 | 0.8 | 50 | 10. | 602.62 | 1000 | 1,5,1,2,0 |
| R208_100t_20w | 20 | 0.75 | 100 | 10. | 783.31 | 1000 | 11,5,1,3,0 |
| R208_25t_5w | 5 | 0.6 | 25 | 10. | 733.84 | 1000 | 0,3,0,1,0 |
| R208_50t_10w | 10 | 0.8 | 50 | 10. | 819.4 | 1000 | 1,5,1,2,0 |
| R209_100t_20w | 20 | 0.75 | 100 | 10. | 349.5 | 1000 | 8,2,1,3,0 |
| R209_25t_5w | 5 | 0.6 | 25 | 10. | 332.72 | 1000 | 0,3,0,1,0 |
| R209_50t_10w | 10 | 0.8 | 50 | 10. | 351.08 | 1000 | 1,3,1,2,0 |
| R210_100t_20w | 20 | 0.75 | 100 | 10. | 383.27 | 1000 | 9,4,1,3,0 |
| R210_25t_5w | 5 | 0.6 | 25 | 10. | 385.88 | 1000 | 0,1,0,1,0 |
| R210_50t_10w | 10 | 0.8 | 50 | 10. | 390.06 | 1000 | 0,5,1,2,0 |
| R211_100t_20w | 20 | 0.75 | 100 | 10. | 471.94 | 1000 | 12,5,1,3,0 |
| R211_25t_5w | 5 | 0.6 | 25 | 10. | 467.48 | 1000 | 0,3,0,1,0 |
| R211_50t_10w | 10 | 0.8 | 50 | 10. | 472.92 | 1000 | 1,5,1,2,0 |
| RC101_100t_20w | 20 | 0.75 | 100 | 10. | 30. | 240 | 4,1,1,3,0 |
| RC101_25t_5w | 5 | 0.6 | 25 | 10. | 30. | 240 | 0,1,0,1,0 |
| RC101_50t_10w | 10 | 0.8 | 50 | 10. | 30. | 240 | 0,1,1,2,0 |
| RC102_100t_20w | 20 | 0.75 | 100 | 10. | 71.46 | 240 | 8,4,1,3,0 |
| RC102_25t_5w | 5 | 0.6 | 25 | 10. | 75.4 | 240 | 0,1,0,1,0 |
| RC102_50t_10w | 10 | 0.8 | 50 | 10. | 71.08 | 240 | 0,5,1,2,0 |
| RC103_100t_20w | 20 | 0.75 | 100 | 10. | 112.5 | 240 | 10,5,1,3,0 |
| RC103_25t_5w | 5 | 0.6 | 25 | 10. | 113.92 | 240 | 0,2,0,1,0 |
| RC103_50t_10w | 10 | 0.8 | 50 | 10. | 108.8 | 240 | 1,5,1,2,0 |
| RC104_100t_20w | 20 | 0.75 | 100 | 10. | 154.6 | 240 | 11,5,1,3,0 |

Table A. 1 - continued from previous page

| Instance | Emp | Skill | Act | μ Act | $\mu \mathrm{TW}$ | PH | T.D.C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RC104_25t_5w | 5 | 0.6 | 25 | 10. | 140.24 | 240 | 0,3,0,1,0 |
| RC104_50t_10w | 10 | 0.8 | 50 | 10. | 156.54 | 240 | 1,5,1,2,0 |
| RC105_100t_20w | 20 | 0.75 | 100 | 10. | 54.33 | 240 | 7,3,1,3,0 |
| RC105_25t_5w | 5 | 0.6 | 25 | 10. | 55.28 | 240 | 0,1,0,1,0 |
| RC105_50t_10w | 10 | 0.8 | 50 | 10. | 56.38 | 240 | 0,5,1,2,0 |
| RC106_100t_20w | 20 | 0.75 | 100 | 10. | 60. | 240 | 6,2,1,3,0 |
| RC106_25t_5w | 5 | 0.6 | 25 | 10. | 60. | 240 | 0,1,0,1,0 |
| RC106_50t_10w | 10 | 0.8 | 50 | 10. | 60. | 240 | 1,3,1,2,0 |
| RC107_100t_20w | 20 | 0.75 | 100 | 10. | 88.21 | 240 | 9,4,1,3,0 |
| RC107_25t_5w | 5 | 0.6 | 25 | 10. | 85.96 | 240 | 0,3,0,1,0 |
| RC107_50t_10w | 10 | 0.8 | 50 | 10. | 88.1 | 240 | 1,3,1,2,0 |
| RC108_100t_20w | 20 | 0.75 | 100 | 10. | 112.33 | 240 | 12,5,1,3,0 |
| RC108_25t_5w | 5 | 0.6 | 25 | 10. | 110.48 | 240 | 0,3,0,1,0 |
| RC108_50t_10w | 10 | 0.8 | 50 | 10. | 111.62 | 240 | 1,5,1,2,0 |
| RC201_100t_20w | 20 | 0.75 | 100 | 10. | 120. | 960 | 2,0,1,3,0 |
| RC201_25t_5w | 5 | 0.6 | 25 | 10. | 120. | 960 | 0,0,0,1,0 |
| RC201_50t_10w | 10 | 0.8 | 50 | 10. | 120. | 960 | 0,0,1,2,0 |
| RC202_100t_20w | 20 | 0.75 | 100 | 10. | 318.96 | 960 | 6,4,1,3,0 |
| RC202_25t_5w | 5 | 0.6 | 25 | 10. | 341.8 | 960 | 0,1,0,1,0 |
| RC202_50t_10w | 10 | 0.8 | 50 | 10. | 324.88 | 960 | 0,5,1,2,0 |
| RC203_100t_20w | 20 | 0.75 | 100 | 10. | 517.5 | 960 | 9,5,1,3,0 |
| RC203_25t_5w | 5 | 0.6 | 25 | 10. | 531.52 | 960 | 0,2,0,1,0 |
| RC203_50t_10w | 10 | 0.8 | 50 | 10. | 513.8 | 960 | 1,5,1,2,0 |
| RC204_100t_20w | 20 | 0.75 | 100 | 10. | 717.1 | 960 | 11,5,1,3,0 |
| RC204_25t_5w | 5 | 0.6 | 25 | 10. | 658.64 | 960 | 0,3,0,1,0 |
| RC204_50t_10w | 10 | 0.8 | 50 | 10. | 750.54 | 960 | 1,5,1,2,0 |
| RC205_100t_20w | 20 | 0.75 | 100 | 10. | 223.06 | 960 | 5,3,1,3,0 |
| RC205_25t_5w | 5 | 0.6 | 25 | 10. | 227.76 | 960 | 0,1,0,1,0 |
| RC205_50t_10w | 10 | 0.8 | 50 | 10. | 230.5 | 960 | 0,4,1,2,0 |
| RC206_100t_20w | 20 | 0.75 | 100 | 10. | 240. | 960 | 6,2,1,3,0 |
| RC206_25t_5w | 5 | 0.6 | 25 | 10. | 240. | 960 | 0,1,0,1,0 |
| RC206_50t_10w | 10 | 0.8 | 50 | 10. | 240. | 960 | 0,2,1,2,0 |
| RC207_100t_20w | 20 | 0.75 | 100 | 10. | 349.5 | 960 | 9,3,1,3,0 |
| RC207_25t_5w | 5 | 0.6 | 25 | 10. | 332.72 | 960 | 0,3,0,1,0 |
| RC207_50t_10w | 10 | 0.8 | 50 | 10. | 351.08 | 960 | 1,3,1,2,0 |
| RC208_100t_20w | 20 | 0.75 | 100 | 10. | 471.93 | 960 | 12,5,1,3,0 |
| RC208_25t_5w | 5 | 0.6 | 25 | 10. | 467.44 | 960 | 0,3,0,1,0 |
| RC208_50t_10w | 10 | 0.8 | 50 | 10. | 472.9 | 960 | 1,5,1,2,0 |
| test150-0-0-0-0_d0_tw0 | 103 | 0.76 | 150 | 20.47 | 480. | 480 | 11,15,4,4,3 |
| test150-0-0-0-0_d0_tw1 | 103 | 0.76 | 150 | 20.47 | 160. | 480 | 3,3,4,4,3 |
| test150-0-0-0-0_d0_tw2 | 103 | 0.76 | 150 | 20.47 | 127.27 | 480 | 3,3,4,4,3 |
| test150-0-0-0-0_d0_tw3 | 103 | 0.76 | 150 | 20.47 | 100. | 480 | 3,3,4,4,3 |
| test150-0-0-0-0_d0_tw4 | 103 | 0.76 | 150 | 20.47 | 155.93 | 480 | 5,9,4,4,3 |
| test250-0-0-0-0_d0_tw0 | 171 | 0.68 | 250 | 20.44 | 480. | 480 | 18,17, $7,4,7$ |
| test250-0-0-0-0_d0_tw1 | 171 | 0.68 | 250 | 20.44 | 160. | 480 | 6,5,7,4,7 |
| test250-0-0-0-0_d0_tw2 | 171 | 0.68 | 250 | 20.44 | 127.12 | 480 | 6,5,7,4,7 |
| test250-0-0-0-0_d0_tw3 | 171 | 0.68 | 250 | 20.44 | 100. | 480 | 6,5,7,4,7 |
| test250-0-0-0-0_d0_tw4 | 171 | 0.68 | 250 | 20.44 | 154.4 | 480 | 4,6,7,4,7 |
| test50-0-0-0-0_d0_tw0 | 38 | 0.74 | 50 | 22.6 | 480. | 480 | 5,5,1,2,0 |
| test50-0-0-0-0_d0_tw1 | 38 | 0.74 | 50 | 22.6 | 160. | 480 | 3,1,1,2,0 |
| test50-0-0-0-0_d0_tw2 | 38 | 0.74 | 50 | 22.6 | 128.4 | 480 | 3,1,1,2,0 |
| test50-0-0-0-0_d0_tw3 | 38 | 0.74 | 50 | 22.6 | 100. | 480 | 3,1,1,2,0 |
| test50-0-0-0-0_d0_tw4 | 38 | 0.74 | 50 | 22.6 | 152. | 480 | 2,4,1,2,0 |
| hh_00_P0 | 15 | 0.94 | 153 | 31.96 | 106.41 | 1380 | 2,1,0,0,0 |
| ll1_00_P0 | 9 | 0.99 | 106 | 24.62 | 65.67 | 1380 | 0,0,0,0,0 |
| l11_01_P0 | 9 | 0.99 | 106 | 24.62 | 65.67 | 1380 | 1,0,0,0,0 |

Table A. 1 - continued from previous page

| Instance | Emp | Skill | Act | μ Act | μ TW | PH | T.D.C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ll1_02_P0 | 9 | 0.99 | 106 | 24.62 | 65.67 | 1380 | $0,0,0,0,0$ |
| ll1_03_P0 | 9 | 0.99 | 106 | 24.62 | 65.67 | 1380 | $0,0,0,0,0$ |
| ll1_04_P0 | 9 | 0.99 | 106 | 24.62 | 65.67 | 1380 | $0,0,0,0,0$ |
| ll1_05_P0 | 9 | 0.99 | 106 | 24.62 | 65.67 | 1380 | $0,1,0,0,0$ |
| ll1_06_P0 | 9 | 0.99 | 106 | 24.62 | 65.67 | 1380 | $7,0,0,0,0$ |
| ll1_07_P0 | 9 | 0.99 | 106 | 24.62 | 65.67 | 1380 | $0,0,0,0,0$ |
| ll2_00_P0 | 7 | 0.99 | 60 | 30.03 | 58.33 | 1380 | $0,0,0,0,0$ |
| ll3_00_P0 | 7 | 0.99 | 60 | 30.05 | 58.23 | 1380 | $0,0,0,0,0$ |

Appendix B

Result of experiments - IP Model

B. 1 Results with teaming \& time-dependencies

Table B. 1

| Instance Name | Time | Best Obj | Bound | Gap | Instance Name | Time | Best Obj | Bound | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C101_25t_5w | 0.62 | 116.08 | 116.08 | 0 | R112_25t_5w | 900.01 | - | 156.3627 | - |
| C101_50t_10w | 252.33 | 242.34 | 242.3304 | 0 | R112_50t_10w | 900.89 | - | 224.0162 | - |
| C102_25t_5w | 900.02 | 113.904 | 88.686 | 0.22 | R201_25t_5w | 900.03 | 256.404 | 241.611 | 0.06 |
| C102_50t_10w | 900.06 | - | 224.6443 | - | R201_50t_10w | 900.02 | - | 380.9798 | - |
| C103_25t_5w | 900.02 | - | 74.2218 | - | R202_25t_5w | 900.01 | 280.772 | 187.3785 | 0.33 |
| C103_50t_10w | 900.06 | - | 145.4992 | - | R202_50t_10w | 900.02 | - | 299.711 | - |
| C104_25t_5w | 900.11 | - | 70.735 | - | R203_25t_5w | 900 | - | 174.2657 | - |
| C104_50t_10w | 901.21 | - | 137.4903 | - | R203_50t_10w | 900.35 | - | 255.5945 | - |
| C105_25t_5w | 3.86 | 124.06 | 124.06 | 0 | R204_25t_5w | 900.42 | - | 163.1976 | - |
| C105_50t_10w | 522.08 | 265.756 | 265.756 | 0 | R204_50t_10w | 901.2 | - | 224.6658 | - |
| C106_25t_5w | 0.67 | 116.08 | 116.08 | 0 | R205_25t_5w | 900 | 224.936 | 188.3601 | 0.16 |
| C106_50t_10w | 588.78 | 242.34 | 242.3186 | 0 | R205_50t_10w | 900.03 | - | 292.4445 | - |
| C107_25t_5w | 2.78 | 124.06 | 124.06 | 0 | R206_25t_5w | 900 | - | 164.4554 | - |
| C107_50t_10w | 900.03 | 257.12 | 249.6667 | 0.03 | R206_50t_10w | 900.24 | - | 268.4518 | - |
| C108_25t_5w | 900.01 | 124.516 | 99.1684 | 0.2 | R207_25t_5w | 900.51 | - | 159.7039 | - |
| C108_50t_10w | 900.13 | - | 164.3347 | - | R207_50t_10w | 900.1 | - | 244.6857 | - |
| C109_25t_5w | 900.78 | - | 55.8916 | - | R208_25t_5w | 900.01 | - | 159.9671 | - |
| C109_50t_10w | 900.05 | - | 107.4942 | - | R208_50t_10w | 900.95 | - | 224.2771 | - |
| C201_25t_5w | 1.63 | 146.804 | 146.804 | 0 | R209_25t_5w | 900.01 | 400.716 | 187.5394 | 0.53 |
| C201_50t_10w | 44.99 | 257.016 | 257.016 | 0 | R209_50t_10w | 905.92 | - | 262.0608 | - |
| C202_25t_5w | 900.01 | 149.852 | 110.8134 | 0.26 | R210_25t_5w | 900.03 | - | 187.9183 | - |
| C202_50t_10w | 900.81 | - | 204.4078 | - | R210_50t_10w | 900.06 | - | 264.6105 | - |
| C203_25t_5w | 900.02 | 209.612 | 105.3453 | 0.5 | R211_25t_5w | 900.32 | - | 156.7452 | - |
| C203_50t_10w | 900.35 | - | 176.8458 | - | R211_50t_10w | 900.16 | - | 223.196 | - |
| C204_25t_5w | 900 | - | 90.5569 | - | RC101_25t_5w | 900.01 | - | 228.76 | - |
| C204_50t_10w | 902.6 | - | 154.8397 | - | RC101_50t_10w | 901.31 | - | 377.8716 | - |
| C205_25t_5w | 900 | 148.704 | 116.3554 | 0.22 | RC102_25t_5w | 900.02 | - | 178.4969 | - |
| C205_50t_10w | 910.6 | - | 207.1381 | - | RC102_50t_10w | 188.63 | - | - | Infeasible |
| C206_25t_5w | 900.04 | 151.084 | 110.0439 | 0.27 | RC103_25t_5w | 900.03 | - | 91.9598 | - |
| C206_50t_10w | 900.03 | - | 200.1382 | - | RC103_50t_10w | 900.15 | - | 132.8921 | - |
| C207_25t_5w | 900.03 | 204.98 | 121.703 | 0.41 | RC104_25t_5w | 900.01 | - | 71.0499 | - |
| C207_50t_10w | 900.39 | - | 213.7431 | - | RC104_50t_10w | 900.29 | - | 108.9939 | - |
| C208_25t_5w | 900.05 | 195.132 | 96.6801 | 0.5 | RC105_25t_5w | 900.01 | - | 179.5345 | - |
| C208_50t_10w | 900.83 | - | 192.8239 | - | RC105_50t_10w | 900.07 | - | 283.1036 | - |
| R101_25t_5w | 1.53 | - | - | Infeasible | RC106_25t_5w | 900.01 | - | 124.8901 | - |
| R101_50t_10w | 20.05 | - | - | Infeasible | RC106_50t_10w | 900.02 | - | 174.9441 | - |
| R102_25t_5w | 900 | - | 241.2626 | - | RC107_25t_5w | 900.01 | - | 67.07 | - |
| R102_50t_10w | 82.75 | - | - | Infeasible | RC107_50t_10w | 901.06 | - | 108.7505 | - |
| R103_25t_5w | 900.19 | - | 205.7702 | - | RC108_25t_5w | 900.03 | - | 60.2942 | - |
| R103_50t_10w | 104.99 | - | - | Infeasible | RC108_50t_10w | 900.07 | - | 104.2573 | - |
| R104_25t_5w | 900.01 | - | 187.6477 | - | RC201_25t_5w | 900.01 | 230.808 | 209.3653 | 0.09 |
| R104_50t_10w | 296.3 | - | - | Infeasible | RC201_50t_10w | 900.15 | - | 298.7893 | - |
| R105_25t_5w | 4.78 | - | - | Infeasible | RC202_25t_5w | 900.01 | 230.112 | 154.4222 | 0.33 |
| R105_50t_10w | 900.08 | - | 450.7153 | - | RC202_50t_10w | 900.45 | - | 188.7285 | - |
| R106_25t_5w | 900 | - | 212.0484 | - | RC203_25t_5w | 900 | - | 79.1323 | - |
| R106_50t_10w | 900.02 | - | 335.8864 | - | RC203_50t_10w | 900.07 | - | 128.4802 | - |
| R107_25t_5w | 900.06 | - | 194.0732 | - | RC204_25t_5w | 900.01 | - | 65.323 | - |
| R107_50t_10w | 900.04 | - | 262.2022 | - | RC204_50t_10w | 901.61 | - | 108.9149 | - |
| R108_25t_5w | 900 | - | 185.1993 | - | RC205_25t_5w | 900.04 | 223.84 | 176.3638 | 0.21 |
| R108_50t_10w | 902.24 | - | 233.6151 | - | RC205_50t_10w | 900.15 | - | 239.5656 | - |
| R109_25t_5w | 900.01 | - | 213.1001 | - | RC206_25t_5w | 900.07 | 214.368 | 88.2789 | 0.59 |
| R109_50t_10w | 900.16 | - | 290.8524 | - | RC206_50t_10w | 900.25 | - | 149.3614 | - |
| R110_25t_5w | 900 | - | 181.3772 | - | RC207_25t_5w | 900.01 | - | 75.4133 | - |
| R110_50t_10w | 900.97 | - | 243.6301 | - | RC207_50t_10w | 900.14 | - | 124.8226 | - |
| R111_25t_5w | 902.19 | - | 202.6721 | - | RC208_25t_5w | 900.01 | - | 59.4431 | - |
| R111_50t_10w | 901.19 | - | 260.3502 | - | RC208_50t_10w | 900.09 | - | 103.9515 | - |

Figure B.1: Cl00 with teaming and time-dependent constraints (15 min time limit).

C200

Figure B.2: C200 with teaming and time-dependent constraints (15 min time limit).

Figure B.3: R200 with teaming and time-dependent constraints (15 min time limit).

Figure B.4: RC200 with teaming and time-dependent constraints (15 min time limit).

B. 2 Results without teaming \& time-dependencies

Table B. 2

| Instance Name | Time | Best Obj | Bound | Gap | Instance Name | Time | Best Obj | Bound | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C101_25t_5w | 0.34 | $8.39 \mathrm{E}+01$ | $8.39 \mathrm{E}+01$ | 0 | R112_25t_5w | 900.01 | - | $1.26 \mathrm{E}+02$ | - |
| C101_50t_10w | 15.02 | $1.60 \mathrm{E}+02$ | $1.60 \mathrm{E}+02$ | 0 | R112_50t_10w | 900.07 | - | $1.90 \mathrm{E}+02$ | - |
| C102_25t_5w | 900.16 | $8.34 \mathrm{E}+01$ | $7.31 \mathrm{E}+01$ | 0.12 | R201_25t_5w | 4.53 | $1.93 \mathrm{E}+02$ | $1.93 \mathrm{E}+02$ | 0 |
| C102_50t_10w | 900.02 | - | $1.47 \mathrm{E}+02$ | - | R201_50t_10w | 900.04 | $3.34 \mathrm{E}+02$ | $3.21 \mathrm{E}+02$ | 0.04 |
| C103_25t_5w | 900.01 | $1.06 \mathrm{E}+02$ | $6.31 \mathrm{E}+01$ | 0.4 | R202_25t_5w | 900.00 | $1.78 \mathrm{E}+02$ | $1.49 \mathrm{E}+02$ | 0.16 |
| C103_50t_10w | 900.04 | - | $1.23 \mathrm{E}+02$ | - | R202_50t_10w | 900.06 | - | $2.34 \mathrm{E}+02$ | - |
| C104_25t_5w | 900.00 | $8.55 \mathrm{E}+01$ | $6.09 \mathrm{E}+01$ | 0.29 | R203_25t_5w | 900.03 | $2.26 \mathrm{E}+02$ | $1.36 \mathrm{E}+02$ | 0.4 |
| C104_50t_10w | 900.08 | - | $9.85 \mathrm{E}+01$ | - | R203_50t_10w | 900.50 | - | $2.04 \mathrm{E}+02$ | - |
| C105_25t_5w | 0.73 | $8.39 \mathrm{E}+01$ | $8.39 \mathrm{E}+01$ | 0 | R204_25t_5w | 900.32 | $1.56 \mathrm{E}+02$ | $1.28 \mathrm{E}+02$ | 0.18 |
| C105_50t_10w | 15.20 | $1.59 \mathrm{E}+02$ | $1.59 \mathrm{E}+02$ | 0 | R204_50t_10w | 900.59 | - | $1.92 \mathrm{E}+02$ | - |
| C106_25t_5w | 0.39 | $8.39 \mathrm{E}+01$ | $8.39 \mathrm{E}+01$ | 0 | R205_25t_5w | 900.01 | $1.66 \mathrm{E}+02$ | $1.55 \mathrm{E}+02$ | 0.07 |
| C106_50t_10w | 23.23 | $1.60 \mathrm{E}+02$ | $1.60 \mathrm{E}+02$ | 0 | R205_50t_10w | 900.06 | - | $2.52 \mathrm{E}+02$ | - |
| C107_25t_5w | 1.06 | $8.39 \mathrm{E}+01$ | $8.39 \mathrm{E}+01$ | 0 | R206_25t_5w | 900.01 | $1.74 \mathrm{E}+02$ | $1.39 \mathrm{E}+02$ | 0.2 |
| C107_50t_10w | 18.78 | $1.59 \mathrm{E}+02$ | $1.59 \mathrm{E}+02$ | 0 | R206_50t_10w | 901.70 | - | $2.17 \mathrm{E}+02$ | - |
| C108_25t_5w | 900.00 | $8.39 \mathrm{E}+01$ | $8.00 \mathrm{E}+01$ | 0.05 | R207_25t_5w | 900.07 | $1.82 \mathrm{E}+02$ | $1.32 \mathrm{E}+02$ | 0.28 |
| C108_50t_10w | 911.88 | - | $1.25 \mathrm{E}+02$ | - | R207_50t_10w | 900.29 | - | $1.98 \mathrm{E}+02$ | - |
| C109_25t_5w | 900.00 | $8.59 \mathrm{E}+01$ | $4.99 \mathrm{E}+01$ | 0.42 | R208_25t_5w | 900.03 | $1.58 \mathrm{E}+02$ | $1.28 \mathrm{E}+02$ | 0.19 |
| C109_50t_10w | 900.10 | - | $8.42 \mathrm{E}+01$ | - | R208_50t_10w | 900.32 | - | $1.90 \mathrm{E}+02$ | - |
| C201_25t_5w | 0.45 | $9.35 \mathrm{E}+01$ | $9.35 \mathrm{E}+01$ | 0 | R209_25t_5w | 900.03 | $1.62 \mathrm{E}+02$ | $1.39 \mathrm{E}+02$ | 0.14 |
| C201_50t_10w | 11.53 | $1.60 \mathrm{E}+02$ | $1.60 \mathrm{E}+02$ | 0 | R209_50t_10w | 900.07 | - | $2.22 \mathrm{E}+02$ | - |
| C202_25t_5w | 330.68 | $9.35 \mathrm{E}+01$ | $9.35 \mathrm{E}+01$ | 0 | R210_25t_5w | 900.03 | $1.82 \mathrm{E}+02$ | $1.49 \mathrm{E}+02$ | 0.18 |
| C202_50t_10w | 900.03 | $1.64 \mathrm{E}+02$ | $1.45 \mathrm{E}+02$ | 0.12 | R210_50t_10w | 900.07 | - | $2.18 \mathrm{E}+02$ | - |
| C203_25t_5w | 900.03 | $1.06 \mathrm{E}+02$ | $7.93 \mathrm{E}+01$ | 0.25 | R211_25t_5w | 900.02 | $1.51 \mathrm{E}+02$ | $1.27 \mathrm{E}+02$ | 0.16 |
| C203_50t_10w | 900.10 | - | $1.37 \mathrm{E}+02$ | - | R211_50t_10w | 900.05 | - | $1.90 \mathrm{E}+02$ | - |
| C204_25t_5w | 900.24 | $1.22 \mathrm{E}+02$ | $7.18 \mathrm{E}+01$ | 0.41 | RC101_25t_5w | 466.83 | $1.94 \mathrm{E}+02$ | $1.94 \mathrm{E}+02$ | 0 |
| C204_50t_10w | 900.11 | $2.55 \mathrm{E}+02$ | $1.25 \mathrm{E}+02$ | 0.51 | RC101_50t_10w | 900.03 | - | $3.16 \mathrm{E}+02$ | - |
| C205_25t_5w | 16.86 | $9.35 \mathrm{E}+01$ | $9.35 \mathrm{E}+01$ | 0 | RC102_25t_5w | 900.01 | $1.51 \mathrm{E}+02$ | $1.22 \mathrm{E}+02$ | 0.2 |
| C205_50t_10w | 900.75 | $4.27 \mathrm{E}+02$ | $1.52 \mathrm{E}+02$ | 0.64 | RC102_50t_10w | 900.04 | - | $1.81 \mathrm{E}+02$ | - |
| C206_25t_5w | 900.00 | $9.35 \mathrm{E}+01$ | $9.21 \mathrm{E}+01$ | 0.02 | RC103_25t_5w | 900.01 | $1.42 \mathrm{E}+02$ | $5.60 \mathrm{E}+01$ | 0.6 |
| C206_50t_10w | 900.25 | $2.45 \mathrm{E}+02$ | $1.40 \mathrm{E}+02$ | 0.43 | RC103_50t_10w | 900.93 | - | $1.10 \mathrm{E}+02$ | - |
| C207_25t_5w | 900.02 | $9.68 \mathrm{E}+01$ | $8.53 \mathrm{E}+01$ | 0.12 | RC104_25t_5w | 900.01 | $1.33 \mathrm{E}+02$ | $5.26 \mathrm{E}+01$ | 0.61 |
| C207_50t_10w | 900.47 | - | $1.49 \mathrm{E}+02$ | - | RC104_50t_10w | 900.82 | - | $9.52 \mathrm{E}+01$ | - |
| C208_25t_5w | 900.02 | $9.42 \mathrm{E}+01$ | $7.87 \mathrm{E}+01$ | 0.16 | RC105_25t_5w | 900.01 | $1.72 \mathrm{E}+02$ | $1.31 \mathrm{E}+02$ | 0.24 |
| C208_50t_10w | 900.02 | - | $1.39 \mathrm{E}+02$ | - | RC105_50t_10w | 900.01 | - | $2.07 \mathrm{E}+02$ | - |
| R101_25t_5w | 0.42 | - | - | Infeasible | RC106_25t_5w | 900.01 | $1.51 \mathrm{E}+02$ | $1.09 \mathrm{E}+02$ | 0.28 |
| R101_50t_10w | 9.94 | - | - | Infeasible | RC106_50t_10w | 900.06 | - | $1.39 \mathrm{E}+02$ | - |
| R102_25t_5w | 900.00 | - | $1.95 \mathrm{E}+02$ | - | RC107_25t_5w | 900.18 | $1.28 \mathrm{E}+02$ | $5.12 \mathrm{E}+01$ | 0.6 |
| R102_50t_10w | 900.10 | - | $3.02 \mathrm{E}+02$ | - | RC107_50t_10w | 900.06 | - | $9.55 \mathrm{E}+01$ | - |
| R103_25t_5w | 900.00 | - | $1.53 \mathrm{E}+02$ | - | RC108_25t_5w | 900.06 | $1.30 \mathrm{E}+02$ | $4.82 \mathrm{E}+01$ | 0.63 |
| R103_50t_10w | 900.05 | - | $2.33 \mathrm{E}+02$ | - | RC108_50t_10w | 900.98 | - | $9.17 \mathrm{E}+01$ | - |
| R104_25t_5w | 900.00 | - | $1.38 \mathrm{E}+02$ | - | RC201_25t_5w | 33.88 | $1.51 \mathrm{E}+02$ | $1.51 \mathrm{E}+02$ | 0 |
| R104_50t_10w | 900.24 | - | $2.01 \mathrm{E}+02$ | - | RC201_50t_10w | 900.03 | - | $2.50 \mathrm{E}+02$ | - |
| R105_25t_5w | 900.00 | - | $2.26 \mathrm{E}+02$ | - | RC202_25t_5w | 900.01 | $1.50 \mathrm{E}+02$ | $1.03 \mathrm{E}+02$ | 0.32 |
| R105_50t_10w | 902.52 | $3.90 \mathrm{E}+02$ | $3.69 \mathrm{E}+02$ | 0.05 | RC202_50t_10w | 900.09 | - | $1.37 \mathrm{E}+02$ | - |
| R106_25t_5w | 900.00 | $1.98 \mathrm{E}+02$ | $1.71 \mathrm{E}+02$ | 0.13 | RC203_25t_5w | 900.03 | $1.64 \mathrm{E}+02$ | $5.57 \mathrm{E}+01$ | 0.66 |
| R106_50t_10w | 900.22 | - | $2.47 \mathrm{E}+02$ | - | RC203_50t_10w | 900.07 | - | $1.09 \mathrm{E}+02$ | - |
| R107_25t_5w | 900.00 | - | $1.44 \mathrm{E}+02$ | - | RC204_25t_5w | 900.26 | $1.32 \mathrm{E}+02$ | $5.02 \mathrm{E}+01$ | 0.62 |
| R107_50t_10w | 900.10 | - | $2.13 \mathrm{E}+02$ | - | RC204_50t_10w | 902.07 | - | $9.50 \mathrm{E}+01$ | - |
| R108_25t_5w | 900.00 | - | $1.38 \mathrm{E}+02$ | - | RC205_25t_5w | 900.01 | $1.45 \mathrm{E}+02$ | $1.16 \mathrm{E}+02$ | 0.2 |
| R108_50t_10w | 900.86 | - | $1.98 \mathrm{E}+02$ | - | RC205_50t_10w | 902.25 | $3.19 \mathrm{E}+02$ | $1.79 \mathrm{E}+02$ | 0.44 |
| R109_25t_5w | 900.00 | $1.84 \mathrm{E}+02$ | $1.76 \mathrm{E}+02$ | 0.04 | RC206_25t_5w | 900.01 | $1.38 \mathrm{E}+02$ | $7.62 \mathrm{E}+01$ | 0.45 |
| R109_50t_10w | 900.01 | - | $2.55 \mathrm{E}+02$ | - | RC206_50t_10w | 900.03 | - | $1.36 \mathrm{E}+02$ | - |
| R110_25t_5w | 900.00 | - | $1.38 \mathrm{E}+02$ | - | RC207_25t_5w | 900.01 | $1.29 \mathrm{E}+02$ | $6.43 \mathrm{E}+01$ | 0.5 |
| R110_50t_10w | 901.85 | - | $2.09 \mathrm{E}+02$ | - | RC207_50t_10w | 900.03 | $8.89 \mathrm{E}+02$ | $1.08 \mathrm{E}+02$ | 0.88 |
| R111_25t_5w | 900.02 | - | $1.50 \mathrm{E}+02$ | - | RC208_25t_5w | 900.07 | $1.25 \mathrm{E}+02$ | $4.78 \mathrm{E}+01$ | 0.62 |
| R111_50t_10w | 900.33 | - | $2.09 \mathrm{E}+02$ | - | RC208_50t_10w | 900.76 | - | $9.29 \mathrm{E}+01$ | - |

Figure B.5: Cl00 without Teaming and Connected Activities constraints and 15 min time limit.

C200

Figure B.6: C200 without Teaming and Connected Activities constraints and 15 min time limit.

Figure B.7: R100 without Teaming and Connected Activities constraints and 15 min time limit.

R200

Figure B.8: R200 without Teaming and Connected Activities constraints and 15 min time limit.

Figure B.9: RCl00 without Teaming and Connected Activities constraints and 15 min time limit.

Figure B.10: RC200 without Teaming and Connected Activities constraints and 15 min time limit.

B. 3 Teaming \& time-dependencies (limit 1 hour)

| Instance Name | Time | Best Obj | Bound | Gap | Instance Name | Time | Best Obj | Bound | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C102_50t_10w | 3600.04 | - | $2.25 \mathrm{E}+02$ | - | R205_50t_10w | 3600.03 | - | $2.99 \mathrm{E}+02$ | - |
| C103_25t_5w | 3600.01 | - | $7.49 \mathrm{E}+01$ | - | R206_25t_5w | 3600.01 | - | $1.68 \mathrm{E}+02$ | - |
| C103_50t_10w | 3600.07 | - | $1.71 \mathrm{E}+02$ | - | R206_50t_10w | 3600.08 | - | $2.71 \mathrm{E}+02$ | - |
| C104_25t_5w | 3600.79 | - | $8.81 \mathrm{E}+01$ | - | R207_25t_5w | 3600.01 | - | $1.61 \mathrm{E}+02$ | - |
| C104_50t_10w | 3600.04 | - | $1.39 \mathrm{E}+02$ | - | R207_50t_10w | 3600.16 | - | $2.45 \mathrm{E}+02$ | - |
| C108_50t_10w | 3604.43 | - | $1.68 \mathrm{E}+02$ | - | R208_25t_5w | 3600.03 | - | $1.61 \mathrm{E}+02$ | - |
| C109_25t_5w | 3600.02 | - | $6.15 \mathrm{E}+01$ | - | R208_50t_10w | 3600.03 | - | $2.25 \mathrm{E}+02$ | - |
| C109_50t_10w | 3600.05 | - | $1.08 \mathrm{E}+02$ | - | R209_50t_10w | 3600.09 | - | $2.63 \mathrm{E}+02$ | - |
| C202_50t_10w | 3600.01 | - | $2.11 \mathrm{E}+02$ | - | R210_25t_5w | 3600.05 | $2.76 \mathrm{E}+02$ | $1.89 \mathrm{E}+02$ | 0.32 |
| C203_50t_10w | 3600.08 | - | $1.79 \mathrm{E}+02$ | - | R210_50t_10w | 3600.05 | - | $2.75 \mathrm{E}+02$ | - |
| C204_25t_5w | 3600.04 | - | $9.12 \mathrm{E}+01$ | - | R211_25t_5w | 3600.01 | - | $1.57 \mathrm{E}+02$ | - |
| C204_50t_10w | 3600.35 | - | $1.56 \mathrm{E}+02$ | - | R211_50t_10w | 3600.03 | - | $2.26 \mathrm{E}+02$ | - |
| C205_50t_10w | 3600.02 | - | $2.08 \mathrm{E}+02$ | - | RC101_25t_5w | 3600 | - | $2.34 \mathrm{E}+02$ | - |
| C206_50t_10w | 3600.02 | - | $2.00 \mathrm{E}+02$ | - | RC101_50t_10w | 3600.03 | - | $3.82 \mathrm{E}+02$ | - |
| C207_50t_10w | 3600.02 | - | $2.14 \mathrm{E}+02$ | - | RC102_25t_5w | 3600.01 | - | $1.80 \mathrm{E}+02$ | - |
| C208_50t_10w | 3600.05 | - | $1.93 \mathrm{E}+02$ | - | RC103_25t_5w | 3600.01 | - | $9.53 \mathrm{E}+01$ | - |
| R102_25t_5w | 3600.02 | - | $2.44 \mathrm{E}+02$ | - | RC103_50t_10w | 3600.06 | - | $1.34 \mathrm{E}+02$ | - |
| R103_25t_5w | 3600.01 | - | $2.10 \mathrm{E}+02$ | - | RC104_25t_5w | 3600.01 | - | $7.25 \mathrm{E}+01$ | - |
| R104_25t_5w | 3600.3 | - | $1.88 \mathrm{E}+02$ | - | RC104_50t_10w | 3602.23 | - | $1.10 \mathrm{E}+02$ | - |
| R105_50t_10w | 3600.07 | - | $4.56 \mathrm{E}+02$ | - | RC105_25t_5w | 3600.01 | - | $1.81 \mathrm{E}+02$ | - |
| R106_25t_5w | 3600.01 | - | $2.14 \mathrm{E}+02$ | - | RC105_50t_10w | 3600.03 | - | $2.83 \mathrm{E}+02$ | - |
| R106_50t_10w | 3600.33 | - | $3.41 \mathrm{E}+02$ | - | RC106_25t_5w | 3600.03 | $2.16 \mathrm{E}+02$ | $1.32 \mathrm{E}+02$ | 0.39 |
| R107_25t_5w | 3600.01 | - | $1.97 \mathrm{E}+02$ | - | RC106_50t_10w | 3600.03 | - | $1.78 \mathrm{E}+02$ | - |
| R107_50t_10w | 3600.08 | - | $2.68 \mathrm{E}+02$ | - | RC107_25t_5w | 3600.01 | - | $6.80 \mathrm{E}+01$ | - |
| R108_25t_5w | 3600.01 | - | $1.87 \mathrm{E}+02$ | - | RC107_50t_10w | 3600.06 | - | $1.10 \mathrm{E}+02$ | - |
| R108_50t_10w | 3600.82 | - | $2.38 \mathrm{E}+02$ | - | RC108_25t_5w | 3600.03 | - | $6.07 \mathrm{E}+01$ | - |
| R109_25t_5w | 3600.01 | - | $2.18 \mathrm{E}+02$ | - | RC108_50t_10w | 3600.08 | - | $1.05 \mathrm{E}+02$ | - |
| R109_50t_10w | 3607.16 | - | $2.97 \mathrm{E}+02$ | - | RC201_50t_10w | 3600.06 | - | $3.00 \mathrm{E}+02$ | - |
| R110_25t_5w | 3600.02 | - | $1.83 \mathrm{E}+02$ | - | RC202_50t_10w | 3600.84 | - | $2.07 \mathrm{E}+02$ | - |
| R110_50t_10w | 3600.02 | - | $2.46 \mathrm{E}+02$ | - | RC203_25t_5w | 3600.01 | - | $8.24 \mathrm{E}+01$ | - |
| R111_25t_5w | 3600.01 | - | $2.05 \mathrm{E}+02$ | - | RC203_50t_10w | 3600.03 | - | $1.30 \mathrm{E}+02$ | - |
| R111_50t_10w | 3600.15 | - | $2.69 \mathrm{E}+02$ | - | RC204_25t_5w | 3600.01 | - | $6.61 \mathrm{E}+01$ | - |
| R112_25t_5w | 3600.22 | - | $1.57 \mathrm{E}+02$ | - | RC204_50t_10w | 3600.05 | - | $1.09 \mathrm{E}+02$ | - |
| R112_50t_10w | 3600.05 | - | $2.26 \mathrm{E}+02$ | - | RC205_50t_10w | 3600.06 | - | $2.41 \mathrm{E}+02$ | - |
| R201_50t_10w | 3600.05 | $4.35 \mathrm{E}+02$ | $3.82 \mathrm{E}+02$ | 0.12 | RC206_50t_10w | 3600.03 | - | $1.50 \mathrm{E}+02$ | - |
| R202_50t_10w | 3600.09 | - | $3.10 \mathrm{E}+02$ | - | RC207_25t_5w | 3600.01 | - | $7.71 \mathrm{E}+01$ | - |
| R203_25t_5w | 3600 | - | $1.75 \mathrm{E}+02$ | - | RC207_50t_10w | 3600.06 | - | $1.25 \mathrm{E}+02$ | - |
| R203_50t_10w | 3600.16 | - | $2.58 \mathrm{E}+02$ | - | RC208_25t_5w | 3600.03 | - | $5.99 \mathrm{E}+01$ | - |
| R204_25t_5w | 3600.03 | - | $1.65 \mathrm{E}+02$ | - | RC208_50t_10w | 3600.03 | - | $1.05 \mathrm{E}+02$ | - |
| R204_50t_10w | 3600.36 | - | $2.26 \mathrm{E}+02$ | - | | | | | |

Table B. 3

Feasible after 60 minutes

Figure B.11: Solver solutions after increasing time limit to 60 min .

B. 4 Teaming \& time-dependencies (limit 4 hours)

| Instance Name | Time | Best Obj | Bound | Gap | Instance Name | Time | Best Obj | Bound | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C102_50t_10w | 14400 | 265.824 | 225.08593 | 0.153252 | R204_50t_10w | 14400.3 | - | 225.90787 | - |
| C103_25t_5w | 14400 | 135.776 | 78.15259 | 0.424401 | R205_50t_10w | 14400.4 | - | 299.96596 | - |
| C103_50t_10w | 14400 | - | 172.61957 | - | R206_25t_5w | 14400.0 | 224.388 | 170.86254 | 0.23854 |
| C104_25t_5w | 14400 | 130.216 | 93.56153 | 0.28149 | R206_50t_10w | 14400.0 | - | 274.46083 | - |
| C104_50t_10w | 14400 | - | 140.10743 | - | R207_25t_5w | 14400.0 | - | 162.42655 | - |
| C108_50t_10w | 14400 | - | 177.63550 | - | R207_50t_10w | 14400.9 | - | 247.52441 | - |
| C109_25t_5w | 14400 | 126.332 | 65.52286 | 0.481344 | R208_25t_5w | 14400.0 | 232.492 | 162.50627 | 0.30102 |
| C109_50t_10w | 14400 | - | 116.68118 | - | R208_50t_10w | 14400.0 | - | 224.92155 | - |
| C202_50t_10w | 14400 | - | 216.02025 | - | R209_50t_10w | 14400.4 | - | 264.51072 | - |
| C203_50t_10w | 14400 | - | 179.24373 | - | R210_50t_10w | 14400.0 | - | 275.54034 | - |
| C204_25t_5w | 14400 | 159.928 | 94.04139 | 0.411977 | R211_25t_5w | 14400.0 | 247.388 | 158.45162 | 0.35950 |
| C204_50t_10w | 14400 | - | 155.08782 | - | R211_50t_10w | 14400.0 | - | 226.77157 | - |
| C205_50t_10w | 14400 | - | 202.41043 | - | RC101_25t_5w | 14400.0 | - | 258.51817 | - |
| C206_50t_10w | 14400 | 284.304 | 200.26899 | 0.295581 | RC101_50t_10w | 14400.0 | 458.104 | 392.72032 | 0.14272 |
| C207_50t_10w | 14400 | - | 213.59567 | - | RC102_25t_5w | 14400.0 | - | 183.29947 | - |
| C208_50t_10w | 14400 | - | 194.146719 | - | RC103_25t_5w | 14400.0 | - | 100.61711 | - |
| R102_25t_5w | 14400 | - | 249.16771 | - | RC103_50t_10w | 14400.0 | - | 141.47467 | - |
| R103_25t_5w | 14400 | - | 215.35747 | - | RC104_25t_5w | 14400.0 | - | 76.121035 | - |
| R104_25t_5w | 14400 | - | 194.16938 | - | RC104_50t_10w | 14400.0 | - | 110.83161 | - |
| R105_50t_10w | 14400 | - | 455.54133 | - | RC105_25t_5w | 14400.0 | - | 189.92938 | - |
| R106_25t_5w | 14400 | - | 217.68254 | - | RC105_50t_10w | 14400.0 | - | 285.30623 | - |
| R106_50t_10w | 14400 | - | 342.20779 | - | RC106_50t_10w | 14400.0 | - | 179.28746 | - |
| R107_25t_5w | 14400 | - | 203.38693 | - | RC107_25t_5w | 14400.0 | - | 70.43331 | - |
| R107_50t_10w | 14400 | - | 272.33443 | - | RC107_50t_10w | 14400.1 | - | 110.14980 | - |
| R108_25t_5w | 14400 | - | 189.48152 | - | RC108_25t_5w | 14400.0 | - | 62.200693 | - |
| R108_50t_10w | 14400 | - | 240.17279 | - | RC108_50t_10w | 14400.0 | - | 105.68588 | - |
| R109_25t_5w | 14400 | - | 226.79629 | - | RC201_50t_10w | 14400.0 | 432.864 | 304.87446 | 0.29568 |
| R109_50t_10w | 14400 | - | 299.60077 | - | RC202_50t_10w | 14400.0 | - | 215.93072 | - |
| R110_25t_5w | 14400 | - | 186.79719 | - | RC203_25t_5w | 14400.0 | 227.544 | 88.411068 | 0.61145 |
| R110_50t_10w | 14400 | - | 246.37104 | - | RC203_50t_10w | 14400.0 | - | 130.09251 | - |
| R111_25t_5w | 14400 | - | 206.04275 | - | RC204_25t_5w | 14400.0 | 220.724 | 71.381029 | 0.67660 |
| R111_50t_10w | 14400 | - | 268.80196 | - | RC204_50t_10w | 14400.0 | - | 109.56101 | - |
| R112_25t_5w | 14400 | - | 158.89112 | - | RC205_50t_10w | 14400.0 | - | 241.98986 | - |
| R112_50t_10w | 14400 | - | 227.26095 | - | RC206_50t_10w | 14400.0 | - | 150.59880 | - |
| R202_50t_10w | 14400 | - | 310.45724 | - | RC207_25t_5w | 14400.0 | 217.608 | 86.860989 | 0.60083 |
| R203_25t_5w | 14400 | 238.664 | 177.19099 | 0.257571 | RC207_50t_10w | 14400.0 | - | 127.76435 | - |
| R203_50t_10w | 14400 | - | 258.83125 | - | RC208_25t_5w | 14400.0 | - | 60.842811 | - |
| R204_25t_5w | 14400 | 241.28 | 168.15897 | 0.303055 | RC208_50t_10w | 14400.0 | - | 105.68961 | - |

Table B.4: 240 minutes

CXXX Feasible after 240 minutes

Figure B.12: Solver achieving feasible solutions for instances after increasing to a time limit of 240 minutes

RCXXX Feasible after 240 minutes

Figure B.13: Solver achieving feasible solutions for instances after increasing to a time limit of 240 minutes

Figure B.14: Solver achieving feasible solutions for instances after increasing to a time limit of 240 minutes

Appendix C

Detailed experiments results with MILP model

| Instance Name | Time | Best Obj | Bound | Gap | Category |
| :---: | :---: | :---: | :---: | :---: | :---: |
| hh_00 | 4356.25 | $6.96 \mathrm{E}+12$ | -6803538294 | 1.000977478 | Non-Optimal |
| 111_00 | 7200.11 | 16667174574 | 217961291.4 | 0.986922721 | Non-Optimal |
| 111_01 | 7200.06 | 13476948622 | 217961977.6 | 0.983827053 | Non-Optimal |
| 111_02 | 7200.07 | 36571184133 | 217960117.8 | 0.994040113 | Non-Optimal |
| 111_03 | 7200.2 | 8574920712 | 217962159.6 | 0.974581437 | Non-Optimal |
| 111_04 | 7200.03 | 3626168528 | 217962623.5 | 0.939891756 | Non-Optimal |
| 111_05 | 7200.06 | 33256410348 | 217957850.3 | 0.99344614 | Non-Optimal |
| 111_06 | 7200.06 | $3.04 \mathrm{E}+11$ | 217962111 | 0.999282373 | Non-Optimal |
| 111_07 | 7200.07 | 26642544571 | 217957422.9 | 0.991819196 | Non-Optimal |
| 112_00 | 882.69 | 5482534825 | 5482456269 | $1.43 \mathrm{E}-05$ | Optimal |
| 113_00 | 7200.07 | -198615845.6 | -198671925.7 | 0.000282354 | Non-Optimal |
| test150-0-0-0-0_d0_tw0 | 204.82 | - | - | $0.00 \mathrm{E}+00$ | OutOfMemory |
| test150-0-0-0-0_d0_tw1 | 227.64 | - | - | 0 | OutOfMemory |
| test150-0-0-0-0_d0_tw2 | 219.92 | - | - | 0 | OutOfMemory |
| test150-0-0-0-0_d0_tw3 | 233.87 | - | - | $0.00 \mathrm{E}+00$ | OutOfMemory |
| test150-0-0-0-0_d0_tw4 | 297.67 | - | - | 0 | OutOfMemory |
| test50-0-0-0-0_d0_tw0 | 123.61 | -842599324.2 | -842601771.9 | $2.90 \mathrm{E}-06$ | Optimal |
| test50-0-0-0-0_d0_tw1 | 105.81 | -842599506.6 | -842601114.2 | $1.91 \mathrm{E}-06$ | Optimal |
| test50-0-0-0-0_d0_tw2 | 71.51 | -842599560.3 | -842601056.2 | $1.78 \mathrm{E}-06$ | Optimal |
| test50-0-0-0-0_d0_tw3 | 53.73 | -842598590 | -842598904.6 | $3.73 \mathrm{E}-07$ | Optimal |
| test50-0-0-0-0_d0_tw4 | 257.08 | -842599753.8 | -842601052.4 | $1.54 \mathrm{E}-06$ | Optimal |
| test250-0-0-0-0_d0_tw0 | | - | - | - | Unloadable |
| test250-0-0-0-0_d0_tw1 | | - | - | - | Unloadable |
| test250-0-0-0-0_d0_tw2 | | - | - | - | Unloadable |
| test250-0-0-0-0_d0_tw3 | | - | - | - | Unloadable |
| test250-0-0-0-0_d0_tw4 | | - | - | - | Unloadable |
| BTEngineers | | - | - | - | Unloadable |
| 1_District0 | 7200.09 | $5.15 \mathrm{E}+11$ | -20168585306 | 1.039192633 | Non-Optimal |
| 1_District1 | 7294.02 | $8.15 \mathrm{E}+13$ | $5.76 \mathrm{E}+12$ | $9.29 \mathrm{E}-01$ | Non-Optimal |
| 1_District2 | 7200.07 | $9.80 \mathrm{E}+11$ | 46047416369 | 0.953023385 | Non-Optimal |
| 1_District3 | 7200.24 | $2.56 \mathrm{E}+12$ | -27961999838 | 1.01094368 | Non-Optimal |
| 1_District4 | 756.21 | - | - | 0 | OutOfMemory |
| 1_District5 | 415.59 | - | - | 0 | OutOfMemory |
| 10_District0 | 7200.02 | 71563566909 | -6815574703 | 1.095238052 | Non-Optimal |
| 10_District1 | 7200.12 | $1.53 \mathrm{E}+13$ | $9.39 \mathrm{E}+11$ | 0.938766147 | Non-Optimal |
| 10_District2 | 7200.02 | $2.78 \mathrm{E}+10$ | -1214374567 | 1.043728136 | Non-Optimal |
| 10_District3 | 7200.05 | $1.75 \mathrm{E}+11$ | 13062383793 | 0.925292423 | Non-Optimal |
| 10_District4 | 7219.8 | $5.81 \mathrm{E}+13$ | $2.23 \mathrm{E}+12$ | 0.961684005 | Non-Optimal |
| 10_District5 | 7203.97 | $7.31 \mathrm{E}+13$ | $9.46 \mathrm{E}+12$ | 0.870548433 | Non-Optimal |

Table C.1: Solver MILP results with time limit of 2 hours. Part 1

| Instance Name | Time | Best Obj | Bound | Table C. 2 - continued from previous page | | | | Best Obj | Bound | Gap | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Gap | Category | Instance Name | Time | | | | |
| 24_District5 | 7209.34 | - | -3.28E+11 | 0 | No solution | 3_District5 | 7208.4 | $1.27 \mathrm{E}+14$ | $8.56 \mathrm{E}+12$ | 0.932814908 | Non-Optimal |
| 25_District0 | 7201.72 | 1255504790 | -232811062.1 | 1.185432237 | Non-Optimal | 30_District0 | 7200.07 | $1.49 \mathrm{E}+10$ | 4368418960 | 0.705960652 | Non-Optimal |
| 25_District1 | 7200.09 | $1.21 \mathrm{E}+13$ | $2.39 \mathrm{E}+12$ | 0.803648051 | Non-Optimal | 30_District1 | 7200.09 | $6.03 \mathrm{E}+12$ | $1.72 \mathrm{E}+12$ | 0.714441049 | Non-Optimal |
| 25_District2 | 7200.02 | 2430507031 | 1590155386 | 0.345751579 | Non-Optimal | 30_District2 | 7200.07 | $2.90 \mathrm{E}+10$ | 20012134951 | 0.30956102 | Non-Optimal |
| 25_District3 | 7200.02 | 54825213021 | 7726221833 | 0.859075389 | Non-Optimal | 30_District3 | 7200.06 | $1.56 \mathrm{E}+11$ | 7922051937 | 0.949105043 | Non-Optimal |
| 25_District4 | 7215.86 | $5.13 \mathrm{E}+13$ | $2.71 \mathrm{E}+12$ | 0.947152415 | Non-Optimal | 30_District4 | 7200.66 | $1.48 \mathrm{E}+13$ | $4.97 \mathrm{E}+11$ | 0.966441272 | Non-Optimal |
| 25_District5 | 7200.66 | $2.00 \mathrm{E}+13$ | $1.67 \mathrm{E}+12$ | 0.916628109 | Non-Optimal | 30_District5 | 7200.38 | - | $6.16 \mathrm{E}+11$ | 0 | No solution |
| 4-District0 | 7200 | $2.04 \mathrm{E}+10$ | 2189513570 | 0.892561051 | Non-Optimal | C101_100t_20w | 7202.05 | $-1.23 \mathrm{E}+10$ | -12548081860 | 0.019762868 | Non-Optimal |
| 4_District1 | 7200.65 | $2.13 \mathrm{E}+13$ | $4.02 \mathrm{E}+12$ | 0.811730311 | Non-Optimal | C101_25t_5w | 7.89 | $9.51 \mathrm{E}+06$ | 9512566.64 | 0 | Optimal |
| 4_District2 | 7200.06 | $1.98 \mathrm{E}+10$ | 5829765174 | 0.705150297 | Non-Optimal | C101_50t_10w | 30.83 | $-1.08 \mathrm{E}+09$ | $-1.08 \mathrm{E}+09$ | $1.76 \mathrm{E}-07$ | Optimal |
| 4_District3 | 7200.03 | $3.12 \mathrm{E}+10$ | -1881241019 | 1.06021312 | Non-Optimal | C102_100t_20w | 7201.29 | $7.30 \mathrm{E}+11$ | $-1.26 \mathrm{E}+10$ | 1.017266662 | Non-Optimal |
| 4_District4 | 7239.01 | - | $5.61 \mathrm{E}+12$ | 0 | No solution | C102_25t_5w | 7200.03 | -37546115.76 | -48413308.13 | 0.289435862 | Non-Optimal |
| 4-District5 | 7201.05 | $4.25 \mathrm{E}+13$ | $7.35 \mathrm{E}+12$ | 0.827063059 | Non-Optimal | C102_50t_10w | 7200.01 | $-1.10 \mathrm{E}+09$ | $-1.12 \mathrm{E}+09$ | 0.014134537 | Non-Optimal |
| 5_District0 | 7200.29 | $1.05 \mathrm{E}+11$ | 7090179786 | 0.932670091 | Non-Optimal | C103_100t_20w | 7202.91 | $4.92 \mathrm{E}+11$ | -12596721561 | 1.025599204 | Non-Optimal |
| 5_District1 | 7212.83 | $4.41 \mathrm{E}+13$ | $2.79 \mathrm{E}+12$ | 0.93671232 | Non-Optimal | C103_25t_5w | 7200.01 | -43052838.46 | -54066625 | 0.255820219 | Non-Optimal |
| 5_District2 | 7200.03 | $4.97 \mathrm{E}+10$ | 9297427430 | 0.813104381 | Non-Optimal | C103_50t_10w | 7200.09 | -1110321792 | $-1.13 \mathrm{E}+09$ | 0.021053495 | Non-Optimal |
| 5_District3 | 7200.13 | $8.81 \mathrm{E}+11$ | -12353228074 | 1.014024341 | Non-Optimal | C104_100t_20w | 7394.13 | $4.03 \mathrm{E}+11$ | $-1.26 \mathrm{E}+10$ | 1.031251881 | Non-Optimal |
| 5_District4 | 7261.58 | $1.51 \mathrm{E}+14$ | $4.11 \mathrm{E}+12$ | 0.972712102 | Non-Optimal | C104_25t_5w | 7200.01 | -3002994.24 | -54066760.99 | 17.00428395 | Non-Optimal |
| 5_District5 | 7396.5 | - | $2.07 \mathrm{E}+13$ | 0 | No solution | C104_50t_10w | 7200.44 | $-1.09 \mathrm{E}+09$ | $-1.13 \mathrm{E}+09$ | 0.043011963 | Non-Optimal |
| 6_District0 | 7200.06 | $1.74 \mathrm{E}+11$ | -10474008449 | 1.060186964 | Non-Optimal | C105_100t_20w | 7200.21 | $-1.22 \mathrm{E}+10$ | -12596719216 | 0.036000131 | Non-Optimal |
| 6_District1 | 7214.24 | $3.70 \mathrm{E}+13$ | $5.04 \mathrm{E}+12$ | 0.863877685 | Non-Optimal | C105_25t_5w | 110.42 | $1.00 \mathrm{E}+06$ | 1002123.758 | $6.68 \mathrm{E}-05$ | Optimal |
| 6_District2 | 7200.07 | $2.64 \mathrm{E}+11$ | 45146641624 | 0.828938296 | Non-Optimal | C105_50t_10w | 7200.07 | -1102529615 | -1117047107 | 0.01316744 | Non-Optimal |
| 6_District3 | 7200.06 | $4.61 \mathrm{E}+11$ | -7179533078 | 1.015568495 | Non-Optimal | C106_100t_20w | 7200.12 | $-4.38 \mathrm{E}+09$ | $-1.26 \mathrm{E}+10$ | 1.877780943 | Non-Optimal |
| 6_District4 | 7257.84 | $8.16 \mathrm{E}+13$ | $5.02 \mathrm{E}+11$ | 0.993855659 | Non-Optimal | C106_25t_5w | 9.13 | $9.51 \mathrm{E}+06$ | 9512566.64 | 0 | Optimal |
| 6_District5 | 7222.02 | $1.11 \mathrm{E}+14$ | $1.04 \mathrm{E}+13$ | 0.907059836 | Non-Optimal | C106_50t_10w | 7200.1 | $-1.09 \mathrm{E}+09$ | $-1.09 \mathrm{E}+09$ | 0.007168325 | Non-Optimal |
| 7-District0 | 7200.02 | $7.22 \mathrm{E}+10$ | -4118489077 | 1.057053584 | Non-Optimal | C107_100t_20w | 7200.07 | $2.24 \mathrm{E}+09$ | -12596719712 | 6.630420484 | Non-Optimal |
| 7-District1 | 7201.96 | - | $5.27 \mathrm{E}+12$ | 0 | No solution | C107_25t_5w | 3361.23 | $-2.00 \mathrm{E}+06$ | -2001618.6 | $9.91 \mathrm{E}-05$ | Optimal |
| 7-District2 | 7200.07 | $1.00 \mathrm{E}+11$ | 21483381266 | 0.785271898 | Non-Optimal | C107_50t_10w | 147.56 | $-1.13 \mathrm{E}+09$ | $-1.13 \mathrm{E}+09$ | $3.02 \mathrm{E}-07$ | Optimal |
| 7_District3 | 7201.63 | $1.07 \mathrm{E}+12$ | -23116306380 | 1.021688295 | Non-Optimal | C108_100t_20w | 7200.17 | $2.03 \mathrm{E}+11$ | $-1.26 \mathrm{E}+10$ | 1.062132643 | Non-Optimal |
| 7_District4 | 7228.95 | $7.32 \mathrm{E}+13$ | $2.49 \mathrm{E}+12$ | 0.96590525 | Non-Optimal | C108_25t_5w | 7200.01 | -8009072.98 | -45555855.04 | 4.688030956 | Non-Optimal |
| 7-District5 | 7263.11 | $1.14 \mathrm{E}+14$ | $1.10 \mathrm{E}+13$ | 0.903130012 | Non-Optimal | C108_50t_10w | 5813.83 | $-1.13 \mathrm{E}+09$ | $-1.13 \mathrm{E}+09$ | $6.85 \mathrm{E}-07$ | Optimal |
| 8_District0 | 7200.01 | $4.78 \mathrm{E}+10$ | -1875540161 | 1.039224143 | Non-Optimal | C109_100t_20w | 7202.6 | $4.18 \mathrm{E}+11$ | -12596721151 | 1.030139052 | Non-Optimal |
| 8_District1 | 7200.85 | $2.55 \mathrm{E}+13$ | $2.80 \mathrm{E}+12$ | 0.890335306 | Non-Optimal | C109_25t_5w | 7200.01 | $-8.01 \mathrm{E}+06$ | -52564787.38 | 5.562998143 | Non-Optimal |
| 8_District2 | 7203.85 | $7.32 \mathrm{E}+10$ | $2.60 \mathrm{E}+10$ | 0.64414183 | Non-Optimal | C109_50t_10w | 7200.07 | $-1.13 \mathrm{E}+09$ | $-1.13 \mathrm{E}+09$ | 0.006920901 | Non-Optimal |
| 8_District3 | 7201.51 | $6.83 \mathrm{E}+11$ | -13573330027 | 1.019881431 | Non-Optimal | C201_100t_20w | 227.85 | $-1.26 \mathrm{E}+10$ | $-1.26 \mathrm{E}+10$ | $1.62 \mathrm{E}-08$ | Optimal |
| 8_District4 | 7241.77 | $6.92 \mathrm{E}+13$ | $4.67 \mathrm{E}+12$ | 0.932537378 | Non-Optimal | C201_25t_5w | 0.28 | $-4.56 \mathrm{E}+07$ | -45555930.86 | $3.06 \mathrm{E}-07$ | Optimal |
| 8_District5 | 7216.55 | $7.93 \mathrm{E}+13$ | $5.95 \mathrm{E}+12$ | 0.924922522 | Non-Optimal | C201_50t_10w | 5.1 | $-1.13 \mathrm{E}+09$ | $-1.13 \mathrm{E}+09$ | $2.31 \mathrm{E}-08$ | Optimal |
| 9_District0 | 7200.03 | $1.00 \mathrm{E}+11$ | 1367203580 | 0.986340695 | Non-Optimal | C202_100t_20w | 7201.73 | $3.29 \mathrm{E}+11$ | -12596721048 | 1.038322104 | Non-Optimal |
| 9_District1 | 7200.7 | $2.20 \mathrm{E}+13$ | $1.87 \mathrm{E}+12$ | 0.914849983 | Non-Optimal | C202_25t_5w | 7200.01 | $-4.56 \mathrm{E}+07$ | -51563389.65 | 0.131869463 | Non-Optimal |
| 9_District2 | 7200.02 | $8.93 \mathrm{E}+10$ | $5.59 \mathrm{E}+10$ | 0.374159728 | Non-Optimal | C202_50t_10w | 5658.45 | -1125905362 | $-1.13 \mathrm{E}+09$ | $2.31 \mathrm{E}-07$ | Optimal |
| 9-District3 | 7200.07 | $2.67 \mathrm{E}+12$ | $3.24 \mathrm{E}+10$ | 0.987838234 | Non-Optimal | C203_100t_20w | 7201.27 | $6.55 \mathrm{E}+11$ | $-1.26 \mathrm{E}+10$ | 1.019224343 | Non-Optimal |
| 9_District4 | 7234.97 | $1.01 \mathrm{E}+14$ | $4.62 \mathrm{E}+12$ | 0.954445987 | Non-Optimal | C203_25t_5w | 7200.03 | $-4.56 \mathrm{E}+07$ | -54066539.88 | 0.186816046 | Non-Optimal |
| 9_District5 | 7204.58 | $5.32 \mathrm{E}+13$ | $1.23 \mathrm{E}+13$ | 0.769261309 | Non-Optimal | C203_50t_10w | 4524.63 | $-1.13 \mathrm{E}+09$ | $-1.13 \mathrm{E}+09$ | $4.90 \mathrm{E}-07$ | Optimal |
| C204_100t_20w | 7209.12 | $7.30 \mathrm{E}+11$ | -12596722357 | 1.017266664 | Non-Optimal | R108_100t_20w | 7213.13 | 54674971463 | -1399634151 | $1.03 \mathrm{E}+00$ | Non-Optimal |
| C204_25t_5w | 7200.02 | $-4.56 \mathrm{E}+07$ | -54066607.11 | 0.186816981 | Non-Optimal | R108_25t_5w | 7200.01 | $2.60 \mathrm{E}+07$ | -5727851.626 | 1.22001929 | Non-Optimal |
| C204_50t_10w | 7200.07 | -1125905585 | $-1.13 \mathrm{E}+09$ | $6.92 \mathrm{E}-03$ | Non-Optima | R108_50t_10w | 7200.02 | 293491506 | -125964681.9 | 1.42919362 | Non-Optimal |
| C205_100t_20w | 3876.8 | $-1.26 \mathrm{E}+10$ | $-1.26 \mathrm{E}+10$ | $1.72 \mathrm{E}-07$ | Optimal | R109_100t_20w | 7200.11 | 37368662167 | -1399632913 | $1.04 \mathrm{E}+00$ | Non-Optimal |
| C205_25t_5w | 50.62 | -45555926.8 | -45556820.17 | $1.96 \mathrm{E}-05$ | Optimal | R109_25t_5w | 7200.04 | $2.63 \mathrm{E}+07$ | -4585291.753 | 1.174638169 | Non-Optimal |
| C205_50t_10w | 638.97 | -1125905404 | -1125906223 | 7.27E-07 | Optimal | R109_50t_10w | 7200.49 | 631133985.4 | -124132411.3 | 1.196681551 | Non-Optimal |
| C206_100t_20w | 7202.72 | $2.62 \mathrm{E}+11$ | -12596721299 | $1.05 \mathrm{E}+00$ | Non-Optimal | R110_100t_20w | 8013.98 | 81060000000 | -1399633800 | 1.01726664 | Non-Optimal |
| C206-25t_5w | 600.48 | $-4.56 \mathrm{E}+07$ | -45557397.29 | $3.23 \mathrm{E}-05$ | Optimal | R110_25t_5w | 7200.04 | 34488424.66 | -5783439.701 | $1.17 \mathrm{E}+00$ | Non-Optimal |
| C206_50t_10w | 3387.36 | -1125905541 | -1125917733 | $1.08 \mathrm{E}-05$ | Optimal | R110_50t_10w | 7200.02 | 636761297.6 | -125964262.1 | $1.20 \mathrm{E}+00$ | Non-Optimal |
| C207_100t_20w | 7200.56 | $2.17 \mathrm{E}+11$ | -12596721620 | 1.057941823 | Non-Optimal | R111_100t_20w | 7204.13 | 46452786127 | -1399633568 | $1.03 \mathrm{E}+00$ | Non-Optimal |
| C207_25t_5w | 7200.03 | $-4.56 \mathrm{E}+07$ | -50561958.58 | 0.109887446 | Optimal | R111_25t_5w | 7200.02 | $2.61 \mathrm{E}+07$ | -5552034.885 | 1.21235848 | Non-Optimal |
| C207-50t_10w | 2737.48 | -1125905456 | -1125906658 | $1.07 \mathrm{E}-06$ | Non-Optimal | R111_50t_10w | 7200.09 | 496942686.2 | -125964289.2 | $1.25 \mathrm{E}+00$ | Non-Optimal |
| C208_100t_20w | 7200.74 | $5.44 \mathrm{E}+11$ | -12596721654 | 1.023149799 | Non-Optimal | R112_100t_20w | 2961.6 | 62929580975 | -1399634330 | 1.022241278 | Non-Optimal |
| C208_25t_5w | 5896.54 | $-4.56 \mathrm{E}+07$ | -45559966.48 | $8.85 \mathrm{E}-05$ | Optimal | R112_25t_5w | 7200 | $2.63 \mathrm{E}+07$ | -6006187.135 | 1.228272598 | Non-Optimal |
| C208_50t_10w | 4139.53 | -1125905466 | -1125906151 | $6.09 \mathrm{E}-07$ | Optimal | R112_50t_10w | 7200.09 | $4.27 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 1.294827074 | Non-Optimal |
| R101_100t_20w | 7200.09 | 6319981503 | 4071154664 | 0.355828073 | Non-Optimal | R201_100t_20w | 7200.14 | -1383419123 | $-1.40 \mathrm{E}+09$ | 0.011719699 | Non-Optimal |

| Instance Name | Time | Best Obj | Bound | Gap | | | | Best Obj | Bound | Gap | Category |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Category | Instance Name | Time | | | | |
| R101_25t_5w | 0.25 | 47893886.58 | 47893886.58 | 0 | Optimal | R201_25t_5w | 31.85 | -5171519.46 | -5171984.127 | $8.99 \mathrm{E}-05$ | Optimal |
| R101_50t_10w | 331.6 | 709051142.4 | 709051142.4 | $0.00 \mathrm{E}+00$ | Optimal | R201_50t_10w | 26.32 | $-1.25 \mathrm{E}+08$ | $-1.25 \mathrm{E}+08$ | $4.39 \mathrm{E}-06$ | Optimal |
| R102_100t_20w | 7200.18 | 42318726218 | -575522285.5 | 1.013599707 | Non-Optimal | R202_100t_20w | 7200.95 | 56342105263 | -1399633169 | 1.024841691 | Non-Optimal |
| R102_25t_5w | 7200.03 | 34655177 | 360093.6341 | 0.98960924 | Non-Optimal | R202_25t_5w | 7200.03 | -5171550.18 | -5894425.765 | 0.139779285 | Non-Optimal |
| R102_50t_10w | 7200.06 | 641955625.9 | -55290835.21 | 1.086128749 | Non-Optimal | R202_50t_10w | 7200.07 | -125097689.9 | $-1.26 \mathrm{E}+08$ | 0.006924478 | Non-Optimal |
| R103_100t_20w | 7204.22 | 49716801838 | -1399633258 | 1.028152118 | Non-Optimal | R203_100t_20w | 8949.96 | $8.11 \mathrm{E}+10$ | $-1.40 \mathrm{E}+09$ | 1.01726664 | Non-Optimal |
| R103_25t_5w | 7200.01 | 30260803.34 | -840866.9964 | 1.027787332 | Non-Optimal | R203_25t_5w | 7200.02 | $-5.17 \mathrm{E}+06$ | -6006035.549 | 0.161346331 | Non-Optimal |
| R103_50t_10w | 7200.09 | 570531480.8 | -58868675.49 | $1.10 \mathrm{E}+00$ | Non-Optimal | R203_50t_10w | 7200.09 | $-1.25 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 0.006927004 | Non-Optimal |
| R104_100t_20w | 7204.43 | 61254341207 | -1399633958 | $1.02 \mathrm{E}+00$ | Non-Optimal | R204_100t_20w | 7210.32 | 81060000000 | -1399634294 | 1.017266646 | Non-Optimal |
| R104_25t_5w | 7200.01 | $3.00 \mathrm{E}+07$ | -5561027.288 | 1.18547476 | Non-Optimal | R204_25t_5w | 7200.03 | $-5.06 \mathrm{E}+06$ | -6006120.92 | 0.186874843 | Non-Optimal |
| R104_50t_10w | 7200.26 | 293491458.9 | -58869027.45 | 1.20058174 | Non-Optimal | R204_50t_10w | 7200.09 | $-1.25 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 0.006928452 | Non-Optimal |
| R105_100t_20w | 7200.81 | 14550273831 | -1386269979 | $1.10 \mathrm{E}+00$ | Non-Optimal | R205_100t_20w | 7201.56 | 52216151204 | $-1.40 \mathrm{E}+09$ | 1.026804603 | Non-Optimal |
| R105_25t_5w | 263.85 | $3.52 \mathrm{E}+07$ | 35155829.64 | 0 | Optimal | R205_25t_5w | 7200.03 | $-5.17 \mathrm{E}+06$ | -5616582.647 | 0.086010085 | Non-Optimal |
| R105_50t_10w | 7200.14 | 388290958.1 | -96222194.67 | 1.247809517 | Non-Optimal | R205_50t_10w | 7200.07 | $-1.25 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 0.006924347 | Non-Optimal |
| R106_100t_20w | 7207.65 | 27457727146 | -1399632846 | 1.050974097 | Non-Optimal | R206_100t_20w | 7202.54 | $4.40 \mathrm{E}+10$ | -1399633589 | 1.0318279 | Non-Optimal |
| R106_25t_5w | 7200.01 | 30483330.46 | -4912682.401 | $1.16 \mathrm{E}+00$ | Non-Optimal | R206_25t_5w | 7200.04 | $-5.17 \mathrm{E}+06$ | -6005971.036 | 0.161289086 | Non-Optimal |
| R106_50t_10w | 7200.02 | 303880567.4 | -125097944.4 | $1.41 \mathrm{E}+00$ | Non-Optimal | R206_50t_10w | 7200.07 | $-1.25 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 0.006926714 | Non-Optimal |
| R107_100t_20w | 7206.44 | 68698350493 | -1399633479 | $1.02 \mathrm{E}+00$ | Non-Optimal | R207_100t_20w | 9009.21 | $6.21 \mathrm{E}+10$ | $-1.40 \mathrm{E}+09$ | 1.022541307 | Non-Optimal |
| R107_25t_5w | 7200.01 | $2.20 \mathrm{E}+07$ | -5673932.363 | 1.257573715 | Non-Optimal | R207_25t_5w | 7200.03 | -5171794.96 | -6006098.67 | 0.161318018 | Non-Optimal |
| R107_50t_10w | 7200.02 | 372274723.5 | -125964228.6 | 1.338363635 | Non-Optimal | R207-50t_10w | 7200.07 | -125097967.8 | $-1.26 \mathrm{E}+08$ | 0.006926867 | Non-Optimal |
| R208_100t_20w | 8505.04 | $8.11 \mathrm{E}+10$ | -1399634321 | 1.017266646 | Non-Optimal | RC201_100t_20 | 7210.79 | -1378013036 | -1399631667 | 0.015688263 | Non-Optimal |
| R208_25t_5w | 7200.01 | $-5.06 \mathrm{E}+06$ | -6006121.433 | 0.186849033 | Non-Optimal | RC201_25t_5w | 76.95 | -5171005.4 | -5171512.201 | $9.80 \mathrm{E}-05$ | Optimal |
| R208_50t_10w | 7200.06 | $-1.25 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 0.006927553 | Non-Optimal | RC201_50t_10w | 457.22 | -125096456 | -125098176.9 | $1.38 \mathrm{E}-05$ | Optimal |
| R209_100t_20w | 7201.95 | $6.05 \mathrm{E}+10$ | $-1.40 \mathrm{E}+09$ | 1.023148731 | Non-Optimal | RC202_100t_20w | 7201.06 | 51392041422 | -1399632695 | 1.027234425 | Non-Optimal |
| R209_25t_5w | 7200.01 | -5060483.06 | -5505464.432 | 0.087932588 | Non-Optimal | RC202_25t_5w | 7200.02 | -5171480.42 | -5727510.307 | 0.107518513 | Non-Optimal |
| R209_50t_10w | 7200.07 | $-1.25 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 0.006925763 | Non-Optimal | RC202_50t_10w | 7200.07 | -125096955.1 | -125963429.4 | 0.006926422 | Non-Optimal |
| R210_100t_20w | 7343.26 | 29100542983 | -1399633636 | 1.048096478 | Non-Optimal | RC203_100t_20w | 7317.13 | 81060000000 | -1399633566 | 1.017266637 | Non-Optimal |
| R210_25t_5w | 7200.01 | $-5.17 \mathrm{E}+06$ | -5727866.756 | 0.107552766 | Non-Optimal | RC203_25t_5w | 7200.01 | -5171505.38 | -6006135.342 | 0.161390137 | Non-Optimal |
| R210_50t_10w | 7200.07 | $-1.25 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 0.006926011 | Non-Optimal | RC203_50t_10w | 7200.06 | -125096765.2 | -125964453.5 | 0.006936137 | Non-Optimal |
| R211_100t_20w | 7211.23 | $8.11 \mathrm{E}+10$ | $-1.40 \mathrm{E}+09$ | 1.017266646 | Non-Optimal | RC204_100t_20w | 10219.84 | 61267851641 | -1399634107 | 1.022844511 | Non-Optimal |
| R211_25t_5w | 7200.01 | $-5.06 \mathrm{E}+06$ | -6006171.316 | 0.186872433 | Non-Optimal | RC204_25t_5w | 7200.01 | -5060413.36 | -6006348.934 | 0.186928519 | Non-Optimal |
| R211_50t_10w | 7200.26 | $-1.23 \mathrm{E}+08$ | $-1.26 \mathrm{E}+08$ | 0.028276543 | Non-Optimal | RC204_50t_10w | 7200.09 | -125097014.9 | -125964909.1 | 0.006937769 | Non-Optimal |
| RC101_100t_20w | 7200.14 | 8106000000 | -1345044764 | 1.0165932 | Non-Optim | RC205_100t_20w | 7200.99 | 39016882589 | -1399632531 | 1.035872485 | Non-Optimal |
| RC101_25t_5w | 200.88 | $2.70 \mathrm{E}+07$ | 27034405.38 | 0 | Optimal | RC205_25t_5w | 7200.02 | -5171462.06 | -5338428.02 | 0.032286026 | Non-Optimal |
| RC101_50t_10w | 7200.09 | $1.90 \mathrm{E}+08$ | $-9.64 \mathrm{E}+07$ | 1.507395824 | Non-Optimal | RC205_50t_10w | 7200.07 | -125096766.4 | -125963284.3 | 0.006926781 | Non-Optimal |
| RC102_100t_20w | 7200.07 | $3.16 \mathrm{E}+10$ | $-1.40 \mathrm{E}+09$ | 1.044322616 | Non-Optimal | RC206_100t_20w | 7204.52 | 54726310289 | -1399632655 | 1.025575133 | Non-Optimal |
| RC102_25t_5w | 7200.02 | 26645148.48 | -5023761.64 | 1.188543203 | Non-Optimal | RC206_25t_5w | 7200.32 | -5171397.94 | -5616588.71 | 0.086087123 | Non-Optimal |
| RC102_50t_10w | 7200.1 | 578756223 | -54724429.97 | 1.094555234 | Non-Optim | RC206_50t_10w | 7200.07 | -125097137.8 | -125963744.2 | 0.006927468 | Non-Optimal |
| RC103_100t_20w | 7201.45 | $5.22 \mathrm{E}+10$ | -1399633064 | 1.0268046 | Non-Optimal | RC207_100t_20w | 7209.42 | 79446906218 | -1399633363 | 1.017617217 | Non-Optimal |
| RC103_25t_5w | 7200.01 | 21805915.88 | -5707482.779 | 1.261740108 | Non-Optima | RC207_25t_5w | 7200.04 | -5059890.2 | -5780084.413 | 0.142333961 | Non-Optimal |
| RC103_50t_10w | 7200.09 | 767922882.8 | -125098325.4 | 1.162904802 | Non-Optimal | RC207_50t_10w | 7200.15 | -122499526.2 | -125964374 | 0.028284581 | Non-Optimal |
| RC104_100t_20w | 8929.45 | 48892692141 | -1399633535 | 1.028626641 | Non-Optimal | RC208_100t_20w | 7824.63 | 61281361512 | -1399634248 | 1.022839477 | Non-Optimal |
| RC104_25t_5w | 7200.03 | 25810879.24 | -5728139.101 | 1.221927314 | Non-Optimal | RC208_25t_5w | 7200.01 | -5060744 | -6006530.656 | 0.18688688 | Non-Optimal |
| RC104_50t_10w | 7200.7 | 498674346.2 | -125099080.2 | 1.250863276 | Non-Optimal | RC208_50t_10w | 7200.14 | -125096819.2 | -125964960.6 | 0.006939757 | Non-Optimal |
| RC105_100t_20w | 7200.1 | 33231901421 | -1399631733 | 1.042117113 | Non-Optimal | RC105_25t_5w | 7200.03 | 30761388.42 | 140264.0041 | 0.995440258 | Non-Optimal |
| RC105_50t_10w | 7200.96 | 448893536.2 | -119991667.3 | 1.267305402 | Non-Optimal | RC106_100t_20w | 7200.15 | 57147301655 | -1399632567 | 1.024491665 | Non-Optimal |
| RC106_25t_5w | 7200.01 | 22417682.52 | -5116160.288 | 1.228219857 | Non-Optimal | RC106_50t_10w | 7200.03 | 515989390.6 | -122398831.4 | 1.237211915 | Non-Optimal |
| RC107_100t_20w | 7201.4 | 55499082255 | -1399633328 | 1.025219036 | Non-Optimal | RC107_25t_5w | 7200.03 | 30761589.88 | -5916392.185 | 1.192330507 | Non-Optimal |
| RC107_50t_10w | 7200.09 | 575726019.2 | -125964519.7 | 1.218792473 | Non-Optimal | RC108_100t_20w | 7207.19 | 62110875294 | -1399634218 | 1.022534447 | Non-Optimal |
| RC108_25t_5w | 7200.01 | 30372205.56 | -6006196.565 | 1.197753059 | Non-Optimal | RC108_50t_10w | 7200.04 | 630268451.2 | -125964908.6 | 1.199859137 | Non-Optimal |

Table C.2: Solver MILP results with time limit of 2 hours. Part 2

Appendix D

Greedy Heuristic's Pseudo-code and Results

D. 1 GH2's pseudo-code

```
Algorithm 14 Greedy Heuristic
    procedure Solve
        visitList \(\leftarrow\) copy of visits \((V)\)
        sol \(\leftarrow\) CreateSolutionStructure
        Sort(visitList, listCriterion)
        while visitList is not empty do
            Sort(sol, solCriterion)
            \(v \leftarrow\) visitList.remove (0)
            candidates \(\leftarrow\) AllocPossibleAny \((v, s o l)\)
            Sort(candidates)
            if candidates is not empty then
                \(c \leftarrow\) candidates.remove \((0)\)
            Include \((c, s o l)\)
            \(i \leftarrow v . r e q u i r e d\)
                for \(i>1\) do
                    if candidates is not empty then
                \(c \leftarrow\) candidates.remove( 0 )
                    Include \((c, s o l)\)
                    else
                        Unallocate \((v, s o l)\)
        else
        Unallocate \((v, s o l)\)
```


D. 2 Creation of Catalogue Index

```
Algorithm 15 Greedy Heuristic
    function CatalogueIndex(can)
        dates \(C\)
        dcList
        for \(c \leftarrow 1\), can do
            if \(\neg\) datesC.contains(c.st) then
            datesC.add(c.st)
                    \(d c \leftarrow \operatorname{NewDC}(c . s t, \mathrm{NewCC}())\)
                    dcList.add (dc)
            \(s f t=c . s t+c . f t\)
            if \(\neg\) datesC.contains(sft) then
                    datesC.add(sft)
                    \(d c \leftarrow \operatorname{NewDC}(s f t, \operatorname{NewCC}())\)
            dcList.add(dc)
        SORT(dcList, criterion)
        for \(d c \leftarrow 1, d c L i s t\) do
            for \(c \leftarrow 1\), can do
            \(s f t=c . s t+c . f t\)
            if \(c . s t \leq d c . t\) AND \(d c . t \leq s f t\) then
                    dc.cover.add(c)
            Sort(dcList, criterion 2 )
            return dcList
```


D. 3 Results of Experiments with GH1

Table D.1: GH1 Results

| Instance | Time | Objective Value | Instance | Time | Objective Value |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10_District0 | 9 | 106721973623.64 | 24_District4 | 2 | 46587487541375.5 |
| 10_District1 | | - | 24_District5 | 1 | 28476844997125.1 |
| 10_District2 | 1 | 103035047948.19 | 25_District0 | 0 | 2777463894.29 |
| 10_District3 | 1 | 216825800383.27 | 25_District1 | 1 | 6857920874061.2 |
| 10_District4 | 5 | 33561788181624 | 25_District2 | 0 | 4534524985.78 |
| 10_District5 | 4 | 40627133504499.9 | 25_District3 | 0 | 80069099613.02 |
| 11_District0 | 0 | 5544047563.69 | 25_District4 | 2 | 22926690235187.3 |
| 11_District1 | 2 | 7468316424982.42 | 25_District5 | 1 | 12848404341628.7 |
| 11_District2 | 0 | 15786909708.89 | 26_District0 | 1 | 292395405901.65 |
| 11_District3 | 0 | 138694820557.4 | 26_District1 | 2 | 43275522185650.6 |
| 11_District4 | 2 | 25877813149871.6 | 26_District2 | 1 | 396575268652.81 |
| 11_District5 | 1 | 17263020337689.7 | 26_District3 | 1 | 1673764458720.69 |
| 12_District0 | 1 | 153991002951.61 | 26_District4 | 3 | 165750615422004 |
| 12_District1 | 2 | 47778556920073.9 | 26_District5 | 2 | 119939068715765 |
| 12_District2 | 0 | 236235562224.57 | 27_District0 | 0 | 191801069899.63 |
| 12_District3 | 1 | 416169432413.25 | 27_District1 | 2 | 18782623767054 |
| 12_District4 | 3 | 82057857817025.1 | 27_District2 | 1 | 119427985194.55 |
| 12_District5 | 2 | 72805935848959.7 | 27_District3 | 1 | 188834841381.43 |
| 13_District0 | 0 | 200168900258.5 | 27_District4 | 3 | 45350677434646.8 |
| 13_District1 | 1 | 20270743939483.3 | 27_District5 | 3 | 46639259653995.7 |
| 13_District2 | 1 | 199199456003.19 | 28_District0 | 0 | 140256552967.31 |
| 13_District3 | 0 | 684785856644.61 | 28_District1 | 1 | 15128335139531.3 |
| 13_District4 | 1 | 48134040829393.7 | 28_District2 | 0 | 108216971983.04 |
| 13_District5 | 2 | 51261023782563.7 | 28_District3 | 1 | 1122934685459.85 |
| 14_District0 | 0 | 44356736598.4 | 28_District4 | 2 | 25391011993117.2 |
| 14_District1 | 2 | 14279066295349 | 28_District5 | 2 | 34767981234314.1 |
| 14_District2 | 0 | 146362281680.48 | 29_District0 | 0 | 39806924540.87 |
| 14_District3 | 0 | 403328233660.47 | 29_District1 | 29_District2 | 1 |

| Instance | Table D. 1 - continued from previous page | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Objective Value | Instance | Time | Objective Value |
| 15_District0 | 0 | 68541235610.88 | 29_District4 | 1 | 9513034912449 |
| 15_District1 | 2 | 16766645678524.1 | 29_District5 | 2 | 53512720963734.6 |
| 15_District2 | | - | 2-District0 | | - |
| 15_District3 | 0 | 613230685180.04 | 2_District1 | 2 | 50025849298076.5 |
| 15_District4 | 2 | 44052689348565.8 | 2_District2 | 0 | 309401067266.24 |
| 15_District5 | 2 | 34235585575181.9 | 2_District3 | 0 | 1311902709882.22 |
| 16_District0 | 1 | 138582500431.33 | 2_District4 | 3 | 88397409789402.3 |
| 16_District1 | 1 | 16335857606068.6 | 2_District5 | | - |
| 16_District2 | 0 | 132514327184.6 | 30_District0 | 1 | 20052123066.46 |
| 16_District3 | 0 | 361273702860.36 | 30_District1 | 1 | 4312691699679.27 |
| 16_District4 | 2 | 43707840624537.3 | 30_District2 | 0 | 61722485384.6 |
| 16_District5 | 3 | 54000844649128.2 | 30_District3 | 1 | 182562266602.39 |
| 17_District0 | 0 | 78319859061.15 | 30_District4 | 1 | 8660584843183.65 |
| 17_District1 | 2 | 12432742277333.8 | 30_District5 | | - |
| 17_District2 | 0 | 156241612427.41 | 3_District0 | 0 | 125936823583.02 |
| 17_District3 | 0 | 304821943175.79 | 3_District1 | 1 | 24220848064971.8 |
| 17_District4 | | - | 3_District2 | 1 | 240616217504.89 |
| 17_District5 | 2 | 26566194850082.5 | 3_District3 | 1 | 1285270273951.59 |
| 18_District0 | 0 | 3521808556.5 | 3_District4 | 3 | 96234574882611.1 |
| 18_District1 | | - | 3_District5 | 3 | 64265301930963.4 |
| 18_District2 | 1 | 9256632018.73 | 4_District0 | 0 | 25573824722.49 |
| 18_District3 | 1 | 100695778556.15 | 4_District1 | 2 | 17238235759616.8 |
| 18_District4 | | - | 4_District2 | 0 | 28124793618.51 |
| 18_District5 | 2 | 13890094463962.3 | 4_District3 | 0 | 71427539474.97 |
| 19_District0 | 0 | 64625776234.49 | 4_District4 | 2 | 67460528170599.7 |
| 19_District1 | 1 | 25137028788637.1 | 4_District5 | | - |
| 19_District2 | 1 | 205915841598.43 | 5_District0 | 1 | 129118698669.78 |
| 19_District3 | 1 | 338591139872.36 | 5_District1 | 2 | 22882658744118 |
| 19_District4 | 3 | 172228234833813 | 5_District2 | 1 | 95107414309.81 |
| 19_District5 | 3 | 93828514391975 | 5_District3 | 1 | 525169193508.74 |
| 1_District0 | 1 | 518609006951.86 | 5-District4 | 2 | 68243049339872.1 |
| 1_District1 | 3 | 56270206789859.1 | 5_District5 | 3 | 136613775471593 |
| 1_District2 | 1 | 1046747366809 | 6_District0 | 0 | 220433136825.25 |
| 1_District3 | 1 | 1560925188299.38 | 6_District1 | 1 | 29317596294235.9 |
| 1_District4 | 4 | 110465401558176 | 6_District2 | 0 | 356181224330.19 |
| 1_District5 | 3 | 99000141536068 | 6_District3 | 0 | 366172922416.33 |
| 20_District0 | 0 | 113316045933.83 | 6_District4 | 3 | 48108767553106.6 |
| 20_District1 | 2 | 17718690639232.5 | 6_District5 | 3 | 76979349076598.5 |
| 20_District2 | 0 | 54179107008.82 | 7_District0 | 0 | 63608972382.16 |
| 20_District3 | 1 | 470862883618.9 | 7_District1 | 1 | 26968214676885.6 |
| 20_District4 | 2 | 31749522139867.1 | 7-District2 | 0 | 112061719743.98 |
| 20_District5 | 3 | 59341256500235.7 | 7-District3 | 0 | 1074693735356.06 |
| 21_District0 | 0 | 142729859125.56 | 7_District4 | 2 | 51647639084098.9 |
| 21_District1 | 2 | 19809611515822.7 | 7_District5 | 3 | 62649939536594.5 |
| 21_District2 | 0 | 120541044419.74 | 8_District0 | 0 | 78001907952.28 |
| 21_District3 | 0 | 1270458349614.08 | 8_District1 | 1 | 13859124871569 |
| 21_District4 | 2 | 34448190397649.6 | 8_District2 | | 90830953195.68 |
| 21_District5 | 2 | 72662216779674.1 | 8_District3 | 0 | 702389046706.46 |
| 22_District0 | 0 | 165570512287.3 | 8_District4 | 2 | 42415787308619.6 |
| 22_District1 | 2 | 15456817219610.8 | 8_District5 | 2 | 47359269549334.2 |
| 22_District2 | 1 | 323706119166.79 | 9_District0 | 0 | 120339564622.06 |
| 22_District3 | 1 | 461195678464.1 | 9_District1 | 2 | 12395335811834.3 |
| 22_District4 | 2 | 48946654140257.1 | 9_District2 | 0 | 132520659416.61 |
| 22_District5 | 3 | 42772519577575.2 | 9_District3 | - | 1462182131302.57 |
| 23_District0 | 0 | 40743361287.58 | 9-District4 | | - |
| 23_District1 | 1 | 17211576588480.4 | 9_District5 | 1 | 27216479042294 |
| 23_District2 | 0 | 248844083189.61 | C101_100t_20w | | - |
| 23_District3 | 0 | 366148850953.41 | C101_25t_5w | 1 | 280350869.62 |
| 23_District4 | 2 | 61286017189336.3 | C101_50t_10w | 0 | 17324957420.36 |
| 23_District5 | 3 | 81252454364927.6 | C102_100t_20w | | - |
| 24_District0 | 0 | 156052500888.05 | C102_25t_5w | 0 | 405506941.18 |
| 24_District1 | 1 | 13794367786043.8 | C102_50t_10w | 0 | 9248809635.78 |
| 24_District2 | 0 | 40759482611.7 | C103_100t_20w | 1 | 356355976237.04 |
| 24_District3 | 0 | 226783604681.59 | C103_25t_5w | 0 | 555694297.66 |
| C103_50t_10w | 0 | 14504344424.8 | R206_100t_20w | | - |
| C104_100t_20w | | - | R206_25t_5w | 0 | 32653362.6 |
| C104_25t_5w | 0 | 602753002.3 | R206_50t_10w | 1 | 880904290.06 |
| C104_50t_10w | 0 | 21439001405.22 | R207_100t_20w | | - |
| C105_100t_20w | | - | R207_25t_5w | 0 | 53512543 |
| C105_25t_5w | 0 | 709385932.94 | R207_50t_10w | | - |
| C105_50t_10w | 1 | 16724992695.72 | R208_100t_20w | 1 | 52586327657.64 |
| C106_100t_20w | 0 | 106512846459.84 | R208_25t_5w | 0 | 66806535.9 |
| C106_25t_5w | 1 | 283354540.84 | R208_50t_10w | 0 | 2319778839.98 |
| C106_50t_10w | 1 | 16783430774.24 | R209_100t_20w | | - |
| C107-100t_20w | | - | R209_25t_5w | 0 | 43610939.08 |
| C107_25t_5w | 0 | 863578364.68 | R209_50t_10w | | - |
| C107_50t_10w | | - | R210_100t_20w | | - |
| C108_100t_20w | | - | R210_25t_5w | 0 | 15020561.04 |
| C108_25t_5w | 1 | 317897559.88 | R210_50t_10w | 0 | 1074399277.22 |
| C108_50t_10w | 0 | 16771743195.74 | R211_100t_20w | | - |
| C109_100t_20w | | - | R211_25t_5w | 1 | 53233953.8 |
| C109_25t_5w | 0 | 442553166.58 | R211_50t_10w | | - |
| C109_50t_10w | | - | RC101_100t_20w | | - |
| C201_100t_20w | | - | RC101_25t_5w | 0 | 58017439.38 |
| C201_25t_5w | 0 | 559198778.92 | RC101_50t_10w | 0 | 1415935917.12 |
| C201_50t_10w | | - | RC102_100t_20w | | - |
| C202_100t_20w | | - | RC102_25t_5w | 0 | 52788685.5 |
| C202_25t_5w | 0 | 674342359.94 | RC102_50t_10w | - | 1602938020.88 |
| C202_50t_10w | | - | RC103_100t_20w | 1 | 41932341565.44 |
| C203_100t_20w | 1 | 289821930083.4 | RC103_25t_5w | 0 | 69976782 |
| C203_25t_5w | 0 | 674342359.94 | RC103_50t_10w | 0 | 1937983134.7 |
| C203_50t_10w | 1 | 12731721881.48 | RC104_100t_20w | 1 | 57401291469.98 |
| C204_100t_20w | | - | RC104_25t_5w | 0 | 79099300.64 |
| C204_25t_5w | 0 | 558197474.02 | RC104_50t_10w | 0 | 2521498398.18 |
| C204_50t_10w | 0 | 20897475267.18 | RC105_100t_20w | 1 | 39500541851.52 |
| C205_100t_20w | | - | RC105_25t_5w | 0 | 57516880.62 |
| C205_25t_5w | 0 | 559198778.92 | RC105_50t_10w | 0 | 1869588776.72 |

| Instance | Table D. 1 - continued from previous page | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Objective Value | Instance | Time | Objective Value |
| C205_50t_10w | | - | RC106_100t_20w | | - |
| C206_100t_20w | | - | RC106_25t_5w | 1 | 62300598.44 |
| C206_25t_5w | 0 | 599248767.6 | RC106_50t_10w | | - |
| C206_50t_10w | | - | RC107_100t_20w | | - |
| C207_100t_20w | | - | RC107_25t_5w | 0 | 62467451.12 |
| C207_25t_5w | | - | RC107_50t_10w | 1 | 1944476079.64 |
| C207_50t_10w | | - | RC108_100t_20w | | - |
| C208_100t_20w | | - | RC108_25t_5w | 0 | 78932429.72 |
| C208_25t_5w | 0 | 599248767.6 | RC108_50t_10w | 0 | 2517602451.86 |
| C208_50t_10w | | - | RC201_100t_20w | | - |
| R101_100t_20w | 0 | 47671389090.02 | RC201_25t_5w | 0 | 15354397.24 |
| R101_25t_5w | 0 | 62467584.18 | RC201_50t_10w | 0 | -56268456.68 |
| R101_50t_10w | 0 | 1540603888 | RC202_100t_20w | | - |
| R102_100t_20w | 1 | 29848997660.04 | RC202_25t_5w | 0 | 26980073.22 |
| R102_25t_5w | 0 | 65471265.52 | RC202_50t_10w | 0 | 734593781.94 |
| R102_50t_10w | 0 | 1672630795.14 | RC203_100t_20w | | - |
| R103_100t_20w | 1 | 42742941229.48 | RC203_25t_5w | 0 | 44612948.06 |
| R103_25t_5w | 0 | 65749425.48 | RC203_50t_10w | 0 | 1471345609.22 |
| R103_50t_10w | 0 | 1870454483.16 | RC204_100t_20w | 0 | 53399630500.72 |
| R104_100t_20w | 1 | 58174062614.84 | RC204_25t_5w | 0 | 61689634.12 |
| R104_25t_5w | 1 | 70088173.92 | RC204_50t_10w | 0 | 2323242384.8 |
| R104_50t_10w | 0 | 2448342328.32 | RC205_100t_20w | | - |
| R105_100t_20w | | - | RC205_25t_5w | 0 | 19026136.8 |
| R105_25t_5w | 0 | 62189418.38 | RC205_50t_10w | | - |
| R105_50t_10w | 1 | 1544066777.86 | RC206_100t_20w | | - |
| R106_100t_20w | | - | RC206_25t_5w | 0 | 19637230.36 |
| R106_25t_5w | 0 | 65471265.52 | RC206_50t_10w | | - |
| R106_50t_10w | 0 | 1661376059.4 | RC207_100t_20w | | - |
| R107_100t_20w | | - | RC207_25t_5w | 0 | 44946231.22 |
| R107_25t_5w | 0 | 65749425.48 | RC207_50t_10w | | - |
| R107_50t_10w | 0 | 1872618948.36 | RC208_100t_20w | | - |
| R108_100t_20w | 1 | 58195678734.76 | RC208_25t_5w | 1 | 57461940.38 |
| R108_25t_5w | 0 | 74371179.42 | RC208_50t_10w | 0 | 1344513753.98 |
| R108_50t_10w | 0 | 2582966523.96 | hh_00_P0 | 1 | 4641366275065.9 |
| R109_100t_20w | | - | 111_00_P0 | 1 | 212221208244.7 |
| R109_25t_5w | 1 | 70088098.08 | 111_01_P0 | 0 | 212221208244.7 |
| R109_50t_10w | | - | 111_02_P0 | 1 | 210571622994.7 |
| R110_100t_20w | | - | 111_03_P0 | 0 | 212221208244.7 |
| R110_25t_5w | 0 | 70087967.32 | 111_04_P0 | 1 | 212221208244.7 |
| R110_50t_10w | 1 | 2060486256.6 | 111_05_P0 | 0 | 230413363380.24 |
| R111_100t_20w | | - | 111_06_P0 | 0 | 399713415096.83 |
| R111_25t_5w | 0 | 70588638.52 | 111_07_P0 | 0 | 203973281994.7 |
| R111_50t_10w | 0 | 2258743255.54 | 112_00_P0 | 0 | 13188111647.65 |
| R112_100t_20w | | - | 113_00_P0 | 0 | 12012194578.59 |
| R112_25t_5w | 0 | 78487214.58 | test150-0-0-0-0_d0_tw0 | | - |
| R112_50t_10w | 0 | 2199006275.06 | test150-0-0-0-0_d0_tw1 | 4 | 2414178385246.9 |
| R201_100t_20w | | - | test150-0-0-0-0_d0_tw2 | 4 | 2414178385246.9 |
| R201_25t_5w | 0 | 11849763.9599999 | test150-0-0-0-0_d0_tw3 | 4 | 2414178385246.9 |
| R201_50t_10w | 0 | -53239122.3 | test150-0-0-0-0_d0_tw4 | | - |
| R202_100t_20w | | - | test250-0-0-0-0_d0_tw0 | | - |
| R202_25t_5w | 0 | 33098359.28 | test250-0-0-0-0_d0_tw1 | 8 | 36940587325055.6 |
| R202_50t_10w | | - | test250-0-0-0-0_d0_tw2 | 11 | 36940587325055.6 |
| R203_100t_20w | 0 | 35585345050.76 | test250-0-0-0-0_d0_tw3 | 9 | 36940587325055.6 |
| R203_25t_5w | 0 | 53345561.86 | test250-0-0-0-0_d0_tw4 | | - |
| R203_50t_10w | | - | test50-0-0-0-0_d0_tw0 | | - |
| R204_100t_20w | 0 | 52532287550.44 | test50-0-0-0-0_d0_tw1 | 0 | -324551544.9 |
| R204_25t_5w | 0 | 66639648.32 | test50-0-0-0-0_d0_tw2 | 0 | -324551544.9 |
| R204_50t_10w | 0 | 2319778839.98 | test50-0-0-0-0_d0_tw3 | 0 | -324551544.9 |
| R205_100t_20w | | - | test50-0-0-0-0_d0_tw4 | | - |
| R205_25t_5w | 0 | 70088211.18 | BTEngineers | 13 | -621279823668.827 |
| R205_50t_10w | | - | | | |

D. 4 Results of Experiments with GH2

Table D.2: GH2 Results

| Instance | Time | Objective Value | Instance | Time | Objective Value |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10_District0 | 11 | 106721973623.64 | 24_District4 | | - |
| 10_District1 | | - | 2 | 28462936892113.4 | |
| 10_District2 | 1 | 84414256901.21 | 24_District5 | 25_District0 | 0 |
| 10_District3 | 1 | 215361002429.25 | 25_District1 | 2777463894.29 | |
| 10_District4 | 6 | 32819765440259.4 | 25_District2 | 1 | 7068465513197.56 |
| 10_District5 | 5 | 40627133504499.9 | 25_District3 | 1 | 4534524985.78 |
| 11_District0 | 0 | 5544047563.69 | 25_District4 | 0 | 800690999613.02 |
| 11_District1 | 3 | 7250792645874.36 | 25_District5 | 3 | 22928133663324 |
| 11_District2 | 1 | 15786909708.89 | 26_District0 | 1 | 12516388257408.9 |
| 11_District3 | | - | 0 | 292395405901.65 | |
| 11_District4 | 3 | 25898123127639 | 26_District1 | 2 | 43275522185650.6 |
| 11_District5 | 3 | 17263020337689.7 | 26_District2 | 1 | 396575268652.81 |
| 12_District0 | 1 | 153991002951.61 | 26_District3 | 1 | 1673764458720.69 |
| 12_District1 | 3 | 42653795772775.5 | 26_District4 | - | |
| 12_District5 | 1 | 236235562224.57 | 27_District0 | | - |
| 12_District3 | 1 | 474658355763.47 | 27_District1 | 0 | 191801069899.63 |
| 12_District4 | | - | 27_District2 | 1 | 18782623767054 |
| 12_District5 | 3 | 72805935848959.7 | 27_District3 | 0 | 97943182274.39 |
| 13_District0 | 0 | 200168900258.5 | 27_District4 | 1 | 188834841381.43 |
| 13_District1 | | - | 27_District5 | | - |
| | | | | 44153166761296.4 | |

| Instance | Time | Table D. 2 - co Objective Value | nued from previous page Instance | Time | Objective Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13_District2 | 1 | 186654387887.44 | 28_District0 | 1 | 140256552967.31 |
| 13_District3 | 0 | 667791171578.81 | 28_District1 | 2 | 15128335139531.3 |
| 13_District4 | | - | 28_District2 | 0 | 108216971983.04 |
| 13_District5 | 3 | 50126639356006 | 28_District3 | 1 | 1077830919378.16 |
| 14_District0 | 0 | 44443988566.81 | 28_District4 | 3 | 25391011993117.2 |
| 14_District1 | | - | 28_District5 | 3 | 34767981234314.1 |
| 14_District2 | 1 | 136473342260.76 | 29_District0 | 0 | 39806924540.87 |
| 14_District3 | 1 | 403328233660.47 | 29_District1 | | - |
| 14_District4 | | - | 29_District2 | 1 | 137762852813.06 |
| 14_District5 | 3 | 56649475473978.8 | 29_District3 | 0 | 370198923550.63 |
| 15_District0 | 1 | 68541235610.88 | 29_District4 | 1 | 9513034912449 |
| 15_District1 | 2 | 15294139899370.5 | 29_District5 | | - |
| 15_District2 | | - | 2_District0 | | - |
| 15_District3 | 1 | 613230685180.04 | 2_District1 | 3 | 45291384772704.2 |
| 15_District4 | | - | 2_District2 | 1 | 345750973464.34 |
| 15_District5 | 3 | 32287953051783.4 | 2_District3 | 1 | 1127228274524.8 |
| 16_District0 | 0 | 138477941427.15 | 2_District4 | | - |
| 16_District1 | 2 | 15144931153129.5 | 2_District5 | | - |
| 16_District2 | 1 | 132514327184.6 | 30_District0 | 0 | 20052123066.46 |
| 16_District3 | 1 | 361273702860.36 | 30_District1 | 1 | 4312691699679.27 |
| 16_District4 | | - | 30_District2 | 1 | 57117742210.52 |
| 16_District5 | 3 | 51578169889298.7 | 30_District3 | 0 | 182562266602.39 |
| 17_District0 | 0 | 78319859061.15 | 30_District4 | 1 | 8052008671222.14 |
| 17_District1 | 1 | 12432742277333.8 | 30_District5 | | - |
| 17_District2 | 0 | 156665277429.91 | 3_District0 | 1 | 125813335834.03 |
| 17_District3 | 1 | 279813602971.54 | 3_District1 | 2 | 22284769406048.7 |
| 17_District4 | | - | 3_District2 | 0 | 240105020726.05 |
| 17_District5 | 2 | 26566194850082.5 | 3_District3 | 0 | 1283246863961.54 |
| 18_District0 | 0 | 3521808556.5 | 3_District4 | 4 | 78588143048537.1 |
| 18_District1 | | - | 3_District5 | 3 | 64265301930963.4 |
| 18_District2 | 0 | 9256632018.73 | 4_District0 | 0 | 25573824722.49 |
| 18_District3 | 1 | 100695778556.15 | 4_District1 | 1 | 17238235759616.8 |
| 18_District4 | | - | 4_District2 | 0 | 28124793618.51 |
| 18_District5 | 2 | 13672716327594.6 | 4_District3 | 1 | 60537109284.43 |
| 19_District0 | 0 | 64625776234.49 | 4_District4 | 3 | 64872717206335.6 |
| 19_District1 | 2 | 24528896687922 | 4_District5 | | - |
| 19_District2 | 1 | 205915841598.43 | 5_District0 | 0 | 129118698669.78 |
| 19_District3 | 0 | 338591139872.36 | 5_District1 | 2 | 22578812619408.6 |
| 19_District4 | | 123681507234826 | 5_District2 | 1 | 95107414309.81 |
| 19_District5 | 3 | 93828514391975 | 5_District3 | 1 | 525169193508.74 |
| 1_District0 | 0 | 518609006951.86 | 5_District4 | 3 | 68258766631008.6 |
| 1_District1 | 3 | 56270206789859.1 | 5_District5 | 4 | 136609756533188 |
| 1_District2 | | - | 6_District0 | 0 | 220433136825.25 |
| 1_District3 | 1 | 1531887721228.56 | 6_District1 | 2 | 27537517766911.2 |
| 1_District4 | 4 | 84047639278528.5 | 6_District2 | 0 | 356181224330.19 |
| 1_District5 | 4 | 99000141536068 | 6_District3 | 0 | 363804468155.21 |
| 20_District0 | 0 | 113316045933.83 | 6_District4 | | - |
| 20_District1 | 2 | 17718690639232.5 | 6_District5 | 3 | 69963236402468.5 |
| 20_District2 | 0 | 54179107008.82 | 7_District0 | 1 | 63608972382.16 |
| 20_District3 | 1 | 470862883618.9 | 7_District1 | 2 | 26968214676885.6 |
| 20_District4 | 3 | 31749522139867.1 | 7_District2 | 0 | 112061719743.98 |
| 20_District5 | 3 | 57561964160362.7 | 7_District3 | 1 | 1010758653768.06 |
| 21_District0 | | 142729859125.56 | 7_District4 | | - |
| 21_District1 | 2 | 18618763265051.4 | 7_District5 | 3 | 69720921596603.2 |
| 21_District2 | 1 | 116023835389.88 | 8_District0 | 0 | 78001907952.28 |
| 21_District3 | 0 | 1270458349614.08 | 8_District1 | 2 | 13859124871506.7 |
| 21_District4 | 3 | 29067095756504.5 | 8_District2 | 0 | 90830953195.68 |
| 21_District5 | | - | 8_District3 | 0 | 673934851369.98 |
| 22_District0 | 0 | 165570512287.3 | 8_District4 | 2 | 36566921051403.7 |
| 22_District1 | 2 | 15470246253763.4 | 8_District5 | 2 | 46889079939457.2 |
| 22_District2 | 0 | 323706119166.79 | 9_District0 | 0 | 120339564622.06 |
| 22_District3 | 0 | 461195678464.1 | 9_District1 | 2 | 12395335811834.3 |
| 22_District4 | | - | 9_District2 | 1 | 132353194387.96 |
| 22_District5 | 3 | 42772519577575.2 | 9_District3 | 1 | 1397126467231.04 |
| 23_District0 | 0 | 40743361287.58 | 9_District4 | | - |
| 23_District1 | 2 | 17211576588480.4 | 9_District5 | 2 | 35072281647067.8 |
| 23_District2 | | 248844083189.61 | C101_100t_20w | | - |
| 23_District3 | 1 | 366148850953.41 | C101_25t_5w | 0 | 280350869.62 |
| 23_District4 | | - | C101_50t_10w | | - |
| 23_District5 | 3 | 80426668069628.3 | C102_100t_20w | | - |
| 24_District0 | 0 | 156052500888.05 | C102_25t_5w | 0 | 330413205.7 |
| 24_District1 | 2 | 13601722471274.8 | C102_50t_10w | | - |
| 24_District2 | 0 | 38666535939.24 | C103_100t_20w | | - |
| 24_District3 | 0 | 226783604681.59 | C103_25t_5w | 0 | 327409315.8 |
| C103_50t_10w | | - | R206_100t_20w | | - |
| C104_100t_20w | | - | R206_25t_5w | 0 | 32653362.6 |
| C104_25t_5w | 0 | 328410628.68 | R206_50t_10w | | - |
| C104_50t_10w | | - | R207_100t_20w | | - |
| C105_100t_20w | | - | R207_25t_5w | 0 | 53512543 |
| C105_25t_5w | 0 | 288360633.06 | R207_50t_10w | | - |
| C105_50t_10w | | - | R208_100t_20w | | - |
| C106_100t_20w | 1 | 99144492565.14 | R208_25t_5w | 0 | 66806535.9 |
| C106_25t_5w | 0 | 283354540.84 | R208_50t_10w | | - |
| C106_50t_10w | | - | R209_100t_20w | | - |
| C107_100t_20w | | - | R209_25t_5w | | - |
| C107_25t_5w | | - | R209_50t_10w | | - |
| C107_50t_10w | | - | R210_100t_20w | | - |
| C108_100t_20w | | - | R210_25t_5w | 0 | 15020561.04 |
| C108_25t_5w | 0 | 317897559.88 | R210_50t_10w | | - |
| C108_50t_10w | | - | R211_100t_20w | | - |
| C109_100t_20w | | - | R211_25t_5w | 0 | 53233953.8 |
| C109_25t_5w | 0 | 442553166.58 | R211_50t_10w | | - |
| C109_50t_10w | | - | RC101_100t_20w | | - |
| C201_100t_20w | | - | RC101_25t_5w | 1 | 58017439.38 |
| C201_25t_5w | | - | RC101_50t_10w | 1 | 1415935917.12 |
| C201_50t_10w | | - | RC102_100t_20w | | - |
| C202_100t_20w | | - | RC102_25t_5w | 0 | 53790154.84 |

| Instance | Table D. 2 - continued from previous page | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Objective Value | Instance | Time | Objective Value |
| C202_25t_5w | | - | RC102_50t_10w | | - |
| C202_50t_10w | | - | RC103_100t_20w | | - |
| C203_100t_20w | | - | RC103_25t_5w | 0 | 58406956.56 |
| C203_25t_5w | | - | RC103_50t_10w | | - |
| C203_50t_10w | | - | RC104_100t_20w | | - |
| C204_100t_20w | | - | RC104_25t_5w | 0 | 79433035.18 |
| C204_25t_5w | 0 | 558197474.02 | RC104_50t_10w | | - |
| C204_50t_10w | | - | RC105_100t_20w | | - |
| C205_100t_20w | | - | RC105_25t_5w | 0 | 49284339.76 |
| C205_25t_5w | | - | RC105_50t_10w | | - |
| C205_50t_10w | | - | RC106_100t_20w | | - |
| C206_100t_20w | | - | RC106_25t_5w | 0 | 62300598.44 |
| C206_25t_5w | | - | RC106_50t_10w | | - |
| C206_50t_10w | | - | RC107_100t_20w | | - |
| C207_100t_20w | | - | RC107_25t_5w | 0 | 62467451.12 |
| C207_25t_5w | | - | RC107_50t_10w | | - |
| C207_50t_10w | | - | RC108_100t_20w | | - |
| C208_100t_20w | | - | RC108_25t_5w | 0 | 70088017.62 |
| C208_25t_5w | | - | RC108_50t_10w | 1 | 1860931142.34 |
| C208_50t_10w | | - | RC201_100t_20w | | - |
| R101_100t_20w | 1 | 31324289857.8 | RC201_25t_5w | 0 | 2227025.82 |
| R101_25t_5w | 0 | 62467584.18 | RC201_50t_10w | 0 | -56268456.68 |
| R101_50t_10w | 1 | 1480434141.18 | RC202_100t_20w | | - |
| R102_100t_20w | | - | RC202_25t_5w | 0 | 26980073.22 |
| R102_25t_5w | 0 | 57961949.66 | RC202_50t_10w | | - |
| R102_50t_10w | | - | RC203_100t_20w | | - |
| R103_100t_20w | | - | RC203_25t_5w | 0 | 44612948.06 |
| R103_25t_5w | 0 | 65749425.48 | RC203_50t_10w | | - |
| R103_50t_10w | 0 | 1406412643.2 | RC204_100t_20w | | - |
| R104_100t_20w | | - | RC204_25t_5w | 0 | 61689634.12 |
| R104_25t_5w | 0 | 70088173.92 | RC204_50t_10w | | - |
| R104_50t_10w | 0 | 2061785102.36 | RC205_100t_20w | | - |
| R105_100t_20w | | - | RC205_25t_5w | 0 | 19026136.8 |
| R105_25t_5w | 0 | 61299289.8 | RC205_50t_10w | | - |
| R105_50t_10w | 0 | 1544066777.86 | RC206_100t_20w | | - |
| R106_100t_20w | | - | RC206_25t_5w | 0 | 19637230.36 |
| R106_25t_5w | 0 | 58406946.24 | RC206_50t_10w | | - |
| R106_50t_10w | | - | RC207_100t_20w | | - |
| R107_100t_20w | | - | RC207_25t_5w | | - |
| R107_25t_5w | 0 | 58406920.82 | RC207_50t_10w | | - |
| R107_50t_10w | 1 | 1483464446.74 | RC208_100t_20w | | - |
| R108_100t_20w | | - | RC208_25t_5w | 0 | 57461940.38 |
| R108_25t_5w | 0 | 57961903.58 | RC208_50t_10w | | - |
| R108_50t_10w | 0 | 2000749736.76 | hh_00_P0 | 2 | 4641366275065.9 |
| R109_100t_20w | | - | 111_00_P0 | 1 | 111689842477.59 |
| R109_25t_5w | 0 | 61466184.98 | 111_01_P0 | 1 | 80487807895.6 |
| R109_50t_10w | | - | 111_02_P0 | 1 | 111689842477.59 |
| R110_100t_20w | | - | 111_03_P0 | 1 | 111689842477.59 |
| R110_25t_5w | 0 | 66027352.7 | 111_04_P0 | 1 | 111689842477.59 |
| R110_50t_10w | 0 | 1665271584.06 | 111_05_P0 | 1 | 115191304751.38 |
| R111_100t_20w | | - | 111_06_P0 | | - |
| R111_25t_5w | 0 | 53511883.66 | 111_07_P0 | 1 | 108592963751.38 |
| R111_50t_10w | 0 | 1756175567.56 | 112_00_P0 | 0 | 11461556706.86 |
| R112_100t_20w | | - | 113_00_P0 | 1 | 6962257738.24 |
| R112_25t_5w | 0 | 78487214.58 | test150-0-0-0-0_d0_tw0 | | - |
| R112_50t_10w | 1 | 2064815105.06 | test150-0-0-0-0_d0_tw1 | | - |
| R201_100t_20w | | - | test150-0-0-0-0_d0_tw2 | | - |
| R201_25t_5w | 0 | 1726182.96 | test150-0-0-0-0_d0_tw3 | | - |
| R201_50t_10w | 1 | -53239122.3 | test150-0-0-0-0_d0_tw4 | | - |
| R202_100t_20w | | - | test250-0-0-0-0_d0_tw0 | | - |
| R202_25t_5w | 0 | 33098359.28 | test250-0-0-0-0_d0_tw1 | | - |
| R202_50t_10w | | - | test250-0-0-0-0_d0_tw2 | | - |
| R203_100t_20w | | - | test250-0-0-0-0_d0_tw3 | | - |
| R203_25t_5w | 0 | 53345561.86 | test250-0-0-0-0_d0_tw4 | | - |
| R203_50t_10w | | - | test50-0-0-0-0_d0_tw0 | | - |
| R204_100t_20w | | - | test50-0-0-0-0_d0_tw1 | 1 | -324551544.9 |
| R204_25t_5w | 0 | 66639648.32 | test50-0-0-0-0_d0_tw2 | 0 | -324551544.9 |
| R204_50t_10w | | - | test50-0-0-0-0_d0_tw3 | 1 | -324551544.9 |
| R205_100t_20w | | - | test50-0-0-0-0_d0_tw4 | | - |
| R205_25t_5w | | - | BTEngineers | 12 | -661041733488.256 |
| R205_50t_10w | | - | | | |

D. 5 Results of Experiments with GH3

Table D.3: GH3 Results

| Instance | Time | Objective Value | Instance | Time | Objective Value |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10_District0 | 9 | 106514181491.02 | 24_District4 | 2 | 26737166769864.2 |
| 10_District1 | 16 | 9001482305057.62 | 24_District5 | 2 | 28479935686410 |
| 10_District2 | 1 | 58625462521.26 | 25_District0 | 1 | 2795528712.59 |
| 10_District3 | 1 | 209751898948.67 | 25_District1 | 1 | 6324900485756.72 |
| 10_District4 | 6 | 23282973667201.7 | 25_District2 | 0 | 4472855514 |
| 10_District5 | 4 | 40589090305550 | 25_District3 | 1 | 70786983265 |
| 11_District0 | 1 | 5544047418.77 | 25_District4 | 2 | 22271373878426.7 |
| 11_District1 | 3 | 7039742788663.01 | 25_District5 | 2 | 11858978750864.1 |
| 11_District2 | 0 | 16733934535.51 | 26_District0 | 0 | 291402864346.59 |
| 11_District3 | 1 | 94943748043.2 | 26_District1 | 2 | 43337058654900.8 |

| Instance | Table D. 3 - continued from previous page | | | Time | Objective Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Objective Value | Instance | | |
| 11_District4 | 3 | 25566635276064.4 | 26_District2 | 1 | 432405593956.62 |
| 11_District5 | 2 | 17249049875800.2 | 26_District3 | 1 | 1711555856290.13 |
| 12_District0 | 1 | 153991002968.62 | 26_District4 | 5 | 116616244902672 |
| 12_District1 | 3 | 39368813493489.5 | 26_District5 | 4 | 88864369188666.8 |
| 12_District2 | 0 | 235123516633.36 | 27_District0 | 1 | 196822644722.21 |
| 12_District3 | 1 | 386856589843.07 | 27_District1 | 2 | 19532184104778.9 |
| 12_District4 | 4 | 59129219661289.8 | 27_District2 | 0 | 97204084369.6 |
| 12_District5 | 3 | 76568915156315 | 27_District3 | 0 | 188834841381.43 |
| 13_District0 | 1 | 200168900258.5 | 27_District4 | 3 | 34983506435735 |
| 13_District1 | 2 | 16442120749780.1 | 27_District5 | 3 | 43125961055732.5 |
| 13_District2 | 1 | 193620112936.58 | 28_District0 | 0 | 139949789802.05 |
| 13_District3 | 1 | 698181667823.88 | 28_District1 | 2 | 15350085980159.1 |
| 13_District4 | 3 | 34000815348145.4 | 28_District2 | 0 | 104194611485.93 |
| 13_District5 | 3 | 50699859698755.2 | 28_District3 | 1 | 1076992212853.09 |
| 14_District0 | 0 | 45850927115.85 | 28_District4 | 2 | 25831106950399.8 |
| 14_District1 | 1 | 14254826758086.1 | 28_District5 | 2 | 36105072571695.8 |
| 14_District2 | 1 | 131633438179.04 | 29_District0 | 0 | 39806924540.87 |
| 14_District3 | 0 | 403729007063.39 | 29_District1 | 1 | 7978378039376.83 |
| 14_District4 | 3 | 35559983065795.8 | 29_District2 | 0 | 131489239054.6 |
| 14_District5 | 3 | 53900420556895.7 | 29_District3 | 1 | 370499572552.62 |
| 15_District0 | 1 | 66146782173.42 | 29_District4 | 1 | 9184153773889.73 |
| 15_District1 | 1 | 12711526556580.4 | 29_District5 | 3 | 43202011804846 |
| 15_District2 | 0 | 119992921511.48 | 2_District0 | 0 | 203347903444.68 |
| 15_District3 | 1 | 612534148647.44 | 2_District1 | 3 | 40571278712927 |
| 15_District4 | 3 | 26167980969582 | 2_District2 | 0 | 281947676352.62 |
| 15_District5 | 2 | 32316119579039.1 | 2_District3 | 0 | 1178651432555.58 |
| 16_District0 | 1 | 134797464599.05 | 2_District4 | 4 | 68080523243923 |
| 16_District1 | 1 | 13544030449927.9 | 2_District5 | 4 | 112807731538713 |
| 16_District2 | 0 | 136369984551.11 | 30_District0 | 0 | 20070374480.49 |
| 16_District3 | 0 | 310893633570.54 | 30_District1 | 1 | 4312691699679.27 |
| 16_District4 | 3 | 32015923640900.9 | 30_District2 | 1 | 55209612841.85 |
| 16_District5 | 3 | 49863031314372.5 | 30_District3 | 0 | 181689072414.71 |
| 17_District0 | 0 | 80339019701.64 | 30_District4 | 1 | 6693326983564.53 |
| 17_District1 | 1 | 12781834998534.5 | 30_District5 | 1 | 6017528191223.9 |
| 17_District2 | 1 | 156181089016.88 | 3_District0 | 1 | 122561494294.58 |
| 17_District3 | 1 | 286459175916.91 | 3_District1 | 2 | 18208627078859.5 |
| 17_District4 | 2 | 20922289478740.1 | 3_District2 | 0 | 240340957506.52 |
| 17_District5 | 2 | 26532859320678.5 | 3_District3 | 1 | 1281223453464.44 |
| 18_District0 | 0 | 3521808556.5 | 3_District4 | 4 | 71112832577681.6 |
| 18_District1 | 2 | 14328913847618.3 | 3_District5 | 3 | 64891254385918.3 |
| 18_District2 | 1 | 8630147571.94 | 4_District0 | 1 | 25573824722.49 |
| 18_District3 | 0 | 93021012558.83 | 4_District1 | 2 | 17238235759627.9 |
| 18_District4 | 2 | 19659368358475 | 4_District2 | 0 | 29633450012.82 |
| 18_District5 | 1 | 13672716328157.6 | 4_District3 | 0 | 49572290640.61 |
| 19_District0 | 1 | 64434270618.25 | 4_District4 | 4 | 51890790231478.7 |
| 19_District1 | 2 | 23652212368611.5 | 4_District5 | 2 | 31137521929724.6 |
| 19_District2 | 1 | 219680866790.73 | 5_District0 | 0 | 128781182282.02 |
| 19_District3 | 0 | 346757448838.82 | 5_District1 | 2 | 22894699266341.7 |
| 19_District4 | 5 | 113859513555083 | 5_District2 | 1 | 94695484101.81 |
| 19_District5 | 4 | 95534597869554.9 | 5_District3 | 0 | 567433555346.88 |
| 1_District0 | 1 | 518262674109.11 | 5_District4 | 3 | 72230954757530.8 |
| 1_District1 | 3 | 57515558599736.1 | 5_District5 | 4 | 129423894047924 |
| 1_District2 | 1 | 833211902030.59 | 6_District0 | 1 | 220587523297.92 |
| 1_District3 | 1 | 1505646454670.73 | 6_District1 | 2 | 26507707681694.6 |
| 1_District4 | 5 | 78076709551623.2 | 6_District2 | 0 | 410060413097.7 |
| 1_District5 | 3 | 98873046645006.1 | 6_District3 | 0 | 365827522769.89 |
| 20_District0 | 0 | 110769617876.9 | 6_District4 | 3 | 37068601166034.6 |
| 20_District1 | 2 | 18197730346113.1 | 6_District5 | 3 | 60410529144935.3 |
| 20_District2 | 0 | 54688947926.38 | 7_District0 | 1 | 65702903269.61 |
| 20_District3 | 1 | 470291321930.17 | 7_District1 | 2 | 28027021670451.1 |
| 20_District4 | 3 | 28044909810917.7 | 7_District2 | 1 | 116641823753.31 |
| 20_District5 | 3 | 58730152299958.6 | 7_District3 | 0 | 904801723716.86 |
| 21_District0 | 1 | 147347736597.59 | 7_District4 | 3 | 33193370485671.2 |
| 21_District1 | 2 | 17166915036773.7 | 7_District5 | 3 | 59405925904447.8 |
| 21_District2 | 1 | 120541044419.74 | 8_District0 | 0 | 77888791330.51 |
| 21_District3 | 0 | 1297422147669.29 | 8_District1 | 1 | 13654929607346.6 |
| 21_District4 | 2 | 27914982366635.8 | 8_District2 | 0 | 87907337806.29 |
| 21_District5 | 3 | 53568470949871 | 8_District3 | 1 | 523196098713.99 |
| 22_District0 | 0 | 165773666324.15 | 8_District4 | 3 | 30291252419995.7 |
| 22_District1 | 1 | 15243631318257.1 | 8_District5 | 2 | 43918931439070.2 |
| 22_District2 | 0 | 324661427161.02 | 9_District0 | 0 | 116737451606.18 |
| 22_District3 | 1 | 474713951444.09 | 9_District1 | 1 | 12399153285006.3 |
| 22_District4 | 3 | 30893669654101.1 | 9_District2 | 0 | 136483997883.1 |
| 22_District5 | 3 | 44875375328999.7 | 9_District3 | 1 | 1459938832249.58 |
| 23_District0 | 0 | 40743361287.58 | 9_District4 | 3 | 41362999296925.9 |
| 23_District1 | 2 | 17469640737231 | 9_District5 | 2 | 26860109133590.2 |
| 23_District2 | 0 | 257681688762.54 | C101_100t_20w | 1 | 40805608647.36 |
| 23_District3 | 1 | 365950771984.04 | C101_25t_5w | 0 | 280350869.62 |
| 23_District4 | 2 | 38298731215190.3 | C101_50t_10w | 1 | 1573935875.42 |
| 23_District5 | 3 | 77953647815762 | C102_100t_20w | 1 | 70133116592.4 |
| 24_District0 | 1 | 151863618723.94 | C102_25t_5w | 0 | 329912424 |
| 24_District1 | 2 | 12692918197763.7 | C102_50t_10w | 0 | 5524352905.28 |
| 24_District2 | 0 | 40494552634.13 | C103_100t_20w | 1 | 158699272503.34 |
| 24_District3 | 1 | 241943658267.41 | C103_25t_5w | 1 | 327409315.8 |
| C103_50t_10w | 0 | 7261913029.18 | R206_100t_20w | 1 | 2083248305.76 |
| C104_100t_20w | 1 | 276422711492.72 | R206_25t_5w | 0 | 1559270.22 |
| C104_25t_5w | 0 | 287359700.52 | R206_50t_10w | 1 | 148912632.02 |
| C104_50t_10w | 0 | 12614845759.3 | R207_100t_20w | 1 | 602552362.26 |
| C105_100t_20w | 0 | 47274196432.62 | R207_25t_5w | 0 | 5341774.42 |
| C105_25t_5w | 0 | 288360633.06 | R207_50t_10w | 0 | 217307064.9 |
| C105_50t_10w | 0 | 2653093048.88 | R208_100t_20w | 1 | 402603379.84 |
| C106_100t_20w | 1 | 62691808364.4 | R208_25t_5w | 0 | 10348010.4 |
| C106_25t_5w | 0 | 283354540.84 | R208_50t_10w | 0 | 22945783 |
| C106_50t_10w | 1 | 2029753005.1 | R209_100t_20w | 1 | 1248330191.24 |
| C107_100t_20w | 1 | 70886974907.1 | R209_25t_5w | 0 | 9402282.68 |
| C107_25t_5w | 0 | 244305724.68 | R209_50t_10w | 1 | 18184428.68 |
| C107_50t_10w | 0 | 2002481692.92 | R210_100t_20w | 1 | 3672023977.68 |

| Instance | Table D. 3 - continued from previous page | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Objective Value | Instance | Time | Objective Value |
| C108_100t_20w | 1 | 77696013979 | R210_25t_5w | 0 | -2778914.68 |
| C108_25t_5w | 1 | 212766397.44 | R210_50t_10w | 1 | 69696872.28 |
| C108_50t_10w | 0 | 1441475837.72 | R211_100t_20w | 1 | 6230817533.52 |
| C109_100t_20w | 1 | 106780342246.46 | R211_25t_5w | 0 | 24364921.98 |
| C109_25t_5w | 0 | 285857514.98 | R211_50t_10w | 0 | 159734539.88 |
| C109_50t_10w | 0 | 3810168122.66 | RC101_100t_20w | 1 | 31372925621.7 |
| C201_100t_20w | 1 | -3112699402.26 | RC101_25t_5w | 0 | 58017439.38 |
| C201_25t_5w | 0 | -20024053.92 | RC101_50t_10w | 0 | 1481300065.14 |
| C201_50t_10w | 0 | 70128360.88 | RC102_100t_20w | 1 | 26501220055.86 |
| C202_100t_20w | 1 | 4474520475.34 | RC102_25t_5w | 0 | 48338693.22 |
| C202_25t_5w | 0 | 17022310.78 | RC102_50t_10w | 0 | 1267892723.54 |
| C202_50t_10w | 0 | 261027370.88 | RC103_100t_20w | 1 | 28873576159.68 |
| C203_100t_20w | 1 | -2188612090.6 | RC103_25t_5w | 1 | 48728086.94 |
| C203_25t_5w | 0 | 19025148.96 | RC103_50t_10w | 0 | 1539738202.98 |
| C203_50t_10w | 0 | 253235287.44 | RC104_100t_20w | 1 | 39635641791.6 |
| C204_100t_20w | 1 | -2869516409.62 | RC104_25t_5w | 0 | 62634465.94 |
| C204_25t_5w | 0 | 65582917.76 | RC104_50t_10w | 1 | 1864394369.08 |
| C204_50t_10w | 0 | 307777448.46 | RC105_100t_20w | 1 | 28954635863.34 |
| C205_100t_20w | 1 | 27114575490.06 | RC105_25t_5w | 0 | 49284339.76 |
| C205_25t_5w | 0 | -20023953.88 | RC105_50t_10w | 0 | 1403815303.12 |
| C205_50t_10w | 1 | -471398319.38 | RC106_100t_20w | 1 | 31351309184.32 |
| C206_100t_20w | 1 | 26117537853.08 | RC106_25t_5w | 0 | 62300598.44 |
| C206_25t_5w | 0 | 61577867.88 | RC106_50t_10w | 0 | 1596877565.7 |
| C206_50t_10w | 0 | 740219294.579999 | RC107_100t_20w | 1 | 37909063145.46 |
| C207_100t_20w | 1 | 10626970683.86 | RC107_25t_5w | 0 | 62467451.12 |
| C207_25t_5w | 0 | 46559137.1 | RC107_50t_10w | 0 | 1683019698.9 |
| C207_50t_10w | 1 | 136358501.48 | RC108_100t_20w | 1 | 43577858701.2 |
| C208_100t_20w | 1 | 46860791811.58 | RC108_25t_5w | 0 | 70088017.62 |
| C208_25t_5w | 0 | 20526829.42 | RC108_50t_10w | 0 | 1728904280.28 |
| C208_50t_10w | 0 | 1277850103.34 | RC201_100t_20w | 1 | 456644247.6 |
| R101_100t_20w | 1 | 20081267457.8 | RC201_25t_5w | 0 | 2504879.98 |
| R101_25t_5w | 0 | 62467584.18 | RC201_50t_10w | 0 | -54970610.92 |
| R101_50t_10w | 0 | 1480434141.18 | RC202_100t_20w | 1 | 1240226021.94 |
| R102_100t_20w | 1 | 20032631931.82 | RC202_25t_5w | 0 | 1782126.85999999 |
| R102_25t_5w | 0 | 57961949.66 | RC202_50t_10w | 1 | 144585183.34 |
| R102_50t_10w | 0 | 1409442930.92 | RC203_100t_20w | 1 | 486368151.06 |
| R103_100t_20w | 1 | 25571731629.34 | RC203_25t_5w | 0 | 1504158.04 |
| R103_25t_5w | 0 | 49507034.04 | RC203_50t_10w | 0 | 138524275.72 |
| R103_50t_10w | 0 | 1470910935.92 | RC204_100t_20w | 1 | -270192915.32 |
| R104_100t_20w | 1 | 37836109102.84 | RC204_25t_5w | 0 | 7177386.43999999 |
| R104_25t_5w | 0 | 45390782.4 | RC204_50t_10w | 1 | 11692132.36 |
| R104_50t_10w | 0 | 2061785102.36 | RC205_100t_20w | 1 | 2077845556.4 |
| R105_100t_20w | 1 | 24871913269.32 | RC205_25t_5w | 0 | 2616353.63999999 |
| R105_25t_5w | 0 | 61299289.8 | RC205_50t_10w | 0 | 217307534.9 |
| R105_50t_10w | 0 | 1417667263.1 | RC206_100t_20w | 1 | 1278052795.63999 |
| R106_100t_20w | 1 | 24893529568.92 | RC206_25t_5w | 0 | 1614724.18 |
| R106_25t_5w | 0 | 58406946.24 | RC206_50t_10w | 0 | 83548297.78 |
| R106_50t_10w | 1 | 1532812190.92 | RC207_100t_20w | 1 | 3777402944.77999 |
| R107_100t_20w | 1 | 27455025570.24 | RC207_25t_5w | 0 | 15187583.72 |
| R107_25t_5w | 0 | 57572567.14 | RC207_50t_10w | 1 | 24244966.86 |
| R107_50t_10w | 0 | 1483464446.74 | RC208_100t_20w | 1 | 10316241624.22 |
| R108_100t_20w | 1 | 40375989133.8 | RC208_25t_5w | 0 | 28036327.06 |
| R108_25t_5w | 0 | 49562611.38 | RC208_50t_10w | 1 | 216874192.84 |
| R108_50t_10w | 0 | 2002481236.76 | hh_00_P0 | 2 | 2132214584277.35 |
| R109_100t_20w | 1 | 29797658783.36 | 111_00_P0 | 1 | 111689842477.59 |
| R109_25t_5w | 0 | 61466184.98 | 111_01_P0 | 1 | 80332194267.5 |
| R109_50t_10w | 0 | 1475672317.98 | 111_02_P0 | 1 | 111689842477.59 |
| R110_100t_20w | 1 | 33069780617.82 | 111_03_P0 | 1 | 111689842477.59 |
| R110_25t_5w | 0 | 65804920.66 | 111_04_P0 | 1 | 111689842477.59 |
| R110_50t_10w | 1 | 1544499451.28 | 111_05_P0 | 1 | 110071370621.19 |
| R111_100t_20w | 1 | 29805765370.18 | 111_06_P0 | 1 | 85327578093.91 |
| R111_25t_5w | 0 | 53511883.66 | 111_07_P0 | 0 | 108592963751.38 |
| R111_50t_10w | 0 | 1666137378.44 | 112_00_P0 | 1 | 11461556706.86 |
| R112_100t_20w | 0 | 44337120135.48 | 113_00_P0 | 0 | 6962257738.24 |
| R112_25t_5w | 0 | 78487214.58 | test150-0-0-0-0_d0_tw0 | 4 | 2071227103475.1 |
| R112_50t_10w | 0 | 1942744175.54 | test150-0-0-0-0_d0_tw1 | 4 | -17864902529.2 |
| R201_100t_20w | 1 | 359372643 | test150-0-0-0-0_d0_tw2 | 5 | -12691662643.5 |
| R201_25t_5w | 0 | -1722541.3 | test150-0-0-0-0_d0_tw3 | 5 | -11932921248.4 |
| R201_50t_10w | 0 | -45880208.54 | test150-0-0-0-0_d0_tw4 | 5 | 140229289294.1 |
| R202_100t_20w | 2 | 1194290404.7 | test250-0-0-0-0_d0_tw0 | 9 | 35170169091553 |
| R202_25t_5w | 0 | 3116948.78 | test250-0-0-0-0_d0_tw1 | 15 | 137849382242.3 |
| R202_50t_10w | 1 | 143285321.52 | test250-0-0-0-0_d0_tw2 | 16 | 123321148400.6 |
| R203_100t_20w | 1 | 524193762.42 | test250-0-0-0-0_d0_tw3 | 15 | 121293950820.7 |
| R203_25t_5w | 0 | 5842635.42 | test250-0-0-0-0_d0_tw4 | 16 | 410507302095.6 |
| R203_50t_10w | 1 | 202589625.92 | test50-0-0-0-0_d0_tw0 | 0 | 10189252978.1 |
| R204_100t_20w | 2 | 475557767.94 | test50-0-0-0-0_d0_tw1 | 1 | -296465074.4 |
| R204_25t_5w | 0 | 7010513 | test50-0-0-0-0_d0_tw2 | 1 | -324551724.1 |
| R204_50t_10w | 0 | 31603644.24 | test50-0-0-0-0_d0_tw3 | 0 | -327672308.4 |
| R205_100t_20w | 1 | 1264542313.16 | test50-0-0-0-0_d0_tw4 | 1 | -149791689.3 |
| R205_25t_5w | 0 | 1615002.18 | BTEngineers | 28 | -661041733488.256 |
| R205_50t_10w | 0 | 82250460.88 | | | |

D. 6 Results of Experiments with GH4

Table D.4: GH4 Results

| Instance | Time | Objective Value | Instance | Time | Objective Value |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10_District0 | 10 | 73579149872.19 | 24_District4 | 4 | 27578807460941 |

| Instance | Table D. 4 - continued from previous page | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Objective Value | Instance | Time | Objective Value |
| C105_100t_20w | 1 | 32926578587.94 | R207_25t_5w | 1 | -3446505.1 |
| C105_25t_5w | 0 | 208761384.28 | R207_50t_10w | 1 | -29430958.54 |
| C105_50t_10w | 0 | 1383038651.9 | R208_100t_20w | 5 | -551200441.52 |
| C106_100t_20w | 1 | 11696965721.82 | R208_25t_5w | 0 | -2055976.38 |
| C106_25t_5w | 0 | 97622645.1 | R208_50t_10w | 2 | -49776178 |
| C106_50t_10w | 0 | 2582968265.2 | R209_100t_20w | 4 | 2023805612.76 |
| C107_100t_20w | 1 | 47274198496.32 | R209_25t_5w | 0 | 947578.879999999 |
| C107_25t_5w | 0 | 178223311.54 | R209_50t_10w | 0 | 13423441.74 |
| C107_50t_10w | 0 | 1979107222.62 | R210_100t_20w | 5 | 2104865022.28 |
| C108_100t_20w | 1 | 32950897319.16 | R210_25t_5w | 0 | -3279615.82 |
| C108_25t_5w | 0 | 174719109.76 | R210_50t_10w | 1 | 99565453.5399999 |
| C108_50t_10w | 0 | 241547262.16 | R211_100t_20w | 3 | 7830403070.88 |
| C109_100t_20w | 2 | 26166175173.92 | R211_25t_5w | 0 | 1170129.94 |
| C109_25t_5w | 0 | 136671428.18 | R211_50t_10w | 1 | 18618600.58 |
| C109_50t_10w | 0 | -327250206.46 | RC101_100t_20w | 1 | 23188568287.92 |
| C201_100t_20w | 1 | -4669049241.14 | RC101_25t_5w | 0 | 49451353.64 |
| C201_25t_5w | 0 | -27032513.24 | RC101_50t_10w | 1 | 1412473148.5 |
| C201_50t_10w | 1 | -257123833.06 | RC102_100t_20w | 1 | 21518732405.6 |
| C202_100t_20w | 3 | -3234284890.7 | RC102_25t_5w | 0 | 40217609.6 |
| C202_25t_5w | 0 | -13015142.64 | RC102_50t_10w | 0 | 1334555632.24 |
| C202_50t_10w | 1 | -214269133.1 | RC103_100t_20w | 1 | 18273630595.02 |
| C203_100t_20w | 5 | -2699290425.82 | RC103_25t_5w | 0 | 49173343.64 |
| C203_25t_5w | 0 | -26531711.88 | RC103_50t_10w | 1 | 1154046931.84 |
| C203_50t_10w | 1 | 175318423.22 | RC104_100t_20w | 1 | 23226396558.9 |
| C204_100t_20w | 5 | -3842235579.9 | RC104_25t_5w | 1 | 49173289.36 |
| C204_25t_5w | 0 | -14016174.06 | RC104_50t_10w | 1 | 1075696856.06 |
| C204_50t_10w | 1 | 210381362.6 | RC105_100t_20w | 1 | 20678410120.62 |
| C205_100t_20w | 2 | 5471558240.16 | RC105_25t_5w | 0 | 44890061.72 |
| C205_25t_5w | 0 | -26531992.68 | RC105_50t_10w | 1 | 1409010160.46 |
| C205_50t_10w | 1 | -401271699.16 | RC106_100t_20w | 1 | 23261521824.28 |
| C206_100t_20w | 2 | -3209968089.62 | RC106_25t_5w | 0 | 57238833.18 |
| C206_25t_5w | 0 | -20024005.08 | RC106_50t_10w | 0 | 1281744931.5 |
| C206_50t_10w | 1 | 225964531.18 | RC107_100t_20w | 1 | 19246350311.48 |
| C207_100t_20w | 3 | 3939524761.94 | RC107_25t_5w | 0 | 49062064.54 |
| C207_25t_5w | 0 | 9513283.87999999 | RC107_50t_10w | 1 | 1347109364.12 |
| C207_50t_10w | 1 | 724636750.9 | RC108_100t_20w | 1 | 20756768275.58 |
| C208_100t_20w | 2 | -3915189482 | RC108_25t_5w | 0 | 45390814.78 |
| C208_25t_5w | 0 | -31538178.98 | RC108_50t_10w | 0 | 1137597839.48 |
| C208_50t_10w | 0 | 342840865.36 | RC201_100t_20w | 1 | -459329634.18 |
| R101_100t_20w | 1 | 19208521668.24 | RC201_25t_5w | 0 | 2226841.78 |
| R101_25t_5w | 0 | 53122608.32 | RC201_50t_10w | 0 | -43281138.92 |
| R101_50t_10w | 0 | 1285207620.98 | RC202_100t_20w | 3 | -478244191.4 |
| R102_100t_20w | 1 | 19154482285.74 | RC202_25t_5w | 0 | -1888850.56 |
| R102_25t_5w | 0 | 45057049.18 | RC202_50t_10w | 0 | -35922061.36 |
| R102_50t_10w | 0 | 1217679533.84 | RC203_100t_20w | 4 | -435011993.1 |
| R103_100t_20w | 1 | 18422240207.14 | RC203_25t_5w | 0 | -2277944.62 |
| R103_25t_5w | 0 | 49284533.14 | RC203_50t_10w | 1 | -35922342.52 |
| R103_50t_10w | 1 | 954058853.18 | RC204_100t_20w | 4 | -253978310.52 |
| R104_100t_20w | 2 | 19062614007.94 | RC204_25t_5w | 0 | -2111377.74 |
| R104_25t_5w | 0 | 45335265.26 | RC204_50t_10w | 1 | -40251734.54 |
| R104_50t_10w | 0 | 878305606.64 | RC205_100t_20w | 3 | 462051422.1 |
| R105_100t_20w | 1 | 17557599544 | RC205_25t_5w | 0 | -2779131.14 |
| R105_25t_5w | 0 | 56849341.38 | RC205_50t_10w | 1 | 94372608.88 |
| R105_50t_10w | 0 | 1156643881.64 | RC206_100t_20w | 2 | 1148359696.4 |
| R106_100t_20w | 1 | 16744298114.48 | RC206_25t_5w | 0 | -3167859.86 |
| R106_25t_5w | 0 | 48950883.28 | RC206_50t_10w | 1 | -41982290.74 |
| R106_50t_10w | 0 | 739352693.46 | RC207_100t_20w | 2 | 3717960837.82 |
| R107_100t_20w | 1 | 15036634177.5 | RC207_25t_5w | 0 | 1003480.7 |
| R107_25t_5w | 1 | 44222766.02 | RC207_50t_10w | 0 | 12559459.32 |
| R107_50t_10w | 1 | 818135942.38 | RC208_100t_20w | 4 | 5298631393.36 |
| R108_100t_20w | 2 | 18451962090.24 | RC208_25t_5w | 1 | -2278110.98 |
| R108_25t_5w | 0 | 49117714.96 | RC208_50t_10w | 0 | 85282092.7 |
| R108_50t_10w | 1 | 863155047.08 | hh_00_P0 | 3 | 1124640066530.13 |
| R109_100t_20w | 1 | 14320603709.74 | 111_00_P0 | 1 | 80581170304.56 |
| R109_25t_5w | 1 | 40328946.98 | 111_01_P0 | 1 | 47480545447.34 |
| R109_50t_10w | 0 | 941505115.32 | 111_02_P0 | 1 | 80581170304.56 |
| R110_100t_20w | 1 | 16695661971.42 | 111_03_P0 | 1 | 78931585054.56 |
| R110_25t_5w | 0 | 61077136.84 | 111_04_P0 | 2 | 80581170304.56 |
| R110_50t_10w | 0 | 893023281.52 | 111_05_P0 | 1 | 78931585054.56 |
| R111_100t_20w | 1 | 12669682056.42 | 111_06_P0 | 1 | 55728436333.6 |
| R111_25t_5w | 0 | 49062035 | 111_07_P0 | 1 | 75632414554.56 |
| R111_50t_10w | 1 | 930683575.42 | 112_00_P0 | 1 | 5775841520.35 |
| R112_100t_20w | 1 | 15098779769.04 | 113_00_P0 | 0 | 5816909548.94 |
| R112_25t_5w | 0 | 49062021.06 | test150-0-0-0-0_d0_tw0 | 26 | 47042006735.5 |
| R112_50t_10w | 0 | 1010332371.06 | test150-0-0-0-0_d0_tw1 | 12 | 45041686643 |
| R201_100t_20w | 2 | 383691051.4 | test150-0-0-0-0_d0_tw2 | 10 | 17244147247.7 |
| R201_25t_5w | 0 | -3391171.8 | test150-0-0-0-0_d0_tw3 | 9 | 49732091599 |
| R201_50t_10w | 1 | -56269224.94 | test150-0-0-0-0_d0_tw4 | 11 | 144436858989.3 |
| R202_100t_20w | 4 | -413398450.44 | test250-0-0-0-0_d0_tw0 | 85 | 434833666600.5 |
| R202_25t_5w | 0 | -1443897.92 | test250-0-0-0-0_d0_tw1 | 34 | 142241643737.6 |
| R202_50t_10w | 1 | -48910356.92 | test250-0-0-0-0_d0_tw2 | 31 | 405439315470.4 |
| R203_100t_20w | 5 | -297212512.58 | test250-0-0-0-0_d0_tw3 | 23 | 357800199477.5 |
| R203_25t_5w | 0 | -2445283.84 | test250-0-0-0-0_d0_tw4 | 37 | 635188248409.6 |
| R203_50t_10w | 1 | -39387267.94 | test50-0-0-0-0_d0_tw0 | 2 | -249653877.4 |
| R204_100t_20w | 5 | -426908730.04 | test50-0-0-0-0_d0_tw1 | 1 | -337034929 |
| R204_25t_5w | 0 | -2723477.98 | test50-0-0-0-0_d0_tw2 | 1 | -277740696.8 |
| R204_50t_10w | 1 | -43716050.8 | test50-0-0-0-0_d0_tw3 | 0 | -321431264.1 |
| R205_100t_20w | 2 | 1140251208.04 | test50-0-0-0-0_d0_tw4 | 1 | -227808798.4 |
| $\begin{aligned} & \text { R205_25t_5w } \\ & \text { R205_50t_10w } \end{aligned}$ | 0 1 | $\begin{aligned} & 1114225.79999999 \\ & -48910479.02 \end{aligned}$ | BTEngineers | 14 | -795238175926.579 |

D. 7 Results of Experiments with GH5

Table D.5: GH5 Results

| Instance | Time | Objective Value | Instance | Time | Objective Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 49 | 76197329181.31 | 24_District4 | 2203 | 24959614832931.4 |
| 10_District1 | 314 | 8332565831754.86 | 24_District5 | 428 | 24740973459133.5 |
| 10_District2 | 19 | 41566415577.57 | 25_District0 | 1 | 2063904706.86 |
| 10_District3 | 25 | 139155792160.46 | 25_District1 | 336 | 6287167333080.46 |
| 10_District4 | 1520 | 21304246353721.4 | 25_District2 | 2 | 3529674897.16 |
| 10_District5 | 1107 | 37735850352798.3 | 25_District3 | 9 | 61895236430.12 |
| 11_District0 | 2 | 4030293327.26 | 25_District4 | 1458 | 20802685785650.5 |
| 11_District1 | 400 | 6157994611789.7 | 25_District5 | 249 | 11017017750010.1 |
| 11_District2 | 5 | 16156248882.71 | 26_District0 | 26 | 225380467772.98 |
| 11_District3 | 22 | 67573409337.35 | 26_District1 | 1863 | 42180173025536.8 |
| 11_District4 | 839 | 22815358640054.3 | 26_District2 | 47 | 347911895048.75 |
| 11_District5 | 406 | 15870444696148.6 | 26_District3 | 190 | 1174205447509.03 |
| 12_District0 | 9 | 120709766177.22 | 26_District4 | 5174 | 109072516818672 |
| 12_District1 | 1735 | 37877356021322 | 26_District5 | 3148 | 76363123397244.6 |
| 12_District2 | 18 | 153054550706.1 | 27_District0 | 19 | 164846180674.81 |
| 12_District3 | 42 | 249774601515.26 | 27_District1 | 785 | 18425601260763.2 |
| 12_District4 | 3423 | 60511992093081.6 | 27_District2 | 49 | 69984902851.62 |
| 12_District5 | 1960 | 67378123269449.6 | 27_District3 | 38 | 116712931257.84 |
| 13_District0 | 8 | 181837406256.06 | 27_District4 | 3132 | 33778988955119.3 |
| 13_District1 | 904 | 16357245524195.9 | 27_District5 | 1391 | 39568513214098.5 |
| 13_District2 | 46 | 133430837232.11 | 28_District0 | 9 | 118322979268.42 |
| 13_District3 | 60 | 429665639491.28 | 28_District1 | 587 | 15748059106107.7 |
| 13_District4 | 1099 | 30035422457655.5 | 28_District2 | 9 | 83412415745 |
| 13_District5 | 1675 | 42795337496140 | 28_District3 | 138 | 805624097687.09 |
| 14_District0 | 3 | 38445413734.59 | 28_District4 | 2059 | 22982825117023.6 |
| 14_District1 | 789 | 12437850818728.9 | 28_District5 | 1065 | 34230620183401.6 |
| 14_District2 | 11 | 107105283970.71 | 29_District0 | 3 | 33680382487 |
| 14_District3 | 62 | 274179038425.79 | 29_District1 | 169 | 7485535381511.83 |
| 14_District4 | 2007 | 33558582833140.6 | 29_District2 | 28 | 101261828549.51 |
| 14_District5 | 903 | 44524141233518.7 | 29_District3 | 80 | 242122525286.22 |
| 15_District0 | 14 | 49358397440.65 | 29_District4 | 737 | 8309110124637.32 |
| 15_District1 | 520 | 12323409757393.4 | 29_District5 | 1181 | 35670467010142.6 |
| 15_District2 | 15 | 87841832193.57 | 2_District0 | 24 | 147005506881.3 |
| 15_District3 | 72 | 464032580266.75 | 2_District1 | 1322 | 41435658304765.8 |
| 15_District4 | 2377 | 23674862384669.6 | 2_District2 | 51 | 217829855689.62 |
| 15_District5 | 813 | 28700034523627.8 | 2_District3 | 149 | 910924515484.78 |
| 16_District0 | 6 | 120807470457.05 | 2_District4 | 3012 | 58876326066126.1 |
| 16_District1 | 562 | 12709201781302.1 | 2_District5 | 2213 | 95903342380824.9 |
| 16_District2 | 15 | 121685669414.87 | 30_District0 | 2 | 15793480820.97 |
| 16_District3 | 50 | 210518442436.72 | 30_District1 | 215 | 4454383868687.9 |
| 16_District4 | 1928 | 29236319407927.4 | 30_District2 | 13 | 36349089458.6 |
| 16_District5 | 1738 | 48522145053303.8 | 30_District3 | 30 | 140260859804.87 |
| 17_District0 | 4 | 67369227966.97 | 30_District4 | 323 | 6058129814232.6 |
| 17_District1 | 428 | 12050832937058.4 | 30_District5 | 170 | 5492085372577.41 |
| 17_District2 | 25 | 129187574040.27 | 3_District0 | 15 | 96238044103.09 |
| 17_District3 | 36 | 178730940805.78 | 3_District1 | 453 | 18647432042214.5 |
| 17_District4 | 1002 | 19792911642330.1 | 3_District2 | 29 | 185092423999.03 |
| 17_District5 | 675 | 24540135430684.3 | 3_District3 | 120 | 837894240881.44 |
| 18_District0 | 0 | 2967361944.3 | 3_District4 | 3164 | 67042838268903.4 |
| 18_District1 | 309 | 13924688690304.7 | 3_District5 | 1724 | 61291071632688.9 |
| 18_District2 | 3 | 6610054743.83 | 4_District0 | 1 | 23017820526.83 |
| 18_District3 | 9 | 70920528499.07 | 4_District1 | 528 | 16091560843817.3 |
| 18_District4 | 1535 | 19315071188565.5 | 4_District2 | 4 | 26518013809.76 |
| 18_District5 | 356 | 12846363606953.3 | 4_District3 | 13 | 39098434166.08 |
| 19_District0 | 4 | 55462969817.43 | 4_District4 | 2616 | 45868443223206.7 |
| 19_District1 | 717 | 22694353575366.4 | 4_District5 | 1033 | 30292083288905.3 |
| 19_District2 | 34 | 164098512693.08 | 5_District0 | 8 | 106505113616.21 |
| 19_District3 | 44 | 243569037679.2 | 5_District1 | 885 | 24350894213228.5 |
| 19_District4 | 5937 | 108686185382264 | 5_District2 | 24 | 86384187127.12 |
| 19_District5 | 1768 | 82454118136341.8 | 5_District3 | 65 | 366709188976.7 |
| 1_District0 | 26 | 439941928923.54 | 5_District4 | 2935 | 72089499136026.7 |
| 1_District1 | 1757 | 57441101692321.6 | 5_District5 | 2753 | 121803986176569 |
| 1_District2 | 82 | 672084401832.35 | 6_District0 | 18 | 176185947866.7 |
| 1_District3 | 161 | 1031045184732.73 | 6_District1 | 744 | 24635464198083.6 |
| 1_District4 | 4472 | 78811470071171.5 | 6_District2 | 56 | 276989664122.16 |
| 1_District5 | 2732 | 93773999626897.2 | 6_District3 | 49 | 272668316967.88 |
| 20_District0 | 6 | 99328133768.61 | 6_District4 | 2645 | 34107990031546.2 |
| 20_District1 | 626 | 17222315357479.6 | 6_District5 | 1204 | 53882546018494.4 |
| 20_District2 | 13 | 41467071363.57 | 7_District0 | 9 | 53992400830.18 |
| 20_District3 | 58 | 328595993028.43 | 7_District1 | 882 | 25895048416872.9 |
| 20_District4 | 1028 | 25801083032839.4 | 7_District2 | 18 | 96977543097.41 |
| 20_District5 | 1613 | 48996376556677.3 | 7_District3 | 88 | 628351241783.24 |
| 21_District0 | 14 | 124707656273.15 | 7_District4 | 1767 | 32205982718191.7 |
| 21_District1 | 1047 | 16893868904739.4 | 7_District5 | 2101 | 52214576657422.1 |
| 21_District2 | 23 | 92151069999.22 | 8_District0 | 7 | 58271158883.49 |
| 21_District3 | 130 | 892017226174.98 | 8_District1 | 262 | 14440025190216.6 |
| 21_District4 | 1974 | 25898381094219.1 | 8_District2 | 16 | 77167528175.2 |
| 21_District5 | 1378 | 45952799183238.4 | 8_District3 | 51 | 367351779127.7 |
| 22_District0 | 7 | 153203512389.48 | 8_District4 | 1572 | 31102176929422.3 |
| 22_District1 | 665 | 14071948171020.4 | 8_District5 | 1336 | 40455436239354.1 |
| 22_District2 | 55 | 226837888943.86 | 9_District0 | 5 | 107338834466.71 |
| 22_District3 | 43 | 285892462254.77 | 9_District1 | 201 | 12182988858340.4 |
| 22_District4 | 1679 | 29923097625853.4 | 9_District2 | 20 | 108517339513.82 |
| 22_District5 | 1366 | 44763883711525 | 9_District3 | 115 | 911115793606.41 |
| 23_District0 | 3 | 35759011184.35 | 9_District4 | 1786 | 38386407634635.8 |
| 23_District1 | 836 | 17673842872150.1 | 9_District5 | 1070 | 25382936280280.4 |
| 23_District2 | 13 | 212716276649.99 | C101_100t_20w | 177 | -5301317958.64 |
| 23_District3 | 56 | 250619333021.81 | C101_25t_5w | 1 | 51064664.78 |

| Instance | Time | Table D. 5 - co Objective Value | nued from previous page Instance | Time | Objective Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 23_District4 | 2454 | 34555727151866.1 | C101_50t_10w | 12 | 81815887.5 |
| 23_District5 | 2103 | 70608343796642.5 | C102_100t_20w | 259 | -5155408825.82 |
| 24_District0 | 10 | 125755133924.82 | C102_25t_5w | 1 | 8511528.89999999 |
| 24_District1 | 336 | 11757625192420.3 | C102_50t_10w | 24 | 15586236.7599999 |
| 24_District2 | 6 | 28321020116.16 | C103_100t_20w | 286 | -7173802275.76 |
| 24_District3 | 45 | 159315579669.34 | C103_25t_5w | 1 | 44556802.18 |
| C103_50t_10w | 28 | -603857627.68 | R206_100t_20w | 310 | -810593573.8 |
| C104_100t_20w | 338 | -8122204362.62 | R206_25t_5w | 2 | -4225347.66 |
| C104_25t_5w | 3 | -33540706.86 | R206_50t_10w | 27 | -88302653.08 |
| C104_50t_10w | 33 | -806442841.52 | R207_100t_20w | 266 | -734937958.04 |
| C105_100t_20w | 255 | -6006539673.74 | R207_25t_5w | 3 | -4392137.94 |
| C105_25t_5w | 1 | 49562707.54 | R207_50t_10w | 25 | -60165906.64 |
| C105_50t_10w | 14 | 658405522.64 | R208_100t_20w | 328 | -875441893.04 |
| C106_100t_20w | 263 | 2942485545.24 | R208_25t_5w | 3 | -3724852 |
| C106_25t_5w | 1 | 62578857.5 | R208_50t_10w | 30 | -88303079.56 |
| C106_50t_10w | 14 | 615551264.2 | R209_100t_20w | 305 | -926779941.82 |
| C107_100t_20w | 306 | -6906304644.96 | R209_25t_5w | 2 | -3891629.84 |
| C107_25t_5w | 1 | 50564058.26 | R209_50t_10w | 33 | -85272773 |
| C107_50t_10w | 19 | 179213246.38 | R210_100t_20w | 291 | -832209555.5 |
| C108_100t_20w | 318 | 389094791.06 | R210_25t_5w | 3 | -3780410.3 |
| C108_25t_5w | 1 | 54068510.3799999 | R210_50t_10w | 24 | -69688758.34 |
| C108_50t_10w | 26 | -436335138 | R211_100t_20w | 320 | -870037847.14 |
| C109_100t_20w | 359 | -5666086592.42 | R211_25t_5w | 4 | -4003167.92 |
| C109_25t_5w | 2 | -26031566.96 | R211_50t_10w | 35 | -92198426.6 |
| C109_50t_10w | 27 | -580482607.1 | RC101_100t_20w | 88 | 15814809991.88 |
| C201_100t_20w | 168 | -5714720786.2 | RC101_25t_5w | 0 | 49785100.08 |
| C201_25t_5w | 2 | -28534380.9 | RC101_50t_10w | 6 | 1140627787.76 |
| C201_50t_10w | 11 | -557106740.26 | RC102_100t_20w | 85 | 15822916717.48 |
| C202_100t_20w | 196 | -4547457922.28 | RC102_25t_5w | 1 | 49562717.8 |
| C202_25t_5w | 3 | -25030094.06 | RC102_50t_10w | 8 | 1005137953.68 |
| C202_50t_10w | 19 | -284395186.24 | RC103_100t_20w | 86 | 17527878844.96 |
| C203_100t_20w | 242 | -6274036235.98 | RC103_25t_5w | 1 | 45168395.9 |
| C203_25t_5w | 3 | -36043790.28 | RC103_50t_10w | 8 | 812075814.96 |
| C203_50t_10w | 28 | -576585746.08 | RC104_100t_20w | 215 | 18130424572.12 |
| C204_100t_20w | 382 | -7295392069.42 | RC104_25t_5w | 1 | 44167136.92 |
| C204_25t_5w | 3 | -38546960.4 | RC104_50t_10w | 9 | 1328063097.1 |
| C204_50t_10w | 35 | -740212682 | RC105_100t_20w | 92 | 10907978098.42 |
| C205_100t_20w | 196 | -6274038330.1 | RC105_25t_5w | 1 | 40495624.02 |
| C205_25t_5w | 2 | -33540709.52 | RC105_50t_10w | 6 | 1340183106.8 |
| C205_50t_10w | 15 | -650607518.5 | RC106_100t_20w | 148 | 11529438265.06 |
| C206_100t_20w | 265 | -7489936973.12 | RC106_25t_5w | 1 | 36212723.82 |
| C206_25t_5w | 2 | -33040034.82 | RC106_50t_10w | 9 | 942370993.06 |
| C206_50t_10w | 22 | -642816096.34 | RC107_100t_20w | 122 | 16638920438.66 |
| C207_100t_20w | 285 | -6784715891.4 | RC107_25t_5w | 1 | 44278299.46 |
| C207_25t_5w | 2 | -30537072.84 | RC107_50t_10w | 10 | 815106027.38 |
| C207_50t_10w | 25 | -736316617.54 | RC108_100t_20w | 119 | 14823176358.68 |
| C208_100t_20w | 269 | -8292431097.82 | RC108_25t_5w | 1 | 44222643 |
| C208_25t_5w | 2 | -30537000.8 | RC108_50t_10w | 14 | 1012929814.66 |
| C208_50t_10w | 25 | -767484108.8 | RC201_100t_20w | 255 | -802485979.42 |
| R101_100t_20w | 66 | 14199013680.52 | RC201_25t_5w | 2 | -1943813.54 |
| R101_25t_5w | 1 | 53122608.32 | RC201_50t_10w | 17 | -74882085.56 |
| R101_50t_10w | 4 | 1205558731.74 | RC202_100t_20w | 266 | -775465617.08 |
| R102_100t_20w | 79 | 14101742003.18 | RC202_25t_5w | 2 | -3557855.8 |
| R102_25t_5w | 1 | 45057049.18 | RC202_50t_10w | 22 | -59731503.42 |
| R102_50t_10w | 6 | 961417477.64 | RC203_100t_20w | 260 | -770061049.76 |
| R103_100t_20w | 76 | 12469734030.74 | RC203_25t_5w | 3 | -3446348.66 |
| R103_25t_5w | 1 | 47727097.78 | RC203_50t_10w | 25 | -66656954.56 |
| R103_50t_10w | 7 | 748010121.8 | RC204_100t_20w | 334 | -907863849.34 |
| R104_100t_20w | 119 | 16614602343.42 | RC204_25t_5w | 3 | -3947551.9 |
| R104_25t_5w | 1 | 41163363.58 | RC204_50t_10w | 31 | -95227708.42 |
| R104_50t_10w | 17 | 788267714.9 | RC205_100t_20w | 238 | -756551667.86 |
| R105_100t_20w | 110 | 8424839701.08 | RC205_25t_5w | 2 | -2890209.88 |
| R105_25t_5w | 0 | 48839515.24 | RC205_50t_10w | 19 | -51073486.48 |
| R105_50t_10w | 8 | 828524787.06 | RC206_100t_20w | 280 | -821400631.18 |
| R106_100t_20w | 133 | 8443754034.72 | RC206_25t_5w | 2 | -4002513.24 |
| R106_25t_5w | 1 | 49173408.88 | RC206_50t_10w | 23 | -78777648 |
| R106_50t_10w | 10 | 732859395.62 | RC207_100t_20w | 291 | -894353696.9 |
| R107_100t_20w | 107 | 13288440448.98 | RC207_25t_5w | 2 | -3891500.52 |
| R107_25t_5w | 1 | 40106459.36 | RC207_50t_10w | 29 | -77912522.28 |
| R107_50t_10w | 10 | 821599264.56 | RC208_100t_20w | 330 | -956499766.46 |
| R108_100t_20w | 243 | 14712393943.9 | RC208_25t_5w | 3 | -4114144.88 |
| R108_25t_5w | 1 | 44389677.36 | RC208_50t_10w | 35 | -92629680.5 |
| R108_50t_10w | 13 | 724635106.52 | hh_00_P0 | 379 | 7645633708.15 |
| R109_100t_20w | 182 | 7489948051.42 | 111_00_P0 | 86 | 1432133490 |
| R109_25t_5w | 1 | 45112659.24 | 111_01_P0 | 85 | 1432133490 |
| R109_50t_10w | 10 | 806881243.16 | 111_02_P0 | 85 | 1432133490 |
| R110_100t_20w | 144 | 8400522008.34 | 111_03_P0 | 85 | 1432133490 |
| R110_25t_5w | 1 | 48338838.34 | 111_04_P0 | 84 | 1432133490 |
| R110_50t_10w | 9 | 931116248.04 | 111_05_P0 | 91 | 1307660206.12 |
| R111_100t_20w | 182 | 9257056006.9 | 111_06_P0 | 83 | 1214281948.44 |
| R111_25t_5w | 1 | 40829572.44 | 111_07_P0 | 85 | 1432133490 |
| R111_50t_10w | 10 | 804716832.2 | 112_00_P0 | 14 | 85352916.27 |
| R112_100t_20w | 193 | 10851236130.06 | 113_00_P0 | 12 | 47544188.25 |
| R112_25t_5w | 1 | 44278407.52 | test150-0-0-0-0_d0_tw0 | 7519 | 10277518695 |
| R112_50t_10w | 19 | 597369734.16 | test150-0-0-0-0_d0_tw1 | 6020 | -27383665863.5 |
| R201_100t_20w | 204 | -786275512.3 | test150-0-0-0-0_d0_tw2 | 5230 | -23452002944.5 |
| R201_25t_5w | 1 | -4448153.88 | test150-0-0-0-0_d0_tw3 | 4201 | -24693580634.1 |
| R201_50t_10w | 19 | -70554377.38 | test150-0-0-0-0_d0_tw4 | 5283 | -23796883882.5 |
| R202_100t_20w | 275 | -699811062.22 | test250-0-0-0-0_d0_tw0 | 54208 | 55072194052.8999 |
| R202_25t_5w | 2 | -3836114.52 | test250-0-0-0-0_d0_tw1 | 45467 | -261508319793.6 |
| R202_50t_10w | 23 | -50641827.9 | test250-0-0-0-0_d0_tw2 | 38968 | -238195559324.4 |
| R203_100t_20w | 263 | -780871434.02 | test250-0-0-0-0_d0_tw3 | 34592 | -182447655507.1 |
| R203_25t_5w | 2 | -3836165.9 | test250-0-0-0-0_d0_tw4 | 41802 | -159472761238.6 |
| R203_50t_10w | 24 | -66658297.56 | test50-0-0-0-0_d0_tw0 | 130 | -343277063 |
| R204_100t_20w | 337 | -956501871.56 | test50-0-0-0-0_d0_tw1 | 80 | -396330084.6 |
| R204_25t_5w | 3 | -4002989.46 | test50-0-0-0-0_d0_tw2 | 60 | -386967451.4 |
| R204_50t_10w | 30 | -89601106.16 | test50-0-0-0-0_d0_tw3 | 50 | -386967676.6 |

| | Table D.5-continued from previous page | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Instance | Time | Objective Value | Instance | Time | Objective Value |
| R205_100t_20w | 254 | -837613543.32 | test50-0-0-0-0_d0_tw4 | 90 | |
| R205_25t_5w | 3 | -4448041.9 | BTEngineers | 8824 | -805178654215.936 |
| R205_50t_10w | 24 | -88735610.36 | | | |

D. 8 Results of Experiments with GH5

Table D.6: GH5 results incrementing the maxBranching parameter to values 20,40 and 50. Time is also given for each instance in milliseconds

| Instance | T(20) | Objective(20) | $\mathrm{T}(40)$ | Objective(40) | $\mathrm{T}(50)$ | Objective(50) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 60 | 76197329181.31 | 54 | 76197329181.31 | 49 | 76197329181.31 |
| 10_District1 | 660 | 8218857439424.1 | 688 | 8218857439409.06 | 684 | 8218857439409.06 |
| 10_District2 | 20 | 41566415577.57 | 22 | 41566415577.57 | 22 | 41566415577.57 |
| 10_District3 | 30 | 139155792160.46 | 25 | 139155792160.46 | 26 | 139155792160.46 |
| 10_District4 | 3050 | 21291228411410.1 | 4622 | 22416897586296.1 | 5575 | 22035548436752.1 |
| 10_District5 | 2330 | 37249297856014.8 | 4276 | 37711823069094 | 4480 | 37688796922293 |
| 11_District0 | 10 | 4030293327.26 | 2 | 4030293327.26 | 2 | 4030293327.26 |
| 11_District1 | 750 | 6690150999911.55 | 1115 | 6362570546289.82 | 1103 | 6362570546289.82 |
| 11_District2 | 10 | 16156248882.71 | 6 | 16156248882.71 | 6 | 16156248882.71 |
| 11_District3 | 20 | 67389097303.84 | 28 | 67389097303.84 | 29 | 67389097303.84 |
| 11_District4 | 1400 | 22460659385239.4 | 1875 | 23106951893758.8 | 1825 | 23112754743284.8 |
| 11_District5 | 900 | 15860944782249.3 | 743 | 15643005576898.3 | 753 | 15643005576898.3 |
| 12_District0 | 10 | 120709766177.22 | 10 | 120709766177.22 | 10 | 120709766177.22 |
| 12_District1 | 4161 | 38784501989049.7 | 7697 | 38789221791332.6 | 8081 | 38785445949807.6 |
| 12_District2 | 20 | 153054550706.1 | 19 | 153054550706.1 | 19 | 153054550706.1 |
| 12_District3 | 50 | 239836499336.7 | 50 | 239836499336.7 | 51 | 239836499336.7 |
| 12_District4 | 6501 | 62031037751001.6 | 14577 | 59742449173420.8 | 16252 | 60514664116154.3 |
| 12_District5 | 2880 | 65945373929847 | 3129 | 65945373929847 | 3157 | 65945373929847 |
| 13_District0 | 10 | 181837406256.06 | 8 | 181837406256.06 | 7 | 181837406256.06 |
| 13_District1 | 2551 | 14674175609787.1 | 6518 | 16119941326279.3 | 6874 | 16119941326279.3 |
| 13_District2 | 60 | 126904696641.59 | 67 | 126837068235.01 | 64 | 126837068235.01 |
| 13_District3 | 60 | 429665639491.28 | 64 | 429665639491.28 | 64 | 429665639491.28 |
| 13_District4 | 2160 | 30038955101714.3 | 3583 | 30033656135618.7 | 4052 | 30033656135625.8 |
| 13_District5 | 2170 | 42764648834839.3 | 2384 | 42764648834862.9 | 2485 | 42764648834839.3 |
| 14_District0 | 0 | 38445413734.59 | 3 | 38445413734.59 | 3 | 38445413734.59 |
| 14_District1 | 1790 | 12434388027267.4 | 2369 | 12824694048872.9 | 2371 | 12824694048872.9 |
| 14_District2 | 30 | 100681954876.7 | 25 | 100681954876.7 | 24 | 100681954876.7 |
| 14_District3 | 90 | 262406322982.98 | 124 | 262406322982.98 | 123 | 262406322982.98 |
| 14_District4 | 4741 | 31546738861338.4 | 10027 | 31560980324208.6 | 11750 | 31560980324208.6 |
| 14_District5 | 1011 | 44524141233501.8 | 1094 | 44524141233501.8 | 1107 | 44524141233501.8 |
| 15_District0 | 10 | 49358397440.65 | 13 | 49358397440.65 | 13 | 49358397440.65 |
| 15_District1 | 740 | 12322474536374.6 | 1123 | 12317798430422.9 | 1135 | 12317798430422.9 |
| 15_District2 | 20 | 88202791010.04 | 13 | 88202791010.04 | 13 | 88202791010.04 |
| 15_District3 | 90 | 463823619193.16 | 88 | 463823619193.16 | 91 | 463823619193.16 |
| 15_District4 | 5890 | 23666725574721.6 | 12081 | 22834329911998.4 | 12632 | 22847348807714.7 |
| 15_District5 | 3211 | 29066199377964.7 | 1790 | 29086910060862 | 1798 | 29086910060862 |
| 16_District0 | 0 | 120807470457.05 | 6 | 120807470457.05 | 6 | 120807470457.05 |
| 16_District1 | 1070 | 12316160134202.9 | 1353 | 12717924637363.6 | 1454 | 12717924637363.6 |
| 16_District2 | 10 | 121685669414.87 | 16 | 121685669414.87 | 16 | 121685669414.87 |
| 16_District3 | 60 | 210518442436.72 | 60 | 210518442436.72 | 62 | 210518442436.72 |
| 16_District4 | 4821 | 28779433928059.5 | 10094 | 28327769996973.5 | 10193 | 28779433928105.7 |
| 16_District5 | 2470 | 50336936612873 | 3380 | 49733482433960.8 | 3512 | 49733482433960.8 |
| 17_District0 | 0 | 67369227966.97 | 4 | 67369227966.97 | 4 | 67369227966.97 |
| 17_District1 | 670 | 12405157292750.4 | 774 | 12232037741729.1 | 803 | 12232988948041.1 |
| 17_District2 | 30 | 129187574040.27 | 27 | 129187574040.27 | 27 | 129187574040.27 |
| 17_District3 | 40 | 178730940805.78 | 40 | 178730940805.78 | 40 | 178730940805.78 |
| 17_District4 | 1810 | 19092974442252.1 | 2566 | 19775413212128.2 | 2649 | 19775413212128.2 |
| 17_District5 | 1020 | 24205298553968.2 | 996 | 23886759047749.6 | 1006 | 23886759047749.6 |
| 18_District0 | 0 | 2967361944.3 | 0 | 2967361944.3 | 0 | 2967361944.3 |
| 18_District1 | 300 | 14313538412508.2 | 311 | 14127545242174.4 | 321 | 14127545242174.4 |
| 18_District2 | 0 | 6610054743.83 | 3 | 6610054743.83 | 4 | 6610054743.83 |
| 18_District3 | 10 | 70920528499.07 | 9 | 70920528499.07 | 9 | 70920528499.07 |
| 18_District4 | 3480 | 18728466766745 | 7846 | 18718722507656.5 | 8391 | 19012349527135.2 |
| 18_District5 | 600 | 12844784588836.5 | 726 | 12641617614178.6 | 741 | 12643196632098.1 |
| 19_District0 | 10 | 55462969817.43 | 5 | 55462969817.43 | 4 | 55462969817.43 |
| 19_District1 | 1120 | 22695030028950.2 | 1168 | 22401449014876.9 | 1206 | 22401449014876.9 |
| 19_District2 | 50 | 163837387274.93 | 58 | 163762780181.55 | 58 | 163762780181.55 |
| 19_District3 | 50 | 243657801812.07 | 56 | 243657801812.07 | 56 | 243657801812.07 |
| 19_District4 | 13961 | 106192108824987 | 36938 | 110989300160535 | 8619 | 112281667750350 |
| 19_District5 | 5200 | 83157516755236.4 | 15961 | 82326503699401.3 | 19878 | 78807991381031.8 |
| 1_District0 | 30 | 439941928923.54 | 26 | 439941928923.54 | 26 | 439941928923.54 |
| 1_District1 | 4790 | 58041560615784.5 | 3084 | 58075186316894.3 | 3162 | 58075186316894.3 |
| 1_District2 | 100 | 672001346398.58 | 111 | 672001346398.58 | 113 | 672001346398.58 |
| 1_District3 | 200 | 1031045184744.94 | 203 | 1031045184732.73 | 203 | 1031045184732.73 |
| 1_District4 | 9470 | 74782293092736.1 | 2896116 | 74707056177177.4 | 27718 | 73732177837593.4 |
| 1_District5 | 4280 | 91806570717137.9 | 14224 | 92564056264174.5 | 15373 | 92564056264174.5 |
| 20_District0 | 0 | 99328133768.61 | 6 | 99328133768.61 | 6 | 99328133768.61 |
| 20_District1 | 960 | 17693265129798.2 | 1302 | 18159592081819.7 | 1273 | 18159592081819.7 |
| 20_District2 | 10 | 41484065747.74 | 14 | 41484065747.74 | 14 | 41484065747.74 |
| 20_District3 | 70 | 305213925793.81 | 71 | 305213925793.81 | 74 | 305213925793.81 |
| 20_District4 | 1750 | 24960379220572.1 | 2267 | 25384073884973.4 | 4657 | 25027234394706.9 |
| 20_District5 | 2590 | 50193825670337.9 | 3047 | 48965990159239.8 | 3098 | 48965990159239.8 |
| 21_District0 | 20 | 124707656273.15 | 15 | 124707656273.15 | 15 | 124707656273.15 |
| 21_District1 | 1020 | 17340723811259.4 | 1153 | 17340723811225.2 | 1170 | 17340723811225.2 |
| 21_District2 | 30 | 92151069999.22 | 30 | 92151069999.22 | 32 | 92151069999.22 |
| 21_District3 | 150 | 894018445649.06 | 150 | 894018445649.06 | 149 | 894018445649.06 |

| Instance | T(20) | Table D. 6 - con Objective(20) | ued fro $\mathrm{T}(40)$ | revious page Objective(40) | T(50) | Objective(50) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21_District4 | 5100 | 25489098854436.4 | 11830 | 24304758516183 | 12650 | 25468151338417.6 |
| 21_District5 | 1970 | 45930297567746.2 | 2281 | 45930297567747.9 | 2318 | 45930297567747.9 |
| 22_District0 | 10 | 153203512389.48 | 7 | 153203512389.48 | 7 | 153203512389.48 |
| 22_District1 | 1300 | 14101603952448.2 | 1651 | 14081460402643 | 1659 | 14081460402643 |
| 22_District2 | 70 | 226981185052.56 | 75 | 226981185052.56 | 64 | 226981185052.56 |
| 22_District3 | 40 | 285892462254.77 | 42 | 285892462254.77 | 43 | 285892462254.77 |
| 22_District4 | 3250 | 29074924558505.3 | 5066 | 29437811612757 | 5352 | 29492977340536 |
| 22_District5 | 1290 | 44259074452298.5 | 1638 | 43732586267201.7 | 1689 | 43732586267200.1 |
| 23_District0 | 0 | 35759011184.35 | 2 | 35759011184.35 | 2 | 35759011184.35 |
| 23_District1 | 1760 | 17656086164467.9 | 2685 | 17411043600471.4 | 2743 | 17411043600471.4 |
| 23_District2 | 10 | 212716276649.99 | 14 | 212716276649.99 | 13 | 212716276649.99 |
| 23_District3 | 60 | 250619333021.81 | 57 | 250619333021.81 | 58 | 250619333021.81 |
| 23_District4 | 3690 | 36066134523281.9 | 9379 | 35554411807447.9 | 11155 | 35549253312349.6 |
| 23_District5 | 3900 | 71437022513346.6 | 5476 | 71437022513346.6 | 5579 | 71437022513346.6 |
| 24_District0 | 10 | 125755133924.82 | 9 | 125755133924.82 | 9 | 125755133924.82 |
| 24_District1 | 510 | 11389191027794.5 | 606 | 11389191027676.9 | 613 | 11389191027680.7 |
| 24_District2 | 0 | 28321020116.16 | 6 | 28321020116.16 | 6 | 28321020116.16 |
| 24_District3 | 50 | 159315579521.22 | 49 | 159315579521.22 | 49 | 159315579521.22 |
| 24_District4 | 5630 | 24542616265297 | 12206 | 24517137738123.8 | 15306 | 25782571270930 |
| 24_District5 | 540 | 24738655441667.6 | 550 | 24738655441667.6 | 554 | 24738655441667.6 |
| 25_District0 | 0 | 2063904706.86 | 1 | 2063904706.86 | 1 | 2063904706.86 |
| 25_District1 | 710 | 6071232244353.83 | 869 | 6180626672478.48 | 861 | 6180626672478.48 |
| 25_District2 | 0 | 3529674897.16 | 1 | 3529674897.16 | 1 | 3529674897.16 |
| 25_District3 | 10 | 61895236430.12 | 9 | 61895236430.12 | 9 | 61895236430.12 |
| 25_District4 | 3580 | 20816398351963.9 | 6594 | 21142613103295.2 | 7028 | 20503174454937 |
| 25_District5 | 790 | 11011719621667.4 | 310 | 11014368685470.2 | 313 | 11014368685470.2 |
| 26_District0 | 30 | 225380467772.98 | 30 | 225380467772.98 | 30 | 225380467772.98 |
| 26_District1 | 4220 | 43684739705319.4 | 2235 | 45172896658365.8 | 2244 | 45172896658365.8 |
| 26_District2 | 50 | 347911895048.75 | 50 | 347911895048.75 | 51 | 347911895048.75 |
| 26_District3 | 310 | 1171533328289.04 | 368 | 1171533328289.04 | 371 | 1171533328289.04 |
| 26_District4 | 16040 | 105665970976886 | 27643 | 106745235908029 | 29378 | 105580668249051 |
| 26_District5 | 6000 | 78133548666857 | 7967 | 78206744543738.2 | 8608 | 78206744543738.2 |
| 27_District0 | 20 | 164846180674.81 | 19 | 164846180674.81 | 20 | 164846180674.81 |
| 27_District1 | 1840 | 18940261974778 | 3021 | 18425601260045.1 | 3063 | 18425601260045.1 |
| 27_District2 | 70 | 61192189969.07 | 71 | 61192189969.07 | 73 | 61192189969.07 |
| 27_District3 | 30 | 116712931257.84 | 38 | 116712931257.84 | 38 | 116712931257.84 |
| 27_District4 | 4560 | 33841394054854.4 | 6026 | 34358464881058.4 | 6216 | 34363417666721.2 |
| 27_District5 | 1970 | 40606510956597 | 2253 | 40597681108258.2 | 2273 | 40597681108258.2 |
| 28_District0 | 10 | 118322979268.42 | 9 | 118322979268.42 | 9 | 118322979268.42 |
| 28_District1 | 780 | 15288488523125.3 | 2545 | 15275097772158.7 | 2544 | 15275097772158.7 |
| 28_District2 | 10 | 83412415745 | 11 | 83412415745 | 11 | 83412415745 |
| 28_District3 | 150 | 805624097687.09 | 159 | 805624097687.09 | 159 | 805624097687.09 |
| 28_District4 | 4990 | 23356070207999.9 | 2834 | 24533901196890.1 | 3292 | 24924654586133.5 |
| 28_District5 | 1540 | 33797846183526.1 | 1695 | 33797846183526.1 | 1728 | 33791534896023.1 |
| 29_District0 | 0 | 33680382487 | 2 | 33680382487 | 3 | 33680382487 |
| 29_District1 | 220 | 7485535381511.83 | 243 | 7484826255380.25 | 253 | 7484826255380.25 |
| 29_District2 | 40 | 101233312043.57 | 44 | 101233312043.57 | 45 | 101233312043.57 |
| 29_District3 | 130 | 232601979076.29 | 125 | 232601979076.29 | 123 | 232601979076.29 |
| 29_District4 | 1320 | 8324751001612.9 | 2253 | 8479891590329.35 | 2269 | 8479891590329.35 |
| 29_District5 | 1310 | 36609335942077.2 | 1444 | 36128200717047.8 | 1474 | 36128200717047.8 |
| 2_District0 | 30 | 147005506881.3 | 26 | 147005506881.3 | 26 | 147005506881.3 |
| 2_District1 | 3060 | 39540340925649.8 | 5939 | 41887471336771 | 5913 | 41887471336771 |
| 2_District2 | 50 | 226411848749 | 51 | 226411848749 | 51 | 226411848749 |
| 2_District3 | 180 | 858787147589.81 | 177 | 858787147589.81 | 179 | 858787147589.81 |
| 2_District4 | 6430 | 59605501704104.2 | 11777 | 60387325402546.8 | 13016 | 60387325402546.8 |
| 2_District5 | 2719 | 95903342380824.9 | 3137 | 95903342380824.9 | 3240 | 95903342380824.9 |
| 30_District0 | 10 | 15793480820.97 | 2 | 15793480820.97 | 2 | 15793480820.97 |
| 30_District1 | 440 | 4366718210337.8 | 628 | 4288991390631.01 | 619 | 4288991390631.01 |
| 30_District2 | 20 | 36349089458.6 | 15 | 36349089458.6 | 15 | 36349089458.6 |
| 30_District3 | 30 | 140260859804.87 | 28 | 140260859804.87 | 29 | 140260859804.87 |
| 30_District4 | 730 | 6296033900094.92 | 1815 | 6033193692111.07 | 1831 | 6033193692111.07 |
| 30_District5 | 200 | 5499634837860.3 | 229 | 5491783393822.48 | 229 | 5491783393822.48 |
| 3_District0 | 10 | 96238044103.09 | 16 | 96238044103.09 | 16 | 96238044103.09 |
| 3_District1 | 1100 | 18391857798945 | 1906 | 18644467143297.4 | 1928 | 18644467143297.4 |
| 3_District2 | 40 | 184423936337.49 | 46 | 184423936337.49 | 42 | 184423936337.49 |
| 3_District3 | 150 | 838602434511.32 | 147 | 838602434511.32 | 147 | 838602434511.32 |
| 3_District4 | 6440 | 67073753531539.1 | 8993 | 67096939978154.6 | 9944 | 67062933189446.7 |
| 3_District5 | 3350 | 60566955554266.6 | 4408 | 60568230406557 | 4445 | 60568230406557 |
| 4_District0 | 0 | 23017820526.83 | 1 | 23017820526.83 | 2 | 23017820526.83 |
| 4_District1 | 1210 | 16733941829482.2 | 2244 | 16524601852384.6 | 2241 | 16524601852384.6 |
| 4_District2 | 0 | 26518013809.76 | 3 | 26518013809.76 | 4 | 26518013809.76 |
| 4_District3 | 20 | 39098434166.08 | 14 | 39098434166.08 | 14 | 39098434166.08 |
| 4_District4 | 8120 | 44497725128783 | 14587 | 44517970313461.3 | 16916 | 44535833711225.8 |
| 4_District5 | 1370 | 30671942398887.4 | 1437 | 30671942398887.4 | 1438 | 30671942398887.4 |
| 5_District0 | 10 | 106505113616.21 | 9 | 106505113616.21 | 8 | 106505113616.21 |
| 5_District1 | 2980 | 23401109473559.2 | 3459 | 23711329992067.2 | 3473 | 23711329992067.2 |
| 5_District2 | 20 | 86384187127.12 | 24 | 86384187127.12 | 24 | 86384187127.12 |
| 5_District3 | 60 | 366270241695.49 | 67 | 366270241695.49 | 67 | 366270241695.49 |
| 5_District4 | 3270 | 72163799058376.3 | 17633 | 73686947454562.1 | 21861 | 73686947454562.1 |
| 5_District5 | 3940 | 121928573278019 | 4299 | 121928573278019 | 4314 | 121928573278019 |
| 6_District0 | 20 | 176185947866.7 | 19 | 176185947866.7 | 27 | 176185947866.7 |
| 6_District1 | 990 | 24656791625774.8 | 1152 | 24652221462664 | 1186 | 24652221462664 |
| 6_District2 | 60 | 276989664122.16 | 57 | 276989664122.16 | 57 | 276989664122.16 |
| 6_District3 | 60 | 272026860685.19 | 55 | 272026860685.19 | 56 | 272026860685.19 |
| 6_District4 | 6410 | 34599408667054.7 | 13943 | 32674685677626.2 | 15843 | 32671893526336.1 |
| 6_District5 | 1800 | 52577668995018.6 | 1861 | 52577668995018.6 | 1886 | 52577668995018.6 |
| 7_District0 | 10 | 53992400830.18 | 10 | 53992400830.18 | 9 | 53992400830.18 |
| 7_District1 | 1567 | 25530776489059.8 | 1893 | 25530776489096.9 | 1922 | 25530776489086.5 |
| 7_District2 | 20 | 96812988604.09 | 20 | 96812988604.09 | 20 | 96812988604.09 |
| 7_District3 | 110 | 628007504612.66 | 117 | 627921570619.92 | 118 | 627921570619.92 |
| 7_District4 | 4901 | 32603036789102.8 | 6299 | 31729342919882.8 | 7092 | 30888008083772.9 |
| 7_District5 | 3751 | 53490232800098.6 | 4768 | 53499673363687.4 | 4805 | 53499673363687.4 |
| 8_District0 | 10 | 58271158883.49 | 7 | 58271158883.49 | 6 | 58271158883.49 |
| 8_District1 | 270 | 14083437894143.3 | 2291 | 13854598374729.3 | 2270 | 13854598374729.3 |
| 8_District2 | 20 | 73965473501.2 | 17 | 73965473501.2 | 16 | 73965473501.2 |
| 8_District3 | 60 | 367102727288.89 | 67 | 367102727288.89 | 66 | 367102727288.89 |
| 8_District4 | 3501 | 30204218209504.6 | 6884 | 29816748603227.9 | 6661 | 29831812216156.8 |
| 8_District5 | 2011 | 40450402089088.4 | 2282 | 40450402089088.4 | 2259 | 40450402089088.4 |

| Instance | T(20) | Table D. 6 - con Objective(20) | nued from $\mathrm{T}(40)$ | revious page Objective(40) | T(50) | Objective(50) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9_District0 | 10 | 107338834466.71 | 6 | 107338834466.71 | 5 | 107338834466.71 |
| 9_District1 | 260 | 12178217016824.2 | 304 | 12178217016824.2 | 314 | 12178217016824.2 |
| 9_District2 | 20 | 108377785409.3 | 21 | 108377785409.3 | 22 | 108377785409.3 |
| 9_District3 | 130 | 941624656698.36 | 139 | 941624656698.36 | 139 | 941624656698.36 |
| 9_District4 | 5661 | 39581950182572.1 | 10923 | 39520093387201.2 | 12626 | 37164202673658.1 |
| 9_District5 | 1610 | 25386852433132.7 | 1904 | 25385285972093.7 | 1922 | 25385285972093.7 |
| C101_100t_20w | 170 | -5301317958.64 | 165 | -5301317958.64 | 183 | -5301317958.64 |
| C101_25t_5w | 0 | 51064664.78 | 1 | 51064664.78 | 0 | 51064664.78 |
| C101_50t_10w | 10 | 81815887.5 | 12 | 81815887.5 | 11 | 81815887.5 |
| C102_100t_20w | 400 | -4912229242.02 | 444 | -4912229242.02 | 439 | -4912229242.02 |
| C102_25t_5w | 0 | 8511528.89999999 | 1 | 8511528.89999999 | 2 | 8511528.89999999 |
| C102_50t_10w | 20 | 15586349.0599999 | 28 | 15586349.0599999 | 28 | 15586349.0599999 |
| C103_100t_20w | 540 | -7222438475.86 | 678 | -7173802345.74 | 676 | -7173802345.74 |
| C103_25t_5w | 0 | 44556802.18 | 2 | 44556802.18 | 2 | 44556802.18 |
| C103_50t_10w | 30 | -564899047.04 | 37 | -564899047.04 | 37 | -564899047.04 |
| C104_100t_20w | 871 | -8608564628.28 | 1808 | -8681519205.24 | 1910 | -8681519205.24 |
| C104_25t_5w | 0 | -33540706.86 | 2 | -33540706.86 | 2 | -33540706.86 |
| C104_50t_10w | 60 | -783067878.78 | 71 | -783067878.78 | 72 | -783067878.78 |
| C105_100t_20w | 280 | -7125167921.22 | 286 | -7125167921.22 | 290 | -7125167921.22 |
| C105_25t_5w | 0 | 49562707.54 | 1 | 49562707.54 | 2 | 49562707.54 |
| C105_50t_10w | 10 | 658405522.64 | 15 | 658405522.64 | 15 | 658405522.64 |
| C106_100t_20w | 310 | -5349954009.76 | 320 | -5349954009.76 | 320 | -5349954009.76 |
| C106_25t_5w | 0 | 62578857.5 | 1 | 62578857.5 | 1 | 62578857.5 |
| C106_50t_10w | 20 | 615551264.2 | 24 | 615551264.2 | 14 | 615551264.2 |
| C107_100t_20w | 370 | -6979258964.62 | 376 | -6979258964.62 | 376 | -6979258964.62 |
| C107_25t_5w | 0 | 50564058.26 | 1 | 50564058.26 | 2 | 50564058.26 |
| C107_50t_10w | 20 | 179213246.38 | 19 | 179213246.38 | 19 | 179213246.38 |
| C108_100t_20w | 450 | -6492899831.1 | 462 | -6492899831.1 | 451 | -6492899831.1 |
| C108_25t_5w | 10 | 54068510.3799999 | 1 | 54068510.3799999 | 2 | 54068510.3799999 |
| C108_50t_10w | 20 | -436335138 | 21 | -436335138 | 21 | -436335138 |
| C109_100t_20w | 620 | -6614488230.82 | 650 | -6614488230.82 | 636 | -6614488230.82 |
| C109_25t_5w | 0 | -26031566.96 | 1 | -26031566.96 | 1 | -26031566.96 |
| C109_50t_10w | 30 | -580482607.1 | 28 | -580482607.1 | 30 | -580482607.1 |
| C201_100t_20w | 160 | -5714720786.2 | 175 | -5714720786.2 | 179 | -5714720786.2 |
| C201_25t_5w | 0 | -28534380.9 | 1 | -28534380.9 | 1 | -28534380.9 |
| C201_50t_10w | 10 | -557106740.26 | 10 | -557106740.26 | 11 | -557106740.26 |
| C202_100t_20w | 200 | -5811995780.2 | 307 | -5447225594.96 | 341 | -6055175633.16 |
| C202_25t_5w | 0 | -25030029.44 | 4 | -27533187.48 | 3 | -27533187.48 |
| C202_50t_10w | 30 | -284395355.62 | 41 | -284395408.1 | 52 | -292187247.64 |
| C203_100t_20w | 470 | -6687442461.34 | 886 | -6930623788.88 | 1317 | -6638806995.04 |
| C203_25t_5w | 0 | -37045193.76 | 4 | -37045195.22 | 4 | -37045195.22 |
| C203_50t_10w | 50 | -588273655.86 | 83 | -599961178.78 | 96 | -599961229.4 |
| C204_100t_20w | 800 | -7854704998.88 | 1325 | -8414020486.86 | 3111 | -8657198950.24 |
| C204_25t_5w | 0 | -38546960.4 | 4 | -38546960.4 | 4 | -38546960.4 |
| C204_50t_10w | 60 | -802546635.64 | 124 | -860985069.72 | 138 | -880464508.52 |
| C205_100t_20w | 220 | -6322674065.22 | 216 | -6322674065.22 | 215 | -6322674065.22 |
| C205_25t_5w | 0 | -33540709.52 | 2 | -33540709.52 | 2 | -33540709.52 |
| C205_50t_10w | 20 | -650607518.5 | 31 | -650607518.5 | 15 | -650607518.5 |
| C206_100t_20w | 360 | -7733117210.96 | 370 | -7733117210.96 | 370 | -7733117210.96 |
| C206_25t_5w | 0 | -33040034.82 | 2 | -33040034.82 | 2 | -33040034.82 |
| C206_50t_10w | 30 | -670087201.58 | 13 | -670087201.58 | 24 | -670087201.58 |
| C207_100t_20w | 480 | -7222438653.24 | 358 | -6809033308.7 | 349 | -6809033308.7 |
| C207_25t_5w | 0 | -30537072.84 | 2 | -30537072.84 | 2 | -30537072.84 |
| C207_50t_10w | 30 | -724629447.8 | 37 | -712941217.36 | 36 | -712941217.36 |
| C208_100t_20w | 400 | -8608564830.12 | 427 | -8657201177.38 | 427 | -8657201177.38 |
| C208_25t_5w | 0 | -30537000.8 | 1 | -30537000.8 | 2 | -30537000.8 |
| C208_50t_10w | 20 | -767484108.8 | 28 | -767484108.8 | 27 | -767484108.8 |
| R101_100t_20w | 60 | 14199013680.52 | 66 | 14199013680.52 | 66 | 14199013680.52 |
| R101_25t_5w | 0 | 53122608.32 | 0 | 53122608.32 | 0 | 53122608.32 |
| R101_50t_10w | 10 | 1205558731.74 | 4 | 1205558731.74 | 4 | 1205558731.74 |
| R102_100t_20w | 70 | 14101742003.18 | 78 | 14101742003.18 | 78 | 14101742003.18 |
| R102_25t_5w | 0 | 45057049.18 | 0 | 45057049.18 | 0 | 45057049.18 |
| R102_50t_10w | 10 | 961417477.64 | 6 | 961417477.64 | 6 | 961417477.64 |
| R103_100t_20w | 80 | 12469734030.74 | 77 | 12469734030.74 | 76 | 12469734030.74 |
| R103_25t_5w | 0 | 47727097.78 | 1 | 47727097.78 | 1 | 47727097.78 |
| R103_50t_10w | 10 | 748010121.8 | 7 | 748010121.8 | 7 | 748010121.8 |
| R104_100t_20w | 320 | 15579736366.16 | 451 | 14023383931.96 | 445 | 14023383931.96 |
| R104_25t_5w | 0 | 41163363.58 | 1 | 41163363.58 | 1 | 41163363.58 |
| R104_50t_10w | 20 | 795626623.76 | 18 | 795626623.76 | 20 | 795626623.76 |
| R105_100t_20w | 110 | 8424839701.08 | 111 | 8424839701.08 | 112 | 8424839701.08 |
| R105_25t_5w | 0 | 48839515.24 | 1 | 48839515.24 | 1 | 48839515.24 |
| R105_50t_10w | 0 | 828524787.06 | 7 | 828524787.06 | 7 | 828524787.06 |
| R106_100t_20w | 120 | 8443754034.72 | 133 | 8443754034.72 | 133 | 8443754034.72 |
| R106_25t_5w | 0 | 49173408.88 | 1 | 49173408.88 | 1 | 49173408.88 |
| R106_50t_10w | 20 | 732859395.62 | 11 | 732859395.62 | 12 | 732859395.62 |
| R107_100t_20w | 110 | 11634816307.34 | 115 | 11634816307.34 | 114 | 11634816307.34 |
| R107_25t_5w | 0 | 40106459.36 | 1 | 40106459.36 | 1 | 40106459.36 |
| R107_50t_10w | 10 | 821599264.56 | 8 | 821599264.56 | 8 | 821599264.56 |
| R108_100t_20w | 320 | 14715096346.74 | 443 | 12369760088.08 | 441 | 12369760088.08 |
| R108_25t_5w | 0 | 44389677.36 | 1 | 44389677.36 | 0 | 44389677.36 |
| R108_50t_10w | 10 | 724635106.52 | 14 | 724635106.52 | 14 | 724635106.52 |
| R109_100t_20w | 200 | 6636116061.12 | 200 | 6636116061.12 | 200 | 6636116061.12 |
| R109_25t_5w | 0 | 45112659.24 | 1 | 45112659.24 | 1 | 45112659.24 |
| R109_50t_10w | 10 | 806881243.16 | 11 | 806881243.16 | 10 | 806881243.16 |
| R110_100t_20w | 150 | 7622345982.82 | 155 | 7622345982.82 | 156 | 7622345982.82 |
| R110_25t_5w | 0 | 48338838.34 | 1 | 48338838.34 | 0 | 48338838.34 |
| R110_50t_10w | 10 | 931116248.04 | 12 | 931116248.04 | 9 | 931116248.04 |
| R111_100t_20w | 190 | 8473476077.26 | 201 | 8473476077.26 | 200 | 8473476077.26 |
| R111_25t_5w | 0 | 40829572.44 | 1 | 40829572.44 | 1 | 40829572.44 |
| R111_50t_10w | 10 | 804716832.2 | 9 | 804716832.2 | 9 | 804716832.2 |
| R112_100t_20w | 290 | 10910679997.96 | 315 | 11618604066.8 | 315 | 11618604066.8 |
| R112_25t_5w | 0 | 44278407.52 | 1 | 44278407.52 | 1 | 44278407.52 |
| R112_50t_10w | 10 | 597369734.16 | 18 | 597369734.16 | 17 | 597369734.16 |
| R201_100t_20w | 230 | -794381502.58 | 225 | -794381502.58 | 235 | -794381502.58 |
| R201_25t_5w | 0 | -4448153.88 | 2 | -4448153.88 | 1 | -4448153.88 |
| R201_50t_10w | 10 | -70554377.38 | 18 | -70554377.38 | 20 | -70554377.38 |
| R202_100t_20w | 361 | -778169509.08 | 428 | -778169072.06 | 466 | -743043085.54 |
| R202_25t_5w | 0 | -3947227.18 | 3 | -3947227.18 | 3 | -3947227.18 |

| Instance | T(20) | Table D. 6 Objective(20) | ued from $\mathrm{T}(40)$ | revious page Objective(40) | T(50) | Objective(50) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R202_50t_10w | 30 | -87436435.78 | 43 | -78346243.1 | 45 | -78346224.06 |
| R203_100t_20w | 470 | -807891511.9 | 933 | -891653653.54 | 1153 | -886249252.04 |
| R203_25t_5w | 0 | -4114190.48 | 4 | -4114172.12 | 4 | -4114172.12 |
| R203_50t_10w | 40 | -64927278.02 | 68 | -69689050.08 | 81 | -70554528.3 |
| R204_100t_20w | 700 | -934885986.92 | 1655 | -1007840112.08 | 2390 | -1002435489.24 |
| R204_25t_5w | 10 | -3836176.22 | 6 | -3836176.22 | 6 | -3836176.22 |
| R204_50t_10w | 50 | -87437532.82 | 83 | -95229116.26 | 82 | -95229116.26 |
| R205_100t_20w | 560 | -910567724.8 | 615 | -907865771.62 | 617 | -907865771.62 |
| R205_25t_5w | 0 | -4448041.9 | 3 | -4448041.9 | 3 | -4448041.9 |
| R205_50t_10w | 30 | -88735610.36 | 32 | -88735610.36 | 32 | -88735610.36 |
| R206_100t_20w | 650 | -932183729.82 | 840 | -964607487.18 | 887 | -959203558.62 |
| R206_25t_5w | 0 | -4225347.66 | 3 | -4225347.66 | 3 | -4225347.66 |
| R206_50t_10w | 40 | -80943919.4 | 27 | -79212126.44 | 46 | -79212126.44 |
| R207_100t_20w | 620 | -967309992.24 | 1109 | -1018647805.1 | 1279 | -1005137727.98 |
| R207_25t_5w | 0 | -4392198.74 | 4 | -4392198.74 | 4 | -4392198.74 |
| R207_50t_10w | 40 | -61464268.7 | 65 | -65360484.06 | 76 | -66226236.7 |
| R208_100t_20w | 710 | -951097400.26 | 1751 | -1042965700.1 | 1777 | -1007839487.38 |
| R208_25t_5w | 0 | -3836155.76 | 5 | -3836176.22 | 5 | -3836176.22 |
| R208_50t_10w | 60 | -92198895.8 | 87 | -90467308.72 | 85 | -90467308.72 |
| R209_100t_20w | 630 | -959203840.68 | 1154 | -1013243421.1 | 1356 | -924077775.82 |
| R209_25t_5w | 0 | -3891629.84 | 2 | -3891629.84 | 2 | -3891629.84 |
| R209_50t_10w | 30 | -88735190.58 | 44 | -88735190.58 | 41 | -88735190.58 |
| R210_100t_20w | 520 | -978117773.22 | 605 | -924077075.12 | 621 | -929481081.68 |
| R210_25t_5w | 0 | -4336664.4 | 3 | -4336664.4 | 6 | -4336664.4 |
| R210_50t_10w | 30 | -71853394.54 | 46 | -70554826.58 | 45 | -70554826.58 |
| R211_100t_20w | 660 | -937588195.2 | 1103 | -942991911.98 | 1104 | -942991911.98 |
| R211_25t_5w | 0 | -4003167.92 | 3 | -4003167.92 | 3 | -4003167.92 |
| R211_50t_10w | 50 | -88735718.58 | 56 | -88735718.58 | 55 | -88735718.58 |
| RC101_100t_20w | 90 | 15814809991.88 | 88 | 15814809991.88 | 88 | 15814809991.88 |
| RC101_25t_5w | 0 | 49785100.08 | 0 | 49785100.08 | 0 | 49785100.08 |
| RC101_50t_10w | 0 | 1140627787.76 | 5 | 1140627787.76 | 5 | 1140627787.76 |
| RC102_100t_20w | 80 | 15822916717.48 | 85 | 15822916717.48 | 85 | 15822916717.48 |
| RC102_25t_5w | 0 | 49562717.8 | 0 | 49562717.8 | 1 | 49562717.8 |
| RC102_50t_10w | 10 | 1005137953.68 | 7 | 1005137953.68 | 8 | 1005137953.68 |
| RC103_100t_20w | 90 | 17527878844.96 | 86 | 17527878844.96 | 85 | 17527878844.96 |
| RC103_25t_5w | 0 | 45168395.9 | 1 | 45168395.9 | 0 | 45168395.9 |
| RC103_50t_10w | 10 | 812075814.96 | 8 | 812075814.96 | 8 | 812075814.96 |
| RC104_100t_20w | 90 | 19862406746.3 | 81 | 19862406746.3 | 89 | 19862406746.3 |
| RC104_25t_5w | 0 | 44167136.92 | 0 | 44167136.92 | 1 | 44167136.92 |
| RC104_50t_10w | 10 | 1318539952.42 | 13 | 1318539952.42 | 14 | 1318539952.42 |
| RC105_100t_20w | 90 | 10907978098.42 | 93 | 10907978098.42 | 92 | 10907978098.42 |
| RC105_25t_5w | 0 | 40495624.02 | 1 | 40495624.02 | 1 | 40495624.02 |
| RC105_50t_10w | 10 | 1340183106.8 | 6 | 1340183106.8 | 6 | 1340183106.8 |
| RC106_100t_20w | 150 | 12350846197.84 | 152 | 12350846197.84 | 152 | 12350846197.84 |
| RC106_25t_5w | 0 | 36212723.82 | 1 | 36212723.82 | 1 | 36212723.82 |
| RC106_50t_10w | 10 | 942370993.06 | 9 | 942370993.06 | 8 | 942370993.06 |
| RC107_100t_20w | 130 | 16638920438.66 | 140 | 16638920438.66 | 128 | 16638920438.66 |
| RC107_25t_5w | 0 | 44278299.46 | 0 | 44278299.46 | 1 | 44278299.46 |
| RC107_50t_10w | 10 | 815106027.38 | 10 | 815106027.38 | 12 | 815106027.38 |
| RC108_100t_20w | 120 | 15674306402.32 | 120 | 15674306402.32 | 123 | 15674306402.32 |
| RC108_25t_5w | 0 | 44222643 | 1 | 44222643 | 1 | 44222643 |
| RC108_50t_10w | 10 | 1012929814.66 | 14 | 1012929814.66 | 13 | 1012929814.66 |
| RC201_100t_20w | 290 | -826803732.5 | 292 | -826803732.5 | 292 | -826803732.5 |
| RC201_25t_5w | 10 | -1943813.54 | 1 | -1943813.54 | 1 | -1943813.54 |
| RC201_50t_10w | 20 | -74882085.56 | 21 | -74882085.56 | 17 | -74882085.56 |
| RC202_100t_20w | 410 | -767358429.54 | 464 | -848419159.52 | 538 | -848418163.6 |
| RC202_25t_5w | 0 | -3557855.8 | 3 | -3557855.8 | 3 | -3557855.8 |
| RC202_50t_10w | 30 | -67523371.86 | 35 | -76180581.06 | 36 | -76180581.06 |
| RC203_100t_20w | 450 | -783571904.54 | 897 | -864631843.02 | 1195 | -915968950.18 |
| RC203_25t_5w | 10 | -3669285.62 | 4 | -3669285.62 | 3 | -3669285.62 |
| RC203_50t_10w | 40 | -70120280.08 | 60 | -70986078.54 | 62 | -70986078.54 |
| RC204_100t_20w | 720 | -961903747.32 | 1691 | -1018645842.94 | 1993 | -1032155821.9 |
| RC204_25t_5w | 10 | -3836301.9 | 4 | -3836301.9 | 3 | -3836301.9 |
| RC204_50t_10w | 50 | -98691115.84 | 77 | -96526125.94 | 73 | -96526125.94 |
| RC205_100t_20w | 350 | -805187877.12 | 390 | -856525543.8 | 383 | -856525543.8 |
| RC205_25t_5w | 10 | -3279730.22 | 2 | -3279730.22 | 2 | -3279730.22 |
| RC205_50t_10w | 20 | -58865195.74 | 26 | -58865195.74 | 26 | -58865195.74 |
| RC206_100t_20w | 580 | -905161565.1 | 488 | -902460332.16 | 487 | -902460332.16 |
| RC206_25t_5w | 0 | -4002513.24 | 6 | -4002513.24 | 2 | -4002513.24 |
| RC206_50t_10w | 30 | -80508818.28 | 26 | -80508818.28 | 25 | -80508818.28 |
| RC207_100t_20w | 620 | -907864881.66 | 1170 | -891650951.2 | 1243 | -891650951.2 |
| RC207_25t_5w | 10 | -3891500.52 | 2 | -3891500.52 | 2 | -3891500.52 |
| RC207_50t_10w | 50 | -81375438.26 | 48 | -78345400.66 | 51 | -78345400.66 |
| RC208_100t_20w | 720 | -978116228.2 | 1275 | -972711902.2 | 1228 | -970010666.38 |
| RC208_25t_5w | 10 | -4114144.88 | 4 | -4114144.88 | 3 | -4114144.88 |
| RC208_50t_10w | 50 | -88301331.26 | 52 | -88301321.2 | 51 | -88301321.2 |
| hh_00_P0 | 540 | 6663651008.29 | 603 | 7224779745.15 | 606 | 7224779745.15 |
| 111_00_P0 | 90 | 1338732826.5 | 93 | 1338732826.5 | 93 | 1338732826.5 |
| 111_01_P0 | 90 | 1338732826.5 | 93 | 1338732826.5 | 92 | 1338732826.5 |
| 111_02_P0 | 90 | 1338732826.5 | 94 | 1338732826.5 | 95 | 1338732826.5 |
| 111_03_P0 | 90 | 1338732826.5 | 97 | 1338732826.5 | 92 | 1338732826.5 |
| 111_04_P0 | 90 | 1338732826.5 | 83 | 1338732826.5 | 93 | 1338732826.5 |
| 111_05_P0 | 100 | 1338732826.5 | 106 | 1338732826.5 | 105 | 1338732826.5 |
| 111_06_P0 | 80 | 1245408125.36 | 89 | 1245408125.36 | 89 | 1245408125.36 |
| 111_07_P0 | 90 | 1338732826.5 | 93 | 1338732826.5 | 93 | 1338732826.5 |
| 112_00_P0 | 20 | 85352916.27 | 14 | 85352916.27 | 14 | 85352916.27 |
| 113_00_P0 | 20 | 47544188.25 | 14 | 47544188.25 | 14 | 47544188.25 |
| test150-0-0-0-0_d0_tw0 | 19550 | -19865223626.7 | 47847 | -28004454190.5 | 61648 | -28349336446.9 |
| test150-0-0-0-0_d0_tw1 | 13830 | -26969806509.5 | 25729 | -30211702649.1 | 29881 | -30832491493.7 |
| test150-0-0-0-0_d0_tw2 | 10120 | -27728547305.4 | 18937 | -28832172176.8 | 20353 | -27107759329.8 |
| test150-0-0-0-0_d0_tw3 | 6670 | -27383664735 | 7859 | -26417993157.2 | 7869 | -26417993157.2 |
| test150-0-0-0-0_d0_tw4 | 10300 | -26073109561.3 | 14382 | -26142085667 | 14994 | -26142085667 |
| test250-0-0-0-0_d0_tw0 | 164208 | 298673634539.9 | 430736 | 251710248339.1 | 545000 | 23650649218.5 |
| test250-0-0-0-0_d0_tw1 | 109491 | -276036560388.2 | 5138199 | -289889069536.6 | 266964 | -292254131472 |
| test250-0-0-0-0_d0_tw2 | 80722 | -254413132190.1 | 143139 | -275698693917.1 | 153535 | -271982167429.3 |
| test250-0-0-0-0_d0_tw3 | 50759 | -266914175565 | 55232 | -257791791244 | 55129 | -257791791244 |
| test250-0-0-0-0_d0_tw4 | 98189 | -177041797000.3 | 196739 | -219612925007.3 | 211644 | -231776103927.7 |
| test50-0-0-0-0_d0_tw0 | 230 | -365122278.5 | 367 | -346397868.1 | 380 | -346397868.1 |

| | Table D.6 - continued from previous page | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Instance | $\mathrm{T}(20)$ | Objective (20) | $\mathrm{T}(40)$ | Objective (40) | $\mathrm{T}(50)$ | Objective(50) |
| test50-0-0-0-0_d0_tw1 | 100 | -408812648.4 | 97 | -408812648.4 | 96 | -408812648.4 |
| test50-0-0-0-0_d0_tw2 | 80 | -408812648.4 | 82 | -408812648.4 | 81 | -408812648.4 |
| test50-0-0-0-0_d0_tw3 | 60 | -408812648.4 | 69 | -408812648.4 | 68 | -408812648.4 |
| test50-0-0-0-0_d0_tw4 | 140 | -346397693.9 | 159 | -346397693.9 | 161 | -346397693.9 |
| BTEngineers | 13114 | -795238177220.579 | 16107 | -795238177264.579 | 16108 | -795238177264.579 |

Appendix E

Results Tabu Search Configurations

E. 1 Tabu Search Results: Config. 1

Table E.1: Tabu Search experiments results with parameter configuration 1

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 114 | 10000 | 57828516545.0500 | 71563566909.3600 | 23.7513 * |
| 10_District1 | 571 | 10000 | 8018849193135.5100 | 8218857439409.0600 | 2.4942 * |
| 10_District2 | 578 | 10000 | 40625364513.9699 | 27771011394.0200 | 46.2869 |
| 10_District3 | 247 | 10000 | 129045115417.5300 | 139155792160.4600 | 7.8349 * |
| 10_District4 | 1935 | 10000 | 24789226229665.7030 | 21291228411410.1000 | 16.4292 |
| 10_District5 | 1541 | 10000 | 39368704514405.7000 | 37249297856014.8000 | 5.6897 |
| 11_District0 | 143 | 10000 | 3659838650.6500 | 3046672128.3800 | 20.1257 |
| 11_District1 | 1160 | 10000 | 6534453176402.4795 | 6157994611789.7000 | 6.1133 |
| 11_District2 | 199 | 10000 | 12529143717.1300 | 9214556192.4000 | 35.9712 |
| 11_District3 | 200 | 10000 | 58426923692.1299 | 61007292651.7800 | 4.4164 * |
| 11_District4 | 2190 | 10000 | 24653411632109.7270 | 22460659385239.4000 | 9.7626 |
| 11_District5 | 1469 | 10000 | 15976061388576.6970 | 15643005576898.3000 | 2.1291 |
| 12_District0 | 164 | 10000 | 127332780450.3600 | 115036288619.9000 | 10.6892 |
| 12_District1 | 1717 | 10000 | 41874084461133.0900 | 37877356021322.0000 | 10.5517 |
| 12_District2 | 241 | 10000 | 149496005456.4600 | 153054550706.1000 | 2.3803 * |
| 12_District3 | 595 | 10000 | 212347162085.9698 | 239836499336.7000 | 12.9454^{*} |
| 12_District4 | 2942 | 10000 | 64672333500298.7800 | 59129219661289.8000 | 9.3745 |
| 12_District5 | 2901 | 10000 | 72328352734637.8400 | 65945373929847.0000 | 9.6791 |
| 13_District0 | 80 | 10000 | 176478198913.1201 | 154315121626.0000 | 14.3622 |
| 13_District1 | 853 | 10000 | 17465242494990.0400 | 14674175609787.1000 | 19.0202 |
| 13_District2 | 316 | 10000 | 116084153493.2699 | 126837068235.0100 | 9.2630 * |
| 13_District3 | 1069 | 10000 | 418869015611.6208 | 429665639491.2800 | 2.5775 * |
| 13_District4 | 1358 | 10000 | 30680129989003.6700 | 30033656135618.7000 | 2.1524 |
| 13_District5 | 805 | 10000 | 46949266940678.5100 | 42764648834839.3000 | 9.7852 |
| 14_District0 | 74 | 10000 | 33613834518.4900 | 34977146773.4600 | 4.0558 * |
| 14_District1 | 1877 | 10000 | 13122494080941.2320 | 12434388027267.4000 | 5.5338 |
| 14_District2 | 187 | 10000 | 93003835894.4398 | 90165619840.7900 | 3.1477 |
| 14_District3 | 701 | 10000 | 222880056492.5500 | 262406322982.9800 | 17.7343 * |
| 14_District4 | 1738 | 10000 | 38513662440545.7340 | 31546738861338.4000 | 22.0844 |
| 14_District5 | 1381 | 10000 | 46381959868001.5900 | 44524141233501.8000 | 4.1726 |
| 15_District0 | 63 | 10000 | 54827547254.4899 | 42188641727.2300 | 29.9580 |
| 15_District1 | 980 | 10000 | 12602573286764.2230 | 12317798430422.9000 | 2.3118 |
| 15_District2 | 147 | 10000 | 76110681486.7102 | 67421894826.9300 | 12.8871 |
| 15_District3 | 516 | 10000 | 386925996569.5306 | 463823619193.1600 | 19.8739 * |
| 15_District4 | 1905 | 10000 | 27434068605268.5550 | 22834329911998.4000 | 20.1439 |
| 15_District5 | 1366 | 10000 | 31234193557599.5270 | 28700034523627.8000 | 8.8298 |
| 16_District0 | 76 | 10000 | 123379622136.1200 | 120807470457.0500 | 2.1291 |
| 16_District1 | 828 | 10000 | 13413700712982.5060 | 12316160134202.9000 | 8.9113 |
| 16_District2 | 156 | 10000 | 97539952435.7500 | 94504646913.7700 | 3.2118 |
| 16_District3 | 577 | 10000 | 214464159387.2001 | 210518442436.7200 | 1.8742 |
| 16_District4 | 1385 | 10000 | 31192659518846.5270 | 28327769996973.5000 | 10.1133 |
| 16_District5 | 1475 | 10000 | 49451132314209.8400 | 48522145053303.8000 | 1.9145 |
| 17_District0 | 52 | 10000 | 64524717068.3099 | 60633779564.4100 | 6.4171 |
| 17_District1 | 1479 | 10000 | 11617082853705.7950 | 12050832937058.4000 | 3.7337^{*} |
| 17_District2 | 290 | 10000 | 115751341239.7699 | 111787046906.6000 | 3.5462 |
| 17_District3 | 159 | 10000 | 181179309939.1000 | 178730940805.7800 | 1.3698 |
| 17_District4 | 1609 | 10000 | 20618254258146.6250 | 19092974442252.1000 | 7.9886 |
| 17_District5 | 820 | 10000 | 26652126436980.3750 | 23886759047749.6000 | 11.5769 |
| 18_District0 | 24 | 10000 | 2710365389.5300 | 2341527488.6000 | 15.7520 |
| 18_District1 | 354 | 10000 | 13646938890431.1250 | 13924688690304.7000 | 2.0352^{*} |
| 18_District2 | 166 | 10000 | 5766218027.7500 | 4417358464.4100 | 30.5354 |
| 18_District3 | 100 | 10000 | 55168307609.2599 | 70920528499.0700 | 28.5530 * |

| Instance | Table E. 1 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 18_District4 | 1447 | 10000 | 18285427769696.9770 | 18718722507656.5000 | 2.3696 * |
| 18_District5 | 512 | 10000 | 14346956986764.6860 | 12641617614178.6000 | 13.4898 |
| 19-District0 | 72 | 10000 | 47758552496.3500 | 55462969817.4300 | 16.1320 * |
| 19_District1 | 1186 | 10000 | 24618865063621.6100 | 22401449014876.9000 | 9.8985 |
| 19_District2 | 361 | 10000 | 159323653542.6700 | 153280470262.9000 | 3.9425 |
| 19_District3 | 316 | 10000 | 219558314420.6599 | 243569037679.2000 | 10.9359 * |
| 19_District4 | 2372 | 10000 | 120228763973581.9700 | 106192108824987.0000 | 13.2181 |
| 19_District5 | 1645 | 10000 | 86255205279477.3600 | 78807991381031.8000 | 9.4498 |
| 1_District0 | 86 | 10000 | 425000131834.3106 | 430590936121.1900 | 1.3154 * |
| 1_District1 | 1912 | 10000 | 56462353644529.3100 | 56270206789859.1000 | 0.3414 |
| 1_District2 | 208 | 10000 | 623580041674.7792 | 672001346398.5800 | 7.7650 * |
| 1_District3 | 805 | 10000 | 1012009511413.5295 | 1031045184732.7300 | 1.8809 * |
| 1_District4 | 3607 | 10000 | 82173119516438.2000 | 73732177837593.4000 | 11.4481 |
| 1_District5 | 1941 | 10000 | 94192565467190.9700 | 91806570717137.9000 | 2.5989 |
| 20_District0 | 44 | 10000 | 98281656368.8800 | 98421186256.3800 | 0.1419 * |
| 20_District1 | 877 | 10000 | 17808835626053.7700 | 17222315357479.6000 | 3.4055 |
| 20_District2 | 443 | 10000 | 29944665225.3700 | 27378465012.0200 | 9.3730 |
| 20_District3 | 981 | 10000 | 262346802562.0587 | 305213925793.8100 | 16.3398 * |
| 20_District4 | 2047 | 10000 | 28506210512191.0470 | 24960379220572.1000 | 14.2058 |
| 20_District5 | 543 | 3464 | 48088160922901.7200 | 48965990159239.8000 | 1.8254 * |
| 21_District0 | 366 | 10000 | 108332912943.4300 | 120414278382.3300 | 11.1520 * |
| 21_District1 | 572 | 10000 | 17721038066214.7400 | 16893868904739.4000 | 4.8962 |
| 21_District2 | 642 | 10000 | 80707473855.3998 | 62666013838.2000 | 28.7898 |
| 21_District3 | 477 | 10000 | 843250669428.9386 | 892017226174.9800 | 5.7831 * |
| 21_District4 | 1865 | 10000 | 25298959861932.4600 | 24304758516183.0000 | 4.0905 |
| 21_District5 | 1071 | 10000 | 49699318164858.3500 | 45930297567746.2000 | 8.2059 |
| 22_District0 | 53 | 10000 | 146651795790.9399 | 138906549645.3000 | 5.5758 |
| 22_District1 | 440 | 10000 | 15517247869615.6910 | 14071948171020.4000 | 10.2707 |
| 22_District2 | 159 | 10000 | 232904094204.2603 | 226837888943.8600 | 2.6742 |
| 22_District3 | 720 | 10000 | 279269051966.6899 | 285892462254.7700 | 2.3716 * |
| 22_District4 | 1327 | 10000 | 32239196238177.2400 | 29074924558505.3000 | 10.8831 |
| 22_District5 | 1365 | 10000 | 44999254901547.8050 | 42772519577575.2000 | 5.2059 |
| 23_District0 | 64 | 10000 | 35453041497.5900 | 32906581132.3800 | 7.7384 |
| 23_District1 | 1581 | 10000 | 18553983673921.5980 | 17211576588480.4000 | 7.7994 |
| 23_District2 | 130 | 10000 | 197577784164.8399 | 183871311138.5000 | 7.4543 |
| 23_District3 | 677 | 10000 | 213132901005.6505 | 250619333021.8100 | 17.5882 * |
| 23_District4 | 1762 | 10000 | 38395710924473.5300 | 34555727151866.1000 | 11.1124 |
| 23_District5 | 1515 | 10000 | 76698336949283.1600 | 70608343796642.5000 | 8.6250 |
| 24_District0 | 116 | 10000 | 124292349244.8500 | 105830236823.5000 | 17.4450 |
| 24_District1 | 832 | 10000 | 13134075969512.0160 | 11389191027676.9000 | 15.3205 |
| 24_District2 | 401 | 10000 | 23856949683.1099 | 26055867878.7800 | 9.2170 * |
| 24_District3 | 1035 | 10000 | 101838532588.1899 | 159315579521.2200 | 56.4393 * |
| 24_District4 | 2196 | 10000 | 25972810944861.7500 | 24517137738123.8000 | 5.9373 |
| 24_District5 | 744 | 10000 | 26911410512129.4200 | 24738655441667.6000 | 8.7828 |
| 25-District0 | 29 | 10000 | 1616800882.2799 | 1255504790.1000 | 28.7769 |
| 25_District1 | 1265 | 10000 | 6031913668330.9880 | 6071232244353.8300 | 0.6518 * |
| 25-District2 | 69 | 10000 | 2789641143.3100 | 2430507030.7800 | 14.7760 |
| 25_District3 | 191 | 10000 | 53545669591.4900 | 54825213021.3900 | 2.3896 * |
| 25_District4 | 1706 | 10000 | 22993087927410.2400 | 20503174454937.0000 | 12.1440 |
| 25-District5 | 706 | 10000 | 11093840620670.7250 | 11011719621667.4000 | 0.7457 |
| 26_District0 | 177 | 10000 | 215785899433.4600 | 225380467772.9800 | 4.4463 * |
| 26_District1 | 970 | 10000 | 44444715105126.6250 | 42180173025536.8000 | 5.3687 |
| 26_District2 | 183 | 10000 | 341154670791.7099 | 282951685653.1000 | 20.5699 |
| 26_District3 | 1662 | 10000 | 1010951700327.3400 | 1171533328289.0400 | 15.8842 * |
| 26_District4 | 3004 | 10000 | 114416918081598.1200 | 105580668249051.0000 | 8.3691 |
| 26_District5 | 2032 | 10000 | 78563574443481.4400 | 76363123397244.6000 | 2.8815 |
| 27_District0 | 144 | 10000 | 141123569491.1200 | 162479691641.3000 | 15.1329 * |
| 27_District1 | 1058 | 10000 | 20160867712462.1050 | 18425601260045.1000 | 9.4176 |
| 27-District2 | 267 | 10000 | 64505386329.4599 | 61192189969.0700 | 5.4144 |
| 27-District3 | 507 | 10000 | 129500504280.6899 | 116712931257.8400 | 10.9564 |
| 27-District4 | 1621 | 10000 | 37680793520222.9800 | 33778988955119.3000 | 11.5509 |
| 27_District5 | 1488 | 10000 | 39813786783293.8200 | 39568513214098.5000 | 0.6198 |
| 28_District0 | 46 | 10000 | 124239127798.0099 | 102108349093.8000 | 21.6738 |
| 28_District1 | 1182 | 10000 | 14761964185111.9840 | 15128335139531.3000 | 2.4818 * |
| 28_District2 | 196 | 10000 | 68044935657.5799 | 64692968024.3600 | 5.1813 |
| 28_District3 | 648 | 10000 | 740018619541.0001 | 805624097687.0900 | 8.8653 * |
| 28_District4 | 1997 | 10000 | 25882040182480.9960 | 22982825117023.6000 | 12.6147 |
| 28_District5 | 1103 | 10000 | 36173595121688.8100 | 33791534896023.1000 | 7.0492 |
| 29_District0 | 231 | 10000 | 33389137635.3299 | 29353316624.4500 | 13.7491 |
| 29_District1 | 344 | 10000 | 7664589729242.2970 | 7484826255380.2500 | 2.4017 |
| 29_District2 | 364 | 10000 | 78961985344.2499 | 101233312043.5700 | 28.2051 * |
| 29_District3 | 771 | 10000 | 225937596356.0400 | 232601979076.2900 | 2.9496 * |
| 29_District4 | 1301 | 10000 | 9550657561663.9160 | 8309110124637.3200 | 14.9420 |
| 29_District5 | 2566 | 10000 | 36360343783848.0100 | 35670467010142.6000 | 1.9340 |
| 2_District0 | 100 | 10000 | 143938419743.6200 | 147005506881.3000 | 2.1308 * |
| 2_District1 | 1131 | 10000 | 42646555520397.6100 | 39540340925649.8000 | 7.8558 |
| 2_District2 | 492 | 10000 | 194240608635.1301 | 217829855689.6200 | 12.1443 * |
| 2_District3 | 347 | 10000 | 840013613778.2102 | 858787147589.8100 | 2.2349 * |
| 2_District4 | 4076 | 10000 | 65211203946622.9840 | 58876326066126.1000 | 10.7596 |
| 2_District5 | 1745 | 10000 | 103739457393397.2500 | 95903342380824.9000 | 8.1708 |
| 30_District0 | 48 | 10000 | 15519711254.6900 | 14856579555.0000 | 4.4635 |
| 30_District1 | 606 | 10000 | 4186035210142.2983 | 4288991390631.0100 | 2.4595 * |
| 30_District2 | 354 | 10000 | 37878747544.7700 | 28984654012.0000 | 30.6855 |
| 30_District3 | 682 | 10000 | 119336540892.1000 | 140260859804.8700 | 17.5338 * |
| 30_District4 | 1413 | 10000 | 5842803029893.0070 | 6033193692111.0700 | 3.2585 * |
| 30_District5 | 417 | 10000 | 5439541091348.2080 | 5491783393822.4800 | 0.9604 * |
| 3_District0 | 63 | 10000 | 97411177384.8300 | 90701681116.3600 | 7.3973 |
| 3_District1 | 740 | 10000 | 18282156558812.9920 | 17931112587450.7000 | 1.9577 |
| 3_District2 | 247 | 10000 | 173531521228.0999 | 184423936337.4900 | 6.2769 * |
| 3_District3 | 879 | 10000 | 821302276118.0098 | 837894240881.4400 | 2.0202 * |
| 3_District4 | 4411 | 10000 | 77785891987793.1200 | 67042838268903.4000 | 16.0241 |
| 3_District5 | 2458 | 10000 | 64469278292389.0100 | 60566955554266.6000 | 6.4429 |
| 4_District0 | 32 | 10000 | 21991284743.1700 | 20379141775.5100 | 7.9107 |
| 4_District1 | 1315 | 10000 | 16663241257517.7420 | 16091560843817.3000 | 3.5526 |
| 4_District2 | 190 | 10000 | 20912680421.4499 | 19771989271.8700 | 5.7692 |
| 4_District3 | 226 | 10000 | 29070907160.0599 | 31243041764.1500 | 7.4718 * |
| 4_District4 | 3331 | 10000 | 49362523927800.7900 | 44497725128783.0000 | 10.9326 |

| Instance | Table E. 1 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 4_District5 | 1422 | 10000 | 32047671081430.7100 | 30292083288905.3000 | 5.7955 |
| 5_District0 | 229 | 10000 | 108361452677.7999 | 105305055950.1000 | 2.9024 |
| 5_District1 | 883 | 10000 | 23293453038218.5400 | 22578812619408.6000 | 3.1650 |
| 5_District2 | 179 | 10000 | 72814721759.8400 | 49746631100.9200 | 46.3711 |
| 5_District3 | 528 | 10000 | 297355502880.3797 | 366270241695.4900 | 23.1758 * |
| 5_District4 | 2473 | 10000 | 79778112199245.7500 | 68243049339872.1000 | 16.9029 |
| 5_District5 | 1500 | 10000 | 128453320339184.8400 | 121803986176569.0000 | 5.4590 |
| 6_District0 | 92 | 10000 | 174240677714.6999 | 174024536017.0000 | 0.1242 |
| 6_District1 | 1184 | 10000 | 26209123692126.2930 | 24635464198083.6000 | 6.3877 |
| 6_District2 | 332 | 10000 | 238556186590.7401 | 263920214770.7000 | 10.6323 * |
| 6_District3 | 396 | 10000 | 266599152914.4895 | 272026860685.1900 | 2.0359 * |
| 6_District4 | 1547 | 10000 | 35768389360388.9900 | 32671893526336.1000 | 9.4775 |
| 6_District5 | 1438 | 10000 | 56765748560626.7900 | 52577668995018.6000 | 7.9655 |
| 7_District0 | 274 | 10000 | 48036330723.9400 | 53992400830.1800 | 12.3990 * |
| 7_District1 | 1709 | 10000 | 25689484175715.2540 | 25530776489059.8000 | 0.6216 |
| 7_District2 | 175 | 10000 | 108633497561.8599 | 96812988604.0900 | 12.2096 |
| 7_District3 | 361 | 10000 | 650264476114.4296 | 627921570619.9200 | 3.5582 |
| 7_District4 | 1605 | 10000 | 33698871042998.8050 | 30888008083772.9000 | 9.1001 |
| 7_District5 | 1897 | 10000 | 53210556107282.3700 | 52214576657422.1000 | 1.9074 |
| 8_District0 | 55 | 10000 | 57350067798.4000 | 47815962594.9100 | 19.9391 |
| 8_District1 | 1436 | 10000 | 14344465830917.8200 | 13654929607346.6000 | 5.0497 |
| 8_District2 | 336 | 10000 | 69729215441.7400 | 73150043166.7900 | 4.9058 * |
| 8-District3 | 744 | 10000 | 356144436938.8400 | 367102727288.8900 | 3.0769 * |
| 8_District4 | 2156 | 10000 | 32072106246520.2030 | 29816748603227.9000 | 7.5640 |
| 8_District5 | 761 | 10000 | 42646298319684.1900 | 40450402089088.4000 | 5.4286 |
| 9_District0 | 48 | 10000 | 102701631556.8100 | 100093204504.3000 | 2.6059 |
| 9_District1 | 625 | 10000 | 11923400674846.3460 | 12178217016824.2000 | 2.1371 * |
| 9_District2 | 120 | 10000 | 97715845042.7999 | 89342594098.5600 | 9.3720 |
| 9_District3 | 1044 | 10000 | 983125684210.9888 | 911115793606.4100 | 7.9034 |
| 9_District4 | 2328 | 10000 | 42073285949982.7700 | 37164202673658.1000 | 13.2091 |
| 9_District5 | 751 | 10000 | 28092914049076.2800 | 25382936280280.4000 | 10.6763 |
| C101_100t_20w | 771 | 10000 | 4085430108.3999 | -12304901708.1200 | 133.2016 |
| C101_25t_5w | 30 | 10000 | 111640260.9600 | 9512566.6400 | 1073.6081 |
| C101_50t_10w | 128 | 10000 | -362313973.1799 | -1079154704.1200 | 66.4261 |
| C102_100t_20w | 1338 | 10000 | 33315667041.5800 | -5155408825.8200 | 746.2274 |
| C102_25t_5w | 74 | 10000 | 45557675.5002 | -37546115.7600 | 221.3379 |
| C102_50t_10w | 264 | 10000 | 136358219.3198 | -1102530180.6200 | 112.3677 |
| C103_100t_20w | 3111 | 10000 | 10602654869.2802 | -7222438475.8600 | 246.8015 |
| C103_25t_5w | 218 | 10000 | 36546542.7998 | -43052838.4600 | 184.8876 |
| C103_50t_10w | 1079 | 10000 | 167525534.1999 | -1110321792.2400 | 115.0880 |
| C104_100t_20w | 4272 | 10000 | 2869531113.5005 | -8681519205.2400 | 133.0533 |
| C104_25t_5w | 349 | 10000 | 35545370.4999 | -33540706.8600 | 205.9768 |
| C104_50t_10w | 2413 | 10000 | -416855888.2400 | -1086946666.3200 | 61.6489 |
| C105_100t_20w | 1248 | 10000 | -10578323043.2999 | -12158993843.3000 | 13.0000 |
| C105_25t_5w | 36 | 10000 | 155695012.0000 | 1002190.7200 | 15435.4673 |
| C105_50t_10w | 270 | 10000 | -377897357.8800 | -1102529614.6600 | 65.7245 |
| C106_100t_20w | 2183 | 10000 | -10943092987.0601 | -5349954009.7600 | 51.1111 * |
| C106_25t_5w | 48 | 10000 | 114143319.8000 | 9512566.6400 | 1099.9213 |
| C106_50t_10w | 216 | 10000 | -868777801.6400 | -1086946589.7000 | 20.0717 |
| C107_100t_20w | 1947 | 10000 | -10578323327.5801 | -6979258964.6200 | 34.0230 * |
| C107_25t_5w | 55 | 10000 | 112140921.2800 | -2001420.3200 | 5703.0669 |
| C107_50t_10w | 481 | 10000 | -981757674.7002 | -1125905161.9000 | 12.8028 |
| C108_100t_20w | 2269 | 10000 | 2942485491.1397 | -6492899831.1000 | 145.3185 |
| C108_25t_5w | 59 | 10000 | 113142097.8800 | -8009072.9800 | 1512.6740 |
| C108_50t_10w | 586 | 10000 | -958382260.4999 | -1125905177.3200 | 14.8789 |
| C109_100t_20w | 3699 | 10000 | 10991743079.2599 | -6614488230.8200 | 266.1767 |
| C109_25t_5w | 62 | 10000 | 38048331.6798 | -26031566.9600 | 246.1622 |
| C109_50t_10w | 821 | 10000 | -935007224.7601 | -1125905761.1800 | 16.9551 |
| C201_100t_20w | 7200 | 8011 | -12596716053.9600 | -12596720162.2300 | 0.0000 |
| C201_25t_5w | 384 | 10000 | -42552163.2401 | -45555916.9200 | 6.5935 |
| C201_50t_10w | 2141 | 10000 | -1110321494.1802 | -1125905241.3800 | 1.3841 |
| C202_100t_20w | 7200 | 5602 | 17849419939.7999 | -6055175633.1600 | 394.7795 |
| C202_25t_5w | 2700 | 10000 | -42552189.2800 | -45555950.8800 | 6.5935 |
| C202_50t_10w | 7200 | 8866 | 89607610.5598 | -1125905361.9600 | 107.9587 |
| C203_100t_20w | 7202 | 4286 | 17411695819.7996 | -6930623788.8800 | 351.2284 |
| C203_25t_5w | 7200 | 7033 | -42552175.3800 | -45555956.2400 | 6.5936 |
| C203_50t_10w | 7207 | 5601 | 155838211.7600 | -1125905456.0600 | 113.8411 |
| C204_100t_20w | 7203 | 2565 | 2820895347.0999 | -8657198950.2400 | 132.5843 |
| C204_25t_5w | 7204 | 4784 | -45555856.0201 | -45555977.0000 | 0.0002 |
| C204_50t_10w | 7201 | 2124 | 93504394.2998 | -1125905585.1400 | 108.3048 |
| C205_100t_20w | 7201 | 5347 | 9702889586.1598 | -12596718687.8400 | 177.0271 |
| C205_25t_5w | 974 | 10000 | -42552170.0398 | -45555926.8000 | 6.5935 |
| C205_50t_10w | 6220 | 10000 | -1125904887.6001 | -1125905403.9800 | 0.0000 |
| C206_100t_20w | 7202 | 2659 | 17460331452.5199 | -7733117210.9600 | 325.7864 |
| C206_25t_5w | 1357 | 10000 | -44053957.9600 | -45555926.8000 | 3.2969 |
| C206_50t_10w | 7200 | 8220 | -479190002.2399 | -1125905541.4200 | 57.4395 |
| C207_100t_20w | 7201 | 2165 | 24488233802.3396 | -7222438653.2400 | 439.0576 |
| C207_25t_5w | 1477 | 10000 | -45555894.9198 | -45555933.4200 | 0.0000 |
| C207_50t_10w | 7201 | 4252 | -1067466345.9200 | -1125905455.9000 | 5.1904 |
| C208_100t_20w | 7200 | 3075 | 17314423481.6797 | -8657201177.3800 | 300.0002 |
| C208_25t_5w | 1945 | 10000 | -42552170.0396 | -45555933.1600 | 6.5935 |
| C208_50t_10w | 7200 | 7326 | -1102529619.5000 | -1125905465.6600 | 2.0761 |
| hh_00_P0 | 865 | 10000 | 50080851377.5085 | 6663651008.2900 | 651.5527 |
| 111_00_P0 | 162 | 10000 | 373710720.3599 | 1338732826.5000 | 258.2270 * |
| 111_01_P0 | 160 | 10000 | 3626241564.0199 | 1338732826.5000 | 170.8711 |
| 111_02_P0 | 157 | 10000 | 373768965.3901 | 1338732826.5000 | 258.1712 * |
| 111_03_P0 | 160 | 10000 | 373695618.3599 | 1338732826.5000 | 258.2415 * |
| 111_04_P0 | 174 | 10000 | 342558398.3900 | 1338732826.5000 | 290.8042 * |
| 111_05_P0 | 160 | 10000 | 373716559.8599 | 1307660206.1200 | 249.9069 * |
| 111_06_P0 | 154 | 10000 | 5369184942.1897 | 1214281948.4400 | 342.1695 |
| 111_07_P0 | 167 | 10000 | 342574210.2399 | 1338732826.5000 | 290.7862 * |
| 112_00_P0 | 229 | 10000 | -179579601.5000 | 85352916.2700 | 147.5292 * |
| 113_00_P0 | 199 | 10000 | -179674136.5400 | -198615845.6200 | 9.5368 |
| R101_100t_20w | 59 | 10000 | 21008053672.5398 | 6319981502.8600 | 232.4068 |
| R101_25t_5w | 5 | 10000 | 60631893.5799 | 47893886.5800 | 26.5963 |
| R101_50t_10w | 18 | 10000 | 1170928743.0599 | 709051142.3992 | 65.1402 |
| R102_100t_20w | 76 | 10000 | 16071499804.3999 | 14101742003.1800 | 13.9681 |

| Instance | Table E. 1 - continued from previous page | | | | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | Best(SolGH) | |
| R102_25t_5w | 8 | 10000 | 38715848.3199 | 34655177.0000 | 11.7173 |
| R102_50t_10w | 17 | 10000 | 1091712944.1399 | 641955625.9388 | 70.0604 |
| R103_100t_20w | 108 | 10000 | 12764252097.5999 | 12469734030.7400 | 2.3618 |
| R103_25t_5w | 10 | 10000 | 34321551.5800 | 30260803.3400 | 13.4191 |
| R103_50t_10w | 28 | 10000 | 828525009.6399 | 570531480.7600 | 45.2198 |
| R104_100t_20w | 178 | 10000 | 11143052551.4199 | 14023383931.9600 | 25.8486 * |
| R104_25t_5w | 9 | 10000 | 25644010.7200 | 29982663.2800 | 16.9187 * |
| R104_50t_10w | 51 | 10000 | 500405798.4199 | 293491458.8800 | 70.5009 |
| R105_100t_20w | 107 | 10000 | 14444895627.9399 | 8424839701.0800 | 71.4560 |
| R105_25t_5w | 8 | 10000 | 43332593.8799 | 35155829.6400 | 23.2586 |
| R105_50t_10w | 21 | 10000 | 902113560.6799 | 388290958.0600 | 132.3292 |
| R106_100t_20w | 101 | 10000 | 13588361915.1399 | 8443754034.7200 | 60.9279 |
| R106_25t_5w | 7 | 10000 | 34710842.4200 | 30483330.4600 | 13.8682 |
| R106_50t_10w | 27 | 10000 | 834152346.9199 | 303880567.4400 | 174.5000 |
| R107_100t_20w | 113 | 10000 | 10362174097.5600 | 11634816307.3400 | 12.2816 * |
| R107_25t_5w | 11 | 10000 | 30038339.4199 | 22028382.6800 | 36.3619 |
| R107_50t_10w | 33 | 10000 | 639358534.8199 | 372274723.4800 | 71.7437 |
| R108_100t_20w | 153 | 10000 | 7846612205.3599 | 12369760088.0800 | 57.6445 * |
| R108_25t_5w | 11 | 10000 | 26088948.8999 | 26033406.5200 | 0.2133 |
| R108_50t_10w | 52 | 10000 | 501271656.7199 | 293491505.9600 | 70.7959 |
| R109_100t_20w | 157 | 10000 | 10372982089.3999 | 6636116061.1200 | 56.3110 |
| R109_25t_5w | 7 | 10000 | 42609637.8599 | 26255954.0600 | 62.2856 |
| R109_50t_10w | 31 | 10000 | 837615379.6799 | 631133985.4200 | 32.7159 |
| R110_100t_20w | 113 | 10000 | 12785868019.5399 | 7622345982.8200 | 67.7419 |
| R110_25t_5w | 8 | 10000 | 38771534.5599 | 34488424.6600 | 12.4189 |
| R110_50t_10w | 23 | 10000 | 647583256.5199 | 636761297.5800 | 1.6995 |
| R111_100t_20w | 110 | 10000 | 11094416005.7598 | 8473476077.2600 | 30.9311 |
| R111_25t_5w | 9 | 10000 | 34432735.2998 | 26144634.7600 | 31.7009 |
| R111_50t_10w | 23 | 10000 | 508630350.5000 | 496942686.1600 | 2.3519 |
| R112_100t_20w | 126 | 10000 | 7962798075.4399 | 10851236130.0600 | 36.2741 * |
| R112_25t_5w | 9 | 10000 | 34543997.2000 | 26311467.9000 | 31.2887 |
| R112_50t_10w | 23 | 10000 | 500838587.3200 | 427249792.1800 | 17.2238 |
| R201_100t_20w | 2547 | 10000 | -559307234.3001 | -1383419122.5000 | 59.5706 |
| R201_25t_5w | 126 | 10000 | -5171448.4601 | -5171519.4600 | 0.0013 |
| R201_50t_10w | 1362 | 10000 | -124231486.3201 | -125097475.6400 | 0.6922 |
| R202_100t_20w | 1816 | 10000 | 3607176575.4799 | -778169509.0800 | 563.5463 |
| R202_25t_5w | 219 | 10000 | -721637.5801 | -5171550.1800 | 86.0460 |
| R202_50t_10w | 909 | 10000 | -48045138.3400 | -125097689.9000 | 61.5939 |
| R203_100t_20w | 2640 | 10000 | 281014374.1999 | -891653653.5400 | 131.5160 |
| R203_25t_5w | 470 | 10000 | -721702.1600 | -5171614.5200 | 86.0449 |
| R203_50t_10w | 2016 | 10000 | -57135809.4399 | -125097805.5400 | 54.3270 |
| R204_100t_20w | 3624 | 10000 | 310736292.3799 | -1007840112.0800 | 130.8319 |
| R204_25t_5w | 614 | 10000 | -4893340.9200 | -5060450.1000 | 3.3022 |
| R204_50t_10w | 5972 | 10000 | -55837307.8400 | -125098025.1800 | 55.3651 |
| R205_100t_20w | 4626 | 10000 | 1896810807.6597 | -910567724.8000 | 308.3107 |
| R205_25t_5w | 259 | 10000 | -5171520.0602 | -5171759.2000 | 0.0046 |
| R205_50t_10w | 2305 | 10000 | -58001601.0200 | -125097876.3800 | 53.6350 |
| R206_100t_20w | 3791 | 10000 | 1110528318.1999 | -964607487.1800 | 215.1274 |
| R206_25t_5w | 423 | 10000 | -5171712.6401 | -5171813.9000 | 0.0019 |
| R206_50t_10w | 1621 | 10000 | -54971339.7000 | -125097837.4400 | 56.0573 |
| R207_100t_20w | 3045 | 10000 | 316140108.1799 | -1018647805.1000 | 131.0352 |
| R207_25t_5w | 593 | 10000 | -5171742.7599 | -5171794.9600 | 0.0010 |
| R207_50t_10w | 2026 | 10000 | -57136009.2400 | -125097967.7600 | 54.3269 |
| R208_100t_20w | 4138 | 10000 | -489055634.4402 | -1042965700.1000 | 53.1091 |
| R208_25t_5w | 702 | 10000 | -5060287.4001 | -5060560.5800 | 0.0053 |
| R208_50t_10w | 5020 | 10000 | -58867300.2800 | -125098091.9200 | 52.9430 |
| R209_100t_20w | 6006 | 10000 | 1937340343.6198 | -1013243421.1000 | 291.2018 |
| R209_25t_5w | 342 | 10000 | -610329.6604 | -5060483.0600 | 87.9393 |
| R209_50t_10w | 2645 | 10000 | -112976783.5400 | -125097999.8800 | 9.6893 |
| R210_100t_20w | 3799 | 10000 | 3572050759.5198 | -978117773.2200 | 465.1963 |
| R210_25t_5w | 394 | 10000 | -4615070.5800 | -5171642.3200 | 10.7619 |
| R210_50t_10w | 2262 | 10000 | -58001444.7599 | -125097934.6800 | 53.6351 |
| R211_100t_20w | 4431 | 10000 | 5214866174.4999 | -942991911.9800 | 653.0128 |
| R211_25t_5w | 456 | 10000 | -610510.4602 | -5060502.8400 | 87.9357 |
| R211_50t_10w | 2594 | 10000 | -115573874.4200 | -122500836.0400 | 5.6546 |
| RC101_100t_20w | 57 | 10000 | 14558380234.0199 | 15814809991.8800 | 8.6302 * |
| RC101_25t_5w | 9 | 10000 | 39438835.2199 | 27034405.3800 | 45.8838 |
| RC101_50t_10w | 19 | 10000 | 649314738.1999 | 190034189.6200 | 241.6831 |
| RC102_100t_20w | 66 | 10000 | 16047182306.6399 | 15822916717.4800 | 1.4173 |
| RC102_25t_5w | 13 | 10000 | 34655172.0400 | 26645148.4800 | 30.0618 |
| RC102_50t_10w | 27 | 10000 | 773549852.1600 | 578756222.9600 | 33.6572 |
| RC103_100t_20w | 96 | 10000 | 11999586723.9598 | 17527878844.9600 | 46.0706 * |
| RC103_25t_5w | 12 | 10000 | 30427814.0799 | 21805915.8800 | 39.5392 |
| RC103_50t_10w | 22 | 10000 | 647150488.0000 | 767922882.8400 | 18.6621 * |
| RC104_100t_20w | 124 | 10000 | 8770696590.4398 | 18130424572.1200 | 106.7159 * |
| RC104_25t_5w | 12 | 10000 | 25977730.7799 | 25810879.2400 | 0.6464 |
| RC104_50t_10w | 38 | 10000 | 700827236.8199 | 498674346.2200 | 40.5380 |
| RC105_100t_20w | 59 | 10000 | 16117434518.3998 | 10907978098.4200 | 47.7582 |
| RC105_25t_5w | 10 | 10000 | 35378238.0600 | 30761388.4200 | 15.0085 |
| RC105_50t_10w | 22 | 10000 | 848870062.2400 | 448893536.2400 | 89.1027 |
| RC106_100t_20w | 88 | 10000 | 11294364348.9799 | 11529438265.0600 | 2.0813 * |
| RC106_25t_5w | 11 | 10000 | 35044583.0599 | 22417682.5200 | 56.3256 |
| RC106_50t_10w | 21 | 10000 | 648016216.9199 | 515989390.5800 | 25.5871 |
| RC107_100t_20w | 96 | 10000 | 13693740456.3399 | 16638920438.6600 | 21.5074 * |
| RC107_25t_5w | 8 | 10000 | 30872691.8199 | 30761589.8800 | 0.3611 |
| RC107_50t_10w | 19 | 10000 | 454521045.1000 | 575726019.2200 | 26.6665 * |
| RC108_100t_20w | 87 | 10000 | 11267344669.8199 | 14823176358.6800 | 31.5587 * |
| RC108_25t_5w | 10 | 10000 | 26533963.5399 | 30372205.5600 | 14.4653 * |
| RC108_50t_10w | 37 | 10000 | 448460712.6400 | 630268451.2000 | 40.5403 * |
| RC201_100t_20w | 2254 | 10000 | -1388819673.9802 | -1378013035.7800 | 0.7781 * |
| RC201_25t_5w | 68 | 10000 | -5059580.0600 | -5171005.4000 | 2.1548 |
| RC201_50t_10w | 771 | 10000 | -121632755.5400 | -125096456.0400 | 2.7688 |
| RC202_100t_20w | 2036 | 10000 | 1923832352.4199 | -848419159.5200 | 326.7549 |
| RC202_25t_5w | 99 | 10000 | -5170964.3200 | -5171480.4200 | 0.0099 |
| RC202_50t_10w | 808 | 10000 | 77921659.6798 | -125096955.0600 | 162.2890 |
| RC203_100t_20w | 2647 | 10000 | 291823679.6598 | -915968950.1800 | 131.8595 |
| RC203_25t_5w | 366 | 10000 | -721545.6600 | -5171505.3800 | 86.0476 |

| Instance | Table E. 1 - continued from previous page | | | | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | Best(SolGH) | |
| RC203_50t_10w | 1111 | 10000 | 10826455.9398 | -125096765.1800 | 108.6544 |
| RC204_100t_20w | 3943 | 10000 | 1105126050.0798 | -1032155821.9000 | 207.0696 |
| RC204_25t_5w | 582 | 10000 | -5060302.6799 | -5060413.3600 | 0.0021 |
| RC204_50t_10w | 3151 | 10000 | -38954116.8399 | -125097014.9000 | 68.8608 |
| RC205_100t_20w | 2737 | 10000 | 289121564.3799 | -856525543.8000 | 133.7551 |
| RC205_25t_5w | 81 | 10000 | -4893158.1800 | -5171462.0600 | 5.3815 |
| RC205_50t_10w | 1011 | 10000 | 77922083.9997 | -125096766.4200 | 162.2894 |
| RC206_100t_20w | 3427 | 10000 | 1078106455.3398 | -905161565.1000 | 219.1065 |
| RC206_25t_5w | 166 | 10000 | -5171260.1601 | -5171397.9400 | 0.0026 |
| RC206_50t_10w | 1515 | 10000 | -121200050.8400 | -125097137.7600 | 3.1152 |
| RC207_100t_20w | 4566 | 10000 | 1931937210.5599 | -907864881.6600 | 312.8000 |
| RC207_25t_5w | 338 | 10000 | -4892923.3203 | -5059890.2000 | 3.2998 |
| RC207_50t_10w | 1499 | 10000 | -119468348.1199 | -122499526.2000 | 2.4744 |
| RC208_100t_20w | 3486 | 10000 | 4409671916.6798 | -978116228.2000 | 550.8331 |
| RC208_25t_5w | 339 | 10000 | -5060424.6200 | -5060744.0000 | 0.0063 |
| RC208_50t_10w | 2131 | 10000 | -52806087.2000 | -125096819.1800 | 57.7878 |
| test150-0-0-0-0_d0_tw0 | 639 | 719 | 69666303241.3001 | -28349336446.9000 | 345.7422 |
| test150-0-0-0-0_d0_tw1 | 4944 | 10000 | -55870971638.1994 | -30832491493.7000 | 44.8148 * |
| test150-0-0-0-0_d0_tw2 | 3292 | 10000 | -24348699719.7993 | -28832172176.8000 | 15.5502 |
| test150-0-0-0-0_d0_tw3 | 2900 | 10000 | -24348699747.5998 | -27383664735.0000 | 11.0831 |
| test150-0-0-0-0_d0_tw 4 | 2326 | 10000 | 69942208924.7995 | -26142085667.0000 | 367.5463 |
| test250-0-0-0-0_d0_tw0 | - | - | - | 23650649218.5000 | - |
| test250-0-0-0-0_d0_tw1 | 2030 | 3155 | -214544938387.3036 | -292254131472.0000 | 26.5895 |
| test250-0-0-0-0_d0_tw2 | 1890 | 2977 | 40543948303.6960 | -275698693917.1000 | 114.7058 |
| test250-0-0-0-0_d0_tw3 | 6083 | 10000 | -469633821865.2001 | -266914175565.0000 | 43.1654 * |
| test250-0-0-0-0_d0_tw 4 | 6359 | 10000 | 1315988380894.5950 | -231776103927.7000 | 667.7843 |
| test50-0-0-0-0_d0_tw0 | 1043 | 5090 | -842598576.7999 | -842599324.2000 | 0.0000 |
| test50-0-0-0-0_d0_tw1 | 996 | 10000 | -842598443.2999 | -842599506.6000 | 0.0001 |
| test50-0-0-0-0_d0_tw2 | 949 | 10000 | -842598048.7999 | -842599560.3000 | 0.0001 |
| test50-0-0-0-0_d0_tw3 | 964 | 10000 | -836355937.1999 | -842598590.0000 | 0.7408 |
| test50-0-0-0-0_d0_tw4 | 961 | 10000 | -823873632.4999 | -842599753.8000 | 2.2224 |

E. 2 Tabu Search Results: Config. 2

Table E.2: Tabu Search experiments results with parameter configuration 2

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 19 | 1000 | 71023308535.1199 | 71563566909.3600 | 0.7606^{*} |
| 10_District1 | 166 | 1000 | 8674802167667.0470 | 8218857439409.0600 | 5.5475 |
| 10_District2 | 139 | 1000 | 46572004135.2700 | 27771011394.0200 | 67.7000 |
| 10_District3 | 35 | 1000 | 142335475606.1500 | 139155792160.4600 | 2.2849 |
| 10_District4 | 871 | 1000 | 26624756170246.7900 | 21291228411410.1000 | 25.0503 |
| 10_District5 | 389 | 1000 | 40802332448450.5500 | 37249297856014.8000 | 9.5385 |
| 11_District0 | 13 | 1000 | 3631096474.7400 | 3046672128.3800 | 19.1823 |
| 11_District1 | 184 | 1000 | 6862357325571.0090 | 6157994611789.7000 | 11.4381 |
| 11_District2 | 41 | 1000 | 13646633113.0399 | 9214556192.4000 | 48.0986 |
| 11_District3 | 45 | 1000 | 65476859781.5200 | 61007292651.7800 | 7.3262 |
| 11_District4 | 557 | 1000 | 25297528070007.2070 | 22460659385239.4000 | 12.6303 |
| 11_District5 | 301 | 1000 | 16444910089646.0900 | 15643005576898.3000 | 5.1262 |
| 12_District0 | 17 | 1000 | 127522687343.8999 | 115036288619.9000 | 10.8543 |
| 12_District1 | 328 | 1000 | 43715751249704.6400 | 37877356021322.0000 | 15.4139 |
| 12_District2 | 57 | 1000 | 169105076309.3399 | 153054550706.1000 | 10.4868 |
| 12_District3 | 101 | 1000 | 242207056403.2100 | 239836499336.7000 | 0.9884 |
| 12_District4 | 994 | 1000 | 66178019038127.0700 | 59129219661289.8000 | 11.9210 |
| 12_District5 | 697 | 1000 | 74587481844678.5600 | 65945373929847.0000 | 13.1049 |
| 13_District0 | 13 | 1000 | 180760555789.0700 | 154315121626.0000 | 17.1372 |
| 13_District1 | 217 | 1000 | 18673126631813.0700 | 14674175609787.1000 | 27.2516 |
| 13_District2 | 70 | 1000 | 128595407330.7600 | 126837068235.0100 | 1.3862 |
| 13_District3 | 258 | 1000 | 434530784343.2900 | 429665639491.2800 | 1.1323 |
| 13_District4 | 383 | 1000 | 33652849914880.6640 | 30033656135618.7000 | 12.0504 |
| 13_District5 | 340 | 1000 | 50269122425108.5860 | 42764648834839.3000 | 17.5483 |
| 14_District0 | 16 | 1000 | 33657460214.3500 | 34977146773.4600 | 3.9209 * |
| 14_District1 | 466 | 1000 | 13738870890562.8180 | 12434388027267.4000 | 10.4909 |
| 14_District2 | 36 | 1000 | 108150942438.9300 | 90165619840.7900 | 19.9469 |
| 14_District3 | 101 | 1000 | 264510383345.8802 | 262406322982.9800 | 0.8018 |
| 14_District4 | 621 | 1000 | 39955847900997.1640 | 31546738861338.4000 | 26.6560 |
| 14_District5 | 558 | 1000 | 48571301176060.1640 | 44524141233501.8000 | 9.0898 |
| 15_District0 | 14 | 1000 | 52541932428.5599 | 42188641727.2300 | 24.5404 |
| 15_District1 | 201 | 1000 | 13343268477116.9280 | 12317798430422.9000 | 8.3251 |
| 15_District2 | 52 | 1000 | 85366688281.5999 | 67421894826.9300 | 26.6156 |
| 15_District3 | 123 | 1000 | 452400421567.4308 | 463823619193.1600 | 2.5250 * |
| 15_District4 | 559 | 1000 | 28593564029826.0940 | 22834329911998.4000 | 25.2218 |
| 15_District5 | 481 | 1000 | 31608642685943.7850 | 28700034523627.8000 | 10.1345 |
| 16_District0 | 8 | 1000 | 123672387191.8699 | 120807470457.0500 | 2.3714 |
| 16_District1 | 156 | 1000 | 14804226644434.3100 | 12316160134202.9000 | 20.2016 |
| 16_District2 | 25 | 1000 | 107138080055.4999 | 94504646913.7700 | 13.3680 |
| 16_District3 | 84 | 1000 | 263593147352.4600 | 210518442436.7200 | 25.2114 |
| 16_District4 | 608 | 1000 | 35518712315877.2400 | 28327769996973.5000 | 25.3847 |
| 16_District5 | 514 | 1000 | 52936772235343.2500 | 48522145053303.8000 | 9.0981 |
| 17_District0 | 7 | 1000 | 66735476864.7799 | 60633779564.4100 | 10.0631 |
| 17_District1 | 321 | 1000 | 12330487596968.9340 | 12050832937058.4000 | 2.3206 |
| 17_District2 | 49 | 1000 | 110909455460.6700 | 111787046906.6000 | 0.7912 * |
| 17_District3 | 26 | 1000 | 214450895802.3900 | 178730940805.7800 | 19.9853 |
| 17_District4 | 481 | 1000 | 21612019261830.1520 | 19092974442252.1000 | 13.1935 |
| 17_District5 | 211 | 1000 | 27944804202110.6170 | 23886759047749.6000 | 16.9886 |
| 18_District0 | 3 | 1000 | 2869798540.3400 | 2341527488.6000 | 22.5609 |
| 18_District1 | 95 | 1000 | 14590792231270.1580 | 13924688690304.7000 | 4.7836 |

| Instance | Table E. 2 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 18_District2 | 27 | 1000 | 6936082119.9099 | 4417358464.4100 | 57.0187 |
| 18_District3 | 15 | 1000 | 62108760133.0200 | 70920528499.0700 | 14.1876 * |
| 18_District4 | 422 | 1000 | 20299891016845.2230 | 18718722507656.5000 | 8.4469 |
| 18_District5 | 111 | 1000 | 14949615499196.6680 | 12641617614178.6000 | 18.2571 |
| 19_District0 | 10 | 1000 | 50100813233.8200 | 55462969817.4300 | 10.7027 * |
| 19_District1 | 234 | 1000 | 25523960449110.1880 | 22401449014876.9000 | 13.9388 |
| 19_District2 | 53 | 1000 | 159808599681.2900 | 153280470262.9000 | 4.2589 |
| 19_District3 | 75 | 1000 | 237044866898.2397 | 243569037679.2000 | 2.7522 * |
| 19_District4 | 1366 | 1000 | 129861724782360.6700 | 106192108824987.0000 | 22.2894 |
| 19_District5 | 465 | 1000 | 90638153482897.6400 | 78807991381031.8000 | 15.0113 |
| 1_District0 | 20 | 1000 | 435538551689.1299 | 430590936121.1900 | 1.1490 |
| 1_District1 | 594 | 1000 | 57742532072808.1640 | 56270206789859.1000 | 2.6165 |
| 1_District2 | 63 | 1000 | 681386608176.6498 | 672001346398.5800 | 1.3966 |
| 1_District3 | 214 | 1000 | 1040724340494.9508 | 1031045184732.7300 | 0.9387 |
| 1_District4 | 1596 | 1000 | 88015986409409.8800 | 73732177837593.4000 | 19.3725 |
| 1_District5 | 850 | 1000 | 97125915546721.8300 | 91806570717137.9000 | 5.7940 |
| 20_District0 | 7 | 1000 | 98316539195.2500 | 98421186256.3800 | 0.1064 * |
| 20_District1 | 235 | 1000 | 18751313021996.2770 | 17222315357479.6000 | 8.8780 |
| 20_District2 | 68 | 1000 | 34822143743.5299 | 27378465012.0200 | 27.1880 |
| 20_District3 | 244 | 1000 | 286404352249.9301 | 305213925793.8100 | 6.5674 * |
| 20_District4 | 805 | 1000 | 29727988816359.0500 | 24960379220572.1000 | 19.1007 |
| 20_District5 | 440 | 1000 | 49889961704805.5860 | 48965990159239.8000 | 1.8869 |
| 21_District0 | 59 | 1000 | 113175444271.1200 | 120414278382.3300 | 6.3961 * |
| 21_District1 | 233 | 1000 | 18434629214254.9060 | 16893868904739.4000 | 9.1202 |
| 21_District2 | 71 | 1000 | 103895813624.2799 | 62666013838.2000 | 65.7929 |
| 21_District3 | 89 | 1000 | 949631279962.5399 | 892017226174.9800 | 6.4588 |
| 21_District4 | 503 | 1000 | 26831351238992.0700 | 24304758516183.0000 | 10.3954 |
| 21_District5 | 318 | 1000 | 51393689812545.8500 | 45930297567746.2000 | 11.8949 |
| 22_District0 | 8 | 1000 | 155844514136.7699 | 138906549645.3000 | 12.1937 |
| 22_District1 | 129 | 1000 | 16185901813535.5180 | 14071948171020.4000 | 15.0224 |
| 22_District2 | 30 | 1000 | 261372272563.0800 | 226837888943.8600 | 15.2242 |
| 22_District3 | 131 | 1000 | 304025405199.1001 | 285892462254.7700 | 6.3425 |
| 22_District4 | 434 | 1000 | 33915717191232.0230 | 29074924558505.3000 | 16.6493 |
| 22_District5 | 368 | 1000 | 46033649335446.8050 | 42772519577575.2000 | 7.6243 |
| 23_District0 | 8 | 1000 | 35383951488.5700 | 32906581132.3800 | 7.5284 |
| 23_District1 | 322 | 1000 | 19300357279581.7400 | 17211576588480.4000 | 12.1359 |
| 23_District2 | 23 | 1000 | 215007507921.3901 | 183871311138.5000 | 16.9336 |
| 23_District3 | 128 | 1000 | 234574941983.0599 | 250619333021.8100 | 6.8397 * |
| 23_District4 | 612 | 1000 | 40999719262551.8600 | 34555727151866.1000 | 18.6481 |
| 23_District5 | 525 | 1000 | 78307969430628.6600 | 70608343796642.5000 | 10.9046 |
| 24_District0 | 21 | 1000 | 124447493183.3399 | 105830236823.5000 | 17.5916 |
| 24_District1 | 169 | 1000 | 13876242045338.0060 | 11389191027676.9000 | 21.8369 |
| 24_District2 | 66 | 1000 | 27446750713.6800 | 26055867878.7800 | 5.3380 |
| 24_District3 | 152 | 1000 | 153837901790.0100 | 159315579521.2200 | 3.5606 * |
| 24_District4 | 627 | 1000 | 28069693758170.2000 | 24517137738123.8000 | 14.4900 |
| 24_District5 | 174 | 1000 | 27586726276307.8320 | 24738655441667.6000 | 11.5126 |
| 25_District0 | 5 | 1000 | 1788416175.1100 | 1255504790.1000 | 42.4459 |
| 25_District1 | 179 | 1000 | 6680036021220.9000 | 6071232244353.8300 | 10.0276 |
| 25_District2 | 11 | 1000 | 3039947227.6099 | 2430507030.7800 | 25.0746 |
| 25_District3 | 38 | 1000 | 53437233714.0100 | 54825213021.3900 | 2.5974 * |
| 25_District4 | 445 | 1000 | 23986888174820.2420 | 20503174454937.0000 | 16.9910 |
| 25_District5 | 167 | 1000 | 11758314299630.1000 | 11011719621667.4000 | 6.7800 |
| 26_District0 | 36 | 1000 | 237364488936.3699 | 225380467772.9800 | 5.3172 |
| 26_District1 | 278 | 1000 | 47978959669600.5700 | 42180173025536.8000 | 13.7476 |
| 26_District2 | 42 | 1000 | 330365825046.6699 | 282951685653.1000 | 16.7569 |
| 26_District3 | 313 | 1000 | 1116818510591.6294 | 1171533328289.0400 | 4.8991 * |
| 26_District4 | 888 | 1000 | 120236047561561.1900 | 105580668249051.0000 | 13.8807 |
| 26_District5 | 983 | 1000 | 86502277247398.5300 | 76363123397244.6000 | 13.2775 |
| 27_District0 | 11 | 1000 | 161902499001.3600 | 162479691641.3000 | 0.3565 * |
| 27_District1 | 227 | 1000 | 21716688296489.9840 | 18425601260045.1000 | 17.8614 |
| 27_District2 | 73 | 1000 | 81122339457.5800 | 61192189969.0700 | 32.5697 |
| 27_District3 | 73 | 1000 | 124415563572.2199 | 116712931257.8400 | 6.5996 |
| 27_District4 | 629 | 1000 | 42327497051910.4000 | 33778988955119.3000 | 25.3071 |
| 27_District5 | 760 | 1000 | 41801483784076.4700 | 39568513214098.5000 | 5.6433 |
| 28_District0 | 11 | 1000 | 113195650438.2499 | 102108349093.8000 | 10.8583 |
| 28_District1 | 367 | 1000 | 15869647127759.2970 | 15128335139531.3000 | 4.9001 |
| 28_District2 | 32 | 1000 | 75831813269.1900 | 64692968024.3600 | 17.2180 |
| 28_District3 | 110 | 1000 | 788663590439.0907 | 805624097687.0900 | 2.1505 * |
| 28_District4 | 678 | 1000 | 27419587122935.0040 | 22982825117023.6000 | 19.3046 |
| 28_District5 | 392 | 1000 | 37494457433440.9500 | 33791534896023.1000 | 10.9581 |
| 29_District0 | 27 | 1000 | 32047331066.6800 | 29353316624.4500 | 9.1778 |
| 29_District1 | 87 | 1000 | 8026953178617.5590 | 7484826255380.2500 | 7.2430 |
| 29_District2 | 85 | 1000 | 98239088277.6600 | 101233312043.5700 | 3.0478 * |
| 29_District3 | 120 | 1000 | 227190299236.9698 | 232601979076.2900 | 2.3820 * |
| 29_District4 | 516 | 1000 | 9873197805012.6880 | 8309110124637.3200 | 18.8237 |
| 29_District5 | 567 | 1000 | 37288916047738.3400 | 35670467010142.6000 | 4.5372 |
| 2_District0 | 23 | 1000 | 165898766697.2700 | 147005506881.3000 | 12.8520 |
| 2_District1 | 552 | 1000 | 44070915248314.9100 | 39540340925649.8000 | 11.4581 |
| 2_District2 | 70 | 1000 | 230500651640.3700 | 217829855689.6200 | 5.8168 |
| 2_District3 | 56 | 1000 | 917964591587.2301 | 858787147589.8100 | 6.8908 |
| 2_District4 | 1215 | 1000 | 70464164182588.3900 | 58876326066126.1000 | 19.6816 |
| 2_District5 | 529 | 1000 | 111088965128385.5800 | 95903342380824.9000 | 15.8342 |
| 30-District0 | 9 | 1000 | 16973733842.6800 | 14856579555.0000 | 14.2506 |
| 30_District1 | 125 | 1000 | 4662589808304.7400 | 4288991390631.0100 | 8.7106 |
| 30_District2 | 33 | 1000 | 42672726517.7900 | 28984654012.0000 | 47.2252 |
| 30_District3 | 60 | 1000 | 142654059134.0700 | 140260859804.8700 | 1.7062 |
| 30_District4 | 340 | 1000 | 6587179976482.2970 | 6033193692111.0700 | 9.1823 |
| 30_District5 | 175 | 1000 | 5740311807405.0600 | 5491783393822.4800 | 4.5254 |
| 3_District0 | 11 | 1000 | 97925708583.0300 | 90701681116.3600 | 7.9646 |
| 3_District1 | 146 | 1000 | 18776108633160.5800 | 17931112587450.7000 | 4.7124 |
| 3_District2 | 66 | 1000 | 196338744927.1999 | 184423936337.4900 | 6.4605 |
| 3_District3 | 185 | 1000 | 848011293090.7697 | 837894240881.4400 | 1.2074 |
| 3_District4 | 1433 | 1000 | 83315086685172.5200 | 67042838268903.4000 | 24.2714 |
| 3_District5 | 725 | 1000 | 67954724342790.4200 | 60566955554266.6000 | 12.1976 |
| 4_District0 | 8 | 1000 | 22005064052.4900 | 20379141775.5100 | 7.9783 |
| 4_District1 | 330 | 1000 | 17765728314854.9340 | 16091560843817.3000 | 10.4040 |
| 4-District2 | 34 | 1000 | 20924946330.8200 | 19771989271.8700 | 5.8312 |

| Instance | Table E. 2 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 4_District3 | 52 | 1000 | 31495961873.6600 | 31243041764.1500 | 0.8095 |
| 4_District4 | 1425 | 1000 | 52583890084638.5100 | 44497725128783.0000 | 18.1720 |
| 4_District5 | 286 | 1000 | 34337750896834.4000 | 30292083288905.3000 | 13.3555 |
| 5_District0 | 31 | 1000 | 105380059751.4399 | 105305055950.1000 | 0.0712 |
| 5_District1 | 248 | 1000 | 25117238052545.0200 | 22578812619408.6000 | 11.2425 |
| 5_District2 | 37 | 1000 | 77176335809.1900 | 49746631100.9200 | 55.1388 |
| 5_District3 | 109 | 1000 | 325134601803.4000 | 366270241695.4900 | 12.6518 * |
| 5_District4 | 676 | 1000 | 79770967975230.9700 | 68243049339872.1000 | 16.8924 |
| 5_District5 | 377 | 1000 | 129624840984169.8000 | 121803986176569.0000 | 6.4208 |
| 6_District0 | 11 | 1000 | 190513021210.9900 | 174024536017.0000 | 9.4748 |
| 6_District1 | 455 | 1000 | 27967874791714.0160 | 24635464198083.6000 | 13.5268 |
| 6_District2 | 120 | 1000 | 260097530699.0004 | 263920214770.7000 | 1.4697 * |
| 6_District3 | 103 | 1000 | 296599575499.1701 | 272026860685.1900 | 9.0331 |
| 6_District4 | 622 | 1000 | 38148233016413.3800 | 32671893526336.1000 | 16.7616 |
| 6_District5 | 439 | 1000 | 60567642095460.7500 | 52577668995018.6000 | 15.1965 |
| 7_District0 | 37 | 1000 | 52751552955.0599 | 53992400830.1800 | 2.3522 * |
| 7_District1 | 681 | 1000 | 28123757784067.8160 | 25530776489059.8000 | 10.1562 |
| 7_District2 | 15 | 1000 | 109565973962.9600 | 96812988604.0900 | 13.1728 |
| 7_District3 | 74 | 1000 | 671490236173.9000 | 627921570619.9200 | 6.9385 |
| 7_District4 | 468 | 1000 | 35016845678279.5080 | 30888008083772.9000 | 13.3671 |
| 7_District5 | 671 | 1000 | 58969299841531.7100 | 52214576657422.1000 | 12.9364 |
| 8_District0 | 9 | 1000 | 57495503324.4900 | 47815962594.9100 | 20.2433 |
| 8_District1 | 249 | 1000 | 14549666982668.8600 | 13654929607346.6000 | 6.5524 |
| 8_District2 | 55 | 1000 | 76153212924.0699 | 73150043166.7900 | 4.1054 |
| 8_District3 | 93 | 1000 | 370838508187.7199 | 367102727288.8900 | 1.0176 |
| 8_District4 | 457 | 1000 | 32056205765809.1640 | 29816748603227.9000 | 7.5107 |
| 8_District5 | 264 | 1000 | 44577398258198.5550 | 40450402089088.4000 | 10.2026 |
| 9_District0 | 8 | 1000 | 109160592872.5800 | 100093204504.3000 | 9.0589 |
| 9_District1 | 144 | 1000 | 13341592005296.2360 | 12178217016824.2000 | 9.5529 |
| 9_District2 | 22 | 1000 | 115662514136.1400 | 89342594098.5600 | 29.4595 |
| 9_District3 | 148 | 1000 | 1164159893069.3293 | 911115793606.4100 | 27.7729 |
| 9_District4 | 805 | 1000 | 45475409704757.2200 | 37164202673658.1000 | 22.3634 |
| 9_District5 | 253 | 1000 | 29855182828065.2800 | 25382936280280.4000 | 17.6191 |
| C101_100t_20w | 123 | 1000 | 48319872397.5998 | -12304901708.1200 | 492.6879 |
| C101_25t_5w | 6 | 1000 | 111640277.2000 | 9512566.6400 | 1073.6083 |
| C101_50t_10w | 19 | 1000 | 755802496.6800 | -1079154704.1200 | 170.0365 |
| C102_100t_20w | 259 | 1000 | 62399995381.8000 | -5155408825.8200 | 1310.3791 |
| C102_25t_5w | 9 | 1000 | 78098258.9200 | -37546115.7600 | 308.0062 |
| C102_50t_10w | 55 | 1000 | 1437580703.2999 | -1102530180.6200 | 230.3892 |
| C103_100t_20w | 759 | 1000 | 39930163004.1205 | -7222438475.8600 | 652.8626 |
| C103_25t_5w | 31 | 1000 | 76596467.7199 | -43052838.4600 | 277.9127 |
| C103_50t_10w | 141 | 1000 | 2551801064.3399 | -1110321792.2400 | 329.8253 |
| C104_100t_20w | 1036 | 1000 | 17314423586.3605 | -8681519205.2400 | 299.4400 |
| C104_25t_5w | 48 | 1000 | 36546720.0199 | -33540706.8600 | 208.9622 |
| C104_50t_10w | 367 | 1000 | 155837939.9399 | -1086946666.3200 | 114.3372 |
| C105_100t_20w | 243 | 1000 | 25801404717.2202 | -12158993843.3000 | 312.2001 |
| C105_25t_5w | 6 | 1000 | 123154424.4199 | 1002190.7200 | 12188.5217 |
| C105_50t_10w | 40 | 1000 | -342833993.7200 | -1102529614.6600 | 68.9047 |
| C106_100t_20w | 368 | 1000 | 25582543085.0799 | -5349954009.7600 | 578.1824 |
| C106_25t_5w | 9 | 1000 | 116646382.1600 | 9512566.6400 | 1126.2345 |
| C106_50t_10w | 38 | 1000 | 1363558947.8400 | -1086946589.7000 | 225.4485 |
| C107_100t_20w | 422 | 1000 | 39857208909.1199 | -6979258964.6200 | 671.0808 |
| C107_25t_5w | 9 | 1000 | 76596508.9400 | -2001420.3200 | 3927.1075 |
| C107_50t_10w | 80 | 1000 | 163629531.8600 | -1125905161.9000 | 114.5331 |
| C108_100t_20w | 561 | 1000 | 25096183365.7199 | -6492899831.1000 | 486.5173 |
| C108_25t_5w | 14 | 1000 | 113142101.6399 | -8009072.9800 | 1512.6741 |
| C108_50t_10w | 111 | 1000 | -412959808.7800 | -1125905177.3200 | 63.3219 |
| C109_100t_20w | 862 | 1000 | 25315044799.9998 | -6614488230.8200 | 482.7211 |
| C109_25t_5w | 19 | 1000 | 74093372.6799 | -26031566.9600 | 384.6289 |
| C109_50t_10w | 126 | 1000 | -444127049.5800 | -1125905761.1800 | 60.5537 |
| C201_100t_20w | 980 | 1000 | -12596716053.9600 | -12596720162.2300 | 0.0000 |
| C201_25t_5w | 38 | 1000 | -43553212.8200 | -45555916.9200 | 4.3961 |
| C201_50t_10w | 189 | 1000 | -1102529455.1600 | -1125905241.3800 | 2.0761 |
| C202_100t_20w | 2133 | 1000 | 24488233975.9598 | -6055175633.1600 | 504.4182 |
| C202_25t_5w | 256 | 1000 | -44554590.5800 | -45555950.8800 | 2.1980 |
| C202_50t_10w | 529 | 1000 | 89608214.7199 | -1125905361.9600 | 107.9587 |
| C203_100t_20w | 3102 | 1000 | 2334535771.0799 | -6930623788.8800 | 133.6843 |
| C203_25t_5w | 1274 | 1000 | -42552020.9000 | -45555956.2400 | 6.5939 |
| C203_50t_10w | 1678 | 1000 | 120775326.5199 | -1125905456.0600 | 110.7269 |
| C204_100t_20w | 6053 | 1000 | 9848798303.7597 | -8657198950.2400 | 213.7642 |
| C204_25t_5w | 1472 | 1000 | -41050214.7200 | -45555977.0000 | 9.8906 |
| C204_50t_10w | 1970 | 1000 | -483084988.7400 | -1125905585.1400 | 57.0936 |
| C205_100t_20w | 1945 | 1000 | 9702889586.1598 | -12596718687.8400 | 177.0271 |
| C205_25t_5w | 90 | 1000 | -42552102.6999 | -45555926.8000 | 6.5937 |
| C205_50t_10w | 550 | 1000 | -1118112648.1400 | -1125905403.9800 | 0.6921 |
| C206_100t_20w | 3312 | 1000 | 17119879659.0198 | -7733117210.9600 | 321.3839 |
| C206_25t_5w | 139 | 1000 | -41050178.5199 | -45555926.8000 | 9.8905 |
| C206_50t_10w | 906 | 1000 | -514252208.6600 | -1125905541.4200 | 54.3254 |
| C207_100t_20w | 4995 | 1000 | 2285899598.6398 | -7222438653.2400 | 131.6499 |
| C207_25t_5w | 126 | 1000 | -41050287.9800 | -45555933.4200 | 9.8903 |
| C207_50t_10w | 2134 | 1000 | -522043906.6600 | -1125905455.9000 | 53.6334 |
| C208_100t_20w | 4142 | 1000 | 17168515513.8997 | -8657201177.3800 | 298.3148 |
| C208_25t_5w | 205 | 1000 | -44053965.5799 | -45555933.1600 | 3.2969 |
| C208_50t_10w | 1216 | 1000 | 101295859.4999 | -1125905465.6600 | 108.9968 |
| hh_00_P0 | 167 | 1000 | 597320465109.3570 | 6663651008.2900 | 8863.8617 |
| 111_00_P0 | 44 | 1000 | 8730580967.6700 | 1338732826.5000 | 552.1526 |
| 111_01_P0 | 42 | 1000 | 8761695462.9999 | 1338732826.5000 | 554.4767 |
| 111-02_P0 | 41 | 1000 | 8761705984.6401 | 1338732826.5000 | 554.4775 |
| 111_03_P0 | 41 | 1000 | 8668351291.4799 | 1338732826.5000 | 547.5042 |
| 111_04_P0 | 43 | 1000 | 10333442162.1100 | 1338732826.5000 | 671.8823 |
| 111_05_P0 | 36 | 1000 | 5509254527.9397 | 1307660206.1200 | 321.3062 |
| 111_06_P0 | 42 | 1000 | 12029720714.7801 | 1214281948.4400 | 890.6859 |
| 111_07_P0 | 46 | 1000 | 5400270252.8000 | 1338732826.5000 | 303.3867 |
| 112_00_P0 | 31 | 1000 | -160646628.2000 | 85352916.2700 | 153.1308 * |
| 113_00_P0 | 35 | 1000 | 393003407.4499 | -198615845.6200 | 297.8711 |
| R101_100t_20w | 8 | 1000 | 19386853826.0999 | 6319981502.8600 | 206.7549 |
| R101_25t_5w | 2 | 1000 | 60631893.5799 | 47893886.5800 | 26.5963 |

| Instance | Table E. 2 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| R101_50t_10w | 4 | 1000 | 1303821345.7999 | 709051142.3992 | 83.8825 |
| R102_100t_20w | 14 | 1000 | 19284177804.6200 | 14101742003.1800 | 36.7503 |
| R102_25t_5w | 2 | 1000 | 38715883.0199 | 34655177.0000 | 11.7174 |
| R102_50t_10w | 4 | 1000 | 1035439003.2199 | 641955625.9388 | 61.2944 |
| R103_100t_20w | 22 | 1000 | 15263601941.3799 | 12469734030.7400 | 22.4051 |
| R103_25t_5w | 3 | 1000 | 34098884.1000 | 30260803.3400 | 12.6833 |
| R103_50t_10w | 8 | 1000 | 778744364.3399 | 570531480.7600 | 36.4945 |
| R104_100t_20w | 35 | 1000 | 11140350355.3797 | 14023383931.9600 | 25.8792 * |
| R104_25t_5w | 3 | 1000 | 30260846.9599 | 29982663.2800 | 0.9278 |
| R104_50t_10w | 13 | 1000 | 633298589.4200 | 293491458.8800 | 115.7809 |
| R105_100t_20w | 16 | 1000 | 16882099731.7799 | 8424839701.0800 | 100.3848 |
| R105_25t_5w | 3 | 1000 | 47782625.1400 | 35155829.6400 | 35.9166 |
| R105_50t_10w | 4 | 1000 | 967045008.0399 | 388290958.0600 | 149.0516 |
| R106_100t_20w | 19 | 1000 | 17649468147.7000 | 8443754034.7200 | 109.0239 |
| R106_25t_5w | 3 | 1000 | 34822056.7200 | 30483330.4600 | 14.2331 |
| R106_50t_10w | 5 | 1000 | 699961106.3599 | 303880567.4400 | 130.3408 |
| R107_100t_20w | 33 | 1000 | 13593766313.9999 | 11634816307.3400 | 16.8369 |
| R107_25t_5w | 3 | 1000 | 34265792.3800 | 22028382.6800 | 55.5529 |
| R107_50t_10w | 9 | 1000 | 768355395.5599 | 372274723.4800 | 106.3947 |
| R108_100t_20w | 41 | 1000 | 11086310338.7398 | 12369760088.0800 | 11.5768 * |
| R108_25t_5w | 3 | 1000 | 26255816.5000 | 26033406.5200 | 0.8543 |
| R108_50t_10w | 11 | 1000 | 636761391.6200 | 293491505.9600 | 116.9607 |
| R109_100t_20w | 26 | 1000 | 15244687856.7399 | 6636116061.1200 | 129.7230 |
| R109_25t_5w | 3 | 1000 | 46781479.3800 | 26255954.0600 | 78.1747 |
| R109_50t_10w | 6 | 1000 | 702125519.8599 | 631133985.4200 | 11.2482 |
| R110_100t_20w | 25 | 1000 | 13550534201.0599 | 7622345982.8200 | 77.7738 |
| R110_25t_5w | 2 | 1000 | 38882734.4399 | 34488424.6600 | 12.7414 |
| R110_50t_10w | 6 | 1000 | 702991274.6800 | 636761297.5800 | 10.4010 |
| R111_100t_20w | 29 | 1000 | 15263602173.7799 | 8473476077.2600 | 80.1338 |
| R111_25t_5w | 3 | 1000 | 30260922.0400 | 26144634.7600 | 15.7442 |
| R111_50t_10w | 6 | 1000 | 510362057.0400 | 496942686.1600 | 2.7003 |
| R112_100t_20w | 37 | 1000 | 13674825975.4399 | 10851236130.0600 | 26.0209 |
| R112_25t_5w | 3 | 1000 | 34377155.8199 | 26311467.9000 | 30.6546 |
| R112_50t_10w | 7 | 1000 | 569232951.9199 | 427249792.1800 | 33.2318 |
| R201_100t_20w | 369 | 1000 | -570115529.6601 | -1383419122.5000 | 58.7893 |
| R201_25t_5w | 15 | 1000 | -5060130.4600 | -5171519.4600 | 2.1538 |
| R201_50t_10w | 135 | 1000 | -124231486.3201 | -125097475.6400 | 0.6922 |
| R202_100t_20w | 368 | 1000 | 2726325051.0198 | -778169509.0800 | 450.3510 |
| R202_25t_5w | 27 | 1000 | -721406.9600 | -5171550.1800 | 86.0504 |
| R202_50t_10w | 109 | 1000 | 78786732.2199 | -125097689.9000 | 162.9801 |
| R203_100t_20w | 445 | 1000 | 1902214182.8599 | -891653653.5400 | 313.3355 |
| R203_25t_5w | 42 | 1000 | -443367.6600 | -5171614.5200 | 91.4269 |
| R203_50t_10w | 370 | 1000 | 11690997.3600 | -125097805.5400 | 109.3454 |
| R204_100t_20w | 922 | 1000 | 1097018656.7198 | -1007840112.0800 | 208.8484 |
| R204_25t_5w | 51 | 1000 | -387769.5999 | -5060450.1000 | 92.3372 |
| R204_50t_10w | 367 | 1000 | 12556892.2799 | -125098025.1800 | 110.0376 |
| R205_100t_20w | 500 | 1000 | -1356397288.1200 | -910567724.8000 | 32.8686 * |
| R205_25t_5w | 27 | 1000 | -721586.6599 | -5171759.2000 | 86.0475 |
| R205_50t_10w | 234 | 1000 | -58867560.4000 | -125097876.3800 | 52.9427 |
| R206_100t_20w | 646 | 1000 | 4382650938.2199 | -964607487.1800 | 554.3455 |
| R206_25t_5w | 42 | 1000 | -4726239.9600 | -5171813.9000 | 8.6154 |
| R206_50t_10w | 182 | 1000 | 9093533.6599 | -125097837.4400 | 107.2691 |
| R207_100t_20w | 678 | 1000 | 1926532415.4799 | -1018647805.1000 | 289.1264 |
| R207_25t_5w | 62 | 1000 | -5004507.5999 | -5171794.9600 | 3.2346 |
| R207_50t_10w | 280 | 1000 | 75323806.6199 | -125097967.7600 | 160.2118 |
| R208_100t_20w | 931 | 1000 | -1356397427.0201 | -1042965700.1000 | 23.1076 * |
| R208_25t_5w | 55 | 1000 | -4782173.0600 | -5060560.5800 | 5.5011 |
| R208_50t_10w | 726 | 1000 | 9093863.3199 | -125098091.9200 | 107.2693 |
| R209_100t_20w | 682 | 1000 | 286418854.4199 | -1013243421.1000 | 128.2675 |
| R209_25t_5w | 32 | 1000 | -443366.7000 | -5060483.0600 | 91.2386 |
| R209_50t_10w | 260 | 1000 | -123365830.7000 | -125097999.8800 | 1.3846 |
| R210_100t_20w | 622 | 1000 | 2737132871.9199 | -978117773.2200 | 379.8367 |
| R210_25t_5w | 54 | 1000 | -554675.4799 | -5171642.3200 | 89.2746 |
| R210_50t_10w | 274 | 1000 | 77055164.6999 | -125097934.6800 | 161.5958 |
| R211_100t_20w | 785 | 1000 | 6033572354.8598 | -942991911.9800 | 739.8328 |
| R211_25t_5w | 46 | 1000 | -443441.7800 | -5060502.8400 | 91.2371 |
| R211_50t_10w | 240 | 1000 | -51508879.8200 | -122500836.0400 | 57.9522 |
| RC101_100t_20w | 11 | 1000 | 20262302139.0999 | 15814809991.8800 | 28.1223 |
| RC101_25t_5w | 3 | 1000 | 39438835.2199 | 27034405.3800 | 45.8838 |
| RC101_50t_10w | 4 | 1000 | 784371669.9399 | 190034189.6200 | 312.7529 |
| RC102_100t_20w | 13 | 1000 | 16147156689.9798 | 15822916717.4800 | 2.0491 |
| RC102_25t_5w | 3 | 1000 | 43054541.1400 | 26645148.4800 | 61.5849 |
| RC102_50t_10w | 4 | 1000 | 842810143.6400 | 578756222.9600 | 45.6243 |
| RC103_100t_20w | 19 | 1000 | 17700806751.2397 | 17527878844.9600 | 0.9865 |
| RC103_25t_5w | 3 | 1000 | 26311540.7799 | 21805915.8800 | 20.6623 |
| RC103_50t_10w | 6 | 1000 | 573994460.1400 | 767922882.8400 | 33.7857 * |
| RC104_100t_20w | 27 | 1000 | 12023904712.8598 | 18130424572.1200 | 50.7864 * |
| RC104_25t_5w | 4 | 1000 | 29815859.0399 | 25810879.2400 | 15.5166 |
| RC104_50t_10w | 7 | 1000 | 567501470.5999 | 498674346.2200 | 13.8020 |
| RC105_100t_20w | 12 | 1000 | 21043180413.7999 | 10907978098.4200 | 92.9154 |
| RC105_25t_5w | 3 | 1000 | 43165777.4599 | 30761388.4200 | 40.3245 |
| RC105_50t_10w | 5 | 1000 | 1041499512.4200 | 448893536.2400 | 132.0148 |
| RC106_100t_20w | 20 | 1000 | 17011796530.5399 | 11529438265.0600 | 47.5509 |
| RC106_25t_5w | 3 | 1000 | 39438907.6600 | 22417682.5200 | 75.9276 |
| RC106_50t_10w | 5 | 1000 | 780475953.4799 | 515989390.5800 | 51.2581 |
| RC107_100t_20w | 20 | 1000 | 16222812485.9399 | 16638920438.6600 | 2.5649 * |
| RC107_25t_5w | 3 | 1000 | 35267047.6000 | 30761589.8800 | 14.6463 |
| RC107_50t_10w | 6 | 1000 | 579189146.1400 | 575726019.2200 | 0.6015 |
| RC108_100t_20w | 25 | 1000 | 13685634437.0399 | 14823176358.6800 | 8.3119 * |
| RC108_25t_5w | 3 | 1000 | 35267109.7599 | 30372205.5600 | 16.1163 |
| RC108_50t_10w | 6 | 1000 | 581786519.9200 | 630268451.2000 | 8.3332 * |
| RC201_100t_20w | 339 | 1000 | -1388819673.9802 | -1378013035.7800 | 0.7781 * |
| RC201_25t_5w | 12 | 1000 | -4447346.8800 | -5171005.4000 | 13.9945 |
| RC201_50t_10w | 79 | 1000 | -122498977.5600 | -125096456.0400 | 2.0763 |
| RC202_100t_20w | 395 | 1000 | 1937341330.3399 | -848419159.5200 | 328.3471 |
| RC202_25t_5w | 16 | 1000 | -4892928.1600 | -5171480.4200 | 5.3863 |
| RC202_50t_10w | 79 | 1000 | 77921655.9399 | -125096955.0600 | 162.2890 |

| | Table E.2-continued from previous page | | | | Best(SolGH) |
| :--- | :--- | :--- | :--- | :--- | :--- |

E. 3 Tabu Search Results: Config. 3

Table E.3: Tabu Search experiments results with parameter configuration 3

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 932 | 100000 | 61319422104.5999 | 71563566909.3600 | 16.7061 * |
| 10_District1 | 6115 | 100000 | 8146632239585.1520 | 8218857439409.0600 | 0.8865 * |
| 10_District2 | 4339 | 100000 | 40104783192.0499 | 27771011394.0200 | 44.4123 |
| 10_District3 | 1903 | 100000 | 124043366704.6098 | 139155792160.4600 | 12.1831 * |
| 10_District4 | 7200 | 45488 | 24044906203637.3630 | 21291228411410.1000 | 12.9333 |
| 10_District5 | 7200 | 66731 | 39385723841178.7660 | 37249297856014.8000 | 5.7354 |
| 11_District0 | 1079 | 100000 | 3394771765.6100 | 3046672128.3800 | 11.4255 |
| 11_District1 | 7200 | 68177 | 6315634612575.4090 | 6157994611789.7000 | 2.5599 |
| 11_District2 | 1969 | 100000 | 12633316702.5300 | 9214556192.4000 | 37.1017 |
| 11_District3 | 1418 | 100000 | 58081338825.5601 | 61007292651.7800 | 5.0376 * |
| 11_District4 | 7200 | 28498 | 24626573447061.3300 | 22460659385239.4000 | 9.6431 |
| 11_District5 | 7200 | 67174 | 15979414299649.3100 | 15643005576898.3000 | 2.1505 |
| 12_District0 | 1687 | 100000 | 123344728753.0399 | 115036288619.9000 | 7.2224 |
| 12_District1 | 7201 | 51425 | 40934843838070.0900 | 37877356021322.0000 | 8.0720 |
| 12_District2 | 2670 | 100000 | 148865845239.4801 | 153054550706.1000 | 2.8137 * |
| 12_District3 | 4638 | 100000 | 213304502089.9999 | 239836499336.7000 | 12.4385 * |
| 12_District4 | 7200 | 50883 | 60812594795951.9300 | 59129219661289.8000 | 2.8469 |
| 12_District5 | 7200 | 35075 | 68537201389243.0200 | 65945373929847.0000 | 3.9302 |
| 13_District0 | 452 | 100000 | 167512795988.1300 | 154315121626.0000 | 8.5524 |
| 13_District1 | 7200 | 75584 | 16738317958496.3160 | 14674175609787.1000 | 14.0664 |
| 13_District2 | 2683 | 100000 | 108881728883.8301 | 126837068235.0100 | 16.4906^{*} |
| 13_District3 | 7200 | 85817 | 404206934379.0810 | 429665639491.2800 | 6.2984 * |
| 13_District4 | 7200 | 87122 | 30666882573676.4960 | 30033656135618.7000 | 2.1083 |
| 13_District5 | 4825 | 100000 | 45852147317397.7100 | 42764648834839.3000 | 7.2197 |
| 14_District0 | 587 | 100000 | 35108024849.6400 | 34977146773.4600 | 0.3741 |
| 14_District1 | 7200 | 54994 | 12327536190349.4700 | 12434388027267.4000 | 0.8667^{*} |
| 14_District2 | 1238 | 100000 | 88582195166.0800 | 90165619840.7900 | 1.7875 * |
| 14_District3 | 6610 | 100000 | 231997649363.2798 | 262406322982.9800 | 13.1073 * |
| 14_District4 | 7200 | 54277 | 37546192404006.6640 | 31546738861338.4000 | 19.0176 |
| 14_District5 | 7200 | 85338 | 44223833356315.5300 | 44524141233501.8000 | 0.6790 * |
| 15_District0 | 442 | 100000 | 56800250389.3900 | 42188641727.2300 | 34.6339 |
| 15_District1 | 7200 | 94308 | 12423010816403.0400 | 12317798430422.9000 | 0.8541 |
| 15_District2 | 955 | 100000 | 76781032874.0000 | 67421894826.9300 | 13.8814 |
| 15_District3 | 3570 | 100000 | 371671849322.2302 | 463823619193.1600 | 24.7938 * |
| 15_District4 | 7200 | 44524 | 27005258718010.6500 | 22834329911998.4000 | 18.2660 |
| 15_District5 | 7200 | 61769 | 29665152298463.5600 | 28700034523627.8000 | 3.3627 |
| 16_District0 | 827 | 100000 | 123337798475.7000 | 120807470457.0500 | 2.0945 |
| 16_District1 | 7200 | 99573 | 13406517183821.4160 | 12316160134202.9000 | 8.8530 |
| 16_District2 | 1622 | 100000 | 93711639337.6000 | 94504646913.7700 | 0.8462 * |
| 16_District3 | 4736 | 100000 | 193869441381.4698 | 210518442436.7200 | 8.5877 * |
| 16_District4 | 7200 | 56491 | 31188308228108.7270 | 28327769996973.5000 | 10.0980 |
| 16_District5 | 7200 | 78191 | 48288514170261.2700 | 48522145053303.8000 | 0.4838 * |
| 17_District0 | 484 | 100000 | 66543877940.0502 | 60633779564.4100 | 9.7472 |
| 17_District1 | 7200 | 60593 | 11613753631516.3360 | 12050832937058.4000 | 3.7634 * |
| 17_District2 | 2732 | 100000 | 110334481168.8099 | 111787046906.6000 | 1.3165 * |
| 17_District3 | 1208 | 100000 | 180960705402.5399 | 178730940805.7800 | 1.2475 |
| 17_District4 | 7200 | 57304 | 20255890937012.8000 | 19092974442252.1000 | 6.0908 |
| 17_District5 | 5947 | 100000 | 24371976202314.5740 | 23886759047749.6000 | 2.0313 |

| Instance | Table E. 3 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 18_District0 | 185 | 100000 | 2860280110.3899 | 2341527488.6000 | 22.1544 |
| 18_District1 | 4264 | 100000 | 13641483090523.8070 | 13924688690304.7000 | 2.0760 * |
| 18_District2 | 2094 | 100000 | 6296812342.2499 | 4417358464.4100 | 42.5470 |
| 18_District3 | 807 | 100000 | 55310433032.8400 | 70920528499.0700 | 28.2226 * |
| 18_District4 | 7200 | 56855 | 17713764545605.6900 | 18718722507656.5000 | 5.6733 * |
| 18_District5 | 5948 | 100000 | 12763728334951.8900 | 12641617614178.6000 | 0.9659 |
| 19_District0 | 613 | 100000 | 45460485793.5800 | 55462969817.4300 | 22.0025 * |
| 19_District1 | 7200 | 76567 | 22852643800475.0700 | 22401449014876.9000 | 2.0141 |
| 19_District2 | 2447 | 100000 | 146230091895.3399 | 153280470262.9000 | 4.8214 * |
| 19_District3 | 2737 | 100000 | 209128517787.9201 | 243569037679.2000 | 16.4685 * |
| 19_District4 | 7200 | 48894 | 114019612823637.7500 | 106192108824987.0000 | 7.3710 |
| 19_District5 | 7200 | 76320 | 83619359479325.6400 | 78807991381031.8000 | 6.1051 |
| 1_District0 | 703 | 100000 | 414857520738.6203 | 430590936121.1900 | 3.7924 * |
| 1_District1 | 7200 | 53296 | 54575711701779.8200 | 56270206789859.1000 | 3.1048 * |
| 1_District2 | 1896 | 100000 | 621503655933.5693 | 672001346398.5800 | 8.1250 * |
| 1_District3 | 7200 | 63653 | 1012224604297.2406 | 1031045184732.7300 | 1.8593 * |
| 1_District4 | 7200 | 33475 | 74279646462691.5500 | 73732177837593.4000 | 0.7425 |
| 1_District5 | 7200 | 62952 | 90169588524306.8100 | 91806570717137.9000 | 1.8154 * |
| 20_District0 | 594 | 100000 | 92857415991.1800 | 98421186256.3800 | 5.9917 * |
| 20_District1 | 7200 | 79309 | 17810569182545.7930 | 17222315357479.6000 | 3.4156 |
| 20_District2 | 3370 | 100000 | 29604771245.8499 | 27378465012.0200 | 8.1315 |
| 20_District3 | 7200 | 77701 | 274089797172.5999 | 305213925793.8100 | 11.3554 * |
| 20_District4 | 7200 | 50587 | 26818953058689.6680 | 24960379220572.1000 | 7.4460 |
| 20_District5 | 7200 | 58011 | 47470304190301.7000 | 48965990159239.8000 | 3.1507 * |
| 21_District0 | 3209 | 100000 | 103690074086.5299 | 120414278382.3300 | 16.1290 * |
| 21_District1 | 7200 | 90372 | 16992532633164.9980 | 16893868904739.4000 | 0.5840 |
| 21_District2 | 4715 | 100000 | 76409280808.5299 | 62666013838.2000 | 21.9309 |
| 21_District3 | 4615 | 100000 | 818077435822.7802 | 892017226174.9800 | 9.0382 * |
| 21_District4 | 7200 | 58441 | 24138789734561.3200 | 24304758516183.0000 | 0.6875 * |
| 21_District5 | 7200 | 84118 | 47370400960879.9100 | 45930297567746.2000 | 3.1354 |
| 22_District0 | 334 | 100000 | 146677189834.1199 | 138906549645.3000 | 5.5941 |
| 22_District1 | 3361 | 100000 | 15075208860193.2710 | 14071948171020.4000 | 7.1295 |
| 22_District2 | 1522 | 100000 | 241645162667.8598 | 226837888943.8600 | 6.5276 |
| 22_District3 | 6807 | 100000 | 290127101612.7802 | 285892462254.7700 | 1.4812 |
| 22_District4 | 7200 | 59862 | 30953145205340.6200 | 29074924558505.3000 | 6.4599 |
| 22_District5 | 7200 | 76447 | 41928073820889.2400 | 42772519577575.2000 | 2.0140 * |
| 23_District0 | 513 | 100000 | 35383951512.4099 | 32906581132.3800 | 7.5284 |
| 23_District1 | 7200 | 61698 | 17282011527164.6640 | 17211576588480.4000 | 0.4092 |
| 23_District2 | 925 | 100000 | 198436996077.3700 | 183871311138.5000 | 7.9216 |
| 23_District3 | 4363 | 100000 | 194216366208.3199 | 250619333021.8100 | 29.0413 * |
| 23_District4 | 7200 | 56413 | 35302677247038.2000 | 34555727151866.1000 | 2.1615 |
| 23_District5 | 7200 | 63861 | 73432793244856.6900 | 70608343796642.5000 | 4.0001 |
| 24_District0 | 1096 | 100000 | 120480244542.2399 | 105830236823.5000 | 13.8429 |
| 24_District1 | 7200 | 90127 | 12951062920382.2600 | 11389191027676.9000 | 13.7136 |
| 24_District2 | 3213 | 100000 | 23750977920.4000 | 26055867878.7800 | 9.7044 * |
| 24_District3 | 6953 | 100000 | 101722806632.5799 | 159315579521.2200 | 56.6173 * |
| 24_District4 | 7200 | 57921 | 24698884569514.2580 | 24517137738123.8000 | 0.7413 |
| 24_District5 | 7200 | 96573 | 26574525301707.4600 | 24738655441667.6000 | 7.4210 |
| 25_District0 | 470 | 100000 | 1454217691.2299 | 1255504790.1000 | 15.8273 |
| 25_District1 | 7200 | 51467 | 5606702280836.2930 | 6071232244353.8300 | 8.2852 * |
| 25_District2 | 708 | 100000 | 2756992655.7599 | 2430507030.7800 | 13.4328 |
| 25_District3 | 1601 | 100000 | 44718984059.7299 | 54825213021.3900 | 22.5994 * |
| 25_District4 | 7200 | 54241 | 22300242439913.5550 | 20503174454937.0000 | 8.7648 |
| 25_District5 | 6809 | 100000 | 10775069860093.8100 | 11011719621667.4000 | 2.1962 * |
| 26_District0 | 1335 | 100000 | 209058673246.5900 | 225380467772.9800 | 7.8072 * |
| 26_District1 | 7200 | 85142 | 43439619436478.1300 | 42180173025536.8000 | 2.9858 |
| 26_District2 | 1819 | 100000 | 330309041227.7099 | 282951685653.1000 | 16.7369 |
| 26_District3 | 7200 | 42382 | 973542034605.6295 | 1171533328289.0400 | 20.3372 * |
| 26_District4 | 7200 | 22970 | 114403937232307.2800 | 105580668249051.0000 | 8.3568 |
| 26_District5 | 7200 | 57763 | 75887350198066.8300 | 76363123397244.6000 | 0.6269 * |
| 27-District0 | 998 | 100000 | 146087424745.8100 | 162479691641.3000 | 11.2208 * |
| 27_District1 | 7200 | 47325 | 20423182676689.6250 | 18425601260045.1000 | 10.8413 |
| 27_District2 | 2006 | 100000 | 64148580288.2600 | 61192189969.0700 | 4.8313 |
| 27-District3 | 5242 | 100000 | 118518236254.6900 | 116712931257.8400 | 1.5467 |
| 27_District4 | 7201 | 68189 | 36106798229254.8900 | 33778988955119.3000 | 6.8912 |
| 27_District5 | 7200 | 59743 | 39813786783293.8200 | 39568513214098.5000 | 0.6198 |
| 28_District0 | 501 | 100000 | 120470321903.0599 | 102108349093.8000 | 17.9828 |
| 28_District1 | 7200 | 74949 | 14317926873085.4200 | 15128335139531.3000 | 5.6600 * |
| 28_District2 | 1743 | 100000 | 72015727315.7099 | 64692968024.3600 | 11.3192 |
| 28_District3 | 6290 | 100000 | 738620775738.5497 | 805624097687.0900 | 9.0714 * |
| 28_District4 | 7200 | 47047 | 23907581610881.0200 | 22982825117023.6000 | 4.0236 |
| 28_District5 | 7200 | 73029 | 35754345308886.6400 | 33791534896023.1000 | 5.8085 |
| 29_District0 | 2101 | 100000 | 31974520148.4099 | 29353316624.4500 | 8.9298 |
| 29_District1 | 3082 | 100000 | 7288752882344.6420 | 7484826255380.2500 | 2.6900 * |
| 29_District2 | 2366 | 100000 | 83239449171.6500 | 101233312043.5700 | 21.6169 * |
| 29_District3 | 4990 | 100000 | 194319361708.5997 | 232601979076.2900 | 19.7008 * |
| 29_District4 | 7200 | 78791 | 8872604416378.6900 | 8309110124637.3200 | 6.7816 |
| 29_District5 | 7200 | 30804 | 36360343783905.1800 | 35670467010142.6000 | 1.9340 |
| 2_District0 | 1150 | 100000 | 132743550630.9400 | 147005506881.3000 | 10.7439 * |
| 2_District1 | 7200 | 70375 | 40767511066836.0000 | 39540340925649.8000 | 3.1035 |
| 2_District2 | 3362 | 100000 | 185793411606.8301 | 217829855689.6200 | 17.2430 * |
| 2_District3 | 2804 | 100000 | 813179704074.5292 | 858787147589.8100 | 5.6085 * |
| 2_District4 | 7200 | 18577 | 63701520811872.0700 | 58876326066126.1000 | 8.1954 |
| 2_District5 | 7200 | 72740 | 102748864012452.6900 | 95903342380824.9000 | 7.1379 |
| 30_District0 | 467 | 100000 | 14923501548.0199 | 14856579555.0000 | 0.4504 |
| 30_District1 | 6868 | 100000 | 4420744720941.4550 | 4288991390631.0100 | 3.0718 |
| 30_District2 | 2240 | 100000 | 37973365004.3800 | 28984654012.0000 | 31.0119 |
| 30_District3 | 4204 | 100000 | 118851432884.6800 | 140260859804.8700 | 18.0136 * |
| 30_District4 | 7200 | 78605 | 5845835802053.5860 | 6033193692111.0700 | 3.2049 * |
| 30_District5 | 4286 | 100000 | 5338680228691.9880 | 5491783393822.4800 | 2.8678 * |
| 3_District0 | 461 | 100000 | 97493501748.1100 | 90701681116.3600 | 7.4880 |
| 3_District1 | 7122 | 100000 | 17564651144844.1720 | 17931112587450.7000 | 2.0863 * |
| 3_District2 | 2083 | 100000 | 166532062526.5700 | 184423936337.4900 | 10.7438 * |
| 3_District3 | 7200 | 87179 | 768491265231.4299 | 837894240881.4400 | 9.0310 * |
| 3_District4 | 7200 | 24573 | 73102229718603.8300 | 67042838268903.4000 | 9.0380 |
| 3_District5 | 7200 | 34792 | 64452705212649.9900 | 60566955554266.6000 | 6.4156 |
| 4_District0 | 206 | 100000 | 21102539332.5700 | 20379141775.5100 | 3.5496 |

| Instance | Table E. 3 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 4_District1 | 7200 | 82420 | 16222467374387.1170 | 16091560843817.3000 | 0.8135 |
| 4_District2 | 1121 | 100000 | 21157990626.6300 | 19771989271.8700 | 7.0099 |
| 4_District3 | 1701 | 100000 | 31243042239.1799 | 31243041764.1500 | 0.0000 |
| 4_District4 | 7200 | 24660 | 47365396000871.1640 | 44497725128783.0000 | 6.4445 |
| 4_District5 | 7200 | 66652 | 30518149884277.8700 | 30292083288905.3000 | 0.7462 |
| 5_District0 | 2296 | 100000 | 105398810657.5599 | 105305055950.1000 | 0.0890 |
| 5_District1 | 7200 | 66325 | 22650347487648.3750 | 22578812619408.6000 | 0.3168 |
| 5_District2 | 2105 | 100000 | 72863184346.2799 | 49746631100.9200 | 46.4685 |
| 5_District3 | 4939 | 100000 | 283434600221.7600 | 366270241695.4900 | 29.2256 * |
| 5_District4 | 7200 | 38172 | 77339074381850.3800 | 68243049339872.1000 | 13.3288 |
| 5_District5 | 7200 | 68881 | 123530120370460.6200 | 121803986176569.0000 | 1.4171 |
| 6_District0 | 641 | 100000 | 184399313770.2801 | 174024536017.0000 | 5.9616 |
| 6_District1 | 7200 | 97582 | 24054291791237.3160 | 24635464198083.6000 | 2.4160 * |
| 6_District2 | 2159 | 100000 | 238814475647.1300 | 263920214770.7000 | 10.5126 * |
| 6_District3 | 3832 | 100000 | 267141923694.0102 | 272026860685.1900 | 1.8285 * |
| 6_District4 | 7200 | 71215 | 32875720575170.0500 | 32671893526336.1000 | 0.6238 |
| 6_District5 | 7200 | 59196 | 56074931312460.6300 | 52577668995018.6000 | 6.6516 |
| 7_District0 | 2194 | 100000 | 48036330914.6500 | 53992400830.1800 | 12.3990 * |
| 7_District1 | 7200 | 69683 | 25334281259296.4400 | 25530776489059.8000 | 0.7756 * |
| 7_District2 | 1372 | 100000 | 104190522394.5999 | 96812988604.0900 | 7.6203 |
| 7_District3 | 3377 | 100000 | 545854362657.1897 | 627921570619.9200 | 15.0346 * |
| 7_District4 | 7200 | 59246 | 32370401586623.4300 | 30888008083772.9000 | 4.7992 |
| 7_District5 | 7200 | 53860 | 51257539533425.8050 | 52214576657422.1000 | 1.8671 * |
| 8_District0 | 326 | 100000 | 52728450712.1200 | 47815962594.9100 | 10.2737 |
| 8_District1 | 7200 | 70411 | 14140270566964.2290 | 13654929607346.6000 | 3.5543 |
| 8_District2 | 2940 | 100000 | 66805600666.7400 | 73150043166.7900 | 9.4968 * |
| 8_District3 | 6351 | 100000 | 342259784786.4702 | 367102727288.8900 | 7.2585 * |
| 8_District4 | 7200 | 34767 | 29568198985619.5270 | 29816748603227.9000 | 0.8405 * |
| 8_District5 | 6850 | 100000 | 42595956819177.9800 | 40450402089088.4000 | 5.3041 |
| 9_District0 | 344 | 100000 | 102598122380.8400 | 100093204504.3000 | 2.5025 |
| 9_District1 | 5035 | 100000 | 11931035621717.5350 | 12178217016824.2000 | 2.0717 |
| 9_District2 | 1150 | 100000 | 102349044390.6600 | 89342594098.5600 | 14.5579 |
| 9_District3 | 7200 | 85876 | 954523624499.5204 | 911115793606.4100 | 4.7642 |
| 9_District4 | 7200 | 39788 | 39783518017645.9600 | 37164202673658.1000 | 7.0479 |
| 9_District5 | 6231 | 100000 | 28411688890197.5860 | 25382936280280.4000 | 11.9322 |
| C101_100t_20w | 7102 | 100000 | -10091963997.6196 | -12304901708.1200 | 17.9841 |
| C101_25t_5w | 232 | 100000 | 114643937.6200 | 9512566.6400 | 1105.1840 |
| C101_50t_10w | 1244 | 100000 | -919424005.6801 | -1079154704.1200 | 14.8014 |
| C102_100t_20w | 7200 | 39812 | 26603898612.6599 | -5155408825.8200 | 616.0385 |
| C102_25t_5w | 1022 | 100000 | 39049509.9801 | -37546115.7600 | 204.0041 |
| C102_50t_10w | 3769 | 100000 | -424647731.5605 | -1102530180.6200 | 61.4842 |
| C103_100t_20w | 7200 | 26897 | 18457369523.0197 | -7222438475.8600 | 355.5559 |
| C103_25t_5w | 3094 | 100000 | -1000307.7797 | -43052838.4600 | 97.6765 |
| C103_50t_10w | 7200 | 58781 | 790865758.1398 | -1110321792.2400 | 171.2285 |
| C104_100t_20w | 7200 | 15802 | 2869531113.5005 | -8681519205.2400 | 133.0533 |
| C104_25t_5w | 3780 | 100000 | 43555143.7399 | -33540706.8600 | 229.8575 |
| C104_50t_10w | 7200 | 22901 | -490877464.6000 | -1086946666.3200 | 54.8388 |
| C105_100t_20w | 7200 | 53509 | -10748548922.1799 | -12158993843.3000 | 11.6000 |
| C105_25t_5w | 351 | 100000 | 154193281.5800 | 1002190.7200 | 15285.6225 |
| C105_50t_10w | 2591 | 100000 | -409063950.8399 | -1102529614.6600 | 62.8976 |
| C106_100t_20w | 7200 | 29978 | -10651277134.4797 | -5349954009.7600 | 49.7717 * |
| C106_25t_5w | 328 | 100000 | 82103177.3201 | 9512566.6400 | 763.1022 |
| C106_50t_10w | 2032 | 100000 | -405168413.3997 | -1086946589.7000 | 62.7241 |
| C107_100t_20w | 7200 | 34654 | -10845821722.5401 | -6979258964.6200 | 35.6502 * |
| C107_25t_5w | 447 | 100000 | 149187091.3000 | -2001420.3200 | 7554.0609 |
| C107_50t_10w | 5046 | 100000 | -970069980.6800 | -1125905161.9000 | 13.8408 |
| C108_100t_20w | 7200 | 27943 | 2942485491.1397 | -6492899831.1000 | 145.3185 |
| C108_25t_5w | 436 | 100000 | 118648952.4799 | -8009072.9800 | 1581.4317 |
| C108_50t_10w | 5397 | 100000 | -1001237108.3400 | -1125905177.3200 | 11.0726 |
| C109_100t_20w | 7200 | 19520 | 11210605305.1199 | -6614488230.8200 | 269.4856 |
| C109_25t_5w | 647 | 100000 | 36045913.0797 | -26031566.9600 | 238.4700 |
| C109_50t_10w | 6451 | 100000 | -1075258981.1794 | -1125905761.1800 | 4.4983 |
| C201_100t_20w | 7200 | 8971 | -12596716053.9600 | -12596720162.2300 | 0.0000 |
| C201_25t_5w | 3875 | 100000 | -42552163.2401 | -45555916.9200 | 6.5935 |
| C201_50t_10w | 7200 | 34748 | -1110321566.2804 | -1125905241.3800 | 1.3841 |
| C202_100t_20w | 7200 | 9052 | 39322214142.4203 | -6055175633.1600 | 749.3984 |
| C202_25t_5w | 7200 | 26753 | -45555938.3608 | -45555950.8800 | 0.0000 |
| C202_50t_10w | 7200 | 9821 | -506461044.4007 | -1125905361.9600 | 55.0174 |
| C203_100t_20w | 7200 | 6710 | 24536869879.3203 | -6930623788.8800 | 454.0355 |
| C203_25t_5w | 7200 | 7578 | -45555886.2806 | -45555956.2400 | 0.0001 |
| C203_50t_10w | 7200 | 3816 | 709052735.5999 | -1125905456.0600 | 162.9762 |
| C204_100t_20w | 7202 | 4592 | 24609823628.3203 | -8657198950.2400 | 384.2700 |
| C204_25t_5w | 7200 | 5199 | -45555876.9005 | -45555977.0000 | 0.0002 |
| C204_50t_10w | 7202 | 3798 | 93504394.2998 | -1125905585.1400 | 108.3048 |
| C205_100t_20w | 7201 | 5893 | 9702889586.1598 | -12596718687.8400 | 177.0271 |
| C205_25t_5w | 7200 | 74961 | -42552170.0398 | -45555926.8000 | 6.5935 |
| C205_50t_10w | 7200 | 10860 | -1125904965.2406 | -1125905403.9800 | 0.0000 |
| C206_100t_20w | 7201 | 3950 | 31953859516.5598 | -7733117210.9600 | 513.2080 |
| C206_25t_5w | 7200 | 55931 | -45555915.5394 | -45555926.8000 | 0.0000 |
| C206_50t_10w | 7200 | 9395 | -1118113473.0000 | -1125905541.4200 | 0.6920 |
| C207_100t_20w | 7200 | 3658 | 24488233802.3396 | -7222438653.2400 | 439.0576 |
| C207_25t_5w | 7200 | 50888 | -45555904.1599 | -45555933.4200 | 0.0000 |
| C207_50t_10w | 7201 | 4109 | -498668527.7600 | -1125905455.9000 | 55.7095 |
| C208_100t_20w | 7201 | 4384 | 24536869467.2000 | -8657201177.3800 | 383.4272 |
| C208_25t_5w | 7200 | 35528 | -45555924.0793 | -45555933.1600 | 0.0000 |
| C208_50t_10w | 7200 | 7344 | -1110321499.1405 | -1125905465.6600 | 1.3841 |
| hh_00_P0 | 7000 | 100000 | 8908128528.0586 | 6663651008.2900 | 33.6823 |
| 111_00_P0 | 1239 | 100000 | 342636882.4399 | 1338732826.5000 | 290.7147 * |
| 111_01_P0 | 1257 | 100000 | 342635158.9497 | 1338732826.5000 | 290.7167 * |
| 111_02_P0 | 1355 | 100000 | 373768965.3901 | 1338732826.5000 | 258.1712 * |
| 111_03_P0 | 1304 | 100000 | 311529698.9099 | 1338732826.5000 | 329.7287 * |
| 111_04_P0 | 1284 | 100000 | 311531875.5497 | 1338732826.5000 | 329.7257 * |
| 111_05_P0 | 1332 | 100000 | 435993234.8100 | 1307660206.1200 | 199.9267 * |
| 111_06_P0 | 1143 | 100000 | 2132305698.5799 | 1214281948.4400 | 75.6021 |
| 111_07_P0 | 1288 | 100000 | 342589125.2799 | 1338732826.5000 | 290.7692 * |
| 112_00_P0 | 2046 | 100000 | -179547639.3601 | 85352916.2700 | 147.5377 * |
| 113_00_P0 | 1889 | 100000 | -179674136.5400 | -198615845.6200 | 9.5368 |

| Instance | Table E. 3 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| RC202_25t_5w | 853 | 100000 | -5171400.4000 | -5171480.4200 | 0.0015 |
| RC202_50t_10w | 7079 | 100000 | -123365044.3597 | -125096955.0600 | 1.3844 |
| RC203_100t_20w | 7200 | 22280 | 1129442947.1196 | -915968950.1800 | 223.3058 |
| RC203_25t_5w | 4401 | 100000 | -721539.2000 | -5171505.3800 | 86.0477 |
| RC203_50t_10w | 7200 | 38201 | 9094096.4985 | -125096765.1800 | 107.2696 |
| RC204_100t_20w | 7200 | 13224 | 1907619772.8397 | -1032155821.9000 | 284.8189 |
| RC204_25t_5w | 4833 | 100000 | -5059786.3000 | -5060413.3600 | 0.0123 |
| RC204_50t_10w | 7200 | 9907 | 12125048.2999 | -125097014.9000 | 109.6925 |
| RC205_100t_20w | 7200 | 23133 | 1110529849.8197 | -856525543.8000 | 229.6551 |
| RC205_25t_5w | 532 | 100000 | -5004455.4399 | -5171462.0600 | 3.2293 |
| RC205_50t_10w | 7200 | 50087 | 77921766.4399 | -125096766.4200 | 162.2891 |
| RC206_100t_20w | 7200 | 20197 | 318844738.3798 | -905161565.1000 | 135.2251 |
| RC206_25t_5w | 1686 | 100000 | -5171143.4004 | -5171397.9400 | 0.0049 |
| RC206_50t_10w | 7200 | 52093 | -119468502.0000 | -125097137.7600 | 4.4994 |
| RC207_100t_20w | 7200 | 18546 | 3639601716.1598 | -907864881.6600 | 500.8968 |
| RC207_25t_5w | 3832 | 100000 | -4559055.2800 | -5059890.2000 | 9.8981 |
| RC207_50t_10w | 7200 | 41747 | -119035962.7801 | -122499526.2000 | 2.8274 |
| RC208_100t_20w | 7200 | 14083 | 6063295696.4599 | -978116228.2000 | 719.8952 |
| RC208_25t_5w | 5104 | 100000 | -5060391.7402 | -5060744.0000 | 0.0069 |
| RC208_50t_10w | 7200 | 38949 | -121200454.2600 | -125096819.1800 | 3.1146 |
| test150-0-0-0-0_d0_tw0 | 3456 | 5219 | 73735917710.6998 | -28349336446.9000 | 360.0975 |
| test150-0-0-0-0_d0_tw1 | 7200 | 20105 | -54491442477.5001 | -30832491493.7000 | 43.4177 * |
| test150-0-0-0-0_d0_tw2 | 7200 | 22035 | -23727911994.8995 | -28832172176.8000 | 17.7033 |
| test150-0-0-0-0_d0_tw3 | 7200 | 23727 | 6897666282.2002 | -27383664735.0000 | 125.1889 |
| test150-0-0-0-0_d0_tw4 | 7200 | 30067 | 70631974156.4999 | -26142085667.0000 | 370.1849 |
| test250-0-0-0-0_d0_tw0 | - | - | - | 23650649218.5000 | - |
| test250-0-0-0-0_d0_tw1 | 7200 | 16262 | -468958093507.5002 | -292254131472.0000 | 37.6801* |
| test250-0-0-0-0_d0_tw2 | 7200 | 15284 | 550721722328.1854 | -275698693917.1000 | 299.7549 |
| test250-0-0-0-0_d0_tw3 | 7200 | 14021 | -214544933324.4147 | -266914175565.0000 | 19.6202 |
| test250-0-0-0-0_d0_tw4 | 7200 | 17766 | 1571077267390.7969 | -231776103927.7000 | 777.8426 |
| test50-0-0-0-0_d0_tw0 | 7200 | 17799 | -842598576.7999 | -842599324.2000 | 0.0000 |
| test50-0-0-0-0_d0_tw1 | 7200 | 47632 | -842598443.2999 | -842599506.6000 | 0.0001 |
| test50-0-0-0-0_d0_tw2 | 7200 | 68789 | -842598048.7999 | -842599560.3000 | 0.0001 |
| test50-0-0-0-0_d0_tw3 | 7200 | 72243 | -836356284.5000 | -842598590.0000 | 0.7408 |
| test50-0-0-0-0_d0_tw4 | 7200 | 59656 | -823874047.9999 | -842599753.8000 | 2.2223 |

E. 4 Tabu Search Results: Config. 4

Table E.4: Tabu Search experiments results with parameter configuration 4

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 29 | 1000 | 71044087988.6800 | 71563566909.3600 | 0.7312 * |
| 10_District1 | 296 | 1000 | 8934442503614.9860 | 8218857439409.0600 | 8.7066 |
| 10_District2 | 164 | 1000 | 46551982147.0399 | 27771011394.0200 | 67.6279 |
| 10_District3 | 93 | 1000 | 147980306196.2500 | 139155792160.4600 | 6.3414 |
| 10_District4 | 908 | 1000 | 26247235828066.9450 | 21291228411410.1000 | 23.2772 |
| 10_District5 | 932 | 1000 | 42185903540403.9500 | 37249297856014.8000 | 13.2528 |
| 11_District0 | 48 | 1000 | 3934486085.3199 | 3046672128.3800 | 29.1404 |
| 11_District1 | 362 | 1000 | 7192527346864.9190 | 6157994611789.7000 | 16.7998 |
| 11_District2 | 81 | 1000 | 14792532946.3500 | 9214556192.4000 | 60.5344 |
| 11_District3 | 65 | 1000 | 80429174731.5201 | 61007292651.7800 | 31.8353 |
| 11_District4 | 420 | 398 | 27316194792545.6400 | 22460659385239.4000 | 21.6179 |
| 11_District5 | 848 | 1000 | 16896435416813.5490 | 15643005576898.3000 | 8.0127 |
| 12_District0 | 32 | 1000 | 147652850806.6500 | 115036288619.9000 | 28.3532 |
| 12_District1 | 737 | 1000 | 43251322721596.4900 | 37877356021322.0000 | 14.1878 |
| 12_District2 | 58 | 1000 | 204319853826.4198 | 153054550706.1000 | 33.4947 |
| 12_District3 | 236 | 1000 | 252008395524.3999 | 239836499336.7000 | 5.0750 |
| 12_District4 | 1784 | 1000 | 67678360528545.1900 | 59129219661289.8000 | 14.4584 |
| 12_District5 | 1434 | 1000 | 73828178354991.5800 | 65945373929847.0000 | 11.9535 |
| 13_District0 | 15 | 1000 | 180760555855.7400 | 154315121626.0000 | 17.1372 |
| 13_District1 | 383 | 1000 | 19390813048506.7730 | 14674175609787.1000 | 32.1424 |
| 13_District2 | 201 | 1000 | 141580059846.0700 | 126837068235.0100 | 11.6235 |
| 13_District3 | 705 | 1000 | 465854321971.4305 | 429665639491.2800 | 8.4225 |
| 13_District4 | 334 | 583 | 34082066160556.5860 | 30033656135618.7000 | 13.4795 |
| 13_District5 | 410 | 1000 | 53058502486492.2340 | 42764648834839.3000 | 24.0709 |
| 14_District0 | 19 | 1000 | 37910995189.5100 | 34977146773.4600 | 8.3879 |
| 14_District1 | 1583 | 1000 | 13922893501224.8240 | 12434388027267.4000 | 11.9708 |
| 14_District2 | 39 | 1000 | 113199977336.8299 | 90165619840.7900 | 25.5467 |
| 14_District3 | 244 | 1000 | 286753301597.2999 | 262406322982.9800 | 9.2783 |
| 14_District4 | 280 | 333 | 42319930717404.3200 | 31546738861338.4000 | 34.1499 |
| 14_District5 | 1173 | 982 | 49108410966425.7700 | 44524141233501.8000 | 10.2961 |
| 15_District0 | 22 | 1000 | 60908915131.6200 | 42188641727.2300 | 44.3727 |
| 15_District1 | 363 | 1000 | 13887567215565.1580 | 12317798430422.9000 | 12.7439 |
| 15_District2 | 115 | 1000 | 89981800622.1499 | 67421894826.9300 | 33.4608 |
| 15_District3 | 314 | 1000 | 436449737402.5901 | 463823619193.1600 | 6.2719 * |
| 15_District4 | 362 | 646 | 30205466091430.0080 | 22834329911998.4000 | 32.2809 |
| 15_District5 | 225 | 325 | 33576157463980.4840 | 28700034523627.8000 | 16.9899 |
| 16_District0 | 23 | 1000 | 130552369225.5199 | 120807470457.0500 | 8.0664 |
| 16_District1 | 303 | 1000 | 14998181921983.5140 | 12316160134202.9000 | 21.7764 |
| 16_District2 | 56 | 1000 | 102790210506.8200 | 94504646913.7700 | 8.7673 |
| 16_District3 | 293 | 1000 | 273024373859.2299 | 210518442436.7200 | 29.6914 |
| 16_District4 | 674 | 1000 | 34201141618648.3050 | 28327769996973.5000 | 20.7336 |
| 16_District5 | 749 | 1000 | 51196166785094.2400 | 48522145053303.8000 | 5.5109 |
| 17_District0 | 19 | 1000 | 73131942514.7400 | 60633779564.4100 | 20.6125 |
| 17_District1 | 655 | 1000 | 12685763159805.3750 | 12050832937058.4000 | 5.2687 |
| 17_District2 | 157 | 1000 | 121531342483.6900 | 111787046906.6000 | 8.7168 |
| 17_District3 | 46 | 1000 | 239153190110.8500 | 178730940805.7800 | 33.8062 |

| Instance | Table E. 4 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 17_District4 | 1320 | 1000 | 21610561059438.7660 | 19092974442252.1000 | 13.1859 |
| 17_District5 | 412 | 1000 | 28273714761962.7730 | 23886759047749.6000 | 18.3656 |
| 18_District0 | 5 | 1000 | 3050648105.2099 | 2341527488.6000 | 30.2845 |
| 18_District1 | 174 | 1000 | 14776289420305.5410 | 13924688690304.7000 | 6.1157 |
| 18_District2 | 61 | 1000 | 7677635119.2600 | 4417358464.4100 | 73.8060 |
| 18_District3 | 41 | 1000 | 65519767254.4700 | 70920528499.0700 | 8.2429 * |
| 18_District4 | 559 | 778 | 19724330089177.8480 | 18718722507656.5000 | 5.3722 |
| 18_District5 | 254 | 1000 | 15150150777219.4860 | 12641617614178.6000 | 19.8434 |
| 19_District0 | 18 | 1000 | 47832208781.3799 | 55462969817.4300 | 15.9531 * |
| 19_District1 | 588 | 1000 | 25232408796426.6680 | 22401449014876.9000 | 12.6373 |
| 19_District2 | 104 | 1000 | 173610929825.2799 | 153280470262.9000 | 13.2635 |
| 19_District3 | 201 | 1000 | 256129174695.5700 | 243569037679.2000 | 5.1567 |
| 19_District4 | 2445 | 1000 | 129861724782360.6700 | 106192108824987.0000 | 22.2894 |
| 19_District5 | 1114 | 1000 | 90610807531969.0000 | 78807991381031.8000 | 14.9766 |
| 1_District0 | 26 | 1000 | 414511188066.4297 | 430590936121.1900 | 3.8792 * |
| 1_District1 | 921 | 1000 | 59038322433232.7340 | 56270206789859.1000 | 4.9193 |
| 1_District2 | 54 | 1000 | 760870638710.4302 | 672001346398.5800 | 13.2245 |
| 1_District3 | 436 | 1000 | 1158594948599.5605 | 1031045184732.7300 | 12.3709 |
| 1_District4 | 3603 | 782 | 88015986409409.8800 | 73732177837593.4000 | 19.3725 |
| 1_District5 | 1400 | 1000 | 103190883734252.5600 | 91806570717137.9000 | 12.4003 |
| 20_District0 | 11 | 1000 | 101211792729.5600 | 98421186256.3800 | 2.8353 |
| 20_District1 | 485 | 1000 | 19229197023711.1000 | 17222315357479.6000 | 11.6527 |
| 20_District2 | 192 | 1000 | 40073505633.6799 | 27378465012.0200 | 46.3687 |
| 20_District3 | 383 | 1000 | 286248471817.6000 | 305213925793.8100 | 6.6255 * |
| 20_District4 | 1952 | 1000 | 30556157284792.6700 | 24960379220572.1000 | 22.4186 |
| 20_District5 | 1406 | 1000 | 51078407442368.2900 | 48965990159239.8000 | 4.3140 |
| 21_District0 | 77 | 1000 | 121862046006.5100 | 120414278382.3300 | 1.2023 |
| 21_District1 | 402 | 1000 | 18687598423451.9960 | 16893868904739.4000 | 10.6176 |
| 21_District2 | 189 | 1000 | 89851400124.6900 | 62666013838.2000 | 43.3813 |
| 21_District3 | 156 | 1000 | 976805733287.0194 | 892017226174.9800 | 9.5052 |
| 21_District4 | 501 | 549 | 26836990955543.4300 | 24304758516183.0000 | 10.4186 |
| 21_District5 | 714 | 1000 | 51989982622470.8100 | 45930297567746.2000 | 13.1932 |
| 22_District0 | 13 | 1000 | 155412812002.1598 | 138906549645.3000 | 11.8829 |
| 22_District1 | 201 | 1000 | 16637453055468.2540 | 14071948171020.4000 | 18.2313 |
| 22_District2 | 52 | 1000 | 279141000987.0700 | 226837888943.8600 | 23.0574 |
| 22_District3 | 333 | 1000 | 339965551062.5403 | 285892462254.7700 | 18.9137 |
| 22_District4 | 1129 | 1000 | 34742341146126.3100 | 29074924558505.3000 | 19.4924 |
| 22_District5 | 712 | 1000 | 47039138536698.7800 | 42772519577575.2000 | 9.9751 |
| 23_District0 | 20 | 1000 | 37920541035.5399 | 32906581132.3800 | 15.2369 |
| 23_District1 | 878 | 1000 | 19553686306408.2850 | 17211576588480.4000 | 13.6077 |
| 23_District2 | 50 | 1000 | 222085775287.2799 | 183871311138.5000 | 20.7832 |
| 23_District3 | 397 | 1000 | 234822540354.5498 | 250619333021.8100 | 6.7271 * |
| 23_District4 | 1089 | 1000 | 41506283484357.5700 | 34555727151866.1000 | 20.1140 |
| 23_District5 | 939 | 1000 | 81512772286637.2000 | 70608343796642.5000 | 15.4435 |
| 24_District0 | 29 | 1000 | 127794166641.5499 | 105830236823.5000 | 20.7539 |
| 24_District1 | 301 | 1000 | 14050104442788.0570 | 11389191027676.9000 | 23.3634 |
| 24_District2 | 128 | 1000 | 25910157362.5599 | 26055867878.7800 | 0.5623 * |
| 24_District3 | 381 | 1000 | 153413574546.1999 | 159315579521.2200 | 3.8471 * |
| 24_District4 | 1296 | 1000 | 27230600919334.0160 | 24517137738123.8000 | 11.0676 |
| 24_District5 | 380 | 1000 | 28602790614333.3400 | 24738655441667.6000 | 15.6198 |
| 25_District0 | 11 | 1000 | 1806481293.3700 | 1255504790.1000 | 43.8848 |
| 25_District1 | 442 | 1000 | 6890897745235.7560 | 6071232244353.8300 | 13.5008 |
| 25_District2 | 19 | 1000 | 3667525012.0000 | 2430507030.7800 | 50.8954 |
| 25_District3 | 63 | 1000 | 56516814183.2299 | 54825213021.3900 | 3.0854 |
| 25_District4 | 623 | 1000 | 23992661886885.8300 | 20503174454937.0000 | 17.0192 |
| 25_District5 | 320 | 1000 | 12081058658091.7710 | 11011719621667.4000 | 9.7109 |
| 26_District0 | 80 | 1000 | 237401249526.4201 | 225380467772.9800 | 5.3335 |
| 26_District1 | 649 | 1000 | 47976908453790.1400 | 42180173025536.8000 | 13.7427 |
| 26_District2 | 34 | 1000 | 365003699120.1197 | 282951685653.1000 | 28.9985 |
| 26_District3 | 770 | 1000 | 1221285639579.8296 | 1171533328289.0400 | 4.2467 |
| 26_District4 | 1622 | 1000 | 122594853392901.8400 | 105580668249051.0000 | 16.1148 |
| 26_District5 | 1708 | 1000 | 87385202511041.2800 | 76363123397244.6000 | 14.4337 |
| 27_District0 | 30 | 1000 | 161671621798.6800 | 162479691641.3000 | 0.4998 * |
| 27_District1 | 315 | 1000 | 22239448997537.0200 | 18425601260045.1000 | 20.6986 |
| 27_District2 | 146 | 1000 | 85658869866.1899 | 61192189969.0700 | 39.9833 |
| 27_District3 | 133 | 1000 | 134916417164.4498 | 116712931257.8400 | 15.5968 |
| 27_District4 | 1077 | 1000 | 41280478157408.2400 | 33778988955119.3000 | 22.2075 |
| 27_District5 | 789 | 1000 | 43792124067853.4400 | 39568513214098.5000 | 10.6741 |
| 28_District0 | 11 | 1000 | 120908555310.4500 | 102108349093.8000 | 18.4120 |
| 28_District1 | 634 | 1000 | 15643075617476.7600 | 15128335139531.3000 | 3.4024 |
| 28_District2 | 53 | 1000 | 80576135805.1599 | 64692968024.3600 | 24.5516 |
| 28_District3 | 249 | 1000 | 837122182158.8696 | 805624097687.0900 | 3.9097 |
| 28_District4 | 1223 | 960 | 27022467080015.8400 | 22982825117023.6000 | 17.5767 |
| 28_District5 | 632 | 1000 | 39675458070899.8400 | 33791534896023.1000 | 17.4124 |
| 29_District0 | 72 | 1000 | 33326728101.2599 | 29353316624.4500 | 13.5364 |
| 29_District1 | 173 | 1000 | 8270538003155.1100 | 7484826255380.2500 | 10.4973 |
| 29_District2 | 149 | 1000 | 83239449171.6500 | 101233312043.5700 | 21.6169 * |
| 29_District3 | 307 | 1000 | 289675147038.2499 | 232601979076.2900 | 24.5368 |
| 29_District4 | 1078 | 1000 | 10202501670409.2170 | 8309110124637.3200 | 22.7869 |
| 29_District5 | 1279 | 1000 | 38201575278526.1700 | 35670467010142.6000 | 7.0958 |
| 2_District0 | 45 | 1000 | 160408679773.3000 | 147005506881.3000 | 9.1174 |
| 2_District1 | 627 | 1000 | 44521771049389.4700 | 39540340925649.8000 | 12.5983 |
| 2_District2 | 271 | 1000 | 239711691525.7900 | 217829855689.6200 | 10.0453 |
| 2_District3 | 94 | 1000 | 972346621091.5603 | 858787147589.8100 | 13.2232 |
| 2_District4 | 2478 | 1000 | 71217031447819.6700 | 58876326066126.1000 | 20.9603 |
| 2_District5 | 959 | 1000 | 111088965128385.5800 | 95903342380824.9000 | 15.8342 |
| 30_District0 | 17 | 1000 | 16967649427.1899 | 14856579555.0000 | 14.2096 |
| 30_District1 | 113 | 1000 | 4981652031760.4080 | 4288991390631.0100 | 16.1497 |
| 30_District2 | 63 | 1000 | 38131062016.3899 | 28984654012.0000 | 31.5560 |
| 30_District3 | 170 | 1000 | 136962127044.3600 | 140260859804.8700 | 2.4084 * |
| 30_District4 | 688 | 1000 | 6588527875154.5260 | 6033193692111.0700 | 9.2046 |
| 30_District5 | 386 | 1000 | 6146473066871.9660 | 5491783393822.4800 | 11.9212 |
| 3_District0 | 19 | 1000 | 107537164060.7300 | 90701681116.3600 | 18.5613 |
| 3_District1 | 275 | 1000 | 19731991879439.8050 | 17931112587450.7000 | 10.0433 |
| 3_District2 | 104 | 1000 | 181278112603.1000 | 184423936337.4900 | 1.7353 * |
| 3_District3 | 391 | 1000 | 927632490655.9303 | 837894240881.4400 | 10.7099 |
| 3_District4 | 2983 | 1000 | 81441621777835.7700 | 67042838268903.4000 | 21.4769 |

| Instance | Table E. 4 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 3_District5 | 1458 | 1000 | 68650793672125.3800 | 60566955554266.6000 | 13.3469 |
| 4_District0 | 6 | 1000 | 22790466855.3999 | 20379141775.5100 | 11.8323 |
| 4_District1 | 754 | 1000 | 17981144122254.7770 | 16091560843817.3000 | 11.7426 |
| 4_District2 | 62 | 1000 | 24077179304.1799 | 19771989271.8700 | 21.7741 |
| 4_District3 | 63 | 1000 | 33504443037.0900 | 31243041764.1500 | 7.2380 |
| 4_District4 | 2292 | 1000 | 53890299945868.2100 | 44497725128783.0000 | 21.1079 |
| 4_District5 | 793 | 1000 | 35110075062663.1500 | 30292083288905.3000 | 15.9051 |
| 5_District0 | 74 | 1000 | 108530210898.0600 | 105305055950.1000 | 3.0626 |
| 5_District1 | 431 | 1000 | 26647092666473.4770 | 22578812619408.6000 | 18.0181 |
| 5_District2 | 72 | 1000 | 76497862879.7299 | 49746631100.9200 | 53.7749 |
| 5_District3 | 384 | 1000 | 368151444763.6298 | 366270241695.4900 | 0.5136 |
| 5_District4 | 1381 | 1000 | 83798881044311.7300 | 68243049339872.1000 | 22.7947 |
| 5_District5 | 1062 | 1000 | 138169104767029.4700 | 121803986176569.0000 | 13.4356 |
| 6_District0 | 14 | 1000 | 212929949916.4900 | 174024536017.0000 | 22.3562 |
| 6_District1 | 984 | 1000 | 28332726145525.2270 | 24635464198083.6000 | 15.0078 |
| 6_District2 | 188 | 1000 | 272443769103.5498 | 263920214770.7000 | 3.2295 |
| 6_District3 | 338 | 1000 | 316238009828.5399 | 272026860685.1900 | 16.2524 |
| 6_District4 | 1178 | 1000 | 39100356623011.2500 | 32671893526336.1000 | 19.6758 |
| 6_District5 | 1065 | 1000 | 62494974243751.2600 | 52577668995018.6000 | 18.8622 |
| 7_District0 | 61 | 1000 | 52689510784.6200 | 53992400830.1800 | 2.4727 * |
| 7_District1 | 1087 | 1000 | 26730908898720.9300 | 25530776489059.8000 | 4.7007 |
| 7_District2 | 31 | 1000 | 108798052163.5799 | 96812988604.0900 | 12.3796 |
| 7_District3 | 131 | 1000 | 734823778262.7499 | 627921570619.9200 | 17.0247 |
| 7_District4 | 840 | 918 | 37220758140234.5160 | 30888008083772.9000 | 20.5022 |
| 7_District5 | 2332 | 1000 | 59599457455793.6500 | 52214576657422.1000 | 14.1433 |
| 8_District0 | 10 | 1000 | 57495503317.6100 | 47815962594.9100 | 20.2433 |
| 8_District1 | 466 | 1000 | 15334762566736.7190 | 13654929607346.6000 | 12.3020 |
| 8_District2 | 122 | 1000 | 76471429901.2400 | 73150043166.7900 | 4.5405 |
| 8_District3 | 274 | 1000 | 440324029530.6004 | 367102727288.8900 | 19.9457 |
| 8_District4 | 994 | 1000 | 33729940565814.9060 | 29816748603227.9000 | 13.1241 |
| 8_District5 | 546 | 1000 | 47035070288952.9300 | 40450402089088.4000 | 16.2783 |
| 9_District0 | 10 | 1000 | 112183055843.6300 | 100093204504.3000 | 12.0785 |
| 9_District1 | 231 | 1000 | 13712364099437.0000 | 12178217016824.2000 | 12.5974 |
| 9_District2 | 33 | 1000 | 119904961580.6499 | 89342594098.5600 | 34.2080 |
| 9_District3 | 271 | 1000 | 1135109174468.4993 | 911115793606.4100 | 24.5845 |
| 9_District4 | 1395 | 1000 | 45485008173900.7340 | 37164202673658.1000 | 22.3893 |
| 9_District5 | 476 | 1000 | 30194321664614.4730 | 25382936280280.4000 | 18.9551 |
| C101_100t_20w | 328 | 1000 | 55299138777.7998 | -12304901708.1200 | 549.4073 |
| C101_25t_5w | 11 | 1000 | 116646365.9200 | 9512566.6400 | 1126.2344 |
| C101_50t_10w | 53 | 1000 | 810344547.3999 | -1079154704.1200 | 175.0906 |
| C102_100t_20w | 692 | 1000 | 54934369457.7801 | -5155408825.8200 | 1165.5676 |
| C102_25t_5w | 27 | 1000 | 76596487.9799 | -37546115.7600 | 304.0064 |
| C102_50t_10w | 141 | 1000 | 3140078105.8398 | -1102530180.6200 | 384.8065 |
| C103_100t_20w | 1581 | 1000 | 32780671675.6599 | -7222438475.8600 | 553.8726 |
| C103_25t_5w | 66 | 1000 | 112140918.1599 | -43052838.4600 | 360.4727 |
| C103_50t_10w | 347 | 1000 | 1336287910.9199 | -1110321792.2400 | 220.3514 |
| C104_100t_20w | 3103 | 1000 | 3064075113.7200 | -8681519205.2400 | 135.2942 |
| C104_25t_5w | 149 | 1000 | 114643945.2999 | -33540706.8600 | 441.8053 |
| C104_50t_10w | 845 | 1000 | 124670837.7799 | -1086946666.3200 | 111.4698 |
| C105_100t_20w | 636 | 1000 | 18554641574.9399 | -12158993843.3000 | 252.6001 |
| C105_25t_5w | 12 | 1000 | 122653858.3399 | 1002190.7200 | 12138.5745 |
| C105_50t_10w | 125 | 1000 | 210380233.5199 | -1102529614.6600 | 119.0815 |
| C106_100t_20w | 869 | 1000 | 17825101737.4402 | -5349954009.7600 | 433.1823 |
| C106_25t_5w | 18 | 1000 | 116646382.1599 | 9512566.6400 | 1126.2345 |
| C106_50t_10w | 73 | 1000 | 794761334.7799 | -1086946589.7000 | 173.1187 |
| C107_100t_20w | 1182 | 1000 | 10335156917.3600 | -6979258964.6200 | 248.0838 |
| C107_25t_5w | 16 | 1000 | 154193283.1200 | -2001420.3200 | 7804.1929 |
| C107_50t_10w | 233 | 1000 | 155838169.7399 | -1125905161.9000 | 113.8411 |
| C108_100t_20w | 1637 | 1000 | 32415901528.9200 | -6492899831.1000 | 599.2515 |
| C108_25t_5w | 36 | 1000 | 121152014.7800 | -8009072.9800 | 1612.6846 |
| C108_50t_10w | 242 | 1000 | -416856000.7400 | -1125905177.3200 | 62.9759 |
| C109_100t_20w | 2695 | 1000 | 24974593783.5199 | -6614488230.8200 | 477.5740 |
| C109_25t_5w | 43 | 1000 | 76095775.4600 | -26031566.9600 | 392.3211 |
| C109_50t_10w | 387 | 1000 | -412960245.9599 | -1125905761.1800 | 63.3219 |
| C201_100t_20w | 3104 | 1000 | -12596716053.9600 | -12596720162.2300 | 0.0000 |
| C201_25t_5w | 130 | 1000 | -42552000.2200 | -45555916.9200 | 6.5939 |
| C201_50t_10w | 634 | 1000 | -1102529624.8800 | -1125905241.3800 | 2.0761 |
| C202_100t_20w | 3605 | 598 | 39322214142.4203 | -6055175633.1600 | 749.3984 |
| C202_25t_5w | 693 | 1000 | -42552100.4800 | -45555950.8800 | 6.5937 |
| C202_50t_10w | 1683 | 1000 | 81816611.2799 | -1125905361.9600 | 107.2667 |
| C203_100t_20w | 3623 | 337 | 24536869879.3203 | -6930623788.8800 | 454.0355 |
| C203_25t_5w | 3604 | 726 | -39548128.4000 | -45555956.2400 | 13.1877 |
| C203_50t_10w | 2131 | 556 | 709052735.5999 | -1125905456.0600 | 162.9762 |
| C204_100t_20w | 280 | 22 | 565879861697.6803 | -8657198950.2400 | 6636.5237 |
| C204_25t_5w | 3603 | 914 | -6506909.0600 | -45555977.0000 | 85.7166 |
| C204_50t_10w | 1250 | 252 | 93504394.2998 | -1125905585.1400 | 108.3048 |
| C205_100t_20w | 3606 | 543 | 9702889586.1598 | -12596718687.8400 | 177.0271 |
| C205_25t_5w | 363 | 1000 | -45555747.0800 | -45555926.8000 | 0.0003 |
| C205_50t_10w | 2231 | 1000 | -1118113020.5800 | -1125905403.9800 | 0.6920 |
| C206_100t_20w | 3610 | 346 | 31953859516.5598 | -7733117210.9600 | 513.2080 |
| C206_25t_5w | 374 | 1000 | -6507056.4000 | -45555926.8000 | 85.7163 |
| C206_50t_10w | 3060 | 1000 | 81816864.3799 | -1125905541.4200 | 107.2667 |
| C207_100t_20w | 3602 | 244 | 24488233802.3396 | -7222438653.2400 | 439.0576 |
| C207_25t_5w | 443 | 1000 | -5005211.4000 | -45555933.4200 | 89.0130 |
| C207_50t_10w | 3603 | 429 | -498668527.7600 | -1125905455.9000 | 55.7095 |
| C208_100t_20w | 3606 | 340 | 24536869467.2000 | -8657201177.3800 | 383.4272 |
| C208_25t_5w | 738 | 1000 | -41050213.4000 | -45555933.1600 | 9.8905 |
| C208_50t_10w | 3602 | 668 | 109087824.3599 | -1125905465.6600 | 109.6888 |
| hh_00_P0 | 349 | 1000 | 147997620950.0366 | 6663651008.2900 | 2120.9689 |
| 111_00_P0 | 73 | 1000 | 8730580967.6700 | 1338732826.5000 | 552.1526 |
| 111_01_P0 | 77 | 1000 | 7096544113.6699 | 1338732826.5000 | 430.0941 |
| 111-02_P0 | 31 | 1000 | 3719583584.4900 | 1338732826.5000 | 177.8436 |
| 111_03_P0 | 43 | 1000 | 3719575520.2600 | 1338732826.5000 | 177.8430 |
| 111_04_P0 | 60 | 1000 | 5353557734.8300 | 1338732826.5000 | 299.8973 |
| 111_05_P0 | 45 | 1000 | 5509237313.5999 | 1307660206.1200 | 321.3049 |
| 111_06_P0 | 53 | 1000 | 8730559873.5401 | 1214281948.4400 | 618.9895 |
| 111_07_P0 | 73 | 1000 | 2132222396.3500 | 1338732826.5000 | 59.2716 |

| Instance | Table E. 4 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| RC201_50t_10w | 255 | 1000 | -123364159.9800 | -125096456.0400 | 1.3847 |
| RC202_100t_20w | 710 | 1000 | 2734431573.8397 | -848419159.5200 | 422.2972 |
| RC202_25t_5w | 57 | 1000 | -609805.6999 | -5171480.4200 | 88.2082 |
| RC202_50t_10w | 249 | 1000 | 77921659.6798 | -125096955.0600 | 162.2890 |
| RC203_100t_20w | 1440 | 1000 | 1083509143.1997 | -915968950.1800 | 218.2910 |
| RC203_25t_5w | 142 | 1000 | -554284.4599 | -5171505.3800 | 89.2819 |
| RC203_50t_10w | 510 | 1000 | 77055884.3598 | -125096765.1800 | 161.5970 |
| RC204_100t_20w | 2385 | 1000 | 1088914102.8798 | -1032155821.9000 | 205.4990 |
| RC204_25t_5w | 145 | 1000 | -275958.5399 | -5060413.3600 | 94.5467 |
| RC204_50t_10w | 864 | 1000 | 12990559.6799 | -125097014.9000 | 110.3843 |
| RC205_100t_20w | 857 | 1000 | 1902216215.3399 | -856525543.8000 | 322.0851 |
| RC205_25t_5w | 45 | 1000 | -387368.5399 | -5171462.0600 | 92.5094 |
| RC205_50t_10w | 304 | 1000 | 12125163.7398 | -125096766.4200 | 109.6926 |
| RC206_100t_20w | 1229 | 1000 | -559305450.6601 | -905161565.1000 | 38.2093 |
| RC206_25t_5w | 67 | 1000 | -609644.1199 | -5171397.9400 | 88.2112 |
| RC206_50t_10w | 426 | 1000 | -122065416.8601 | -125097137.7600 | 2.4234 |
| RC207_100t_20w | 1777 | 1000 | 1931938179.4799 | -907864881.6600 | 312.8001 |
| RC207_25t_5w | 80 | 1000 | 168827.2399 | -5059890.2000 | 103.3365 |
| RC207_50t_10w | 552 | 1000 | -119468890.7601 | -122499526.2000 | 2.4739 |
| RC208_100t_20w | 2392 | 1000 | 4393459958.3199 | -978116228.2000 | 549.1756 |
| RC208_25t_5w | 105 | 1000 | -4781866.9399 | -5060744.0000 | 5.5105 |
| RC208_50t_10w | 603 | 1000 | -51939735.4400 | -125096819.1800 | 58.4803 |
| test150-0-0-0-0_d0_tw0 | 3602 | 684 | 101050622678.1997 | -28349336446.9000 | 456.4479 |
| test150-0-0-0-0_d0_tw1 | 1739 | 1000 | -24141770230.7996 | -30832491493.7000 | 21.7002 |
| test150-0-0-0-0_d0_tw2 | 1237 | 1000 | 7242547420.0989 | -28832172176.8000 | 125.1196 |
| test150-0-0-0-0_d0_tw3 | 930 | 1000 | 6897666282.2002 | -27383664735.0000 | 125.1889 |
| test150-0-0-0-0_d0_tw4 | 1060 | 1000 | 132434939872.1001 | -26142085667.0000 | 606.5966 |
| test250-0-0-0-0_d0_tw0 | - | - | - | 23650649218.5000 | - |
| test250-0-0-0-0_d0_tw1 | - | - | - | -292254131472.0000 | - |
| test250-0-0-0-0_d0_tw2 | - | - | - | -275698693917.1000 | - |
| test250-0-0-0-0_d0_tw3 | - | - | - | -266914175565.0000 | - |
| test250-0-0-0-0_d0_tw4 | - | - | - | -231776103927.7000 | - |
| test50-0-0-0-0_d0_tw0 | 1062 | 969 | -842598897.8999 | -842599324.2000 | 0.0000 |
| test50-0-0-0-0_d0_tw1 | 322 | 1000 | -842598628.3999 | -842599506.6000 | 0.0001 |
| test50-0-0-0-0_d0_tw2 | 300 | 1000 | -842598505.9000 | -842599560.3000 | 0.0001 |
| test50-0-0-0-0_d0_tw3 | 235 | 1000 | -842597557.8000 | -842598590.0000 | 0.0001 |
| test50-0-0-0-0_d0_tw4 | 256 | 1000 | -842598879.0000 | -842599753.8000 | 0.0001 |

E. 5 Tabu Search Results: Config. 5

Table E.5: Tabu Search experiments results with parameter configuration 5

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 51 | 1000 | 77610314919.4900 | 71563566909.3600 | 8.4494 |
| 10_District1 | 375 | 1000 | 9859295456013.5200 | 8218857439409.0600 | 19.9594 |
| 10_District2 | 648 | 1000 | 52718867462.9899 | 27771011394.0200 | 89.8341 |
| 10_District3 | 136 | 1000 | 135190120879.8601 | 139155792160.4600 | 2.9334 * |
| 10_District4 | 976 | 1000 | 28824022749673.9530 | 21291228411410.1000 | 35.3798 |
| 10_District5 | 828 | 1000 | 42657438984971.2600 | 37249297856014.8000 | 14.5187 |
| 11_District0 | 85 | 1000 | 4231488549.9500 | 3046672128.3800 | 38.8888 |
| 11_District1 | 931 | 1000 | 7519784104587.9960 | 6157994611789.7000 | 22.1141 |
| 11_District2 | 87 | 1000 | 15673266449.6800 | 9214556192.4000 | 70.0924 |
| 11_District3 | 198 | 1000 | 72572873852.9499 | 61007292651.7800 | 18.9577 |
| 11_District4 | 1673 | 1000 | 28327341544190.6520 | 22460659385239.4000 | 26.1198 |
| 11_District5 | 1169 | 1000 | 17354107747842.5300 | 15643005576898.3000 | 10.9384 |
| 12_District0 | 70 | 1000 | 131534476913.1199 | 115036288619.9000 | 14.3417 |
| 12_District1 | 1303 | 1000 | 46524033514596.0800 | 37877356021322.0000 | 22.8280 |
| 12_District2 | 251 | 1000 | 189900328960.9298 | 153054550706.1000 | 24.0736 |
| 12_District3 | 467 | 1000 | 281321238143.1900 | 239836499336.7000 | 17.2970 |
| 12_District4 | 1610 | 1000 | 69976301190337.2660 | 59129219661289.8000 | 18.3447 |
| 12_District5 | 1537 | 1000 | 76856001634357.9400 | 65945373929847.0000 | 16.5449 |
| 13_District0 | 34 | 1000 | 176227768554.3200 | 154315121626.0000 | 14.1999 |
| 13_District1 | 631 | 1000 | 19871772650002.9260 | 14674175609787.1000 | 35.4200 |
| 13_District2 | 378 | 1000 | 154666155183.3599 | 126837068235.0100 | 21.9408 |
| 13_District3 | 1234 | 1000 | 513972607706.4299 | 429665639491.2800 | 19.6215 |
| 13_District4 | 1213 | 1000 | 34944914457256.2730 | 30033656135618.7000 | 16.3525 |
| 13_District5 | 862 | 1000 | 56929657841132.4100 | 42764648834839.3000 | 33.1231 |
| 14_District0 | 72 | 1000 | 36580402569.8800 | 34977146773.4600 | 4.5837 |
| 14_District1 | 1067 | 1000 | 14524429777197.5840 | 12434388027267.4000 | 16.8085 |
| 14_District2 | 152 | 1000 | 117890501676.8599 | 90165619840.7900 | 30.7488 |
| 14_District3 | 419 | 1000 | 286452721000.2198 | 262406322982.9800 | 9.1638 |
| 14_District4 | 1025 | 1000 | 43274108721617.1600 | 31546738861338.4000 | 37.1745 |
| 14_District5 | 906 | 1000 | 50752031506542.5160 | 44524141233501.8000 | 13.9876 |
| 15_District0 | 67 | 1000 | 58854582696.0899 | 42188641727.2300 | 39.5033 |
| 15_District1 | 1102 | 1000 | 14069935349289.4470 | 12317798430422.9000 | 14.2244 |
| 15_District2 | 545 | 1000 | 94700044092.7600 | 67421894826.9300 | 40.4588 |
| 15_District3 | 901 | 1000 | 452400421567.4308 | 463823619193.1600 | 2.5250 * |
| 15_District4 | 875 | 1000 | 32194102455076.9380 | 22834329911998.4000 | 40.9899 |
| 15_District5 | 878 | 1000 | 33961376146576.4570 | 28700034523627.8000 | 18.3321 |
| 16_District0 | 26 | 1000 | 126976451412.8699 | 120807470457.0500 | 5.1064 |
| 16_District1 | 502 | 1000 | 15793501181685.3070 | 12316160134202.9000 | 28.2339 |
| 16_District2 | 137 | 1000 | 119935584173.3399 | 94504646913.7700 | 26.9097 |
| 16_District3 | 315 | 1000 | 273024373859.2299 | 210518442436.7200 | 29.6914 |
| 16_District4 | 1172 | 1000 | 35952100828187.3600 | 28327769996973.5000 | 26.9146 |
| 16_District5 | 1715 | 1000 | 54102712144284.7300 | 48522145053303.8000 | 11.5010 |
| 17_District0 | 29 | 1000 | 68887283461.8000 | 60633779564.4100 | 13.6120 |
| 17_District1 | 659 | 1000 | 13404875141608.5880 | 12050832937058.4000 | 11.2360 |

| Instance | Table E. 5 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 17_District2 | 337 | 1000 | 137388519267.1899 | 111787046906.6000 | 22.9020 |
| 17_District3 | 106 | 1000 | 230540177487.3401 | 178730940805.7800 | 28.9872 |
| 17_District4 | 1218 | 1000 | 22294458031455.2340 | 19092974442252.1000 | 16.7678 |
| 17_District5 | 911 | 1000 | 28598180584785.0620 | 23886759047749.6000 | 19.7239 |
| 18_District0 | 6 | 1000 | 2903112973.2800 | 2341527488.6000 | 23.9837 |
| 18_District1 | 362 | 1000 | 15347660439622.5760 | 13924688690304.7000 | 10.2190 |
| 18_District2 | 145 | 1000 | 6910511088.1000 | 4417358464.4100 | 56.4398 |
| 18_District3 | 60 | 1000 | 72389156352.7300 | 70920528499.0700 | 2.0708 |
| 18_District4 | 883 | 1000 | 21449713637219.9300 | 18718722507656.5000 | 14.5896 |
| 18_District5 | 419 | 1000 | 15543852583612.3090 | 12641617614178.6000 | 22.9577 |
| 19_District0 | 51 | 1000 | 56479422814.1199 | 55462969817.4300 | 1.8326 |
| 19_District1 | 1003 | 1000 | 26413497392708.1800 | 22401449014876.9000 | 17.9097 |
| 19_District2 | 301 | 1000 | 180362880232.3901 | 153280470262.9000 | 17.6685 |
| 19_District3 | 380 | 1000 | 274547752181.1901 | 243569037679.2000 | 12.7186 |
| 19_District4 | 3601 | 928 | 129861724782360.6700 | 106192108824987.0000 | 22.2894 |
| 19_District5 | 1048 | 1000 | 92374621349656.3100 | 78807991381031.8000 | 17.2147 |
| 1_District0 | 86 | 1000 | 435637504247.2400 | 430590936121.1900 | 1.1720 |
| 1_District1 | 1401 | 1000 | 64113401266731.5800 | 56270206789859.1000 | 13.9384 |
| 1_District2 | 244 | 1000 | 759126474932.5096 | 672001346398.5800 | 12.9650 |
| 1_District3 | 620 | 1000 | 1245277165285.8801 | 1031045184732.7300 | 20.7781 |
| 1_District4 | 3113 | 1000 | 89000469461106.8300 | 73732177837593.4000 | 20.7077 |
| 1_District5 | 1262 | 1000 | 104180529283572.0200 | 91806570717137.9000 | 13.4782 |
| 20_District0 | 25 | 1000 | 101142027531.8000 | 98421186256.3800 | 2.7644 |
| 20_District1 | 633 | 1000 | 20166473748877.4140 | 17222315357479.6000 | 17.0950 |
| 20_District2 | 526 | 1000 | 39835580284.6499 | 27378465012.0200 | 45.4996 |
| 20_District3 | 806 | 1000 | 332285164824.6803 | 305213925793.8100 | 8.8695 |
| 20_District4 | 1346 | 1000 | 30556157284792.6700 | 24960379220572.1000 | 22.4186 |
| 20_District5 | 1161 | 1000 | 54096789514340.4500 | 48965990159239.8000 | 10.4782 |
| 21_District0 | 113 | 1000 | 130523686478.3801 | 120414278382.3300 | 8.3955 |
| 21_District1 | 953 | 1000 | 20356277402674.2970 | 16893868904739.4000 | 20.4950 |
| 21_District2 | 323 | 1000 | 103704174438.7400 | 62666013838.2000 | 65.4871 |
| 21_District3 | 373 | 1000 | 1083818307996.6499 | 892017226174.9800 | 21.5019 |
| 21_District4 | 1424 | 1000 | 27599158275505.6500 | 24304758516183.0000 | 13.5545 |
| 21_District5 | 964 | 1000 | 57789774017343.4800 | 45930297567746.2000 | 25.8205 |
| 22_District0 | 19 | 1000 | 155463600461.7400 | 138906549645.3000 | 11.9195 |
| 22_District1 | 420 | 1000 | 17528245590773.4550 | 14071948171020.4000 | 24.5616 |
| 22_District2 | 97 | 1000 | 288789611709.5702 | 226837888943.8600 | 27.3110 |
| 22_District3 | 569 | 1000 | 389586838914.7998 | 285892462254.7700 | 36.2704 |
| 22_District4 | 988 | 1000 | 36430067637167.2660 | 29074924558505.3000 | 25.2972 |
| 22_District5 | 833 | 1000 | 49609639676068.9840 | 42772519577575.2000 | 15.9848 |
| 23_District0 | 22 | 1000 | 35374081297.1500 | 32906581132.3800 | 7.4985 |
| 23_District1 | 1199 | 1000 | 20056201128206.6600 | 17211576588480.4000 | 16.5273 |
| 23_District2 | 141 | 1000 | 237060608258.7398 | 183871311138.5000 | 28.9274 |
| 23_District3 | 1444 | 1000 | 286075456109.0404 | 250619333021.8100 | 14.1474 |
| 23_District4 | 1447 | 1000 | 44124735609381.3750 | 34555727151866.1000 | 27.6915 |
| 23_District5 | 968 | 1000 | 82318311632011.2200 | 70608343796642.5000 | 16.5843 |
| 24_District0 | 68 | 1000 | 120568897844.4298 | 105830236823.5000 | 13.9267 |
| 24_District1 | 814 | 1000 | 14601551656495.2070 | 11389191027676.9000 | 28.2053 |
| 24_District2 | 270 | 1000 | 29036331044.5499 | 26055867878.7800 | 11.4387 |
| 24_District3 | 580 | 1000 | 176442969278.3299 | 159315579521.2200 | 10.7506 |
| 24_District4 | 1561 | 1000 | 28069693758227.9500 | 24517137738123.8000 | 14.4900 |
| 24_District5 | 487 | 1000 | 29285060431772.2460 | 24738655441667.6000 | 18.3777 |
| 25_District0 | 35 | 1000 | 1616801116.4000 | 1255504790.1000 | 28.7769 |
| 25_District1 | 643 | 1000 | 7110320772712.6380 | 6071232244353.8300 | 17.1149 |
| 25_District2 | 23 | 1000 | 3087105815.5599 | 2430507030.7800 | 27.0148 |
| 25_District3 | 124 | 1000 | 62741036683.0999 | 54825213021.3900 | 14.4382 |
| 25_District4 | 1193 | 1000 | 25996861803541.5400 | 20503174454937.0000 | 26.7943 |
| 25_District5 | 747 | 1000 | 12241327060108.4200 | 11011719621667.4000 | 11.1663 |
| 26_District0 | 115 | 1000 | 237401249998.5500 | 225380467772.9800 | 5.3335 |
| 26_District1 | 649 | 1000 | 48987132161122.1500 | 42180173025536.8000 | 16.1378 |
| 26_District2 | 114 | 1000 | 364719781615.1997 | 282951685653.1000 | 28.8982 |
| 26_District3 | 735 | 1000 | 1292287659214.3389 | 1171533328289.0400 | 10.3073 |
| 26_District4 | 2248 | 1000 | 126120081289807.2700 | 105580668249051.0000 | 19.4537 |
| 26_District5 | 1606 | 1000 | 88272702517243.4700 | 76363123397244.6000 | 15.5959 |
| 27_District0 | 61 | 1000 | 167039512085.8001 | 162479691641.3000 | 2.8063 |
| 27_District1 | 662 | 1000 | 24319276435195.9730 | 18425601260045.1000 | 31.9863 |
| 27_District2 | 583 | 1000 | 85658870203.8001 | 61192189969.0700 | 39.9833 |
| 27_District3 | 225 | 1000 | 134886328661.2399 | 116712931257.8400 | 15.5710 |
| 27_District4 | 1279 | 1000 | 42830700078064.5100 | 33778988955119.3000 | 26.7968 |
| 27_District5 | 1138 | 1000 | 46799178020401.0300 | 39568513214098.5000 | 18.2737 |
| 28_District0 | 24 | 1000 | 124370598128.5300 | 102108349093.8000 | 21.8025 |
| 28_District1 | 1359 | 1000 | 16751294190753.8380 | 15128335139531.3000 | 10.7279 |
| 28_District2 | 174 | 1000 | 80112017557.5800 | 64692968024.3600 | 23.8341 |
| 28_District3 | 527 | 1000 | 957802714175.6798 | 805624097687.0900 | 18.8895 |
| 28_District4 | 1188 | 1000 | 28571951497097.7540 | 22982825117023.6000 | 24.3187 |
| 28_District5 | 779 | 1000 | 41410160521065.4840 | 33791534896023.1000 | 22.5459 |
| 29_District0 | 84 | 1000 | 36311987243.3600 | 29353316624.4500 | 23.7065 |
| 29_District1 | 349 | 1000 | 8894568991971.7270 | 7484826255380.2500 | 18.8346 |
| 29_District2 | 340 | 1000 | 103115397025.0699 | 101233312043.5700 | 1.8591 |
| 29_District3 | 590 | 1000 | 289675147038.2499 | 232601979076.2900 | 24.5368 |
| 29_District4 | 1202 | 1000 | 10869563929843.5680 | 8309110124637.3200 | 30.8150 |
| 29_District5 | 1423 | 1000 | 40098034357696.8600 | 35670467010142.6000 | 12.4124 |
| 2_District0 | 115 | 1000 | 172278308041.7100 | 147005506881.3000 | 17.1917 |
| 2_District1 | 765 | 1000 | 45459857429067.4450 | 39540340925649.8000 | 14.9708 |
| 2_District2 | 289 | 1000 | 213471461825.7700 | 217829855689.6200 | 2.0416 * |
| 2_District3 | 256 | 1000 | 1104883688153.2100 | 858787147589.8100 | 28.6562 |
| 2_District4 | 2097 | 1000 | 74239030120333.2500 | 58876326066126.1000 | 26.0931 |
| 2_District5 | 1212 | 1000 | 112136908652761.6000 | 95903342380824.9000 | 16.9270 |
| 30_District0 | 18 | 1000 | 16304517979.9500 | 14856579555.0000 | 9.7461 |
| 30_District1 | 465 | 1000 | 4897044477337.7070 | 4288991390631.0100 | 14.1770 |
| 30_District2 | 231 | 1000 | 42341563154.6299 | 28984654012.0000 | 46.0826 |
| 30_District3 | 179 | 1000 | 130882107697.1599 | 140260859804.8700 | 7.1658 * |
| 30_District4 | 1089 | 1000 | 6957178114976.4290 | 6033193692111.0700 | 15.3150 |
| 30_District5 | 1006 | 1000 | 6652589252190.8170 | 5491783393822.4800 | 21.1371 |
| 3_District0 | 22 | 1000 | 107681232956.4300 | 90701681116.3600 | 18.7202 |
| 3_District1 | 714 | 1000 | 21669256497445.5620 | 17931112587450.7000 | 20.8472 |
| 3_District2 | 376 | 1000 | 196614004269.0600 | 184423936337.4900 | 6.6098 |

| Instance | Table E. 5 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 3_District3 | 617 | 1000 | 1028904180650.5793 | 837894240881.4400 | 2.7964 |
| 3_District4 | 2994 | 1000 | 84273459822075.7700 | 67042838268903.4000 | 25.7009 |
| 3_District5 | 1261 | 1000 | 71450369212445.9400 | 60566955554266.6000 | 17.9692 |
| 4_District0 | 18 | 1000 | 21123207758.1200 | 20379141775.5100 | 3.6511 |
| 4_District1 | 803 | 1000 | 18201531064023.1170 | 16091560843817.3000 | 13.1122 |
| 4_District2 | 135 | 1000 | 23954524801.7300 | 19771989271.8700 | 21.1538 |
| 4_District3 | 154 | 1000 | 37506527480.3199 | 31243041764.1500 | 20.0476 |
| 4_District4 | 2250 | 1000 | 55827883212635.5600 | 44497725128783.0000 | 25.4623 |
| 4_District5 | 1014 | 1000 | 35485732192312.5100 | 30292083288905.3000 | 17.1452 |
| 5_District0 | 88 | 1000 | 111830368871.1999 | 105305055950.1000 | 6.1965 |
| 5_District1 | 549 | 1000 | 26958729717452.4450 | 22578812619408.6000 | 19.3983 |
| 5_District2 | 247 | 1000 | 80738320475.2001 | 49746631100.9200 | 62.2990 |
| 5_District3 | 743 | 1000 | 368339564893.9703 | 366270241695.4900 | 0.5649 |
| 5_District4 | 1547 | 1000 | 87052360312381.4500 | 68243049339872.1000 | 27.5622 |
| 5_District5 | 1266 | 1000 | 144263825380312.4000 | 121803986176569.0000 | 18.4393 |
| 6_District0 | 27 | 1000 | 213300477607.6500 | 174024536017.0000 | 22.5691 |
| 6_District1 | 1176 | 1000 | 29757855339023.4100 | 24635464198083.6000 | 20.7927 |
| 6_District2 | 421 | 1000 | 314596614955.7901 | 263920214770.7000 | 19.2014 |
| 6_District3 | 418 | 1000 | 306714848859.6501 | 272026860685.1900 | 12.7516 |
| 6_District4 | 1128 | 1000 | 41017633874659.3900 | 32671893526336.1000 | 25.5440 |
| 6_District5 | 1159 | 1000 | 65047160187885.1250 | 52577668995018.6000 | 23.7163 |
| 7_District0 | 77 | 1000 | 59560706885.9500 | 53992400830.1800 | 10.3131 |
| 7_District1 | 1575 | 1000 | 28469891691201.0230 | 25530776489059.8000 | 11.5120 |
| 7_District2 | 74 | 1000 | 113460433555.3699 | 96812988604.0900 | 17.1954 |
| 7_District3 | 171 | 1000 | 800391610726.7496 | 627921570619.9200 | 27.4668 |
| 7_District4 | 1123 | 1000 | 38983888110125.7900 | 30888008083772.9000 | 26.2104 |
| 7_District5 | 1918 | 1000 | 59599457455793.6500 | 52214576657422.1000 | 14.1433 |
| 8_District0 | 32 | 1000 | 57657098453.0400 | 47815962594.9100 | 20.5812 |
| 8_District1 | 898 | 1000 | 15922201158605.7680 | 13654929607346.6000 | 16.6040 |
| 8_District2 | 190 | 1000 | 79434821039.0800 | 73150043166.7900 | 8.5916 |
| 8_District3 | 446 | 1000 | 426128062720.5102 | 367102727288.8900 | 16.0786 |
| 8_District4 | 995 | 1000 | 35399491028950.2900 | 29816748603227.9000 | 18.7235 |
| 8_District5 | 613 | 1000 | 50474401568700.1000 | 40450402089088.4000 | 24.7809 |
| 9_District0 | 12 | 1000 | 112307266806.7400 | 100093204504.3000 | 12.2026 |
| 9_District1 | 439 | 1000 | 14420982580619.1700 | 12178217016824.2000 | 18.4162 |
| 9_District2 | 97 | 1000 | 115774157223.7899 | 89342594098.5600 | 29.5845 |
| 9_District3 | 405 | 1000 | 1254004008182.2605 | 911115793606.4100 | 37.6338 |
| 9_District4 | 1523 | 1000 | 48344285222867.3100 | 37164202673658.1000 | 30.0829 |
| 9_District5 | 707 | 1000 | 32702225945411.4060 | 25382936280280.4000 | 28.8354 |
| C101_100t_20w | 205 | 1000 | 91727502838.5603 | -12304901708.1200 | 845.4549 |
| C101_25t_5w | 13 | 1000 | 116646360.5600 | 9512566.6400 | 1126.2343 |
| C101_50t_10w | 46 | 1000 | 2025857421.8399 | -1079154704.1200 | 287.7263 |
| C102_100t_20w | 862 | 1000 | 98901313024.3402 | -5155408825.8200 | 2018.3990 |
| C102_25t_5w | 29 | 1000 | 116145843.0199 | -37546115.7600 | 409.3418 |
| C102_50t_10w | 190 | 1000 | 3140078105.8398 | -1102530180.6200 | 384.8065 |
| C103_100t_20w | 2413 | 1000 | 39930163004.1205 | -7222438475.8600 | 652.8626 |
| C103_25t_5w | 171 | 1000 | 111139618.8199 | -43052838.4600 | 358.1470 |
| C103_50t_10w | 1014 | 1000 | 3743938477.6599 | -1110321792.2400 | 437.1940 |
| C104_100t_20w | 3600 | 836 | 17314423586.3605 | -8681519205.2400 | 299.4400 |
| C104_25t_5w | 354 | 1000 | 113142010.7999 | -33540706.8600 | 437.3274 |
| C104_50t_10w | 2351 | 1000 | 1305120952.8799 | -1086946666.3200 | 220.0722 |
| C105_100t_20w | 516 | 1000 | 77185339028.9999 | -12158993843.3000 | 734.8003 |
| C105_25t_5w | 20 | 1000 | 154693876.4199 | 1002190.7200 | 15335.5726 |
| C105_50t_10w | 125 | 1000 | 3186828351.9399 | -1102529614.6600 | 389.0469 |
| C106_100t_20w | 677 | 1000 | 54739825368.8202 | -5349954009.7600 | 1123.1831 |
| C106_25t_5w | 22 | 1000 | 116646508.9600 | 9512566.6400 | 1126.2359 |
| C106_50t_10w | 77 | 1000 | 1379142584.3799 | -1086946589.7000 | 226.8822 |
| C107_100t_20w | 929 | 1000 | 69525168735.1598 | -6979258964.6200 | 1096.1683 |
| C107_25t_5w | 32 | 1000 | 151189564.6599 | -2001420.3200 | 7654.1136 |
| C107_50t_10w | 232 | 1000 | 3747834654.6599 | -1125905161.9000 | 432.8730 |
| C108_100t_20w | 1387 | 1000 | 39735619043.3798 | -6492899831.1000 | 711.9857 |
| C108_25t_5w | 50 | 1000 | 110138370.2199 | -8009072.9800 | 1475.1700 |
| C108_50t_10w | 368 | 1000 | 2551800875.0799 | -1125905177.3200 | 326.6443 |
| C109_100t_20w | 2629 | 1000 | 47006701457.3999 | -6614488230.8200 | 810.6627 |
| C109_25t_5w | 65 | 1000 | 77597819.7000 | -26031566.9600 | 398.0912 |
| C109_50t_10w | 694 | 1000 | 2524529654.7199 | -1125905761.1800 | 324.2221 |
| C201_100t_20w | 1212 | 1000 | -12596716053.9600 | -12596720162.2300 | 0.0000 |
| C201_25t_5w | 134 | 1000 | -45555894.0200 | -45555916.9200 | 0.0000 |
| C201_50t_10w | 337 | 1000 | -506460875.0600 | -1125905241.3800 | 55.0174 |
| C202_100t_20w | 3604 | 547 | 39322214142.4203 | -6055175633.1600 | 749.3984 |
| C202_25t_5w | 742 | 1000 | -45555860.5800 | -45555950.8800 | 0.0001 |
| C202_50t_10w | 2349 | 1000 | 685677219.4399 | -1125905361.9600 | 160.9000 |
| C203_100t_20w | 3604 | 214 | 24536869879.3203 | -6930623788.8800 | 454.0355 |
| C203_25t_5w | 3607 | 595 | -42551987.5001 | -45555956.2400 | 6.5940 |
| C203_50t_10w | 2727 | 370 | 709052735.5999 | -1125905456.0600 | 162.9762 |
| C204_100t_20w | 277 | 22 | 565879861697.6803 | -8657198950.2400 | 6636.5237 |
| C204_25t_5w | 3607 | 521 | -6506972.4800 | -45555977.0000 | 85.7165 |
| C204_50t_10w | 844 | 102 | 93504394.2998 | -1125905585.1400 | 108.3048 |
| C205_100t_20w | 3604 | 984 | 9702889586.1598 | -12596718687.8400 | 177.0271 |
| C205_25t_5w | 343 | 1000 | -45555905.7600 | -45555926.8000 | 0.0000 |
| C205_50t_10w | 1045 | 1000 | -522044220.5000 | -1125905403.9800 | 53.6333 |
| C206_100t_20w | 3602 | 404 | 31953859516.5598 | -7733117210.9600 | 513.2080 |
| C206_25t_5w | 523 | 1000 | -45555838.6800 | -45555926.8000 | 0.0001 |
| C206_50t_10w | 2119 | 1000 | 677885628.8399 | -1125905541.4200 | 160.2080 |
| C207_100t_20w | 3607 | 272 | 24488233802.3396 | -7222438653.2400 | 439.0576 |
| C207_25t_5w | 565 | 1000 | -44053971.9800 | -45555933.4200 | 3.2969 |
| C207_50t_10w | 3604 | 533 | -498668527.7600 | -1125905455.9000 | 55.7095 |
| C208_100t_20w | 3617 | 307 | 24536869467.2000 | -8657201177.3800 | 383.4272 |
| C208_25t_5w | 791 | 1000 | -45555831.4600 | -45555933.1600 | 0.0002 |
| C208_50t_10w | 3434 | 1000 | 697364998.0999 | -1125905465.6600 | 161.9381 |
| hh_00_P0 | 328 | 1000 | 855509231017.3870 | 6663651008.2900 | 12738.4459 |
| 111_00_P0 | 68 | 1000 | 10395714853.6900 | 1338732826.5000 | 676.5339 |
| 111_01_P0 | 69 | 1000 | 8761695462.9999 | 1338732826.5000 | 554.4767 |
| 111_02_P0 | 71 | 1000 | 8761705984.6401 | 1338732826.5000 | 554.4775 |
| 111_03_P0 | 71 | 1000 | 10364606753.6001 | 1338732826.5000 | 674.2102 |
| 111_04_P0 | 75 | 1000 | 10333442162.1100 | 1338732826.5000 | 671.8823 |
| 111_05_P0 | 66 | 1000 | 15360038245.1100 | 1307660206.1200 | 1074.6199 |

| Instance | Table E. 5 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 111_06_P0 | 71 | 1000 | 12029720714.7801 | 1214281948.4400 | 890.6859 |
| 111_07_P0 | 71 | 1000 | 5431391939.7000 | 1338732826.5000 | 305.7114 |
| 112_00_P0 | 97 | 1000 | 402247583.6998 | 85352916.2700 | 371.2757 |
| 113_00_P0 | 94 | 1000 | -179672936.1900 | -198615845.6200 | 9.5374 |
| R101_100t_20w | 18 | 1000 | 28343983676.1399 | 6319981502.8600 | 348.4820 |
| R101_25t_5w | 3 | 1000 | 56738175.0199 | 47893886.5800 | 18.4664 |
| R101_50t_10w | 5 | 1000 | 1309881552.8798 | 709051142.3992 | 84.7372 |
| R102_100t_20w | 48 | 1000 | 20921590111.9998 | 14101742003.1800 | 48.3617 |
| R102_25t_5w | 4 | 1000 | 38715883.0199 | 34655177.0000 | 11.7174 |
| R102_50t_10w | 11 | 1000 | 973537982.1599 | 641955625.9388 | 51.6519 |
| R103_100t_20w | 136 | 1000 | 19284178221.0998 | 12469734030.7400 | 54.6478 |
| R103_25t_5w | 9 | 1000 | 33932065.1800 | 30260803.3400 | 12.1320 |
| R103_50t_10w | 19 | 1000 | 896919196.0999 | 570531480.7600 | 57.2076 |
| R104_100t_20w | 196 | 1000 | 18470876623.0598 | 14023383931.9600 | 31.7148 |
| R104_25t_5w | 8 | 1000 | 30372075.3399 | 29982663.2800 | 1.2987 |
| R104_50t_10w | 42 | 1000 | 760563926.4399 | 293491458.8800 | 159.1434 |
| R105_100t_20w | 50 | 1000 | 24201817987.1599 | 8424839701.0800 | 187.2674 |
| R105_25t_5w | 4 | 1000 | 47782625.1399 | 35155829.6400 | 35.9166 |
| R105_50t_10w | 8 | 1000 | 1041932251.5599 | 388290958.0600 | 168.3380 |
| R106_100t_20w | 86 | 1000 | 23345284257.8198 | 8443754034.7200 | 176.4799 |
| R106_25t_5w | 5 | 1000 | 38493331.4999 | 30483330.4600 | 26.2766 |
| R106_50t_10w | 13 | 1000 | 901247796.8799 | 303880567.4400 | 196.5796 |
| R107_100t_20w | 149 | 1000 | 20113692439.8597 | 11634816307.3400 | 72.8750 |
| R107_25t_5w | 8 | 1000 | 34098937.7599 | 22028382.6800 | 54.7954 |
| R107_50t_10w | 24 | 1000 | 832420808.0200 | 372274723.4800 | 123.6039 |
| R108_100t_20w | 223 | 1000 | 16028268646.7598 | 12369760088.0800 | 29.5762 |
| R108_25t_5w | 9 | 1000 | 26033326.4599 | 26033406.5200 | 0.0003 * |
| R108_50t_10w | 49 | 1000 | 699095504.0799 | 293491505.9600 | 138.1995 |
| R109_100t_20w | 99 | 1000 | 18454664083.6199 | 6636116061.1200 | 178.0943 |
| R109_25t_5w | 5 | 1000 | 38437744.6000 | 26255954.0600 | 46.3962 |
| R109_50t_10w | 15 | 1000 | 838913938.4600 | 631133985.4200 | 32.9216 |
| R110_100t_20w | 129 | 1000 | 20138010281.6998 | 7622345982.8200 | 164.1970 |
| R110_25t_5w | 5 | 1000 | 39550222.5599 | 34488424.6600 | 14.6768 |
| R110_50t_10w | 14 | 1000 | 701259778.5999 | 636761297.5800 | 10.1291 |
| R111_100t_20w | 129 | 1000 | 23372304372.9398 | 8473476077.2600 | 175.8290 |
| R111_25t_5w | 5 | 1000 | 34432714.3800 | 26144634.7600 | 31.7008 |
| R111_50t_10w | 21 | 1000 | 831122241.4399 | 496942686.1600 | 67.2471 |
| R112_100t_20w | 226 | 1000 | 20908080380.0198 | 10851236130.0600 | 92.6792 |
| R112_25t_5w | 5 | 1000 | 34655197.5000 | 26311467.9000 | 31.7113 |
| R112_50t_10w | 20 | 1000 | 638060060.4399 | 427249792.1800 | 49.3412 |
| R201_100t_20w | 422 | 1000 | 253994839.7598 | -1383419122.5000 | 118.3599 |
| R201_25t_5w | 52 | 1000 | -5004443.9200 | -5171519.4600 | 3.2306 |
| R201_50t_10w | 171 | 1000 | -124231486.3201 | -125097475.6400 | 0.6922 |
| R202_100t_20w | 1136 | 1000 | 4379948786.1398 | -778169509.0800 | 662.8527 |
| R202_25t_5w | 93 | 1000 | -721464.7200 | -5171550.1800 | 86.0493 |
| R202_50t_10w | 283 | 1000 | 146748317.1199 | -125097689.9000 | 217.3069 |
| R203_100t_20w | 1935 | 1000 | 1907618989.9997 | -891653653.5400 | 313.9417 |
| R203_25t_5w | 267 | 1000 | -554393.6000 | -5171614.5200 | 89.2800 |
| R203_50t_10w | 861 | 1000 | 77055479.7399 | -125097805.5400 | 161.5961 |
| R204_100t_20w | 3601 | 905 | 2726324834.8998 | -1007840112.0800 | 370.5116 |
| R204_25t_5w | 363 | 1000 | -387745.0599 | -5060450.1000 | 92.3377 |
| R204_50t_10w | 2657 | 1000 | 78354311.8399 | -125098025.1800 | 162.6343 |
| R205_100t_20w | 1322 | 1000 | 1896810807.6597 | -910567724.8000 | 308.3107 |
| R205_25t_5w | 108 | 1000 | -721679.2999 | -5171759.2000 | 86.0457 |
| R205_50t_10w | 519 | 1000 | 9094043.7598 | -125097876.3800 | 107.2695 |
| R206_100t_20w | 2144 | 1000 | 5193250386.1198 | -964607487.1800 | 638.3796 |
| R206_25t_5w | 162 | 1000 | -4893465.1600 | -5171813.9000 | 5.3820 |
| R206_50t_10w | 617 | 1000 | 77921377.8798 | -125097837.4400 | 162.2883 |
| R207_100t_20w | 2960 | 1000 | 3555838829.4997 | -1018647805.1000 | 449.0744 |
| R207_25t_5w | 215 | 1000 | -4893192.6600 | -5171794.9600 | 5.3869 |
| R207_50t_10w | 1435 | 1000 | 76189580.1999 | -125097967.7600 | 160.9039 |
| R208_100t_20w | 3602 | 760 | 1078104760.3597 | -1042965700.1000 | 203.3691 |
| R208_25t_5w | 320 | 1000 | -4615143.6400 | -5060560.5800 | 8.8017 |
| R208_50t_10w | 2826 | 1000 | 78354044.4398 | -125098091.9200 | 162.6340 |
| R209_100t_20w | 1599 | 1000 | 4379948681.1399 | -1013243421.1000 | 532.2701 |
| R209_25t_5w | 113 | 1000 | 3561388.3599 | -5060483.0600 | 170.3764 |
| R209_50t_10w | 642 | 1000 | 13855538.1999 | -125097999.8800 | 111.0757 |
| R210_100t_20w | 1897 | 1000 | 4374544627.5798 | -978117773.2200 | 547.2410 |
| R210_25t_5w | 208 | 1000 | -4615260.3600 | -5171642.3200 | 10.7583 |
| R210_50t_10w | 810 | 1000 | 209514901.4999 | -125097934.6800 | 267.4807 |
| R211_100t_20w | 2253 | 1000 | 7676388592.9198 | -942991911.9800 | 914.0460 |
| R211_25t_5w | 184 | 1000 | -610415.9200 | -5060502.8400 | 87.9376 |
| R211_50t_10w | 988 | 1000 | 143284902.7398 | -122500836.0400 | 216.9664 |
| RC101_100t_20w | 41 | 1000 | 30092178382.2198 | 15814809991.8800 | 90.2784 |
| RC101_25t_5w | 4 | 1000 | 39438833.5999 | 27034405.3800 | 45.8838 |
| RC101_50t_10w | 6 | 1000 | 857094402.5400 | 190034189.6200 | 351.0211 |
| RC102_100t_20w | 63 | 1000 | 20935100571.6597 | 15822916717.4800 | 32.3087 |
| RC102_25t_5w | 4 | 1000 | 35322720.5399 | 26645148.4800 | 32.5671 |
| RC102_50t_10w | 7 | 1000 | 781341602.8399 | 578756222.9600 | 35.0035 |
| RC103_100t_20w | 108 | 1000 | 22580618784.7397 | 17527878844.9600 | 28.8268 |
| RC103_25t_5w | 6 | 1000 | 30705762.8999 | 21805915.8800 | 40.8139 |
| RC103_50t_10w | 13 | 1000 | 773117056.3199 | 767922882.8400 | 0.6763 |
| RC104_100t_20w | 174 | 1000 | 20121798982.4197 | 18130424572.1200 | 10.9836 |
| RC104_25t_5w | 6 | 1000 | 26978792.5799 | 25810879.2400 | 4.5248 |
| RC104_50t_10w | 17 | 1000 | 638925988.3199 | 498674346.2200 | 28.1248 |
| RC105_100t_20w | 62 | 1000 | 27519874515.9798 | 10907978098.4200 | 152.2912 |
| RC105_25t_5w | 4 | 1000 | 35100145.5000 | 30761388.4200 | 14.1045 |
| RC105_50t_10w | 9 | 1000 | 982628413.6400 | 448893536.2400 | 118.9001 |
| RC106_100t_20w | 84 | 1000 | 25885164509.9798 | 11529438265.0600 | 124.5136 |
| RC106_25t_5w | 6 | 1000 | 35211517.0399 | 22417682.5200 | 57.0702 |
| RC106_50t_10w | 9 | 1000 | 981762785.9599 | 515989390.5800 | 90.2680 |
| RC107_100t_20w | 113 | 1000 | 29130266772.8798 | 16638920438.6600 | 75.0730 |
| RC107_25t_5w | 5 | 1000 | 30705727.8200 | 30761589.8800 | 0.1819 * |
| RC107_50t_10w | 12 | 1000 | 773550001.5599 | 575726019.2200 | 34.3607 |
| RC108_100t_20w | 155 | 1000 | 21832164794.1197 | 14823176358.6800 | 47.2839 |
| RC108_25t_5w | 6 | 1000 | 34321529.9399 | 30372205.5600 | 13.0030 |
| RC108_50t_10w | 16 | 1000 | 771818545.4799 | 630268451.2000 | 22.4586 |

| Instance | Table E. 5 - continued from previous page | | | | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | Best(SolGH) | |
| RC201_100t_20w | 460 | 1000 | -1388819673.9802 | -1378013035.7800 | 0.7781 * |
| RC201_25t_5w | 47 | 1000 | -4058811.6000 | -5171005.4000 | 21.5082 |
| RC201_50t_10w | 132 | 1000 | -120766859.9402 | -125096456.0400 | 3.4610 |
| RC202_100t_20w | 1119 | 1000 | 4369142523.4196 | -848419159.5200 | 614.9745 |
| RC202_25t_5w | 55 | 1000 | -5171090.3200 | -5171480.4200 | 0.0075 |
| RC202_50t_10w | 217 | 1000 | 77921726.2198 | -125096955.0600 | 162.2890 |
| RC203_100t_20w | 1845 | 1000 | 1913023548.4997 | -915968950.1800 | 308.8524 |
| RC203_25t_5w | 140 | 1000 | -721067.0600 | -5171505.3800 | 86.0569 |
| RC203_50t_10w | 553 | 1000 | 77055884.3598 | -125096765.1800 | 161.5970 |
| RC204_100t_20w | 3604 | 982 | 1907619772.8397 | -1032155821.9000 | 284.8189 |
| RC204_25t_5w | 318 | 1000 | -721314.1199 | -5060413.3600 | 85.7459 |
| RC204_50t_10w | 1462 | 1000 | 76190308.5598 | -125097014.9000 | 160.9049 |
| RC205_100t_20w | 998 | 1000 | 2739836285.9197 | -856525543.8000 | 419.8779 |
| RC205_25t_5w | 72 | 1000 | -276057.1800 | -5171462.0600 | 94.6619 |
| RC205_50t_10w | 222 | 1000 | 77922090.5797 | -125096766.4200 | 162.2894 |
| RC206_100t_20w | 1189 | 1000 | 1078106455.3398 | -905161565.1000 | 219.1065 |
| RC206_25t_5w | 94 | 1000 | -5171185.8799 | -5171397.9400 | 0.0041 |
| RC206_50t_10w | 362 | 1000 | -57999964.4802 | -125097137.7600 | 53.6360 |
| RC207_100t_20w | 1422 | 1000 | 6852279937.0799 | -907864881.6600 | 854.7686 |
| RC207_25t_5w | 97 | 1000 | -721399.1400 | -5059890.2000 | 85.7427 |
| RC207_50t_10w | 506 | 1000 | -119035962.7801 | -122499526.2000 | 2.8274 |
| RC208_100t_20w | 1856 | 1000 | 6857684162.9399 | -978116228.2000 | 801.1113 |
| RC208_25t_5w | 141 | 1000 | -888253.6799 | -5060744.0000 | 82.4481 |
| RC208_50t_10w | 956 | 1000 | 148913526.1999 | -125096819.1800 | 219.0386 |
| test150-0-0-0-0_d0_tw0 | 3478 | 1000 | 101050622678.1997 | -28349336446.9000 | 456.4479 |
| test150-0-0-0-0_d0_tw1 | 1066 | 1000 | -24141770230.7996 | -30832491493.7000 | 21.7002 |
| test150-0-0-0-0_d0_tw2 | 809 | 1000 | 7242547949.4989 | -28832172176.8000 | 125.1196 |
| test150-0-0-0-0_d0_tw3 | 628 | 1000 | 6897666282.2002 | -27383664735.0000 | 125.1889 |
| test150-0-0-0-0_d0_tw 4 | 915 | 1000 | 163819258695.0000 | -26142085667.0000 | 726.6495 |
| test250-0-0-0-0_d0_tw0 | - | - | - | 23650649218.5000 | - |
| test250-0-0-0-0_d0_tw1 | - | - | - | -292254131472.0000 | - |
| test250-0-0-0-0_d0_tw2 | 3600 | 823 | 550721722328.1854 | -275698693917.1000 | 299.7549 |
| test250-0-0-0-0_d0_tw3 | 3451 | 1000 | -214544933324.4147 | -266914175565.0000 | 19.6202 |
| test250-0-0-0-0_d0_tw4 | - | - | - | -231776103927.7000 | - |
| test50-0-0-0-0_d0_tw0 | 1566 | 1000 | -842598576.7999 | -842599324.2000 | 0.0000 |
| test50-0-0-0-0_d0_tw1 | 440 | 1000 | -842598443.2999 | -842599506.6000 | 0.0001 |
| test50-0-0-0-0_d0_tw2 | 331 | 1000 | -842598048.7999 | -842599560.3000 | 0.0001 |
| test50-0-0-0-0_d0_tw3 | 242 | 1000 | -830114535.8999 | -842598590.0000 | 1.4816 |
| test50-0-0-0-0_d0_tw4 | 314 | 1000 | -358882360.4999 | -842599753.8000 | 57.4077 |

E. 6 Tabu Search Results: Config. 6

Table E.6: Tabu Search experiments results with parameter configuration 6

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 795 | 1000 | 71085646155.4499 | 71563566909.3600 | 0.6723 * |
| 10_District1 | - | - | - | 8218857439409.0600 | - |
| 10_District2 | 2438 | 1000 | 43508583609.5400 | 27771011394.0200 | 56.6690 |
| 10_District3 | 1046 | 1000 | 123936186914.5899 | 139155792160.4600 | 12.2801 * |
| 10_District4 | - | - | - | 21291228411410.1000 | - |
| 10_District5 | - | - | - | 37249297856014.8000 | - |
| 11_District0 | 881 | 1000 | 3908937400.3999 | 3046672128.3800 | 28.3018 |
| 11_District1 | - | - | - | 6157994611789.7000 | - |
| 11_District2 | 1731 | 1000 | 13712924670.9100 | 9214556192.4000 | 48.8180 |
| 11_District3 | 742 | 1000 | 62090125847.7100 | 61007292651.7800 | 1.7749 |
| 11_District4 | - | - | - | 22460659385239.4000 | - |
| 11_District5 | - | - | - | 15643005576898.3000 | - |
| 12_District0 | 1165 | 1000 | 143925921444.9800 | 115036288619.9000 | 25.1134 |
| 12_District1 | - | - | - | 37877356021322.0000 | - |
| 12_District2 | 1007 | 1000 | 162025052577.5399 | 153054550706.1000 | 5.8609 |
| 12_District3 | 3604 | 853 | 242708520028.0901 | 239836499336.7000 | 1.1974 |
| 12_District4 | - | - | - | 59129219661289.8000 | - |
| 12_District5 | - | - | - | 65945373929847.0000 | - |
| 13_District0 | 306 | 1000 | 181311502302.1600 | 154315121626.0000 | 17.4943 |
| 13_District1 | - | - | - | 14674175609787.1000 | - |
| 13_District2 | 2580 | 1000 | 116557552317.3498 | 126837068235.0100 | 8.8192 * |
| 13_District3 | 3609 | 226 | 530300834518.4200 | 429665639491.2800 | 23.4217 |
| 13_District4 | - | - | - | 30033656135618.7000 | - |
| 13_District5 | - | - | - | 42764648834839.3000 | - |
| 14_District0 | 724 | 1000 | 36416804859.5300 | 34977146773.4600 | 4.1159 |
| 14_District1 | - | - | - | 12434388027267.4000 | - |
| 14_District2 | 1224 | 1000 | 108838088822.8200 | 90165619840.7900 | 20.7090 |
| 14_District3 | 2155 | 1000 | 222228800264.5702 | 262406322982.9800 | 18.0793 * |
| 14_District4 | - | - | - | 31546738861338.4000 | - |
| 14_District5 | - | - | - | 44524141233501.8000 | - |
| 15_District0 | 550 | 1000 | 61004148965.9300 | 42188641727.2300 | 44.5985 |
| 15_District1 | - | - | - | 12317798430422.9000 | - |
| 15_District2 | 1758 | 1000 | 94622695423.7699 | 67421894826.9300 | 40.3441 |
| 15_District3 | 3198 | 1000 | 387901147155.4305 | 463823619193.1600 | 19.5726^{*} |
| 15_District4 | - | - | - | 22834329911998.4000 | - |
| 15_District5 | - | - | - | 28700034523627.8000 | - |
| 16_District0 | 339 | 1000 | 130510545650.3299 | 120807470457.0500 | 8.0318 |
| 16_District1 | - | - | - | 12316160134202.9000 | - |
| 16_District2 | 817 | 1000 | 106837284359.2600 | 94504646913.7700 | 13.0497 |
| 16_District3 | 3603 | 563 | 263833740604.6900 | 210518442436.7200 | 25.3257 |
| 16_District4 | - | - | - | 28327769996973.5000 | - |
| 16_District5 | - | - | - | 48522145053303.8000 | - |

| Instance | Table E. 6 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 17_District0 | 248 | 1000 | 66676523523.1799 | 60633779564.4100 | 9.9659 |
| 17_District1 | - | - | - | 12050832937058.4000 | - |
| 17_District2 | 1822 | 1000 | 121864222397.2999 | 111787046906.6000 | 9.0146 |
| 17_District3 | 1079 | 1000 | 213795082745.3099 | 178730940805.7800 | 19.6183 |
| 17_District4 | - | - | - | 19092974442252.1000 | - |
| 17_District5 | - | - | - | 23886759047749.6000 | - |
| 18_District0 | 88 | 1000 | 2705606036.6999 | 2341527488.6000 | 15.5487 |
| 18_District1 | - | - | - | 13924688690304.7000 | - |
| 18_District2 | 1743 | 1000 | 6437451587.0199 | 4417358464.4100 | 45.7307 |
| 18_District3 | 445 | 1000 | 58626690166.1500 | 70920528499.0700 | 20.9696 * |
| 18_District4 | - | - | - | 18718722507656.5000 | - |
| 18_District5 | - | - | - | 12641617614178.6000 | - |
| 19_District0 | 877 | 1000 | 47684896990.1200 | 55462969817.4300 | 16.3113 * |
| 19_District1 | - | - | - | 22401449014876.9000 | - |
| 19_District2 | 1997 | 1000 | 159584777961.5400 | 153280470262.9000 | 4.1129 |
| 19_District3 | 2014 | 1000 | 219513932296.3201 | 243569037679.2000 | 10.9583 * |
| 19_District4 | - | - | - | 106192108824987.0000 | - |
| 19_District5 | - | - | - | 78807991381031.8000 | - |
| 1_District0 | 158 | 199 | 479423896740.2198 | 430590936121.1900 | 11.3409 |
| 1_District1 | - | - | - | 56270206789859.1000 | - |
| 1_District2 | 895 | 1000 | 759043419574.2703 | 672001346398.5800 | 12.9526 |
| 1_District3 | 3605 | 333 | 1186556953800.8809 | 1031045184732.7300 | 15.0829 |
| 1_District4 | - | - | - | 73732177837593.4000 | - |
| 1_District5 | - | - | - | 91806570717137.9000 | - |
| 20_District0 | 206 | 1000 | 98403745434.5000 | 98421186256.3800 | 0.0177 * |
| 20_District1 | - | - | - | 17222315357479.6000 | - |
| 20_District2 | 1101 | 567 | 37915178909.7299 | 27378465012.0200 | 38.4854 |
| 20_District3 | 2784 | 488 | 309058977399.1803 | 305213925793.8100 | 1.2597 |
| 20_District4 | - | - | - | 24960379220572.1000 | - |
| 20_District5 | - | - | - | 48965990159239.8000 | - |
| 21_District0 | 1860 | 1000 | 126779461822.4100 | 120414278382.3300 | 5.2860 |
| 21_District1 | - | - | - | 16893868904739.4000 | - |
| 21_District2 | 3167 | 885 | 99570243545.1099 | 62666013838.2000 | 58.8903 |
| 21_District3 | - | - | - | 892017226174.9800 | - |
| 21_District4 | - | - | - | 24304758516183.0000 | - |
| 21_District5 | - | - | - | 45930297567746.2000 | - |
| 22_District0 | 124 | 1000 | 155158869527.7698 | 138906549645.3000 | 11.7001 |
| 22_District1 | - | - | - | 14071948171020.4000 | - |
| 22_District2 | 1102 | 1000 | 234337056419.1298 | 226837888943.8600 | 3.3059 |
| 22_District3 | 3600 | 814 | 328890339632.4797 | 285892462254.7700 | 15.0398 |
| 22_District4 | - | - | - | 29074924558505.3000 | - |
| 22_District5 | - | - | - | 42772519577575.2000 | - |
| 23_District0 | 417 | 1000 | 37920541035.5399 | 32906581132.3800 | 15.2369 |
| 23_District1 | - | - | - | 17211576588480.4000 | - |
| 23_District2 | 924 | 1000 | 221676626879.4699 | 183871311138.5000 | 20.5607 |
| 23_District3 | 2169 | 557 | 234822540472.9705 | 250619333021.8100 | 6.7271 * |
| 23_District4 | - | - | - | 34555727151866.1000 | - |
| 23_District5 | - | - | - | 70608343796642.5000 | - |
| 24_District0 | 1530 | 1000 | 127882819918.6600 | 105830236823.5000 | 20.8376 |
| 24_District1 | - | - | - | 11389191027676.9000 | - |
| 24_District2 | 2002 | 1000 | 23790717266.3099 | 26055867878.7800 | 9.5211 * |
| 24_District3 | 2965 | 432 | 168920805021.7998 | 159315579521.2200 | 6.0290 |
| 24_District4 | - | - | - | 24517137738123.8000 | - |
| 24_District5 | - | - | - | 24738655441667.6000 | - |
| 25_District0 | 491 | 1000 | 1779384188.4899 | 1255504790.1000 | 41.7265 |
| 25_District1 | - | - | - | 6071232244353.8300 | - |
| 25_District2 | 405 | 1000 | 3072595371.8500 | 2430507030.7800 | 26.4178 |
| 25_District3 | 794 | 1000 | 60225323172.5199 | 54825213021.3900 | 9.8496 |
| 25_District4 | - | - | - | 20503174454937.0000 | - |
| 25_District5 | - | - | - | 11011719621667.4000 | - |
| 26_District0 | 1857 | 1000 | 244312280212.7698 | 225380467772.9800 | 8.3999 |
| 26_District1 | - | - | - | 42180173025536.8000 | - |
| 26_District2 | 1069 | 1000 | 365344399515.5498 | 282951685653.1000 | 29.1190 |
| 26_District3 | - | - | - | 1171533328289.0400 | - |
| 26_District4 | - | - | - | 105580668249051.0000 | - |
| 26_District5 | - | - | - | 76363123397244.6000 | - |
| 27_District0 | 781 | 1000 | 162191095687.2999 | 162479691641.3000 | 0.1779 * |
| 27_District1 | - | - | - | 18425601260045.1000 | - |
| 27_District2 | 2671 | 1000 | 81249770189.3299 | 61192189969.0700 | 32.7780 |
| 27_District3 | 1862 | 1000 | 135036770863.5797 | 116712931257.8400 | 15.6999 |
| 27_District4 | - | - | - | 33778988955119.3000 | - |
| 27_District5 | - | - | - | 39568513214098.5000 | - |
| 28_District0 | 188 | 1000 | 124786919510.0899 | 102108349093.8000 | 22.2102 |
| 28_District1 | - | - | - | 15128335139531.3000 | - |
| 28_District2 | 1338 | 1000 | 76708481672.4600 | 64692968024.3600 | 18.5731 |
| 28_District3 | 1275 | 404 | 837122182158.8695 | 805624097687.0900 | 3.9097 |
| 28_District4 | - | - | - | 22982825117023.6000 | - |
| 28_District5 | - | - | - | 33791534896023.1000 | - |
| 29_District0 | 1756 | 1000 | 33451547170.4700 | 29353316624.4500 | 13.9617 |
| 29_District1 | - | - | - | 7484826255380.2500 | - |
| 29_District2 | 2657 | 1000 | 83239449171.6500 | 101233312043.5700 | 21.6169 * |
| 29_District3 | 3600 | 680 | 289675147038.2499 | 232601979076.2900 | 24.5368 |
| 29_District4 | - | - | - | 8309110124637.3200 | - |
| 29_District5 | - | - | - | 35670467010142.6000 | - |
| 2_District0 | 825 | 1000 | 132590196057.8599 | 147005506881.3000 | 10.8720 * |
| 2_District1 | - | - | - | 39540340925649.8000 | - |
| 2_District2 | 3601 | 857 | 213426529463.1201 | 217829855689.6200 | 2.0631 * |
| 2_District3 | 279 | 461 | 972958801223.0298 | 858787147589.8100 | 13.2945 |
| 2_District4 | - | - | - | 58876326066126.1000 | - |
| 2_District5 | - | - | - | 95903342380824.9000 | - |
| 30_District0 | 340 | 1000 | 15598800537.5799 | 14856579555.0000 | 4.9959 |
| 30_District1 | 1512 | 1000 | 4672018963434.8390 | 4288991390631.0100 | 8.9304 |
| 30_District2 | 988 | 1000 | 49059441724.2300 | 28984654012.0000 | 69.2600 |
| 30_District3 | 3605 | 923 | 113935673232.8501 | 140260859804.8700 | 23.1053 * |
| 30_District4 | - | - | - | 6033193692111.0700 | - |
| 30_District5 | - | - | - | 5491783393822.4800 | - |
| 3_District0 | 340 | 1000 | 104223578893.8500 | 90701681116.3600 | 14.9081 |

| Instance | Table E. 6 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 3_District1 | - | - | - | 17931112587450.7000 | - |
| 3_District2 | 1902 | 1000 | 182379150986.7996 | 184423936337.4900 | 1.1211 * |
| 3_District3 | 3601 | 502 | 925912592278.8895 | 837894240881.4400 | 10.5047 |
| 3_District4 | - | - | - | 67042838268903.4000 | - |
| 3_District5 | - | - | - | 60566955554266.6000 | - |
| 4_District0 | 389 | 1000 | 21936168861.7200 | 20379141775.5100 | 7.6402 |
| 4_District1 | - | - | - | 16091560843817.3000 | - |
| 4_District2 | 1018 | 1000 | 21072131980.1000 | 19771989271.8700 | 6.5756 |
| 4_District3 | 1662 | 1000 | 33534198365.1000 | 31243041764.1500 | 7.3333 |
| 4_District4 | - | - | - | 44497725128783.0000 | - |
| 4_District5 | - | - | - | 30292083288905.3000 | - |
| 5_District0 | 1756 | 1000 | 102848687993.0499 | 105305055950.1000 | 2.3883 * |
| 5_District1 | - | - | - | 22578812619408.6000 | - |
| 5_District2 | 1920 | 1000 | 73323577261.0801 | 49746631100.9200 | 47.3940 |
| 5_District3 | 1136 | 250 | 368339564893.9703 | 366270241695.4900 | 0.5649 |
| 5_District4 | - | - | - | 68243049339872.1000 | - |
| 5_District5 | - | - | - | 121803986176569.0000 | - |
| 6_District0 | 689 | 1000 | 190296879825.6399 | 174024536017.0000 | 9.3506 |
| 6_District1 | - | - | - | 24635464198083.6000 | - |
| 6_District2 | 1742 | 1000 | 249869266772.6505 | 263920214770.7000 | 5.6233 * |
| 6_District3 | 1938 | 1000 | 277503911333.7398 | 272026860685.1900 | 2.0134 |
| 6_District4 | - | - | - | 32671893526336.1000 | - |
| 6_District5 | - | - | - | 52577668995018.6000 | - |
| 7_District0 | 1996 | 1000 | 50393942153.2799 | 53992400830.1800 | 7.1406 * |
| 7_District1 | - | - | - | 25530776489059.8000 | - |
| 7_District2 | 1230 | 1000 | 109291716119.1598 | 96812988604.0900 | 12.8895 |
| 7_District3 | 2388 | 1000 | 715058901075.4904 | 627921570619.9200 | 13.8771 |
| 7_District4 | - | - | - | 30888008083772.9000 | - |
| 7_District5 | - | - | - | 52214576657422.1000 | - |
| 8_District0 | 366 | 1000 | 55281651662.3100 | 47815962594.9100 | 15.6133 |
| 8_District1 | - | - | - | 13654929607346.6000 | - |
| 8_District2 | 2195 | 1000 | 70226429057.8199 | 73150043166.7900 | 4.1631 * |
| 8_District3 | 3401 | 665 | 441071185442.4402 | 367102727288.8900 | 20.1492 |
| 8_District4 | - | - | - | 29816748603227.9000 | - |
| 8_District5 | - | - | - | 40450402089088.4000 | - |
| 9_District0 | 158 | 1000 | 99472150480.8099 | 100093204504.3000 | 0.6243 * |
| 9_District1 | - | - | - | 12178217016824.2000 | - |
| 9_District2 | 690 | 1000 | 106870600160.6700 | 89342594098.5600 | 19.6188 |
| 9_District3 | 3606 | 665 | 1102917837483.7693 | 911115793606.4100 | 21.0513 |
| 9_District4 | - | - | - | 37164202673658.1000 | - |
| 9_District5 | - | - | - | 25382936280280.4000 | - |
| C101_100t_20w | 3601 | 832 | 32950896473.8603 | -12304901708.1200 | 367.7867 |
| C101_25t_5w | 148 | 1000 | 112140827.5000 | 9512566.6400 | 1078.8703 |
| C101_50t_10w | 826 | 1000 | 268818121.2599 | -1079154704.1200 | 124.9100 |
| C102_100t_20w | 3600 | 590 | 47541696775.0201 | -5155408825.8200 | 1022.1712 |
| C102_25t_5w | 322 | 1000 | 77597724.5999 | -37546115.7600 | 306.6731 |
| C102_50t_10w | 1198 | 1000 | 2025857694.4398 | -1102530180.6200 | 283.7462 |
| C103_100t_20w | 611 | 38 | 447208023197.6803 | -7222438475.8600 | 6291.9256 |
| C103_25t_5w | 1554 | 1000 | 78598920.1599 | -43052838.4600 | 282.5638 |
| C103_50t_10w | 3222 | 1000 | 1955732391.4598 | -1110321792.2400 | 276.1410 |
| C104_100t_20w | 279 | 20 | 580713841527.5204 | -8681519205.2400 | 6789.0808 |
| C104_25t_5w | 2261 | 1000 | 113142139.8400 | -33540706.8600 | 437.3278 |
| C104_50t_10w | 102 | 19 | 17617148100.5599 | -1086946666.3200 | 1720.7923 |
| C105_100t_20w | 3600 | 349 | 18554641574.9399 | -12158993843.3000 | 252.6001 |
| C105_25t_5w | 206 | 1000 | 162203263.8600 | 1002190.7200 | 16084.8698 |
| C105_50t_10w | 2188 | 1000 | 245442997.5799 | -1102529614.6600 | 122.2618 |
| C106_100t_20w | 3600 | 244 | 40076071667.8402 | -5349954009.7600 | 849.0918 |
| C106_25t_5w | 237 | 1000 | 117647671.6399 | 9512566.6400 | 1136.7605 |
| C106_50t_10w | 1351 | 1000 | 794761334.7799 | -1086946589.7000 | 173.1187 |
| C107_100t_20w | 860 | 47 | 380455113599.7798 | -6979258964.6200 | 5551.2250 |
| C107_25t_5w | 225 | 1000 | 120150835.2600 | -2001420.3200 | 6103.2784 |
| C107_50t_10w | 3601 | 976 | -409063881.2400 | -1125905161.9000 | 63.6679 |
| C108_100t_20w | 447 | 29 | 513960932568.2598 | -6492899831.1000 | 8015.7378 |
| C108_25t_5w | 459 | 1000 | 122653966.8199 | -8009072.9800 | 1631.4377 |
| C108_50t_10w | 3605 | 696 | 179212996.2200 | -1125905177.3200 | 115.9172 |
| C109_100t_20w | 459 | 24 | 551045881748.0600 | -6614488230.8200 | 8430.8921 |
| C109_25t_5w | 361 | 1000 | 39049721.0799 | -26031566.9600 | 250.0091 |
| C109_50t_10w | 3607 | 477 | -455814576.5400 | -1125905761.1800 | 59.5157 |
| C201_100t_20w | 569 | 34 | 476875982470.3000 | -12596720162.2300 | 3885.7154 |
| C201_25t_5w | 3278 | 1000 | -42552140.6200 | -45555916.9200 | 6.5936 |
| C201_50t_10w | 3608 | 215 | -506460875.0600 | -1125905241.3800 | 55.0174 |
| C202_100t_20w | 105 | 7 | 677134710773.2001 | -6055175633.1600 | 11282.7426 |
| C202_25t_5w | 1031 | 76 | -42552011.0800 | -45555950.8800 | 6.5939 |
| C202_50t_10w | 108 | 20 | 16974329031.3799 | -1125905361.9600 | 1607.6159 |
| C203_100t_20w | - | - | - | -6930623788.8800 | - |
| C203_25t_5w | 7 | 9 | 576720472.3799 | -45555956.2400 | 1365.9606 |
| C203_50t_10w | 67 | 12 | 21824693208.1399 | -1125905456.0600 | 2038.4125 |
| C204_100t_20w | - | - | - | -8657198950.2400 | - |
| C204_25t_5w | 8 | 7 | 656820424.1599 | -45555977.0000 | 1541.7875 |
| C204_50t_10w | 108 | 12 | 21824693208.1399 | -1125905585.1400 | 2038.4123 |
| C205_100t_20w | 250 | 16 | 610381801286.5201 | -12596718687.8400 | 4945.5618 |
| C205_25t_5w | 3606 | 470 | -42552064.5799 | -45555926.8000 | 6.5937 |
| C205_50t_10w | 462 | 32 | 9728002118.8399 | -1125905403.9800 | 964.0159 |
| C206_100t_20w | 191 | 12 | 640049760925.9800 | -7733117210.9600 | 8376.7368 |
| C206_25t_5w | 3602 | 371 | -38547010.7400 | -45555926.8000 | 15.3853 |
| C206_50t_10w | 229 | 21 | 16370468487.2999 | -1125905541.4200 | 1553.9824 |
| C207_100t_20w | 162 | 12 | 640049760925.9800 | -7222438653.2400 | 8961.9618 |
| C207_25t_5w | 149 | 13 | 416520771.4199 | -45555933.4200 | 1014.3063 |
| C207_50t_10w | 131 | 15 | 20032590733.9399 | -1125905455.9000 | 1879.2427 |
| C208_100t_20w | 145 | 9 | 662300730815.0200 | -8657201177.3800 | 7750.2869 |
| C208_25t_5w | 123 | 11 | 496620584.9799 | -45555933.1600 | 1190.1337 |
| C208_50t_10w | 198 | 18 | 18201529571.0599 | -1125905465.6600 | 1716.6125 |
| hh_00_P0 | 3602 | 868 | 147857350548.1860 | 6663651008.2900 | 2118.8639 |
| 111_00_P0 | 471 | 1000 | 3750702178.7599 | 1338732826.5000 | 180.1680 |
| 111_01_P0 | 310 | 1000 | 7003162322.1899 | 1338732826.5000 | 423.1187 |
| 111_02_P0 | 489 | 1000 | 3719565458.8901 | 1338732826.5000 | 177.8422 |
| 111_03_P0 | 282 | 1000 | 3688486937.4401 | 1338732826.5000 | 175.5207 |

| Instance | Table E. 6 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 111_04_P0 | 422 | 1000 | 3812955950.4797 | 1338732826.5000 | 184.8182 |
| 111_05_P0 | 410 | 1000 | 8730593841.5700 | 1307660206.1200 | 567.6500 |
| 111_06_P0 | 401 | 1000 | 7034329424.1001 | 1214281948.4400 | 479.2995 |
| 111_07_P0 | 570 | 1000 | 2132222396.3500 | 1338732826.5000 | 59.2716 |
| 112_00_P0 | 754 | 1000 | -179546894.9401 | 85352916.2700 | 147.5379 * |
| 113_00_P0 | 837 | 1000 | -179677818.6500 | -198615845.6200 | 9.5350 |
| R101_100t_20w | 31 | 1000 | 14685373535.4997 | 6319981502.8600 | 132.3641 |
| R101_25t_5w | 4 | 1000 | 60631864.9800 | 47893886.5800 | 26.5962 |
| R101_50t_10w | 12 | 1000 | 1241054540.6999 | 709051142.3992 | 75.0303 |
| R102_100t_20w | 88 | 1000 | 15339257933.8198 | 14101742003.1800 | 8.7756 |
| R102_25t_5w | 6 | 1000 | 38715883.0199 | 34655177.0000 | 11.7174 |
| R102_50t_10w | 22 | 1000 | 1096907396.5798 | 641955625.9388 | 70.8696 |
| R103_100t_20w | 148 | 1000 | 10408108040.2398 | 12469734030.7400 | 19.8078 * |
| R103_25t_5w | 25 | 1000 | 30705744.8800 | 30260803.3400 | 1.4703 |
| R103_50t_10w | 85 | 1000 | 831122334.4799 | 570531480.7600 | 45.6751 |
| R104_100t_20w | 485 | 1000 | 11953652468.3598 | 14023383931.9600 | 17.3146 * |
| R104_25t_5w | 24 | 1000 | 30205265.2599 | 29982663.2800 | 0.7424 |
| R104_50t_10w | 176 | 1000 | 448893633.9799 | 293491458.8800 | 52.9494 |
| R105_100t_20w | 170 | 1000 | 10364875724.4598 | 8424839701.0800 | 23.0275 |
| R105_25t_5w | 11 | 1000 | 47782625.1399 | 35155829.6400 | 35.9166 |
| R105_50t_10w | 28 | 1000 | 900382043.5200 | 388290958.0600 | 131.8833 |
| R106_100t_20w | 151 | 1000 | 11234919995.9198 | 8443754034.7200 | 33.0559 |
| R106_25t_5w | 8 | 1000 | 34210195.3400 | 30483330.4600 | 12.2259 |
| R106_50t_10w | 29 | 1000 | 764892234.7197 | 303880567.4400 | 151.7081 |
| R107_100t_20w | 263 | 1000 | 11991480297.6198 | 11634816307.3400 | 3.0654 |
| R107_25t_5w | 20 | 1000 | 34265820.8599 | 22028382.6800 | 55.5530 |
| R107_50t_10w | 90 | 1000 | 635895640.9399 | 372274723.4800 | 70.8135 |
| R108_100t_20w | 390 | 1000 | 7117072275.7998 | 12369760088.0800 | 73.8040 * |
| R108_25t_5w | 17 | 1000 | 30093948.4000 | 26033406.5200 | 15.5974 |
| R108_50t_10w | 80 | 1000 | 442833495.6999 | 293491505.9600 | 50.8846 |
| R109_100t_20w | 347 | 1000 | 7938479894.3598 | 6636116061.1200 | 19.6253 |
| R109_25t_5w | 9 | 1000 | 42887736.4199 | 26255954.0600 | 63.3448 |
| R109_50t_10w | 41 | 1000 | 841944062.2198 | 631133985.4200 | 33.4017 |
| R110_100t_20w | 377 | 1000 | 12839908120.0998 | 7622345982.8200 | 68.4508 |
| R110_25t_5w | 6 | 1000 | 43332769.6199 | 34488424.6600 | 25.6443 |
| R110_50t_10w | 29 | 1000 | 515556396.5195 | 636761297.5800 | 23.5095 * |
| R111_100t_20w | 178 | 1000 | 9694780262.8597 | 8473476077.2600 | 14.4132 |
| R111_25t_5w | 9 | 1000 | 38382037.9600 | 26144634.7600 | 46.8065 |
| R111_50t_10w | 45 | 1000 | 510794689.0597 | 496942686.1600 | 2.7874 |
| R112_100t_20w | 484 | 1000 | 11210602285.8198 | 10851236130.0600 | 3.3117 |
| R112_25t_5w | 7 | 1000 | 26478392.1799 | 26311467.9000 | 0.6344 |
| R112_50t_10w | 24 | 1000 | 571397274.2998 | 427249792.1800 | 33.7384 |
| R201_100t_20w | 3605 | 278 | 253994823.6798 | -1383419122.5000 | 118.3599 |
| R201_25t_5w | 762 | 1000 | -5004446.8401 | -5171519.4600 | 3.2306 |
| R201_50t_10w | 3611 | 354 | -124231486.3201 | -125097475.6400 | 0.6922 |
| R202_100t_20w | 549 | 39 | 48865673126.6398 | -778169509.0800 | 6379.5666 |
| R202_25t_5w | 1481 | 1000 | -4559486.3799 | -5171550.1800 | 11.8352 |
| R202_50t_10w | 3604 | 741 | 143285314.5799 | -125097689.9000 | 214.5387 |
| R203_100t_20w | 673 | 37 | 50513893127.7998 | -891653653.5400 | 5765.1921 |
| R203_25t_5w | 3047 | 1000 | -387777.3000 | -5171614.5200 | 92.5018 |
| R203_50t_10w | 347 | 30 | 1217247248.6999 | -125097805.5400 | 1073.0364 |
| R204_100t_20w | 329 | 20 | 64523761782.2999 | -1007840112.0800 | 6502.1823 |
| R204_25t_5w | 58 | 6 | 77430354.5400 | -5060450.1000 | 1630.1080 |
| R204_50t_10w | 101 | 19 | 1955298539.0799 | -125098025.1800 | 1663.0131 |
| R205_100t_20w | 3623 | 136 | 1896810807.6597 | -910567724.8000 | 308.3107 |
| R205_25t_5w | 1809 | 1000 | -721670.6201 | -5171759.2000 | 86.0459 |
| R205_50t_10w | 3606 | 276 | 9094043.7598 | -125097876.3800 | 107.2695 |
| R206_100t_20w | 554 | 30 | 56282662602.6398 | -964607487.1800 | 5934.7735 |
| R206_25t_5w | 2754 | 1000 | -721159.3600 | -5171813.9000 | 86.0559 |
| R206_50t_10w | 3601 | 303 | 77055451.4998 | -125097837.4400 | 161.5961 |
| R207_100t_20w | 688 | 30 | 56282662503.9198 | -1018647805.1000 | 5625.2327 |
| R207_25t_5w | 3602 | 941 | -554660.5200 | -5171794.9600 | 89.2752 |
| R207_50t_10w | 1254 | 251 | 76189580.1999 | -125097967.7600 | 160.9039 |
| R208_100t_20w | 385 | 20 | 64523761848.9599 | -1042965700.1000 | 6286.5660 |
| R208_25t_5w | 58 | 6 | 77430354.5400 | -5060560.5800 | 1630.0746 |
| R208_50t_10w | 188 | 17 | 2091654106.6199 | -125098091.9200 | 1772.0111 |
| R209_100t_20w | 826 | 43 | 45569233634.9198 | -1013243421.1000 | 4597.3628 |
| R209_25t_5w | 3284 | 1000 | -220852.6200 | -5060483.0600 | 95.6357 |
| R209_50t_10w | 3600 | 265 | 13855498.4399 | -125097999.8800 | 111.0757 |
| R210_100t_20w | 502 | 37 | 50513893110.3798 | -978117773.2200 | 5264.3978 |
| R210_25t_5w | 2565 | 1000 | -554605.7200 | -5171642.3200 | 89.2760 |
| R210_50t_10w | 3605 | 251 | 209514901.4999 | -125097934.6800 | 267.4807 |
| R211_100t_20w | 496 | 30 | 56282662891.2198 | -942991911.9800 | 6068.5202 |
| R211_25t_5w | 2703 | 1000 | -609909.4400 | -5060502.8400 | 87.9476 |
| R211_50t_10w | 499 | 30 | 1217247406.4399 | -122500836.0400 | 1093.6645 |
| RC101_100t_20w | 118 | 1000 | 16268746076.4196 | 15814809991.8800 | 2.8703 |
| RC101_25t_5w | 9 | 1000 | 39438826.4000 | 27034405.3800 | 45.8838 |
| RC101_50t_10w | 25 | 1000 | 912502825.8399 | 190034189.6200 | 380.1782 |
| RC102_100t_20w | 104 | 1000 | 10548612288.4796 | 15822916717.4800 | 49.9999 * |
| RC102_25t_5w | 18 | 1000 | 26645156.2800 | 26645148.4800 | 0.0000 |
| RC102_50t_10w | 38 | 1000 | 716410393.7799 | 578756222.9600 | 23.7844 |
| RC103_100t_20w | 157 | 1000 | 8805822215.7195 | 17527878844.9600 | 99.0487 * |
| RC103_25t_5w | 10 | 1000 | 26422790.7200 | 21805915.8800 | 21.1725 |
| RC103_50t_10w | 32 | 1000 | 519885192.7600 | 767922882.8400 | 47.7100 * |
| RC104_100t_20w | 363 | 1000 | 8016838615.5197 | 18130424572.1200 | 126.1542 * |
| RC104_25t_5w | 18 | 1000 | 25977712.6400 | 25810879.2400 | 0.6463 |
| RC104_50t_10w | 79 | 1000 | 708618887.2199 | 498674346.2200 | 42.1005 |
| RC105_100t_20w | 60 | 1000 | 10502678165.0194 | 10907978098.4200 | 3.8590 * |
| RC105_25t_5w | 12 | 1000 | 35100122.5800 | 30761388.4200 | 14.1044 |
| RC105_50t_10w | 59 | 1000 | 985658673.0599 | 448893536.2400 | 119.5751 |
| RC106_100t_20w | 200 | 1000 | 12104964337.2395 | 11529438265.0600 | 4.9917 |
| RC106_25t_5w | 30 | 1000 | 39160712.3998 | 22417682.5200 | 74.6867 |
| RC106_50t_10w | 30 | 1000 | 583517762.9399 | 515989390.5800 | 13.0871 |
| RC107_100t_20w | 342 | 1000 | 10567526143.5597 | 16638920438.6600 | 57.4533 * |
| RC107_25t_5w | 4 | 1000 | 30817076.0599 | 30761589.8800 | 0.1803 |
| RC107_50t_10w | 26 | 1000 | 511227747.8200 | 575726019.2200 | 12.6163 * |
| RC108_100t_20w | 216 | 1000 | 10608056456.5398 | 14823176358.6800 | 39.7350 * |

| Instance | Table E. 6 - continued from previous page | | | | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | Best(SolGH) | |
| RC108_25t_5w | 6 | 1000 | 26533934.6198 | 30372205.5600 | 14.4655^{*} |
| RC108_50t_10w | 33 | 1000 | 583950807.2999 | 630268451.2000 | 7.9317 * |
| RC201_100t_20w | 3604 | 262 | -1388819673.9802 | -1378013035.7800 | 0.7781 * |
| RC201_25t_5w | 464 | 1000 | -4225232.3401 | -5171005.4000 | 18.2899 |
| RC201_50t_10w | 3603 | 617 | -121199307.3601 | -125096456.0400 | 3.1153 |
| RC202_100t_20w | 3604 | 401 | 4369142523.4196 | -848419159.5200 | 614.9745 |
| RC202_25t_5w | 856 | 1000 | -721020.8200 | -5171480.4200 | 86.0577 |
| RC202_50t_10w | 3601 | 765 | 14290195.8399 | -125096955.0600 | 111.4232 |
| RC203_100t_20w | 2816 | 302 | 1913023548.4997 | -915968950.1800 | 308.8524 |
| RC203_25t_5w | 2379 | 1000 | -387464.4800 | -5171505.3800 | 92.5077 |
| RC203_50t_10w | 3605 | 497 | 77055884.3598 | -125096765.1800 | 161.5970 |
| RC204_100t_20w | 454 | 26 | 59579102992.6399 | -1032155821.9000 | 5872.2973 |
| RC204_25t_5w | 3605 | 836 | 4062399.6399 | -5060413.3600 | 180.2780 |
| RC204_50t_10w | 233 | 25 | 1554889523.9399 | -125097014.9000 | 1342.9469 |
| RC205_100t_20w | 3611 | 184 | 2739836285.9197 | -856525543.8000 | 419.8779 |
| RC205_25t_5w | 928 | 1000 | -4336930.4400 | -5171462.0600 | 16.1372 |
| RC205_50t_10w | 3602 | 606 | 77922083.9997 | -125096766.4200 | 162.2894 |
| RC206_100t_20w | 3602 | 168 | 1078106455.3398 | -905161565.1000 | 219.1065 |
| RC206_25t_5w | 1120 | 1000 | -554129.1000 | -5171397.9400 | 89.2847 |
| RC206_50t_10w | 3601 | 456 | -119035754.7601 | -125097137.7600 | 4.8453 |
| RC207_100t_20w | 745 | 41 | 47217454544.6000 | -907864881.6600 | 5300.9341 |
| RC207_25t_5w | 2759 | 1000 | -4281054.2400 | -5059890.2000 | 15.3923 |
| RC207_50t_10w | 3103 | 453 | -119035962.7801 | -122499526.2000 | 2.8274 |
| RC208_100t_20w | 469 | 35 | 52162114161.3600 | -978116228.2000 | 5432.9157 |
| RC208_25t_5w | 1466 | 1000 | -4781935.9400 | -5060744.0000 | 5.5092 |
| RC208_50t_10w | 395 | 29 | 1284343085.1399 | -125096819.1800 | 1126.6792 |
| test150-0-0-0-0_d0_tw0 | - | - | - | -28349336446.9000 | - |
| test150-0-0-0-0_d0_tw1 | - | - | - | -30832491493.7000 | - |
| test150-0-0-0-0_d0_tw2 | - | - | - | -28832172176.8000 | - |
| test150-0-0-0-0_d0_tw3 | - | - | - | -27383664735.0000 | - |
| test150-0-0-0-0_d0_tw 4 | - | - | - | -26142085667.0000 | - |
| test250-0-0-0-0_d0_tw0 | - | - | - | 23650649218.5000 | - |
| test250-0-0-0-0_d0_tw1 | - | - | - | -292254131472.0000 | - |
| test250-0-0-0-0_d0_tw2 | - | - | - | -275698693917.1000 | - |
| test250-0-0-0-0_d0_tw3 | - | - | - | -266914175565.0000 | - |
| test250-0-0-0-0_d0_tw4 | - | - | - | -231776103927.7000 | - |
| test50-0-0-0-0_d0_tw0 | 183 | 14 | 16571183879.9000 | -842599324.2000 | 2066.6742 |
| test50-0-0-0-0_d0_tw1 | 3600 | 660 | -842598568.6999 | -842599506.6000 | 0.0001 |
| test50-0-0-0-0_d0_tw2 | 3600 | 868 | -842598048.7999 | -842599560.3000 | 0.0001 |
| test50-0-0-0-0_d0_tw3 | 3600 | 827 | -836356393.4000 | -842598590.0000 | 0.7408 |
| test50-0-0-0-0_d0_tw4 | 3600 | 819 | -358882360.4999 | -842599753.8000 | 57.4077 |

E. 7 Tabu Search Results: Config. 7

Table E.7: Tabu Search experiments results with parameter configuration 7

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 83 | 1000 | 90825886061.7299 | 71563566909.3600 | 26.9163 |
| 10_District1 | 963 | 1000 | 10391910011489.5490 | 8218857439409.0600 | 26.4398 |
| 10_District2 | 201 | 1000 | 62409687842.2898 | 27771011394.0200 | 124.7296 |
| 10_District3 | 125 | 1000 | 173382042749.8000 | 139155792160.4600 | 24.5956 |
| 10_District4 | 3363 | 1000 | 28824022749673.9530 | 21291228411410.1000 | 35.3798 |
| 10_District5 | 3085 | 1000 | 42657438984971.2600 | 37249297856014.8000 | 14.5187 |
| 11_District0 | 46 | 1000 | 4557233152.3900 | 3046672128.3800 | 49.5806 |
| 11_District1 | 804 | 1000 | 7519784104587.9960 | 6157994611789.7000 | 22.1141 |
| 11_District2 | 46 | 1000 | 20020110812.9300 | 9214556192.4000 | 117.2661 |
| 11_District3 | 103 | 1000 | 99044691607.9400 | 61007292651.7800 | 62.3489 |
| 11_District4 | 2849 | 1000 | 28327341544190.6520 | 22460659385239.4000 | 26.1198 |
| 11_District5 | 1219 | 1000 | 17354107747842.5300 | 15643005576898.3000 | 10.9384 |
| 12_District0 | 29 | 1000 | 160068033926.6700 | 115036288619.9000 | 39.1456 |
| 12_District1 | 2168 | 1000 | 46524033514596.0800 | 37877356021322.0000 | 22.8280 |
| 12_District2 | 97 | 1000 | 231564970965.7198 | 153054550706.1000 | 51.2957 |
| 12_District3 | 161 | 1000 | 281412413711.2700 | 239836499336.7000 | 17.3351 |
| 12_District4 | 3600 | 596 | 69976301190337.2660 | 59129219661289.8000 | 18.3447 |
| 12_District5 | 2634 | 1000 | 77604572919275.8100 | 65945373929847.0000 | 17.6800 |
| 13_District0 | 30 | 1000 | 185143085164.5900 | 154315121626.0000 | 19.9772 |
| 13_District1 | 1647 | 1000 | 19871772650002.9260 | 14674175609787.1000 | 35.4200 |
| 13_District2 | 149 | 1000 | 154666155183.3599 | 126837068235.0100 | 21.9408 |
| 13_District3 | 254 | 1000 | 545562728441.2301 | 429665639491.2800 | 26.9737 |
| 13_District4 | 3600 | 792 | 34944914457256.2730 | 30033656135618.7000 | 16.3525 |
| 13_District5 | 3602 | 750 | 56929657841132.4100 | 42764648834839.3000 | 33.1231 |
| 14_District0 | 22 | 1000 | 39405185830.6300 | 34977146773.4600 | 12.6598 |
| 14_District1 | 2061 | 1000 | 14524429777197.5840 | 12434388027267.4000 | 16.8085 |
| 14_District2 | 88 | 1000 | 148274342935.6299 | 90165619840.7900 | 64.4466 |
| 14_District3 | 226 | 1000 | 318815165103.5098 | 262406322982.9800 | 21.4967 |
| 14_District4 | 3601 | 849 | 43274108721617.1600 | 31546738861338.4000 | 37.1745 |
| 14_District5 | 3583 | 1000 | 51310668743104.5400 | 44524141233501.8000 | 15.2423 |
| 15_District0 | 35 | 1000 | 67330404477.5899 | 42188641727.2300 | 59.5936 |
| 15_District1 | 859 | 1000 | 14069935349289.4470 | 12317798430422.9000 | 14.2244 |
| 15_District2 | 151 | 1000 | 103156785657.2899 | 67421894826.9300 | 53.0019 |
| 15_District3 | 270 | 1000 | 452400421567.4308 | 463823619193.1600 | 2.5250 * |
| 15_District4 | 3349 | 1000 | 32194102455076.9380 | 22834329911998.4000 | 40.9899 |
| 15_District5 | 2776 | 1000 | 33961376146576.4570 | 28700034523627.8000 | 18.3321 |
| 16_District0 | 20 | 1000 | 133772786389.0099 | 120807470457.0500 | 10.7322 |
| 16_District1 | 1566 | 1000 | 16792011684544.6100 | 12316160134202.9000 | 36.3412 |
| 16_District2 | 69 | 1000 | 129096190289.2900 | 94504646913.7700 | 36.6030 |
| 16_District3 | 141 | 1000 | 273024373859.2299 | 210518442436.7200 | 29.6914 |

| Instance | Table E. 7 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 16_District4 | 3603 | 832 | 35952100828187.3600 | 28327769996973.5000 | 26.9146 |
| 16_District5 | 3014 | 1000 | 54102712144284.7300 | 48522145053303.8000 | 11.5010 |
| 17_District0 | 14 | 1000 | 71039090116.1100 | 60633779564.4100 | 17.1609 |
| 17_District1 | 1064 | 1000 | 13583226327478.4280 | 12050832937058.4000 | 12.7160 |
| 17_District2 | 119 | 1000 | 147556479491.0699 | 111787046906.6000 | 31.9978 |
| 17_District3 | 134 | 1000 | 263855484278.8798 | 178730940805.7800 | 47.6272 |
| 17_District4 | 3600 | 836 | 22294458031455.2340 | 19092974442252.1000 | 16.7678 |
| 17_District5 | 2206 | 1000 | 28598180584785.0620 | 23886759047749.6000 | 19.7239 |
| 18_District0 | 5 | 1000 | 3074444221.2799 | 2341527488.6000 | 31.3007 |
| 18_District1 | 1176 | 1000 | 15347660439622.5760 | 13924688690304.7000 | 10.2190 |
| 18_District2 | 46 | 1000 | 8988138806.4500 | 4417358464.4100 | 103.4731 |
| 18_District3 | 96 | 1000 | 76037039331.1500 | 70920528499.0700 | 7.2144 |
| 18_District4 | 3282 | 1000 | 21449713637219.9300 | 18718722507656.5000 | 14.5896 |
| 18_District5 | 1596 | 1000 | 15543852583612.3090 | 12641617614178.6000 | 22.9577 |
| 19_District0 | 39 | 1000 | 56494154145.1400 | 55462969817.4300 | 1.8592 |
| 19_District1 | 2450 | 1000 | 26413497392708.1800 | 22401449014876.9000 | 17.9097 |
| 19_District2 | 101 | 1000 | 201290195807.8100 | 153280470262.9000 | 31.3214 |
| 19_District3 | 202 | 1000 | 274547752181.1901 | 243569037679.2000 | 12.7186 |
| 19_District4 | - | - | - | 106192108824987.0000 | - |
| 19_District5 | 3473 | 1000 | 92374621349656.3100 | 78807991381031.8000 | 17.2147 |
| 1_District0 | 81 | 1000 | 512177107903.6697 | 430590936121.1900 | 18.9474 |
| 1_District1 | 3601 | 969 | 64113401266731.5800 | 56270206789859.1000 | 13.9384 |
| 1_District2 | 191 | 1000 | 895752627625.0302 | 672001346398.5800 | 33.2962 |
| 1_District3 | 342 | 1000 | 1245277165331.9802 | 1031045184732.7300 | 20.7781 |
| 1_District4 | 3606 | 393 | 89000469461106.8300 | 73732177837593.4000 | 20.7077 |
| 1_District5 | 3601 | 660 | 105190510015786.4700 | 91806570717137.9000 | 14.5784 |
| 20_District0 | 17 | 1000 | 104403548586.2000 | 98421186256.3800 | 6.0783 |
| 20_District1 | 1742 | 1000 | 20166473748877.4140 | 17222315357479.6000 | 17.0950 |
| 20_District2 | 147 | 1000 | 49913437019.9999 | 27378465012.0200 | 82.3091 |
| 20_District3 | 249 | 1000 | 332285164824.6803 | 305213925793.8100 | 8.8695 |
| 20_District4 | 3602 | 844 | 30556157284792.6700 | 24960379220572.1000 | 22.4186 |
| 20_District5 | 3364 | 1000 | 54096789514340.4500 | 48965990159239.8000 | 10.4782 |
| 21_District0 | 59 | 1000 | 153837727366.3701 | 120414278382.3300 | 27.7570 |
| 21_District1 | 1826 | 1000 | 20356277402674.2970 | 16893868904739.4000 | 20.4950 |
| 21_District2 | 114 | 1000 | 108413022554.9099 | 62666013838.2000 | 73.0013 |
| 21_District3 | 608 | 1000 | 1083818307996.6499 | 892017226174.9800 | 21.5019 |
| 21_District4 | 3604 | 838 | 27599158275505.6500 | 24304758516183.0000 | 13.5545 |
| 21_District5 | 3604 | 926 | 57789774017343.4800 | 45930297567746.2000 | 25.8205 |
| 22_District0 | 28 | 1000 | 164148433829.6999 | 138906549645.3000 | 18.1718 |
| 22_District1 | 1860 | 1000 | 17528245590773.4550 | 14071948171020.4000 | 24.5616 |
| 22_District2 | 124 | 1000 | 345487141017.4400 | 226837888943.8600 | 52.3057 |
| 22_District3 | 172 | 1000 | 389586838914.7998 | 285892462254.7700 | 36.2704 |
| 22_District4 | 3602 | 822 | 36430067637167.2660 | 29074924558505.3000 | 25.2972 |
| 22_District5 | 3601 | 921 | 49609639676068.9840 | 42772519577575.2000 | 15.9848 |
| 23_District0 | 11 | 1000 | 35354341384.0000 | 32906581132.3800 | 7.4385 |
| 23_District1 | 1890 | 1000 | 20306570703942.8700 | 17211576588480.4000 | 17.9820 |
| 23_District2 | 89 | 1000 | 252485503754.2099 | 183871311138.5000 | 37.3164 |
| 23_District3 | 210 | 1000 | 286075456109.0404 | 250619333021.8100 | 14.1474 |
| 23_District4 | 3601 | 562 | 44124735609381.3750 | 34555727151866.1000 | 27.6915 |
| 23_District5 | 3602 | 808 | 82318311632011.2200 | 70608343796642.5000 | 16.5843 |
| 24_District0 | 43 | 1000 | 139341297826.3999 | 105830236823.5000 | 31.6649 |
| 24_District1 | 1105 | 1000 | 14601551656495.2070 | 11389191027676.9000 | 28.2053 |
| 24_District2 | 70 | 1000 | 27287793037.5799 | 26055867878.7800 | 4.7280 |
| 24_District3 | 158 | 1000 | 176442969278.3299 | 159315579521.2200 | 10.7506 |
| 24_District4 | 3600 | 829 | 28492637314463.2800 | 24517137738123.8000 | 16.2151 |
| 24_District5 | 2325 | 1000 | 29285060431772.2460 | 24738655441667.6000 | 18.3777 |
| 25_District0 | 14 | 1000 | 1797448948.6899 | 1255504790.1000 | 43.1654 |
| 25_District1 | 889 | 1000 | 7110320772712.6380 | 6071232244353.8300 | 17.1149 |
| 25_District2 | 12 | 1000 | 3671152394.0500 | 2430507030.7800 | 51.0447 |
| 25_District3 | 74 | 1000 | 71806281069.8399 | 54825213021.3900 | 30.9730 |
| 25_District4 | 3602 | 991 | 25996861803541.5400 | 20503174454937.0000 | 26.7943 |
| 25_District5 | 897 | 1000 | 12406452080578.2800 | 11011719621667.4000 | 12.6658 |
| 26_District0 | 72 | 1000 | 273316551246.4900 | 225380467772.9800 | 21.2689 |
| 26_District1 | 2772 | 1000 | 48987132161122.1500 | 42180173025536.8000 | 16.1378 |
| 26_District2 | 120 | 1000 | 423888084465.3799 | 282951685653.1000 | 49.8093 |
| 26_District3 | 629 | 1000 | 1292287659214.3389 | 1171533328289.0400 | 10.3073 |
| 26_District4 | 3601 | 440 | 126120081289807.2700 | 105580668249051.0000 | 19.4537 |
| 26_District5 | 3601 | 619 | 88272702517243.4700 | 76363123397244.6000 | 15.5959 |
| 27_District0 | 48 | 1000 | 203950972477.4898 | 162479691641.3000 | 25.5239 |
| 27-District1 | 1568 | 1000 | 24579099095816.6900 | 18425601260045.1000 | 33.3964 |
| 27_District2 | 162 | 1000 | 107092699865.6099 | 61192189969.0700 | 75.0104 |
| 27_District3 | 111 | 1000 | 140452684201.0099 | 116712931257.8400 | 20.3402 |
| 27-District4 | 3606 | 584 | 42830700078064.5100 | 33778988955119.3000 | 26.7968 |
| 27_District5 | 2644 | 1000 | 46799178020401.0300 | 39568513214098.5000 | 18.2737 |
| 28_District0 | 24 | 1000 | 139029500086.9099 | 102108349093.8000 | 36.1587 |
| 28_District1 | 1700 | 1000 | 16751294190753.8380 | 15128335139531.3000 | 10.7279 |
| 28_District2 | 64 | 1000 | 100507447531.4600 | 64692968024.3600 | 55.3606 |
| 28_District3 | 464 | 1000 | 957802714175.6798 | 805624097687.0900 | 18.8895 |
| 28_District4 | 3134 | 1000 | 28571951497097.7540 | 22982825117023.6000 | 24.3187 |
| 28_District5 | 2864 | 1000 | 41410160521065.4840 | 33791534896023.1000 | 22.5459 |
| 29_District0 | 25 | 1000 | 37601785686.8100 | 29353316624.4500 | 28.1006 |
| 29_District1 | 1594 | 1000 | 9019729753026.5980 | 7484826255380.2500 | 20.5068 |
| 29_District2 | 116 | 1000 | 108362419182.7700 | 101233312043.5700 | 7.0422 |
| 29_District3 | 181 | 1000 | 289675147038.2499 | 232601979076.2900 | 24.5368 |
| 29_District4 | 2806 | 1000 | 10869563929843.5680 | 8309110124637.3200 | 30.8150 |
| 29_District5 | 3164 | 1000 | 40098034357696.8600 | 35670467010142.6000 | 12.4124 |
| 2_District0 | 88 | 1000 | 193839933442.6700 | 147005506881.3000 | 31.8589 |
| 2_District1 | 3004 | 1000 | 45459857429067.4450 | 39540340925649.8000 | 14.9708 |
| 2_District2 | 141 | 1000 | 257280064254.1997 | 217829855689.6200 | 18.1105 |
| 2_District3 | 321 | 1000 | 1210994966019.4000 | 858787147589.8100 | 41.0122 |
| 2_District4 | 3606 | 458 | 74239030120333.2500 | 58876326066126.1000 | 26.0931 |
| 2_District5 | 3600 | 640 | 113193541593170.9200 | 95903342380824.9000 | 18.0287 |
| 30_District0 | 11 | 1000 | 16973733041.8800 | 14856579555.0000 | 14.2506 |
| 30_District1 | 533 | 1000 | 5453874315157.2070 | 4288991390631.0100 | 27.1598 |
| 30_District2 | 88 | 1000 | 51330273875.4600 | 28984654012.0000 | 77.0946 |
| 30_District3 | 115 | 1000 | 171598828550.1400 | 140260859804.8700 | 22.3426 |
| 30_District4 | 1582 | 1000 | 6957178114976.4290 | 6033193692111.0700 | 15.3150 |

| Instance | Table E. 7 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 30_District5 | 682 | 1000 | 6652589252190.8170 | 5491783393822.4800 | 21.1371 |
| 3_District0 | 37 | 1000 | 114637704174.6800 | 90701681116.3600 | 26.3898 |
| 3_District1 | 1583 | 1000 | 21669256497445.5620 | 17931112587450.7000 | 20.8472 |
| 3_District2 | 149 | 1000 | 226538655017.0398 | 184423936337.4900 | 22.8358 |
| 3_District3 | 355 | 1000 | 1055208515491.4495 | 837894240881.4400 | 25.9357 |
| 3_District4 | - | - | - | 67042838268903.4000 | - |
| 3_District5 | 3005 | 1000 | 71450369212445.9400 | 60566955554266.6000 | 17.9692 |
| 4_District0 | 13 | 1000 | 22783577331.0199 | 20379141775.5100 | 11.7985 |
| 4_District1 | 988 | 1000 | 18643409643794.8630 | 16091560843817.3000 | 15.8583 |
| 4_District2 | 49 | 1000 | 28590883223.4399 | 19771989271.8700 | 44.6029 |
| 4_District3 | 71 | 1000 | 44008054917.4100 | 31243041764.1500 | 40.8571 |
| 4_District4 | 3605 | 531 | 55827883212635.5600 | 44497725128783.0000 | 25.4623 |
| 4_District5 | 2074 | 1000 | 35485732192312.5100 | 30292083288905.3000 | 17.1452 |
| 5_District0 | 34 | 1000 | 121337075496.5599 | 105305055950.1000 | 15.2243 |
| 5_District1 | 2815 | 1000 | 26958729717452.4450 | 22578812619408.6000 | 19.3983 |
| 5_District2 | 79 | 1000 | 84445692130.8600 | 49746631100.9200 | 69.7515 |
| 5_District3 | 231 | 1000 | 368339564893.9703 | 366270241695.4900 | 0.5649 |
| 5_District4 | 3607 | 434 | 87052360312381.4500 | 68243049339872.1000 | 27.5622 |
| 5_District5 | 3603 | 540 | 144263825380312.4000 | 121803986176569.0000 | 18.4393 |
| 6_District0 | 45 | 1000 | 229881593831.3499 | 174024536017.0000 | 32.0972 |
| 6_District1 | 3371 | 1000 | 29757855339023.4100 | 24635464198083.6000 | 20.7927 |
| 6_District2 | 122 | 1000 | 314699930704.3200 | 263920214770.7000 | 19.2405 |
| 6_District3 | 172 | 1000 | 326846711901.7501 | 272026860685.1900 | 20.1523 |
| 6_District4 | 3601 | 849 | 41017633874659.3900 | 32671893526336.1000 | 25.5440 |
| 6_District5 | 3455 | 1000 | 65047160187885.1250 | 52577668995018.6000 | 23.7163 |
| 7_District0 | 55 | 1000 | 64167354628.6999 | 53992400830.1800 | 18.8451 |
| 7_District1 | 1896 | 1000 | 28469891691201.0230 | 25530776489059.8000 | 11.5120 |
| 7_District2 | 82 | 1000 | 131369464511.8198 | 96812988604.0900 | 35.6940 |
| 7_District3 | 405 | 1000 | 885810255449.4302 | 627921570619.9200 | 41.0702 |
| 7_District4 | 3602 | 787 | 38983888110125.7900 | 30888008083772.9000 | 26.2104 |
| 7_District5 | 3603 | 797 | 59599457455793.6500 | 52214576657422.1000 | 14.1433 |
| 8_District0 | 28 | 1000 | 66981129846.9999 | 47815962594.9100 | 40.0811 |
| 8_District1 | 1426 | 1000 | 15922201158605.7680 | 13654929607346.6000 | 16.6040 |
| 8_District2 | 65 | 1000 | 92183374224.6500 | 73150043166.7900 | 26.0195 |
| 8_District3 | 322 | 1000 | 482102510681.2601 | 367102727288.8900 | 31.3263 |
| 8_District4 | 3600 | 929 | 35399491028950.2900 | 29816748603227.9000 | 18.7235 |
| 8_District5 | 3026 | 1000 | 50474401568700.1000 | 40450402089088.4000 | 24.7809 |
| 9_District0 | 17 | 1000 | 115412536479.3100 | 100093204504.3000 | 15.3050 |
| 9_District1 | 1199 | 1000 | 15318565989602.6800 | 12178217016824.2000 | 25.7866 |
| 9_District2 | 52 | 1000 | 142708115059.6600 | 89342594098.5600 | 59.7313 |
| 9_District3 | 430 | 1000 | 1284512871128.3906 | 911115793606.4100 | 40.9823 |
| 9_District4 | 3608 | 552 | 48344285222867.3100 | 37164202673658.1000 | 30.0829 |
| 9_District5 | 2649 | 1000 | 32702225945411.4060 | 25382936280280.4000 | 28.8354 |
| C101_100t_20w | 72 | 1000 | 99095856585.7203 | -12304901708.1200 | 905.3364 |
| C101_25t_5w | 6 | 1000 | 155194466.4599 | 9512566.6400 | 1531.4678 |
| C101_50t_10w | 20 | 1000 | 2610238793.0599 | -1079154704.1200 | 341.8780 |
| C102_100t_20w | 276 | 1000 | 98901313024.3402 | -5155408825.8200 | 2018.3990 |
| C102_25t_5w | 17 | 1000 | 190738933.2400 | -37546115.7600 | 608.0124 |
| C102_50t_10w | 70 | 1000 | 3140078105.8398 | -1102530180.6200 | 384.8065 |
| C103_100t_20w | 507 | 1000 | 39930163004.1205 | -7222438475.8600 | 652.8626 |
| C103_25t_5w | 63 | 1000 | 189237129.5600 | -43052838.4600 | 539.5462 |
| C103_50t_10w | 149 | 1000 | 3743938477.6599 | -1110321792.2400 | 437.1940 |
| C104_100t_20w | 768 | 1000 | 17314423586.3605 | -8681519205.2400 | 299.4400 |
| C104_25t_5w | 106 | 1000 | 192240902.4600 | -33540706.8600 | 673.1569 |
| C104_50t_10w | 251 | 1000 | 1305120952.8799 | -1086946666.3200 | 220.0722 |
| C105_100t_20w | 130 | 1000 | 77185339028.9999 | -12158993843.3000 | 734.8003 |
| C105_25t_5w | 9 | 1000 | 196746350.4799 | 1002190.7200 | 19531.6276 |
| C105_50t_10w | 33 | 1000 | 3186828351.9399 | -1102529614.6600 | 389.0469 |
| C106_100t_20w | 169 | 1000 | 54739825368.8202 | -5349954009.7600 | 1123.1831 |
| C106_25t_5w | 8 | 1000 | 232791280.2999 | 9512566.6400 | 2347.1973 |
| C106_50t_10w | 27 | 1000 | 1379142584.3799 | -1086946589.7000 | 226.8822 |
| C107_100t_20w | 194 | 1000 | 69525168735.1598 | -6979258964.6200 | 1096.1683 |
| C107_25t_5w | 10 | 1000 | 191740192.8600 | -2001420.3200 | 9680.2061 |
| C107_50t_10w | 46 | 1000 | 3747834654.6599 | -1125905161.9000 | 432.8730 |
| C108_100t_20w | 269 | 1000 | 39735619043.3798 | -6492899831.1000 | 711.9857 |
| C108_25t_5w | 18 | 1000 | 193242032.7000 | -8009072.9800 | 2512.7890 |
| C108_50t_10w | 61 | 1000 | 2551800875.0799 | -1125905177.3200 | 326.6443 |
| C109_100t_20w | 394 | 1000 | 47006701457.3999 | -6614488230.8200 | 810.6627 |
| C109_25t_5w | 18 | 1000 | 151189574.8799 | -26031566.9600 | 680.7932 |
| C109_50t_10w | 87 | 1000 | 2524529654.7199 | -1125905761.1800 | 324.2221 |
| C201_100t_20w | 249 | 1000 | -12596716053.9600 | -12596720162.2300 | 0.0000 |
| C201_25t_5w | 18 | 1000 | -42552000.2200 | -45555916.9200 | 6.5939 |
| C201_50t_10w | 54 | 1000 | -506460875.0600 | -1125905241.3800 | 55.0174 |
| C202_100t_20w | 1128 | 1000 | 39322214142.4203 | -6055175633.1600 | 749.3984 |
| C202_25t_5w | 95 | 1000 | -42552011.0800 | -45555950.8800 | 6.5939 |
| C202_50t_10w | 243 | 1000 | 685677219.4399 | -1125905361.9600 | 160.9000 |
| C203_100t_20w | 2489 | 1000 | 24536869879.3203 | -6930623788.8800 | 454.0355 |
| C203_25t_5w | 1338 | 1000 | -2001330.3400 | -45555956.2400 | 95.6068 |
| C203_50t_10w | 583 | 1000 | 709052735.5999 | -1125905456.0600 | 162.9762 |
| C204_100t_20w | 3613 | 812 | 24609823628.3203 | -8657198950.2400 | 384.2700 |
| C204_25t_5w | 1575 | 1000 | -5005102.0200 | -45555977.0000 | 89.0132 |
| C204_50t_10w | 1409 | 1000 | 93504394.2998 | -1125905585.1400 | 108.3048 |
| C205_100t_20w | 511 | 1000 | 9702889586.1598 | -12596718687.8400 | 177.0271 |
| C205_25t_5w | 40 | 1000 | -42552036.5600 | -45555926.8000 | 6.5938 |
| C205_50t_10w | 116 | 1000 | -522044220.5000 | -1125905403.9800 | 53.6333 |
| C206_100t_20w | 872 | 1000 | 31953859516.5598 | -7733117210.9600 | 513.2080 |
| C206_25t_5w | 66 | 1000 | -5005181.3000 | -45555926.8000 | 89.0131 |
| C206_50t_10w | 168 | 1000 | 677885628.8399 | -1125905541.4200 | 160.2080 |
| C207_100t_20w | 1235 | 1000 | 24488233802.3396 | -7222438653.2400 | 439.0576 |
| C207_25t_5w | 119 | 1000 | 32541792.4999 | -45555933.4200 | 171.4326 |
| C207_50t_10w | 368 | 1000 | -498668527.7600 | -1125905455.9000 | 55.7095 |
| C208_100t_20w | 1203 | 1000 | 24536869467.2000 | -8657201177.3800 | 383.4272 |
| C208_25t_5w | 113 | 1000 | -41050140.9600 | -45555933.1600 | 9.8906 |
| C208_50t_10w | 249 | 1000 | 697364998.0999 | -1125905465.6600 | 161.9381 |
| hh_00_P0 | 171 | 1000 | 855509231017.3870 | 6663651008.2900 | 12738.4459 |
| 111_00_P0 | 46 | 1000 | 10395714853.6900 | 1338732826.5000 | 676.5339 |
| 111_01_P0 | 45 | 1000 | 8761695462.9999 | 1338732826.5000 | 554.4767 |

| Instance | Table E. 7 - continued from previous page | | | | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | Best(SolGH) | |
| 111_02_P0 | 44 | 1000 | 8761707865.2201 | 1338732826.5000 | 554.4777 |
| 111_03_P0 | 45 | 1000 | 10364606753.6001 | 1338732826.5000 | 674.2102 |
| 111_04_P0 | 46 | 1000 | 10333442162.1100 | 1338732826.5000 | 671.8823 |
| 111_05_P0 | 46 | 1000 | 15360038245.1100 | 1307660206.1200 | 1074.6199 |
| 111_06_P0 | 45 | 1000 | 12029720714.7801 | 1214281948.4400 | 890.6859 |
| 111_07_P0 | 46 | 1000 | 5431391939.7000 | 1338732826.5000 | 305.7114 |
| 112_00_P0 | 28 | 1000 | 402249701.6198 | 85352916.2700 | 371.2782 |
| 113_00_P0 | 26 | 1000 | 965681078.0999 | -198615845.6200 | 586.2054 |
| R101_100t_20w | 19 | 1000 | 28343983676.1399 | 6319981502.8600 | 348.4820 |
| R101_25t_5w | 3 | 1000 | 56181910.1599 | 47893886.5800 | 17.3049 |
| R101_50t_10w | 5 | 1000 | 1697304701.0199 | 709051142.3992 | 139.3769 |
| R102_100t_20w | 48 | 1000 | 20929696190.8198 | 14101742003.1800 | 48.4192 |
| R102_25t_5w | 3 | 1000 | 38715883.0199 | 34655177.0000 | 11.7174 |
| R102_50t_10w | 12 | 1000 | 1291268163.0199 | 641955625.9388 | 101.1460 |
| R103_100t_20w | 74 | 1000 | 20094778348.1398 | 12469734030.7400 | 61.1484 |
| R103_25t_5w | 6 | 1000 | 39383308.5600 | 30260803.3400 | 30.1462 |
| R103_50t_10w | 19 | 1000 | 1095176025.1799 | 570531480.7600 | 91.9571 |
| R104_100t_20w | 105 | 1000 | 19294986670.3198 | 14023383931.9600 | 37.5915 |
| R104_25t_5w | 8 | 1000 | 38159630.0000 | 29982663.2800 | 27.2723 |
| R104_50t_10w | 24 | 1000 | 1025916190.6799 | 293491458.8800 | 249.5557 |
| R105_100t_20w | 33 | 1000 | 24201817987.1599 | 8424839701.0800 | 187.2674 |
| R105_25t_5w | 4 | 1000 | 47782554.3599 | 35155829.6400 | 35.9164 |
| R105_50t_10w | 7 | 1000 | 1628044920.3799 | 388290958.0600 | 319.2847 |
| R106_100t_20w | 59 | 1000 | 24163990277.4198 | 8443754034.7200 | 186.1759 |
| R106_25t_5w | 4 | 1000 | 42998863.9400 | 30483330.4600 | 41.0569 |
| R106_50t_10w | 12 | 1000 | 1422862326.5399 | 303880567.4400 | 368.2307 |
| R107_100t_20w | 80 | 1000 | 20113692439.8597 | 11634816307.3400 | 72.8750 |
| R107_25t_5w | 6 | 1000 | 42609535.5800 | 22028382.6800 | 93.4301 |
| R107_50t_10w | 17 | 1000 | 1028080394.0399 | 372274723.4800 | 176.1617 |
| R108_100t_20w | 104 | 1000 | 17654872808.1198 | 12369760088.0800 | 42.7260 |
| R108_25t_5w | 7 | 1000 | 38159630.0000 | 26033406.5200 | 46.5794 |
| R108_50t_10w | 24 | 1000 | 1089981863.1799 | 293491505.9600 | 271.3844 |
| R109_100t_20w | 57 | 1000 | 22548193919.5199 | 6636116061.1200 | 239.7799 |
| R109_25t_5w | 4 | 1000 | 42776380.8200 | 26255954.0600 | 62.9206 |
| R109_50t_10w | 11 | 1000 | 1493853596.4599 | 631133985.4200 | 136.6935 |
| R110_100t_20w | 69 | 1000 | 21767316347.5798 | 7622345982.8200 | 185.5723 |
| R110_25t_5w | 3 | 1000 | 38270827.5599 | 34488424.6600 | 10.9671 |
| R110_50t_10w | 13 | 1000 | 1298627388.6599 | 636761297.5800 | 103.9425 |
| R111_100t_20w | 76 | 1000 | 23372304372.9398 | 8473476077.2600 | 175.8290 |
| R111_25t_5w | 4 | 1000 | 42498384.0599 | 26144634.7600 | 62.5510 |
| R111_50t_10w | 16 | 1000 | 831122241.4399 | 496942686.1600 | 67.2471 |
| R112_100t_20w | 87 | 1000 | 20908080380.0198 | 10851236130.0600 | 92.6792 |
| R112_25t_5w | 4 | 1000 | 34543953.2400 | 26311467.9000 | 31.2885 |
| R112_50t_10w | 17 | 1000 | 1093877478.5599 | 427249792.1800 | 156.0276 |
| R201_100t_20w | 148 | 1000 | 253994839.7598 | -1383419122.5000 | 118.3599 |
| R201_25t_5w | 11 | 1000 | -554546.3800 | -5171519.4600 | 89.2769 |
| R201_50t_10w | 40 | 1000 | -124231486.3201 | -125097475.6400 | 0.6922 |
| R202_100t_20w | 340 | 1000 | 4379948786.1398 | -778169509.0800 | 662.8527 |
| R202_25t_5w | 29 | 1000 | 3895296.8999 | -5171550.1800 | 175.3216 |
| R202_50t_10w | 77 | 1000 | 146748317.1199 | -125097689.9000 | 217.3069 |
| R203_100t_20w | 536 | 1000 | 1907618989.9997 | -891653653.5400 | 313.9417 |
| R203_25t_5w | 98 | 1000 | -276413.5600 | -5171614.5200 | 94.6551 |
| R203_50t_10w | 133 | 1000 | 77055479.7399 | -125097805.5400 | 161.5961 |
| R204_100t_20w | 788 | 1000 | 2726324834.8998 | -1007840112.0800 | 370.5116 |
| R204_25t_5w | 122 | 1000 | 8234027.0999 | -5060450.1000 | 262.7133 |
| R204_50t_10w | 214 | 1000 | 78354311.8399 | -125098025.1800 | 162.6343 |
| R205_100t_20w | 291 | 1000 | 1896810858.2997 | -910567724.8000 | 308.3107 |
| R205_25t_5w | 24 | 1000 | -721438.0400 | -5171759.2000 | 86.0504 |
| R205_50t_10w | 69 | 1000 | 9094043.7598 | -125097876.3800 | 107.2695 |
| R206_100t_20w | 459 | 1000 | 5193250386.1198 | -964607487.1800 | 638.3796 |
| R206_25t_5w | 48 | 1000 | 3617164.3599 | -5171813.9000 | 169.9399 |
| R206_50t_10w | 102 | 1000 | 77921377.8798 | -125097837.4400 | 162.2883 |
| R207_100t_20w | 625 | 1000 | 3555838829.4997 | -1018647805.1000 | 449.0744 |
| R207_25t_5w | 105 | 1000 | -554479.6800 | -5171794.9600 | 89.2787 |
| R207_50t_10w | 149 | 1000 | 76189580.1999 | -125097967.7600 | 160.9039 |
| R208_100t_20w | 848 | 1000 | 1078104892.9997 | -1042965700.1000 | 203.3691 |
| R208_25t_5w | 128 | 1000 | 8234013.5999 | -5060560.5800 | 262.7095 |
| R208_50t_10w | 268 | 1000 | 78354044.4398 | -125098091.9200 | 162.6340 |
| R209_100t_20w | 404 | 1000 | 4379948681.1399 | -1013243421.1000 | 532.2701 |
| R209_25t_5w | 24 | 1000 | 8067195.4599 | -5060483.0600 | 259.4155 |
| R209_50t_10w | 94 | 1000 | 13855538.1999 | -125097999.8800 | 111.0757 |
| R210_100t_20w | 426 | 1000 | 4374544627.5798 | -978117773.2200 | 547.2410 |
| R210_25t_5w | 50 | 1000 | 3895266.0399 | -5171642.3200 | 175.3197 |
| R210_50t_10w | 101 | 1000 | 209514901.4999 | -125097934.6800 | 267.4807 |
| R211_100t_20w | 506 | 1000 | 7676388592.9198 | -942991911.9800 | 914.0460 |
| R211_25t_5w | 45 | 1000 | 7900317.8599 | -5060502.8400 | 256.1172 |
| R211_50t_10w | 128 | 1000 | 143284906.6198 | -122500836.0400 | 216.9664 |
| RC101_100t_20w | 31 | 1000 | 30092178382.2198 | 15814809991.8800 | 90.2784 |
| RC101_25t_5w | 4 | 1000 | 39438835.2199 | 27034405.3800 | 45.8838 |
| RC101_50t_10w | 6 | 1000 | 1501645656.2199 | 190034189.6200 | 690.1976 |
| RC102_100t_20w | 53 | 1000 | 24236944676.8597 | 15822916717.4800 | 53.1762 |
| RC102_25t_5w | 4 | 1000 | 38826968.9200 | 26645148.4800 | 45.7187 |
| RC102_50t_10w | 10 | 1000 | 1367454801.0999 | 578756222.9600 | 136.2747 |
| RC103_100t_20w | 73 | 1000 | 24201818776.8197 | 17527878844.9600 | 38.0761 |
| RC103_25t_5w | 5 | 1000 | 34599590.0599 | 21805915.8800 | 58.6706 |
| RC103_50t_10w | 14 | 1000 | 1030677953.1599 | 767922882.8400 | 34.2163 |
| RC104_100t_20w | 94 | 1000 | 20121798982.4197 | 18130424572.1200 | 10.9836 |
| RC104_25t_5w | 5 | 1000 | 34377119.2399 | 25810879.2400 | 33.1884 |
| RC104_50t_10w | 17 | 1000 | 1097773611.0800 | 498674346.2200 | 120.1383 |
| RC105_100t_20w | 47 | 1000 | 27519874515.9798 | 10907978098.4200 | 152.2912 |
| RC105_25t_5w | 4 | 1000 | 43165790.0599 | 30761388.4200 | 40.3245 |
| RC105_50t_10w | 9 | 1000 | 1441043372.7599 | 448893536.2400 | 221.0211 |
| RC106_100t_20w | 49 | 1000 | 25885164509.9798 | 11529438265.0600 | 124.5136 |
| RC106_25t_5w | 4 | 1000 | 39383323.5599 | 22417682.5200 | 75.6797 |
| RC106_50t_10w | 10 | 1000 | 1437147451.8799 | 515989390.5800 | 178.5226 |
| RC107_100t_20w | 67 | 1000 | 30767678749.7998 | 16638920438.6600 | 84.9139 |
| RC107_25t_5w | 4 | 1000 | 43388180.7199 | 30761589.8800 | 41.0466 |

| | Table E.7-continued from previous page | | | | Best(SolGH) |
| :--- | :--- | :--- | :--- | :--- | :--- |

E. 8 Tabu Search Results: Config. 8

Table E.8: Tabu Search experiments results with parameter configuration 8

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 1282 | 50000 | 71064866922.7100 | 71563566909.3600 | 0.7017 * |
| 10_District1 | 3600 | 21094 | 10391910011489.5490 | 8218857439409.0600 | 26.4398 |
| 10_District2 | 3600 | 15685 | 56242802309.1699 | 27771011394.0200 | 102.5234 |
| 10_District3 | 2319 | 50000 | 148016032311.1900 | 139155792160.4600 | 6.3671 |
| 10_District4 | 3600 | 4286 | 28824022749673.9530 | 21291228411410.1000 | 35.3798 |
| 10_District5 | 3600 | 8542 | 42657438984971.2600 | 37249297856014.8000 | 14.5187 |
| 11_District0 | 1220 | 50000 | 3327706843.2400 | 3046672128.3800 | 9.2243 |
| 11_District1 | 3600 | 13452 | 7519784104587.9960 | 6157994611789.7000 | 22.1141 |
| 11_District2 | 1980 | 50000 | 13457228190.3399 | 9214556192.4000 | 46.0431 |
| 11_District3 | 3600 | 40257 | 69047905553.9200 | 61007292651.7800 | 13.1797 |
| 11_District4 | 3601 | 5240 | 28327341544190.6520 | 22460659385239.4000 | 26.1198 |
| 11_District5 | 3600 | 8041 | 17354107747842.5300 | 15643005576898.3000 | 10.9384 |
| 12_District0 | 1081 | 50000 | 123249774847.7199 | 115036288619.9000 | 7.1399 |
| 12_District1 | 3600 | 6465 | 46524033514596.0800 | 37877356021322.0000 | 22.8280 |
| 12_District2 | 3600 | 41768 | 169586962232.2499 | 153054550706.1000 | 10.8016 |
| 12_District3 | 3600 | 25615 | 281503588989.2200 | 239836499336.7000 | 17.3731 |
| 12_District4 | 3600 | 1937 | 69976301190337.2660 | 59129219661289.8000 | 18.3447 |
| 12_District5 | 3600 | 4629 | 77604572919275.8100 | 65945373929847.0000 | 17.6800 |
| 13_District0 | 772 | 50000 | 163030094315.4800 | 154315121626.0000 | 5.6475 |
| 13_District1 | 3601 | 10059 | 19871772650002.9260 | 14674175609787.1000 | 35.4200 |
| 13_District2 | 3600 | 38519 | 154666155183.3599 | 126837068235.0100 | 21.9408 |
| 13_District3 | 3600 | 15791 | 545562728441.2301 | 429665639491.2800 | 26.9737 |
| 13_District4 | 3601 | 2500 | 34944914457256.2730 | 30033656135618.7000 | 16.3525 |
| 13_District5 | 3600 | 3707 | 56929657841132.4100 | 42764648834839.3000 | 33.1231 |
| 14_District0 | 707 | 50000 | 34998959934.3900 | 34977146773.4600 | 0.0623 |
| 14_District1 | 3600 | 8104 | 14524429777197.5840 | 12434388027267.4000 | 16.8085 |
| 14_District2 | 2769 | 50000 | 108121066238.6199 | 90165619840.7900 | 19.9138 |
| 14_District3 | 3600 | 34501 | 329736237547.9298 | 262406322982.9800 | 25.6586 |
| 14_District4 | 3600 | 4702 | 43274108721617.1600 | 31546738861338.4000 | 37.1745 |
| 14_District5 | 3600 | 5122 | 51310668743104.5400 | 44524141233501.8000 | 15.2423 |
| 15_District0 | 1134 | 50000 | 50596439088.6199 | 42188641727.2300 | 19.9290 |
| 15_District1 | 3600 | 7101 | 14069935349289.4470 | 12317798430422.9000 | 14.2244 |
| 15_District2 | 3600 | 25486 | 103156785657.2899 | 67421894826.9300 | 53.0019 |
| 15_District3 | 3600 | 22954 | 452400421567.4308 | 463823619193.1600 | 2.5250 * |
| 15_District4 | 3600 | 5112 | 32194102455076.9380 | 22834329911998.4000 | 40.9899 |
| 15_District5 | 3600 | 6447 | 33961376146576.4570 | 28700034523627.8000 | 18.3321 |
| 16_District0 | 552 | 50000 | 116855140242.5500 | 120807470457.0500 | 3.3822 * |
| 16_District1 | 3600 | 17250 | 16792011684544.6100 | 12316160134202.9000 | 36.3412 |

| Instance | Table E. 8 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 16_District2 | 2236 | 50000 | 103008971092.1900 | 94504646913.7700 | 8.9988 |
| 16_District3 | 3600 | 40255 | 273024373859.2299 | 210518442436.7200 | 29.6914 |
| 16_District4 | 3600 | 3540 | 35952100828187.3600 | 28327769996973.5000 | 26.9146 |
| 16_District5 | 3600 | 5252 | 54102712144284.7300 | 48522145053303.8000 | 11.5010 |
| 17_District0 | 417 | 50000 | 64480501874.8500 | 60633779564.4100 | 6.3441 |
| 17_District1 | 3600 | 13288 | 13583226327478.4280 | 12050832937058.4000 | 12.7160 |
| 17_District2 | 3600 | 43289 | 131790088641.2600 | 111787046906.6000 | 17.8938 |
| 17_District3 | 2002 | 50000 | 222276932231.4899 | 178730940805.7800 | 24.3639 |
| 17_District4 | 3602 | 3735 | 22294458031455.2340 | 19092974442252.1000 | 16.7678 |
| 17_District5 | 3600 | 9831 | 28598180584785.0620 | 23886759047749.6000 | 19.7239 |
| 18_District0 | 102 | 50000 | 2705606160.4100 | 2341527488.6000 | 15.5487 |
| 18_District1 | 3600 | 19535 | 15539109409529.4670 | 13924688690304.7000 | 11.5939 |
| 18_District2 | 1679 | 50000 | 5676720141.8700 | 4417358464.4100 | 28.5093 |
| 18_District3 | 944 | 50000 | 62677261168.5299 | 70920528499.0700 | 13.1519 * |
| 18_District4 | 3600 | 5482 | 21449713637219.9300 | 18718722507656.5000 | 14.5896 |
| 18_District5 | 3600 | 16678 | 15543852583612.3090 | 12641617614178.6000 | 22.9577 |
| 19_District0 | 1121 | 50000 | 47699627935.7100 | 55462969817.4300 | 16.2754 * |
| 19_District1 | 3600 | 8360 | 26413497392708.1800 | 22401449014876.9000 | 17.9097 |
| 19_District2 | 3600 | 32905 | 187674384382.1900 | 153280470262.9000 | 22.4385 |
| 19_District3 | 3600 | 34527 | 274814044921.7300 | 243569037679.2000 | 12.8279 |
| 19_District4 | - | - | - | 106192108824987.0000 | - |
| 19_District5 | 3601 | 4753 | 92374621349656.3100 | 78807991381031.8000 | 17.2147 |
| 1_District0 | 1895 | 50000 | 446621209022.5500 | 430590936121.1900 | 3.7228 |
| 1_District1 | 3600 | 4706 | 64113401266731.5800 | 56270206789859.1000 | 13.9384 |
| 1_District2 | 3600 | 33614 | 778146164132.2399 | 672001346398.5800 | 15.7953 |
| 1_District3 | 3600 | 22175 | 1274852363408.4600 | 1031045184732.7300 | 23.6466 |
| 1_District4 | 3600 | 965 | 89000469461106.8300 | 73732177837593.4000 | 20.7077 |
| 1_District5 | 3600 | 2982 | 105190510015786.4700 | 91806570717137.9000 | 14.5784 |
| 20_District0 | 497 | 50000 | 92787650758.6100 | 98421186256.3800 | 6.0714 * |
| 20_District1 | 3600 | 10214 | 20166473748877.4140 | 17222315357479.6000 | 17.0950 |
| 20_District2 | 3600 | 26237 | 40158479189.1600 | 27378465012.0200 | 46.6790 |
| 20_District3 | 3600 | 19988 | 332285164824.6803 | 305213925793.8100 | 8.8695 |
| 20_District4 | 3600 | 3495 | 30556157284792.6700 | 24960379220572.1000 | 22.4186 |
| 20_District5 | 3600 | 4622 | 54096789514340.4500 | 48965990159239.8000 | 10.4782 |
| 21_District0 | 2311 | 50000 | 121961891548.5799 | 120414278382.3300 | 1.2852 |
| 21_District1 | 3600 | 9554 | 20356277402674.2970 | 16893868904739.4000 | 20.4950 |
| 21_District2 | 3600 | 34101 | 99104833899.7000 | 62666013838.2000 | 58.1476 |
| 21_District3 | 3600 | 33744 | 1083818307996.6499 | 892017226174.9800 | 21.5019 |
| 21_District4 | 3600 | 3538 | 27987492998716.2070 | 24304758516183.0000 | 15.1523 |
| 21_District5 | 3600 | 5584 | 57789774017343.4800 | 45930297567746.2000 | 25.8205 |
| 22_District0 | 545 | 50000 | 142334773151.6699 | 138906549645.3000 | 2.4680 |
| 22_District1 | 3600 | 14200 | 17751503267689.8480 | 14071948171020.4000 | 26.1481 |
| 22_District2 | 3308 | 50000 | 270352167268.5900 | 226837888943.8600 | 19.1829 |
| 22_District3 | 3600 | 24258 | 389586838914.7998 | 285892462254.7700 | 36.2704 |
| 22_District4 | 3600 | 4628 | 36430067637167.2660 | 29074924558505.3000 | 25.2972 |
| 22_District5 | 3600 | 5765 | 49609639676068.9840 | 42772519577575.2000 | 15.9848 |
| 23_District0 | 298 | 50000 | 34130461433.3000 | 32906581132.3800 | 3.7192 |
| 23_District1 | 3600 | 7709 | 20306570703942.8700 | 17211576588480.4000 | 17.9820 |
| 23_District2 | 2431 | 50000 | 229245872910.0900 | 183871311138.5000 | 24.6773 |
| 23_District3 | 3600 | 12893 | 286075456109.0404 | 250619333021.8100 | 14.1474 |
| 23_District4 | 3601 | 2316 | 44124735609381.3750 | 34555727151866.1000 | 27.6915 |
| 23_District5 | 3600 | 4121 | 82318311632011.2200 | 70608343796642.5000 | 16.5843 |
| 24_District0 | 1315 | 50000 | 116557323116.4800 | 105830236823.5000 | 10.1361 |
| 24_District1 | 3600 | 10321 | 14601551656495.2070 | 11389191027676.9000 | 28.2053 |
| 24_District2 | 2877 | 50000 | 25698213544.9499 | 26055867878.7800 | 1.3917 * |
| 24_District3 | 3600 | 21504 | 176442969278.3299 | 159315579521.2200 | 10.7506 |
| 24_District4 | 3600 | 3353 | 28492637314463.2800 | 24517137738123.8000 | 16.2151 |
| 24_District5 | 3600 | 10128 | 29285060431772.2460 | 24738655441667.6000 | 18.3777 |
| 25_District0 | 279 | 50000 | 1465508222.8300 | 1255504790.1000 | 16.7266 |
| 25_District1 | 3600 | 13827 | 7110320772712.6380 | 6071232244353.8300 | 17.1149 |
| 25_District2 | 537 | 50000 | 2738854314.9000 | 2430507030.7800 | 12.6865 |
| 25_District3 | 1849 | 50000 | 53936038785.1399 | 54825213021.3900 | 1.6485 * |
| 25_District4 | 3600 | 4865 | 25996861803541.5400 | 20503174454937.0000 | 26.7943 |
| 25_District5 | 3600 | 9498 | 12406452080578.2800 | 11011719621667.4000 | 12.6658 |
| 26_District0 | 2098 | 50000 | 229828525038.5700 | 225380467772.9800 | 1.9735 |
| 26_District1 | 3600 | 7156 | 48987132161122.1500 | 42180173025536.8000 | 16.1378 |
| 26_District2 | 2418 | 50000 | 388568810286.6699 | 282951685653.1000 | 37.3269 |
| 26_District3 | 3600 | 15712 | 1292287659214.3389 | 1171533328289.0400 | 10.3073 |
| 26_District4 | 3601 | 1413 | 126120081289807.2700 | 105580668249051.0000 | 19.4537 |
| 26_District5 | 3601 | 2140 | 88272702517243.4700 | 76363123397244.6000 | 15.5959 |
| 27_District0 | 1086 | 50000 | 150935841287.4100 | 162479691641.3000 | 7.6481* |
| 27_District1 | 3600 | 12021 | 24579099095816.6900 | 18425601260045.1000 | 33.3964 |
| 27_District2 | 3600 | 21545 | 85378522278.3000 | 61192189969.0700 | 39.5251 |
| 27-District3 | 3262 | 50000 | 135006682539.8000 | 116712931257.8400 | 15.6741 |
| 27_District4 | 3601 | 2431 | 42830700078064.5100 | 33778988955119.3000 | 26.7968 |
| 27_District5 | 3600 | 5601 | 46799178020401.0300 | 39568513214098.5000 | 18.2737 |
| 28_District0 | 655 | 50000 | 112954621923.5300 | 102108349093.8000 | 10.6223 |
| 28_District1 | 3600 | 9670 | 16751294190753.8380 | 15128335139531.3000 | 10.7279 |
| 28_District2 | 2518 | 50000 | 80008879999.6099 | 64692968024.3600 | 23.6747 |
| 28_District3 | 3600 | 23311 | 957802714175.6798 | 805624097687.0900 | 18.8895 |
| 28_District4 | 3600 | 4629 | 28571951497097.7540 | 22982825117023.6000 | 24.3187 |
| 28_District5 | 3600 | 7537 | 41410160521065.4840 | 33791534896023.1000 | 22.5459 |
| 29_District0 | 1094 | 50000 | 31995323111.8699 | 29353316624.4500 | 9.0007 |
| 29_District1 | 3600 | 18327 | 9019729753026.5980 | 7484826255380.2500 | 20.5068 |
| 29_District2 | 3600 | 39676 | 108362419182.7700 | 101233312043.5700 | 7.0422 |
| 29_District3 | 3600 | 20616 | 289675147038.2499 | 232601979076.2900 | 24.5368 |
| 29_District4 | 3600 | 5830 | 10869563929843.5680 | 8309110124637.3200 | 30.8150 |
| 29_District5 | 3600 | 4870 | 40098034357696.8600 | 35670467010142.6000 | 12.4124 |
| 2_District0 | 1890 | 50000 | 155041276217.5999 | 147005506881.3000 | 5.4663 |
| 2_District1 | 3600 | 6762 | 45459857429067.4450 | 39540340925649.8000 | 14.9708 |
| 2_District2 | 3600 | 43648 | 266311375917.0197 | 217829855689.6200 | 22.2566 |
| 2_District3 | 3600 | 36200 | 1210994966019.4000 | 858787147589.8100 | 41.0122 |
| 2_District4 | 3602 | 1581 | 74239030120333.2500 | 58876326066126.1000 | 26.0931 |
| 2_District5 | 3601 | 2824 | 113193541593170.9200 | 95903342380824.9000 | 18.0287 |
| 30_District0 | 362 | 50000 | 15544046438.0500 | 14856579555.0000 | 4.6273 |
| 30_District1 | 3600 | 16127 | 5453874315157.2070 | 4288991390631.0100 | 27.1598 |
| 30_District2 | 3600 | 46877 | 33258234580.2999 | 28984654012.0000 | 14.7442 |

| Instance | Table E. 8 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 30_District3 | 1953 | 50000 | 142168951382.7100 | 140260859804.8700 | 1.3603 |
| 30_District4 | 3600 | 8423 | 6957178114976.4290 | 6033193692111.0700 | 15.3150 |
| 30_District5 | 3600 | 16373 | 6652589252190.8170 | 5491783393822.4800 | 21.1371 |
| 3_District0 | 606 | 50000 | 97411176585.6400 | 90701681116.3600 | 7.3973 |
| 3_District1 | 3600 | 14718 | 21669256497445.5620 | 17931112587450.7000 | 20.8472 |
| 3_District2 | 3600 | 31047 | 218831386416.8799 | 184423936337.4900 | 18.6567 |
| 3_District3 | 3600 | 21472 | 1055208515491.4495 | 837894240881.4400 | 25.9357 |
| 3_District4 | - | - | - | 67042838268903.4000 | - |
| 3_District5 | 3600 | 4937 | 71450369212445.9400 | 60566955554266.6000 | 17.9692 |
| 4_District0 | 355 | 50000 | 21143876404.2400 | 20379141775.5100 | 3.7525 |
| 4_District1 | 3600 | 9057 | 18643409643794.8630 | 16091560843817.3000 | 15.8583 |
| 4_District2 | 1807 | 50000 | 22470399290.9999 | 19771989271.8700 | 13.6476 |
| 4_District3 | 2626 | 50000 | 31168654413.9700 | 31243041764.1500 | 0.2386 * |
| 4_District4 | 3601 | 1614 | 55827883212635.5600 | 44497725128783.0000 | 25.4623 |
| 4_District5 | 3600 | 9069 | 35485732192312.5100 | 30292083288905.3000 | 17.1452 |
| 5_District0 | 1148 | 50000 | 102454919215.7400 | 105305055950.1000 | 2.7818 * |
| 5_District1 | 3600 | 9333 | 26958729717452.4450 | 22578812619408.6000 | 19.3983 |
| 5_District2 | 3600 | 43657 | 72814722089.2699 | 49746631100.9200 | 46.3711 |
| 5_District3 | 3600 | 24218 | 368339564893.9703 | 366270241695.4900 | 0.5649 |
| 5_District4 | 3600 | 1797 | 87052360312381.4500 | 68243049339872.1000 | 27.5622 |
| 5_District5 | 3600 | 2429 | 144263825380312.4000 | 121803986176569.0000 | 18.4393 |
| 6_District0 | 846 | 50000 | 184831595148.0799 | 174024536017.0000 | 6.2100 |
| 6_District1 | 3600 | 5584 | 29757855339023.4100 | 24635464198083.6000 | 20.7927 |
| 6_District2 | 3600 | 25764 | 314699930704.3200 | 263920214770.7000 | 19.2405 |
| 6_District3 | 3600 | 39654 | 326846711901.7501 | 272026860685.1900 | 20.1523 |
| 6_District4 | 3600 | 3160 | 41017633874659.3900 | 32671893526336.1000 | 25.5440 |
| 6_District5 | 3600 | 5613 | 65047160187885.1250 | 52577668995018.6000 | 23.7163 |
| 7_District0 | 1556 | 50000 | 50362920704.4700 | 53992400830.1800 | 7.2066 * |
| 7_District1 | 3601 | 5236 | 28469891691201.0230 | 25530776489059.8000 | 11.5120 |
| 7_District2 | 2690 | 50000 | 95085164959.8600 | 96812988604.0900 | 1.8171 * |
| 7_District3 | 3600 | 42807 | 885810255449.4302 | 627921570619.9200 | 41.0702 |
| 7_District4 | 3601 | 3415 | 38983888110125.7900 | 30888008083772.9000 | 26.2104 |
| 7_District5 | 3600 | 3801 | 59599457455793.6500 | 52214576657422.1000 | 14.1433 |
| 8_District0 | 595 | 50000 | 55023099709.3399 | 47815962594.9100 | 15.0726 |
| 8_District1 | 3600 | 12075 | 15922201158605.7680 | 13654929607346.6000 | 16.6040 |
| 8_District2 | 2756 | 50000 | 66765823275.3500 | 73150043166.7900 | 9.5621 * |
| 8_District3 | 3600 | 31339 | 482102510681.2601 | 367102727288.8900 | 31.3263 |
| 8_District4 | 3600 | 3968 | 35399491028950.2900 | 29816748603227.9000 | 18.7235 |
| 8_District5 | 3600 | 9055 | 50474401568700.1000 | 40450402089088.4000 | 24.7809 |
| 9_District0 | 312 | 50000 | 102743034998.7600 | 100093204504.3000 | 2.6473 |
| 9_District1 | 3600 | 13907 | 15318565989602.6800 | 12178217016824.2000 | 25.7866 |
| 9_District2 | 1872 | 50000 | 106982243005.6299 | 89342594098.5600 | 19.7438 |
| 9_District3 | 3600 | 32485 | 1284512871128.3906 | 911115793606.4100 | 40.9823 |
| 9_District4 | 3602 | 2227 | 48344285222867.3100 | 37164202673658.1000 | 30.0829 |
| 9_District5 | 3600 | 8580 | 32702225945411.4060 | 25382936280280.4000 | 28.8354 |
| C101_100t_20w | 3283 | 50000 | 99095856585.7203 | -12304901708.1200 | 905.3364 |
| C101_25t_5w | 175 | 50000 | 113642735.5600 | 9512566.6400 | 1094.6590 |
| C101_50t_10w | 688 | 50000 | 3214099348.6999 | -1079154704.1200 | 397.8349 |
| C102_100t_20w | 3600 | 11668 | 98901313024.3402 | -5155408825.8200 | 2018.3990 |
| C102_25t_5w | 622 | 50000 | 39550192.4200 | -37546115.7600 | 205.3376 |
| C102_50t_10w | 3600 | 47988 | 3140078105.8398 | -1102530180.6200 | 384.8065 |
| C103_100t_20w | 3600 | 5585 | 39930163004.1205 | -7222438475.8600 | 652.8626 |
| C103_25t_5w | 2222 | 50000 | 40551560.5799 | -43052838.4600 | 194.1902 |
| C103_50t_10w | 3600 | 12944 | 3743938477.6599 | -1110321792.2400 | 437.1940 |
| C104_100t_20w | 3600 | 3724 | 17314423586.3605 | -8681519205.2400 | 299.4400 |
| C104_25t_5w | 3271 | 50000 | 39550261.0599 | -33540706.8600 | 217.9171 |
| C104_50t_10w | 3600 | 7465 | 1305120952.8799 | -1086946666.3200 | 220.0722 |
| C105_100t_20w | 3600 | 29483 | 77185339028.9999 | -12158993843.3000 | 734.8003 |
| C105_25t_5w | 238 | 50000 | 116646388.4000 | 1002190.7200 | 11539.1407 |
| C105_50t_10w | 1541 | 50000 | 3186828351.9399 | -1102529614.6600 | 389.0469 |
| C106_100t_20w | 3600 | 21093 | 54739825368.8202 | -5349954009.7600 | 1123.1831 |
| C106_25t_5w | 250 | 50000 | 115144572.7800 | 9512566.6400 | 1110.4469 |
| C106_50t_10w | 1230 | 50000 | 1379142584.3799 | -1086946589.7000 | 226.8822 |
| C107_100t_20w | 3600 | 19782 | 76747614835.6599 | -6979258964.6200 | 1199.6527 |
| C107_25t_5w | 376 | 50000 | 112641450.9999 | -2001420.3200 | 5728.0757 |
| C107_50t_10w | 2493 | 50000 | 3747834654.6599 | -1125905161.9000 | 432.8730 |
| C108_100t_20w | 3600 | 13656 | 47079655318.6598 | -6492899831.1000 | 825.0944 |
| C108_25t_5w | 593 | 50000 | 71089677.5200 | -8009072.9800 | 987.6143 |
| C108_50t_10w | 3532 | 50000 | 2551800875.0799 | -1125905177.3200 | 326.6443 |
| C109_100t_20w | 3600 | 8826 | 47006701457.3999 | -6614488230.8200 | 810.6627 |
| C109_25t_5w | 859 | 50000 | 35044676.3999 | -26031566.9600 | 234.6237 |
| C109_50t_10w | 3600 | 31838 | 2524529654.7199 | -1125905761.1800 | 324.2221 |
| C201_100t_20w | 3600 | 14493 | -12596716053.9600 | -12596720162.2300 | 0.0000 |
| C201_25t_5w | 1028 | 50000 | -45555916.6400 | -45555916.9200 | 0.0000 |
| C201_50t_10w | 2614 | 50000 | -506460875.0600 | -1125905241.3800 | 55.0174 |
| C202_100t_20w | 3602 | 2358 | 39322214142.4203 | -6055175633.1600 | 749.3984 |
| C202_25t_5w | 3600 | 27539 | -45555913.6599 | -45555950.8800 | 0.0000 |
| C202_50t_10w | 3601 | 6934 | 685677219.4399 | -1125905361.9600 | 160.9000 |
| C203_100t_20w | 3602 | 1061 | 24536869879.3203 | -6930623788.8800 | 454.0355 |
| C203_25t_5w | 3600 | 4203 | -45555827.1999 | -45555956.2400 | 0.0002 |
| C203_50t_10w | 3600 | 2502 | 709052735.5999 | -1125905456.0600 | 162.9762 |
| C204_100t_20w | 3602 | 519 | 24609823628.3203 | -8657198950.2400 | 384.2700 |
| C204_25t_5w | 3600 | 3434 | -42551953.2800 | -45555977.0000 | 6.5941 |
| C204_50t_10w | 3601 | 1321 | 93504394.2998 | -1125905585.1400 | 108.3048 |
| C205_100t_20w | 3600 | 5597 | 9702889586.1598 | -12596718687.8400 | 177.0271 |
| C205_25t_5w | 2915 | 50000 | -45555910.0000 | -45555926.8000 | 0.0000 |
| C205_50t_10w | 3600 | 29566 | -522044220.5000 | -1125905403.9800 | 53.6333 |
| C206_100t_20w | 3600 | 3356 | 31953859516.5598 | -7733117210.9600 | 513.2080 |
| C206_25t_5w | 3600 | 43142 | -45555918.6800 | -45555926.8000 | 0.0000 |
| C206_50t_10w | 3600 | 17394 | 677885628.8399 | -1125905541.4200 | 160.2080 |
| C207_100t_20w | 3600 | 2680 | 24488233802.3396 | -7222438653.2400 | 439.0576 |
| C207_25t_5w | 3600 | 33317 | -45555880.1400 | -45555933.4200 | 0.0001 |
| C207_50t_10w | 3600 | 5739 | -498668527.7600 | -1125905455.9000 | 55.7095 |
| C208_100t_20w | 3600 | 2362 | 24536869467.2000 | -8657201177.3800 | 383.4272 |
| C208_25t_5w | 3600 | 28572 | -45555911.2800 | -45555933.1600 | 0.0000 |
| C208_50t_10w | 3600 | 10337 | 697364998.0999 | -1125905465.6600 | 161.9381 |
| hh_00_P0 | 3600 | 23320 | 855649513467.0670 | 6663651008.2900 | 12740.5511 |

| Instance | Table E. 8 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 111_00_P0 | 2018 | 50000 | 12029742925.6600 | 1338732826.5000 | 798.5917 |
| 111_01_P0 | 1973 | 50000 | 8761696992.0399 | 1338732826.5000 | 554.4768 |
| 111_02_P0 | 2058 | 50000 | 8761710941.1901 | 1338732826.5000 | 554.4779 |
| 111_03_P0 | 2034 | 50000 | 10364620911.9201 | 1338732826.5000 | 674.2113 |
| 111_04_P0 | 2059 | 50000 | 10333442162.1100 | 1338732826.5000 | 671.8823 |
| 111_05_P0 | 2067 | 50000 | 15360038245.1100 | 1307660206.1200 | 1074.6199 |
| 111_06_P0 | 1977 | 50000 | 12029721461.7801 | 1214281948.4400 | 890.6860 |
| 111_07_P0 | 2063 | 50000 | 5431393662.0100 | 1338732826.5000 | 305.7115 |
| 112_00_P0 | 1456 | 50000 | 402249701.6198 | 85352916.2700 | 371.2782 |
| 113_00_P0 | 1422 | 50000 | 965681078.0999 | -198615845.6200 | 586.2054 |
| R101_100t_20w | 646 | 50000 | 28343983676.1399 | 6319981502.8600 | 348.4820 |
| R101_25t_5w | 24 | 50000 | 48450070.2600 | 47893886.5800 | 1.1612 |
| R101_50t_10w | 99 | 50000 | 1176556007.9999 | 709051142.3992 | 65.9338 |
| R102_100t_20w | 1894 | 50000 | 20929696190.8198 | 14101742003.1800 | 48.4192 |
| R102_25t_5w | 46 | 50000 | 38715838.3600 | 34655177.0000 | 11.7173 |
| R102_50t_10w | 248 | 50000 | 1037170523.4999 | 641955625.9388 | 61.5642 |
| R103_100t_20w | 3299 | 50000 | 20094778348.1398 | 12469734030.7400 | 61.1484 |
| R103_25t_5w | 101 | 50000 | 30705785.2999 | 30260803.3400 | 1.4704 |
| R103_50t_10w | 585 | 50000 | 963149100.1199 | 570531480.7600 | 68.8161 |
| R104_100t_20w | 3600 | 39613 | 19294986670.3198 | 14023383931.9600 | 37.5915 |
| R104_25t_5w | 115 | 50000 | 26033244.6400 | 29982663.2800 | 15.1706 * |
| R104_50t_10w | 1036 | 50000 | 696931044.8200 | 293491458.8800 | 137.4621 |
| R105_100t_20w | 1182 | 50000 | 24201817987.1599 | 8424839701.0800 | 187.2674 |
| R105_25t_5w | 36 | 50000 | 40106282.9600 | 35155829.6400 | 14.0814 |
| R105_50t_10w | 168 | 50000 | 1098638838.5000 | 388290958.0600 | 182.9421 |
| R106_100t_20w | 2193 | 50000 | 24163990277.4198 | 8443754034.7200 | 186.1759 |
| R106_25t_5w | 51 | 50000 | 30594658.6600 | 30483330.4600 | 0.3652 |
| R106_50t_10w | 307 | 50000 | 1031976025.0999 | 303880567.4400 | 239.5992 |
| R107_100t_20w | 3266 | 50000 | 20113692439.8597 | 11634816307.3400 | 72.8750 |
| R107_25t_5w | 92 | 50000 | 26144590.7199 | 22028382.6800 | 18.6859 |
| R107_50t_10w | 570 | 50000 | 787834787.2399 | 372274723.4800 | 111.6272 |
| R108_100t_20w | 3600 | 41055 | 17654872808.1198 | 12369760088.0800 | 42.7260 |
| R108_25t_5w | 108 | 50000 | 26144515.0399 | 26033406.5200 | 0.4267 |
| R108_50t_10w | 989 | 50000 | 765758147.6999 | 293491505.9600 | 160.9132 |
| R109_100t_20w | 2222 | 50000 | 22548193919.5199 | 6636116061.1200 | 239.7799 |
| R109_25t_5w | 54 | 50000 | 34265826.9200 | 26255954.0600 | 30.5068 |
| R109_50t_10w | 291 | 50000 | 900381997.2799 | 631133985.4200 | 42.6609 |
| R110_100t_20w | 2694 | 50000 | 21767316347.5798 | 7622345982.8200 | 185.5723 |
| R110_25t_5w | 51 | 50000 | 34210247.1599 | 34488424.6600 | 0.8131 * |
| R110_50t_10w | 357 | 50000 | 900382247.5399 | 636761297.5800 | 41.4002 |
| R111_100t_20w | 3009 | 50000 | 23372304372.9398 | 8473476077.2600 | 175.8290 |
| R111_25t_5w | 68 | 50000 | 29815907.5400 | 26144634.7600 | 14.0421 |
| R111_50t_10w | 498 | 50000 | 831122241.4399 | 496942686.1600 | 67.2471 |
| R112_100t_20w | 3590 | 50000 | 20908080380.0198 | 10851236130.0600 | 92.6792 |
| R112_25t_5w | 67 | 50000 | 29927017.5799 | 26311467.9000 | 13.7413 |
| R112_50t_10w | 452 | 50000 | 902979348.9400 | 427249792.1800 | 111.3469 |
| R201_100t_20w | 3600 | 23601 | 253994839.7598 | -1383419122.5000 | 118.3599 |
| R201_25t_5w | 492 | 50000 | -5171446.6000 | -5171519.4600 | 0.0014 |
| R201_50t_10w | 1743 | 50000 | -124231486.3201 | -125097475.6400 | 0.6922 |
| R202_100t_20w | 3600 | 8941 | 4379948786.1398 | -778169509.0800 | 662.8527 |
| R202_25t_5w | 999 | 50000 | -5171436.6400 | -5171550.1800 | 0.0021 |
| R202_50t_10w | 3600 | 40874 | 146748317.1199 | -125097689.9000 | 217.3069 |
| R203_100t_20w | 3600 | 4740 | 1907618989.9997 | -891653653.5400 | 313.9417 |
| R203_25t_5w | 2393 | 50000 | -4893127.5399 | -5171614.5200 | 5.3849 |
| R203_50t_10w | 3600 | 17050 | 77055479.7399 | -125097805.5400 | 161.5961 |
| R204_100t_20w | 3600 | 3712 | 2726324834.8998 | -1007840112.0800 | 370.5116 |
| R204_25t_5w | 3182 | 50000 | -5060010.4000 | -5060450.1000 | 0.0086 |
| R204_50t_10w | 3600 | 9645 | 78354311.8399 | -125098025.1800 | 162.6343 |
| R205_100t_20w | 3600 | 10834 | 1896810858.2997 | -910567724.8000 | 308.3107 |
| R205_25t_5w | 1064 | 50000 | -5171482.1600 | -5171759.2000 | 0.0053 |
| R205_50t_10w | 3600 | 43164 | 9094043.7598 | -125097876.3800 | 107.2695 |
| R206_100t_20w | 3600 | 6674 | 5193250386.1198 | -964607487.1800 | 638.3796 |
| R206_25t_5w | 1709 | 50000 | -5171543.0199 | -5171813.9000 | 0.0052 |
| R206_50t_10w | 3600 | 26469 | 77921377.8798 | -125097837.4400 | 162.2883 |
| R207_100t_20w | 3600 | 4532 | 3555838829.4997 | -1018647805.1000 | 449.0744 |
| R207_25t_5w | 2565 | 50000 | -5171737.6399 | -5171794.9600 | 0.0011 |
| R207_50t_10w | 3600 | 14162 | 76189580.1999 | -125097967.7600 | 160.9039 |
| R208_100t_20w | 3600 | 3588 | 1078104892.9997 | -1042965700.1000 | 203.3691 |
| R208_25t_5w | 2969 | 50000 | -5060332.4600 | -5060560.5800 | 0.0045 |
| R208_50t_10w | 3600 | 8123 | 78354044.4398 | -125098091.9200 | 162.6340 |
| R209_100t_20w | 3600 | 8063 | 4379948681.1399 | -1013243421.1000 | 532.2701 |
| R209_25t_5w | 1105 | 50000 | -4448269.2800 | -5060483.0600 | 12.0979 |
| R209_50t_10w | 3600 | 29493 | 13855538.1999 | -125097999.8800 | 111.0757 |
| R210_100t_20w | 3600 | 7086 | 4374544627.5798 | -978117773.2200 | 547.2410 |
| R210_25t_5w | 1741 | 50000 | -5171454.9399 | -5171642.3200 | 0.0036 |
| R210_50t_10w | 3600 | 25005 | 209514918.5799 | -125097934.6800 | 267.4807 |
| R211_100t_20w | 3600 | 6457 | 7676388592.9198 | -942991911.9800 | 914.0460 |
| R211_25t_5w | 1745 | 50000 | -5060306.1199 | -5060502.8400 | 0.0038 |
| R211_50t_10w | 3600 | 20108 | 143284906.6198 | -122500836.0400 | 216.9664 |
| RC101_100t_20w | 1037 | 50000 | 30092178382.2198 | 15814809991.8800 | 90.2784 |
| RC101_25t_5w | 34 | 50000 | 30650072.4200 | 27034405.3800 | 13.3743 |
| RC101_50t_10w | 114 | 50000 | 970074742.1999 | 190034189.6200 | 410.4737 |
| RC102_100t_20w | 1767 | 50000 | 24236944676.8597 | 15822916717.4800 | 53.1762 |
| RC102_25t_5w | 42 | 50000 | 26533966.6800 | 26645148.4800 | 0.4190 * |
| RC102_50t_10w | 143 | 50000 | 977001259.5399 | 578756222.9600 | 68.8104 |
| RC103_100t_20w | 2721 | 50000 | 24201818776.8197 | 17527878844.9600 | 38.0761 |
| RC103_25t_5w | 60 | 50000 | 21917092.7600 | 21805915.8800 | 0.5098 |
| RC103_50t_10w | 258 | 50000 | 838914045.9000 | 767922882.8400 | 9.2445 |
| RC104_100t_20w | 3600 | 48983 | 20121798982.4197 | 18130424572.1200 | 10.9836 |
| RC104_25t_5w | 74 | 50000 | 22195218.5200 | 25810879.2400 | 16.2902 * |
| RC104_50t_10w | 412 | 50000 | 836749757.1400 | 498674346.2200 | 67.7948 |
| RC105_100t_20w | 1684 | 50000 | 27519874515.9798 | 10907978098.4200 | 152.2912 |
| RC105_25t_5w | 38 | 50000 | 26645206.1800 | 30761388.4200 | 15.4481 * |
| RC105_50t_10w | 161 | 50000 | 844108351.2399 | 448893536.2400 | 88.0419 |
| RC106_100t_20w | 1843 | 50000 | 26709274569.8198 | 11529438265.0600 | 131.6615 |
| RC106_25t_5w | 50 | 50000 | 26589569.3399 | 22417682.5200 | 18.6098 |
| RC106_50t_10w | 170 | 50000 | 847571382.6200 | 515989390.5800 | 64.2613 |

| Instance | Table E. 8 - continued from previous page | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| RC107_100t_20w | 2403 | 50000 | 30767678749.7998 | 16638920438.6600 | 84.9139 |
| RC107_25t_5w | 46 | 50000 | 26255800.9200 | 30761589.8800 | 17.1611* |
| RC107_50t_10w | 239 | 50000 | 899516382.3000 | 575726019.2200 | 56.2403 |
| RC108_100t_20w | 3064 | 50000 | 21832164794.1197 | 14823176358.6800 | 47.2839 |
| RC108_25t_5w | 63 | 50000 | 25977760.8799 | 30372205.5600 | 16.9161^{*} |
| RC108_50t_10w | 313 | 50000 | 840645214.8799 | 630268451.2000 | 33.3789 |
| RC201_100t_20w | 3600 | 24559 | -1388819549.5002 | -1378013035.7800 | 0.7781 * |
| RC201_25t_5w | 465 | 50000 | -5170833.5800 | -5171005.4000 | 0.0033 |
| RC201_50t_10w | 1425 | 50000 | -120766859.9402 | -125096456.0400 | 3.4610 |
| RC202_100t_20w | 3600 | 10081 | 4369142523.4196 | -848419159.5200 | 614.9745 |
| RC202_25t_5w | 702 | 50000 | -5171301.2800 | -5171480.4200 | 0.0034 |
| RC202_50t_10w | 3188 | 50000 | 77921726.2198 | -125096955.0600 | 162.2890 |
| RC203_100t_20w | 3600 | 5581 | 1913023548.4997 | -915968950.1800 | 308.8524 |
| RC203_25t_5w | 1701 | 50000 | -5170950.3199 | -5171505.3800 | 0.0107 |
| RC203_50t_10w | 3600 | 23238 | 77055884.3598 | -125096765.1800 | 161.5970 |
| RC204_100t_20w | 3600 | 4305 | 1907619884.9597 | -1032155821.9000 | 284.8189 |
| RC204_25t_5w | 2589 | 50000 | -5060060.2399 | -5060413.3600 | 0.0069 |
| RC204_50t_10w | 3600 | 11359 | 76190308.5598 | -125097014.9000 | 160.9049 |
| RC205_100t_20w | 3600 | 12931 | 2739836285.9197 | -856525543.8000 | 419.8779 |
| RC205_25t_5w | 599 | 50000 | -5004006.2000 | -5171462.0600 | 3.2380 |
| RC205_50t_10w | 2961 | 50000 | 77922090.5797 | -125096766.4200 | 162.2894 |
| RC206_100t_20w | 3600 | 11622 | 1078106682.4998 | -905161565.1000 | 219.1065 |
| RC206_25t_5w | 856 | 50000 | -5171348.0800 | -5171397.9400 | 0.0009 |
| RC206_50t_10w | 3249 | 50000 | -57999964.4802 | -125097137.7600 | 53.6360 |
| RC207_100t_20w | 3600 | 9470 | 6852279937.0799 | -907864881.6600 | 854.7686 |
| RC207_25t_5w | 864 | 50000 | -4781707.9399 | -5059890.2000 | 5.4977 |
| RC207_50t_10w | 3600 | 36333 | -119035962.7801 | -122499526.2000 | 2.8274 |
| RC208_100t_20w | 3600 | 6966 | 6857684162.9399 | -978116228.2000 | 801.1113 |
| RC208_25t_5w | 1269 | 50000 | -5060219.5799 | -5060744.0000 | 0.0103 |
| RC208_50t_10w | 3600 | 24996 | 148913526.1999 | -125096819.1800 | 219.0386 |
| test150-0-0-0-0_d0_tw0 | 3601 | 1209 | 101050622678.1997 | -28349336446.9000 | 456.4479 |
| test150-0-0-0-0_d0_tw1 | 3600 | 2975 | -24141770230.7996 | -30832491493.7000 | 21.7002 |
| test150-0-0-0-0_d0_tw2 | 3600 | 3993 | 7242548454.7989 | -28832172176.8000 | 125.1196 |
| test150-0-0-0-0_d0_tw3 | 3600 | 5397 | 6897666592.4002 | -27383664735.0000 | 125.1889 |
| test150-0-0-0-0_d0_tw 4 | 3600 | 3496 | 163819258695.0000 | -26142085667.0000 | 726.6495 |
| test250-0-0-0-0_d0_tw0 | - | - | - | 23650649218.5000 | - |
| test250-0-0-0-0_d0_tw1 | - | - | - | -292254131472.0000 | - |
| test250-0-0-0-0_d0_tw2 | - | - | - | -275698693917.1000 | - |
| test250-0-0-0-0_d0_tw3 | 3600 | 871 | -214544933324.4147 | -266914175565.0000 | 19.6202 |
| test250-0-0-0-0_d0_tw4 | - | - | - | -231776103927.7000 | - |
| test50-0-0-0-0_d0_tw0 | 3600 | 7002 | -842598576.7999 | -842599324.2000 | 0.0000 |
| test50-0-0-0-0_d0_tw1 | 3600 | 26722 | -842598443.2999 | -842599506.6000 | 0.0001 |
| test50-0-0-0-0_d0_tw2 | 3600 | 36788 | -842598048.7999 | -842599560.3000 | 0.0001 |
| test50-0-0-0-0_d0_tw3 | 3519 | 50000 | -830114535.8999 | -842598590.0000 | 1.4816 |
| test50-0-0-0-0_d0_tw4 | 3600 | 34601 | -358882360.4999 | -842599753.8000 | 57.4077 |

E. 9 Tabu Search Results: Config. 9

Table E.9: Tabu Search experiments results with parameter configuration 9

| Instance | Time | Iterations | Objective Value | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10_District0 | 66 | 10000 | 74618110144.1400 | 71563566909.3600 | 4.2682 |
| 10_District1 | 581 | 10000 | 8938146360546.6970 | 8218857439409.0600 | 8.7516 |
| 10_District2 | 319 | 10000 | 46451869602.0199 | 27771011394.0200 | 67.2674 |
| 10_District3 | 165 | 10000 | 141620940002.7101 | 139155792160.4600 | 1.7715 |
| 10_District4 | 3132 | 10000 | 26625521931713.8120 | 21291228411410.1000 | 25.0539 |
| 10_District5 | 2507 | 10000 | 41737394243010.0900 | 37249297856014.8000 | 12.0488 |
| 11_District0 | 68 | 10000 | 3928098965.6099 | 3046672128.3800 | 28.9308 |
| 11_District1 | 874 | 10000 | 6644833546027.0110 | 6157994611789.7000 | 7.9058 |
| 11_District2 | 116 | 10000 | 14972468061.3300 | 9214556192.4000 | 62.4871 |
| 11_District3 | 163 | 10000 | 65361664595.6499 | 61007292651.7800 | 7.1374 |
| 11_District4 | 3044 | 10000 | 25977912326971.8750 | 22460659385239.4000 | 15.6596 |
| 11_District5 | 1813 | 10000 | 16899788327820.8890 | 15643005576898.3000 | 8.0341 |
| 12_District0 | 75 | 10000 | 131463261688.0899 | 115036288619.9000 | 14.2798 |
| 12_District1 | 2249 | 10000 | 43251322721596.4900 | 37877356021322.0000 | 14.1878 |
| 12_District2 | 167 | 10000 | 197276898620.9196 | 153054550706.1000 | 28.8931 |
| 12_District3 | 417 | 10000 | 193884174241.5399 | 239836499336.7000 | 23.7009 * |
| 12_District4 | 3600 | 6905 | 67691720648819.9450 | 59129219661289.8000 | 14.4809 |
| 12_District5 | 3600 | 9443 | 73828178354991.5800 | 65945373929847.0000 | 11.9535 |
| 13_District0 | 30 | 10000 | 176653499888.4400 | 154315121626.0000 | 14.4758 |
| 13_District1 | 1411 | 10000 | 18424852168090.4020 | 14674175609787.1000 | 25.5597 |
| 13_District2 | 373 | 10000 | 128663035703.5597 | 126837068235.0100 | 1.4396 |
| 13_District3 | 1009 | 10000 | 450725719458.7006 | 429665639491.2800 | 4.9015 |
| 13_District4 | 1244 | 4003 | 34087365126496.8300 | 30033656135618.7000 | 13.4972 |
| 13_District5 | 2418 | 10000 | 46944882845825.2100 | 42764648834839.3000 | 9.7749 |
| 14_District0 | 47 | 10000 | 36438617953.3200 | 34977146773.4600 | 4.1783 |
| 14_District1 | 1955 | 10000 | 13518736316108.9470 | 12434388027267.4000 | 8.7205 |
| 14_District2 | 97 | 10000 | 108031438247.2699 | 90165619840.7900 | 19.8144 |
| 14_District3 | 388 | 10000 | 265662606247.0595 | 262406322982.9800 | 1.2409 |
| 14_District4 | 3329 | 10000 | 39936859284178.1900 | 31546738861338.4000 | 26.5958 |
| 14_District5 | 3212 | 10000 | 48558384707731.8600 | 44524141233501.8000 | 9.0608 |
| 15_District0 | 42 | 10000 | 58881792510.4799 | 42188641727.2300 | 39.5678 |
| 15_District1 | 1071 | 10000 | 13162303174786.7270 | 12317798430422.9000 | 6.8559 |
| 15_District2 | 208 | 10000 | 80880489793.5000 | 67421894826.9300 | 19.9617 |
| 15_District3 | 561 | 10000 | 436031815251.0704 | 463823619193.1600 | 6.3738 * |
| 15_District4 | 3015 | 10000 | 29797811910303.2500 | 22834329911998.4000 | 30.4956 |
| 15_District5 | 2111 | 10000 | 32392334887695.6200 | 28700034523627.8000 | 12.8651 |

| Instance | Table E. 9 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 16_District0 | 34 | 10000 | 126871892522.6999 | 120807470457.0500 | 5.0199 |
| 16_District1 | 1033 | 10000 | 14794477569995.2770 | 12316160134202.9000 | 20.1224 |
| 16_District2 | 96 | 10000 | 111048429008.9600 | 94504646913.7700 | 17.5057 |
| 16_District3 | 377 | 10000 | 253343907173.6297 | 210518442436.7200 | 20.3428 |
| 16_District4 | 3484 | 10000 | 35094026384039.7300 | 28327769996973.5000 | 23.8855 |
| 16_District5 | 3148 | 10000 | 52349926885974.4300 | 48522145053303.8000 | 7.8887 |
| 17_District0 | 28 | 10000 | 64731054335.9600 | 60633779564.4100 | 6.7574 |
| 17_District1 | 1070 | 10000 | 12688141175700.4320 | 12050832937058.4000 | 5.2884 |
| 17_District2 | 230 | 10000 | 121137939214.3299 | 111787046906.6000 | 8.3649 |
| 17_District3 | 126 | 10000 | 214101128623.6199 | 178730940805.7800 | 19.7896 |
| 17_District4 | 3601 | 9086 | 21283194597803.1400 | 19092974442252.1000 | 11.4713 |
| 17_District5 | 1452 | 10000 | 27638117328733.9140 | 23886759047749.6000 | 15.7047 |
| 18_District0 | 11 | 10000 | 2879317002.3000 | 2341527488.6000 | 22.9674 |
| 18_District1 | 778 | 10000 | 14403311116798.6740 | 13924688690304.7000 | 3.4372 |
| 18_District2 | 92 | 10000 | 6980830817.8900 | 4417358464.4100 | 58.0317 |
| 18_District3 | 92 | 10000 | 65353954501.7099 | 70920528499.0700 | 8.5175 * |
| 18_District4 | 2552 | 10000 | 19145521075293.1200 | 18718722507656.5000 | 2.2800 |
| 18_District5 | 1003 | 10000 | 14949089159976.1300 | 12641617614178.6000 | 18.2529 |
| 19_District0 | 51 | 10000 | 52251568626.6599 | 55462969817.4300 | 6.1460 * |
| 19_District1 | 1807 | 10000 | 25223614895354.1330 | 22401449014876.9000 | 12.5981 |
| 19_District2 | 200 | 10000 | 165814478917.1300 | 153280470262.9000 | 8.1771 |
| 19_District3 | 392 | 10000 | 238376329639.1599 | 243569037679.2000 | 2.1783 * |
| 19_District4 | 3603 | 3866 | 126212233021404.3400 | 106192108824987.0000 | 18.8527 |
| 19_District5 | 2721 | 10000 | 88022057535817.6200 | 78807991381031.8000 | 11.6917 |
| 1_District0 | 86 | 10000 | 435637504588.2101 | 430590936121.1900 | 1.1720 |
| 1_District1 | 2979 | 10000 | 60290879750585.8750 | 56270206789859.1000 | 7.1452 |
| 1_District2 | 193 | 10000 | 760206194727.2006 | 672001346398.5800 | 13.1256 |
| 1_District3 | 731 | 10000 | 1128482019371.4897 | 1031045184732.7300 | 9.4502 |
| 1_District4 | 3604 | 3858 | 86040617164160.9500 | 73732177837593.4000 | 16.6934 |
| 1_District5 | 3600 | 8727 | 103173937748597.5800 | 91806570717137.9000 | 12.3818 |
| 20_District0 | 25 | 10000 | 93014387889.8900 | 98421186256.3800 | 5.8128 * |
| 20_District1 | 1193 | 10000 | 19226885614534.7930 | 17222315357479.6000 | 11.6393 |
| 20_District2 | 326 | 10000 | 39869569648.9399 | 27378465012.0200 | 45.6238 |
| 20_District3 | 1093 | 10000 | 285676910265.4900 | 305213925793.8100 | 6.8388 * |
| 20_District4 | 3600 | 9527 | 28884777935266.1400 | 24960379220572.1000 | 15.7225 |
| 20_District5 | 3389 | 10000 | 51685009954196.1300 | 48965990159239.8000 | 5.5528 |
| 21_District0 | 145 | 10000 | 113250328255.1900 | 120414278382.3300 | 6.3257 * |
| 21_District1 | 1234 | 10000 | 19157972009032.0900 | 16893868904739.4000 | 13.4019 |
| 21_District2 | 303 | 10000 | 94341231938.1700 | 62666013838.2000 | 50.5460 |
| 21_District3 | 496 | 10000 | 977964334030.1404 | 892017226174.9800 | 9.6351 |
| 21_District4 | 3601 | 9121 | 26068378245609.3800 | 24304758516183.0000 | 7.2562 |
| 21_District5 | 3124 | 10000 | 54873564648639.2800 | 45930297567746.2000 | 19.4713 |
| 22_District0 | 33 | 10000 | 150892635308.1400 | 138906549645.3000 | 8.6288 |
| 22_District1 | 1037 | 10000 | 16851758043880.0270 | 14071948171020.4000 | 19.7542 |
| 22_District2 | 122 | 10000 | 299154703212.1001 | 226837888943.8600 | 31.8803 |
| 22_District3 | 659 | 10000 | 352560888776.8301 | 285892462254.7700 | 23.3194 |
| 22_District4 | 3266 | 10000 | 34336355866864.7540 | 29074924558505.3000 | 18.0961 |
| 22_District5 | 2825 | 10000 | 46531232287241.9600 | 42772519577575.2000 | 8.7876 |
| 23_District0 | 31 | 10000 | 34239031251.4899 | 32906581132.3800 | 4.0491 |
| 23_District1 | 1756 | 10000 | 19302724839878.5300 | 17211576588480.4000 | 12.1496 |
| 23_District2 | 101 | 10000 | 229041299021.5000 | 183871311138.5000 | 24.5660 |
| 23_District3 | 547 | 10000 | 234426382400.4702 | 250619333021.8100 | 6.9074 * |
| 23_District4 | 3606 | 8674 | 41527949163807.1200 | 34555727151866.1000 | 20.1767 |
| 23_District5 | 3225 | 10000 | 80689878412172.8100 | 70608343796642.5000 | 14.2781 |
| 24_District0 | 64 | 10000 | 124270185761.0799 | 105830236823.5000 | 17.4240 |
| 24_District1 | 998 | 10000 | 14050104442426.8890 | 11389191027676.9000 | 23.3634 |
| 24_District2 | 184 | 10000 | 23896688892.0099 | 26055867878.7800 | 9.0354 * |
| 24_District3 | 589 | 10000 | 153953627803.2999 | 159315579521.2200 | 3.4828 * |
| 24_District4 | 3600 | 8171 | 27230600919334.0160 | 24517137738123.8000 | 11.0676 |
| 24_District5 | 1518 | 10000 | 28263587386481.5860 | 24738655441667.6000 | 14.2486 |
| 25_District0 | 21 | 10000 | 1806481296.6499 | 1255504790.1000 | 43.8848 |
| 25_District1 | 895 | 10000 | 6895336939285.3080 | 6071232244353.8300 | 13.5739 |
| 25_District2 | 34 | 10000 | 3359177843.2700 | 2430507030.7800 | 38.2089 |
| 25_District3 | 111 | 10000 | 59444584410.6199 | 54825213021.3900 | 8.4256 |
| 25_District4 | 3188 | 10000 | 23989775031108.7970 | 20503174454937.0000 | 17.0051 |
| 25_District5 | 976 | 10000 | 11427181237478.5660 | 11011719621667.4000 | 3.7729 |
| 26_District0 | 127 | 10000 | 223101299371.0099 | 225380467772.9800 | 1.0215 * |
| 26_District1 | 2289 | 10000 | 48987132161122.1500 | 42180173025536.8000 | 16.1378 |
| 26_District2 | 158 | 10000 | 352738484054.6600 | 282951685653.1000 | 24.6638 |
| 26_District3 | 1138 | 10000 | 1221285639579.8296 | 1171533328289.0400 | 4.2467 |
| 26_District4 | 3604 | 5569 | 117912475464892.0200 | 105580668249051.0000 | 11.6799 |
| 26_District5 | 3600 | 8474 | 83861126026278.4400 | 76363123397244.6000 | 9.8188 |
| 27_District0 | 107 | 10000 | 166866354604.0698 | 162479691641.3000 | 2.6998 |
| 27-District1 | 986 | 10000 | 21716688296602.4800 | 18425601260045.1000 | 17.8614 |
| 27-District2 | 241 | 10000 | 76764212397.3599 | 61192189969.0700 | 25.4477 |
| 27_District3 | 380 | 10000 | 112350112523.6599 | 116712931257.8400 | 3.8832 * |
| 27_District4 | 3602 | 8001 | 41812407340678.4100 | 33778988955119.3000 | 23.7822 |
| 27-District5 | 2444 | 10000 | 42816916358355.2340 | 39568513214098.5000 | 8.2095 |
| 28_District0 | 25 | 10000 | 124151481425.7999 | 102108349093.8000 | 21.5879 |
| 28_District1 | 1530 | 10000 | 15643075617476.7600 | 15128335139531.3000 | 3.4024 |
| 28_District2 | 189 | 10000 | 80344076737.8700 | 64692968024.3600 | 24.1929 |
| 28_District3 | 707 | 10000 | 837122182158.8696 | 805624097687.0900 | 3.9097 |
| 28_District4 | 3238 | 10000 | 27028833734036.9020 | 22982825117023.6000 | 17.6044 |
| 28_District5 | 2065 | 10000 | 39235471171606.7000 | 33791534896023.1000 | 16.1103 |
| 29_District0 | 109 | 10000 | 34855763286.8800 | 29353316624.4500 | 18.7455 |
| 29_District1 | 888 | 10000 | 7784786607084.8380 | 7484826255380.2500 | 4.0075 |
| 29_District2 | 284 | 10000 | 83239449171.6500 | 101233312043.5700 | 21.6169 * |
| 29_District3 | 478 | 10000 | 269030594406.3901 | 232601979076.2900 | 15.6613 |
| 29_District4 | 2183 | 10000 | 10036792921737.5100 | 8309110124637.3200 | 20.7926 |
| 29_District5 | 3525 | 10000 | 38683646564373.4900 | 35670467010142.6000 | 8.4472 |
| 2_District0 | 86 | 10000 | 155163959743.5298 | 147005506881.3000 | 5.5497 |
| 2_District1 | 2321 | 10000 | 43576984052478.6200 | 39540340925649.8000 | 10.2089 |
| 2_District2 | 331 | 10000 | 203945898858.5395 | 217829855689.6200 | 6.8076 * |
| 2_District3 | 300 | 10000 | 998262259698.0299 | 858787147589.8100 | 16.2409 |
| 2_District4 | 3607 | 5958 | 70460215578833.3900 | 58876326066126.1000 | 19.6749 |
| 2_District5 | 3600 | 8969 | 111088965128385.5800 | 95903342380824.9000 | 15.8342 |
| 30_District0 | 23 | 10000 | 16310602209.7699 | 14856579555.0000 | 9.7870 |

| Instance | Table E. 9 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| 30_District1 | 441 | 10000 | 4897299318915.8900 | 4288991390631.0100 | 14.1830 |
| 30_District2 | 103 | 10000 | 40086500784.8400 | 28984654012.0000 | 38.3024 |
| 30_District3 | 252 | 10000 | 130364660141.9401 | 140260859804.8700 | 7.5911 * |
| 30_District4 | 1590 | 10000 | 6216507889135.2390 | 6033193692111.0700 | 3.0384 |
| 30_District5 | 862 | 10000 | 5947167169945.3180 | 5491783393822.4800 | 8.2920 |
| 3_District0 | 38 | 10000 | 100786506020.6299 | 90701681116.3600 | 11.1186 |
| 3_District1 | 992 | 10000 | 19490649149152.9180 | 17931112587450.7000 | 8.6973 |
| 3_District2 | 241 | 10000 | 195827548126.4300 | 184423936337.4900 | 6.1833 |
| 3_District3 | 662 | 10000 | 874720309591.7599 | 837894240881.4400 | 4.3950 |
| 3_District4 | 3600 | 3863 | 80535804587225.3900 | 67042838268903.4000 | 20.1258 |
| 3_District5 | 3195 | 10000 | 67935601558899.2500 | 60566955554266.6000 | 12.1661 |
| 4_District0 | 14 | 10000 | 23630985835.7400 | 20379141775.5100 | 15.9567 |
| 4_District1 | 1184 | 10000 | 17327163824302.3030 | 16091560843817.3000 | 7.6785 |
| 4_District2 | 112 | 10000 | 20949476998.0799 | 19771989271.8700 | 5.9553 |
| 4_District3 | 174 | 10000 | 33281278576.5800 | 31243041764.1500 | 6.5238 |
| 4_District4 | 3600 | 7292 | 53210299917913.2500 | 44497725128783.0000 | 19.5798 |
| 4_District5 | 1589 | 10000 | 34717610007935.9020 | 30292083288905.3000 | 14.6095 |
| 5_District0 | 116 | 10000 | 108530210933.7999 | 105305055950.1000 | 3.0626 |
| 5_District1 | 1652 | 10000 | 26647092666473.4770 | 22578812619408.6000 | 18.0181 |
| 5_District2 | 211 | 10000 | 76449400420.9900 | 49746631100.9200 | 53.6775 |
| 5_District3 | 579 | 10000 | 353728887601.8504 | 366270241695.4900 | 3.5454 * |
| 5_District4 | 3600 | 7023 | 81372702828727.6600 | 68243049339872.1000 | 19.2395 |
| 5_District5 | 3601 | 8160 | 138140972195760.0000 | 121803986176569.0000 | 13.4125 |
| 6_District0 | 53 | 10000 | 201289203063.1800 | 174024536017.0000 | 15.6671 |
| 6_District1 | 2890 | 10000 | 27976253424033.1050 | 24635464198083.6000 | 13.5608 |
| 6_District2 | 341 | 10000 | 272598742186.6601 | 263920214770.7000 | 3.2883 |
| 6_District3 | 549 | 10000 | 306616163602.7795 | 272026860685.1900 | 12.7153 |
| 6_District4 | 3600 | 9805 | 38143579430174.5160 | 32671893526336.1000 | 16.7473 |
| 6_District5 | 2953 | 10000 | 63128223388004.1100 | 52577668995018.6000 | 20.0666 |
| 7_District0 | 107 | 10000 | 48160415535.0799 | 53992400830.1800 | 12.1094 * |
| 7_District1 | 2416 | 10000 | 27420153708106.0040 | 25530776489059.8000 | 7.4003 |
| 7_District2 | 92 | 10000 | 112994195720.6300 | 96812988604.0900 | 16.7138 |
| 7_District3 | 339 | 10000 | 735339383977.3596 | 627921570619.9200 | 17.1068 |
| 7_District4 | 3367 | 10000 | 34572564912594.2150 | 30888008083772.9000 | 11.9287 |
| 7_District5 | 3607 | 9158 | 58330881735633.0300 | 52214576657422.1000 | 11.7137 |
| 8_District0 | 28 | 10000 | 59838631063.5099 | 47815962594.9100 | 25.1436 |
| 8_District1 | 1022 | 10000 | 15133584966635.4690 | 13654929607346.6000 | 10.8287 |
| 8_District2 | 189 | 10000 | 75954328001.1000 | 73150043166.7900 | 3.8336 |
| 8_District3 | 463 | 10000 | 384536370514.6995 | 367102727288.8900 | 4.7489 |
| 8_District4 | 3448 | 10000 | 32888051961838.9770 | 29816748603227.9000 | 10.3005 |
| 8_District5 | 1843 | 10000 | 47037083949305.2600 | 40450402089088.4000 | 16.2833 |
| 9_District0 | 20 | 10000 | 105827602912.7499 | 100093204504.3000 | 5.7290 |
| 9_District1 | 696 | 10000 | 13895602817475.5400 | 12178217016824.2000 | 14.1021 |
| 9_District2 | 69 | 10000 | 115550871073.1199 | 89342594098.5600 | 29.3345 |
| 9_District3 | 637 | 10000 | 1136006493400.5298 | 911115793606.4100 | 24.6829 |
| 9_District4 | 3600 | 7739 | 44898435112269.3300 | 37164202673658.1000 | 20.8109 |
| 9_District5 | 1828 | 10000 | 30917243479466.1800 | 25382936280280.4000 | 21.8032 |
| C101_100t_20w | 587 | 10000 | 40319250945.5401 | -12304901708.1200 | 427.6682 |
| C101_25t_5w | 28 | 10000 | 117647561.5199 | 9512566.6400 | 1136.7593 |
| C101_50t_10w | 102 | 10000 | 225963440.8799 | -1079154704.1200 | 120.9389 |
| C102_100t_20w | 946 | 10000 | 47274199403.2202 | -5155408825.8200 | 1016.9825 |
| C102_25t_5w | 31 | 10000 | 81101946.7199 | -37546115.7600 | 316.0062 |
| C102_50t_10w | 194 | 10000 | 1332392101.5199 | -1102530180.6200 | 220.8485 |
| C103_100t_20w | 2103 | 10000 | 17849419161.1001 | -7222438475.8600 | 347.1384 |
| C103_25t_5w | 143 | 10000 | 3004716.4199 | -43052838.4600 | 106.9791 |
| C103_50t_10w | 518 | 10000 | 1367455147.4199 | -1110321792.2400 | 223.1584 |
| C104_100t_20w | 3079 | 10000 | 10067659651.9603 | -8681519205.2400 | 215.9665 |
| C104_25t_5w | 211 | 10000 | 72591417.5599 | -33540706.8600 | 316.4278 |
| C104_50t_10w | 1017 | 10000 | 705156216.5798 | -1086946666.3200 | 164.8749 |
| C105_100t_20w | 975 | 10000 | -4085416946.8404 | -12158993843.3000 | 66.4000 |
| C105_25t_5w | 33 | 10000 | 154693904.5799 | 1002190.7200 | 15335.5754 |
| C105_50t_10w | 211 | 10000 | -424647555.8200 | -1102529614.6600 | 61.4842 |
| C106_100t_20w | 1356 | 10000 | 3185665888.6002 | -5349954009.7600 | 159.5456 |
| C106_25t_5w | 41 | 10000 | 113642696.9800 | 9512566.6400 | 1094.6586 |
| C106_50t_10w | 177 | 10000 | -319459112.7600 | -1086946589.7000 | 70.6094 |
| C107_100t_20w | 1560 | 10000 | 3453162979.8198 | -6979258964.6200 | 149.4775 |
| C107_25t_5w | 41 | 10000 | 149187096.0601 | -2001420.3200 | 7554.0612 |
| C107_50t_10w | 355 | 10000 | -420751477.5000 | -1125905161.9000 | 62.6299 |
| C108_100t_20w | 1962 | 10000 | 18092599436.6800 | -6492899831.1000 | 378.6520 |
| C108_25t_5w | 54 | 10000 | 113142104.8999 | -8009072.9800 | 1512.6741 |
| C108_50t_10w | 425 | 10000 | -467502135.0000 | -1125905177.3200 | 58.4776 |
| C109_100t_20w | 2410 | 10000 | 10019023325.5600 | -6614488230.8200 | 251.4708 |
| C109_25t_5w | 67 | 10000 | 43054615.9599 | -26031566.9600 | 265.3938 |
| C109_50t_10w | 491 | 10000 | -471398129.1001 | -1125905761.1800 | 58.1316 |
| C201_100t_20w | 3600 | 6740 | -12596717125.0994 | -12596720162.2300 | 0.0000 |
| C201_25t_5w | 191 | 10000 | -42552163.2400 | -45555916.9200 | 6.5935 |
| C201_50t_10w | 999 | 10000 | -1110321196.6001 | -1125905241.3800 | 1.3841 |
| C202_100t_20w | 3601 | 3755 | 24488233471.3203 | -6055175633.1600 | 504.4182 |
| C202_25t_5w | 808 | 10000 | -42552087.8800 | -45555950.8800 | 6.5937 |
| C202_50t_10w | 2322 | 10000 | 101296080.1398 | -1125905361.9600 | 108.9968 |
| C203_100t_20w | 3600 | 3059 | 17119879669.9002 | -6930623788.8800 | 347.0178 |
| C203_25t_5w | 3600 | 5635 | -41550729.3000 | -45555956.2400 | 8.7918 |
| C203_50t_10w | 3601 | 5719 | 693469148.1199 | -1125905456.0600 | 161.5921 |
| C204_100t_20w | 3602 | 1746 | 9897433848.9803 | -8657198950.2400 | 214.3260 |
| C204_25t_5w | 3600 | 4339 | -6506840.2200 | -45555977.0000 | 85.7168 |
| C204_50t_10w | 3603 | 3880 | 93504303.7599 | -1125905585.1400 | 108.3048 |
| C205_100t_20w | 3600 | 4116 | 9702889586.1598 | -12596718687.8400 | 177.0271 |
| C205_25t_5w | 534 | 10000 | -42552150.2200 | -45555926.8000 | 6.5936 |
| C205_50t_10w | 2524 | 10000 | -1125904742.5000 | -1125905403.9800 | 0.0000 |
| C206_100t_20w | 3600 | 2927 | 24536869302.6398 | -7733117210.9600 | 417.2959 |
| C206_25t_5w | 713 | 10000 | -41050258.7400 | -45555926.8000 | 9.8904 |
| C206_50t_10w | 3434 | 10000 | -498668976.0001 | -1125905541.4200 | 55.7095 |
| C207_100t_20w | 3601 | 1992 | 9702889889.1399 | -7222438653.2400 | 234.3436 |
| C207_25t_5w | 604 | 10000 | -41050268.2199 | -45555933.4200 | 9.8904 |
| C207_50t_10w | 3600 | 3363 | -506460328.6400 | -1125905455.9000 | 55.0175 |
| C208_100t_20w | 3600 | 2458 | 24536869467.2000 | -8657201177.3800 | 383.4272 |
| C208_25t_5w | 1142 | 10000 | -42552098.4800 | -45555933.1600 | 6.5937 |

| Instance | Table E. 9 - continued from previous page | | | | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | Best(SolGH) | |
| C208_50t_10w | 3600 | 6254 | -502564809.1601 | -1125905465.6600 | 55.3634 |
| hh_00_P0 | 763 | 10000 | 51273269138.6235 | 6663651008.2900 | 669.4470 |
| 111_00_P0 | 171 | 10000 | 3750725747.0396 | 1338732826.5000 | 180.1698 |
| 111_01_P0 | 169 | 10000 | 3812991346.5598 | 1338732826.5000 | 184.8209 |
| 111_02_P0 | 164 | 10000 | 2256800886.2898 | 1338732826.5000 | 68.5773 |
| 111_03_P0 | 161 | 10000 | 467118457.0199 | 1338732826.5000 | 186.5938 * |
| 111_04_P0 | 169 | 10000 | 3781852284.7701 | 1338732826.5000 | 182.4949 |
| 111_05_P0 | 175 | 10000 | 3735116268.2199 | 1307660206.1200 | 185.6335 |
| 111_06_P0 | 165 | 10000 | 7003190961.7999 | 1214281948.4400 | 476.7351 |
| 111_07_P0 | 173 | 10000 | 2132283567.1999 | 1338732826.5000 | 59.2762 |
| 112_00_P0 | 174 | 10000 | -141721162.5901 | 85352916.2700 | 160.2259 * |
| 113_00_P0 | 169 | 10000 | -179672936.1900 | -198615845.6200 | 9.5374 |
| R101_100t_20w | 68 | 10000 | 21056689632.6198 | 6319981502.8600 | 233.1764 |
| R101_25t_5w | 6 | 10000 | 60631864.9800 | 47893886.5800 | 26.5962 |
| R101_50t_10w | 17 | 10000 | 1308150125.0399 | 709051142.3992 | 84.4930 |
| R102_100t_20w | 114 | 10000 | 19278773781.0998 | 14101742003.1800 | 36.7120 |
| R102_25t_5w | 9 | 10000 | 38715862.5599 | 34655177.0000 | 11.7173 |
| R102_50t_10w | 24 | 10000 | 1161405820.8398 | 641955625.9388 | 80.9168 |
| R103_100t_20w | 176 | 10000 | 13572150034.9598 | 12469734030.7400 | 8.8407 |
| R103_25t_5w | 14 | 10000 | 34265898.6199 | 30260803.3400 | 13.2352 |
| R103_50t_10w | 38 | 10000 | 896486387.7799 | 570531480.7600 | 57.1318 |
| R104_100t_20w | 227 | 10000 | 12739934250.7797 | 14023383931.9600 | 10.0742 * |
| R104_25t_5w | 12 | 10000 | 25922083.5799 | 29982663.2800 | 15.6645 * |
| R104_50t_10w | 66 | 10000 | 628969683.6999 | 293491458.8800 | 114.3059 |
| R105_100t_20w | 110 | 10000 | 18503299993.5198 | 8424839701.0800 | 119.6279 |
| R105_25t_5w | 10 | 10000 | 51843140.0799 | 35155829.6400 | 47.4666 |
| R105_50t_10w | 19 | 10000 | 1166167252.9999 | 388290958.0600 | 200.3333 |
| R106_100t_20w | 145 | 10000 | 15976930101.7599 | 8443754034.7200 | 89.2159 |
| R106_25t_5w | 9 | 10000 | 38715863.2599 | 30483330.4600 | 27.0066 |
| R106_50t_10w | 24 | 10000 | 1024184419.4799 | 303880567.4400 | 237.0351 |
| R107_100t_20w | 184 | 10000 | 15206860146.6798 | 11634816307.3400 | 30.7013 |
| R107_25t_5w | 14 | 10000 | 38437663.0399 | 22028382.6800 | 74.4915 |
| R107_50t_10w | 37 | 10000 | 695199501.3999 | 372274723.4800 | 86.7436 |
| R108_100t_20w | 244 | 10000 | 11067396400.7598 | 12369760088.0800 | 11.7675 * |
| R108_25t_5w | 12 | 10000 | 30093946.9200 | 26033406.5200 | 15.5974 |
| R108_50t_10w | 61 | 10000 | 566635760.1798 | 293491505.9600 | 93.0671 |
| R109_100t_20w | 187 | 10000 | 15204157945.8798 | 6636116061.1200 | 129.1122 |
| R109_25t_5w | 9 | 10000 | 43054585.6799 | 26255954.0600 | 63.9802 |
| R109_50t_10w | 31 | 10000 | 967910656.2599 | 631133985.4200 | 53.3605 |
| R110_100t_20w | 175 | 10000 | 17662978241.2999 | 7622345982.8200 | 131.7262 |
| R110_25t_5w | 7 | 10000 | 43332715.7599 | 34488424.6600 | 25.6442 |
| R110_50t_10w | 30 | 10000 | 905143876.6799 | 636761297.5800 | 42.1480 |
| R111_100t_20w | 174 | 10000 | 15236582303.7799 | 8473476077.2600 | 79.8150 |
| R111_25t_5w | 12 | 10000 | 34432692.7800 | 26144634.7600 | 31.7007 |
| R111_50t_10w | 30 | 10000 | 697796635.3999 | 496942686.1600 | 40.4179 |
| R112_100t_20w | 211 | 10000 | 15239284136.0399 | 10851236130.0600 | 40.4382 |
| R112_25t_5w | 9 | 10000 | 38270855.9599 | 26311467.9000 | 45.4531 |
| R112_50t_10w | 28 | 10000 | 763593813.2199 | 427249792.1800 | 78.7230 |
| R201_100t_20w | 1951 | 10000 | -575519978.3602 | -1383419122.5000 | 58.3987 |
| R201_25t_5w | 98 | 10000 | -5004470.0601 | -5171519.4600 | 3.2301 |
| R201_50t_10w | 617 | 10000 | -124231547.3600 | -125097475.6400 | 0.6922 |
| R202_100t_20w | 2470 | 10000 | 3545030507.4597 | -778169509.0800 | 555.5601 |
| R202_25t_5w | 123 | 10000 | -610076.2000 | -5171550.1800 | 88.2032 |
| R202_50t_10w | 509 | 10000 | 9960054.3198 | -125097689.9000 | 107.9618 |
| R203_100t_20w | 2851 | 10000 | 1088912826.4598 | -891653653.5400 | 222.1228 |
| R203_25t_5w | 315 | 10000 | -554665.9200 | -5171614.5200 | 89.2748 |
| R203_50t_10w | 1015 | 10000 | 9959621.2399 | -125097805.5400 | 107.9614 |
| R204_100t_20w | 3600 | 8056 | 259398359.3397 | -1007840112.0800 | 125.7380 |
| R204_25t_5w | 169 | 10000 | -721628.9600 | -5060450.1000 | 85.7398 |
| R204_50t_10w | 2026 | 10000 | -121201309.0201 | -125098025.1800 | 3.1149 |
| R205_100t_20w | 3455 | 10000 | 1072700433.2998 | -910567724.8000 | 217.8056 |
| R205_25t_5w | 170 | 10000 | -721573.5400 | -5171759.2000 | 86.0478 |
| R205_50t_10w | 1120 | 10000 | -122932436.1001 | -125097876.3800 | 1.7309 |
| R206_100t_20w | 3600 | 9881 | 2720920179.3398 | -964607487.1800 | 382.0753 |
| R206_25t_5w | 221 | 10000 | -721607.2800 | -5171813.9000 | 86.0473 |
| R206_50t_10w | 844 | 10000 | -55837292.5400 | -125097837.4400 | 55.3651 |
| R207_100t_20w | 3600 | 9582 | 286418650.8398 | -1018647805.1000 | 128.1175 |
| R207_25t_5w | 313 | 10000 | -4837432.8600 | -5171794.9600 | 6.4651 |
| R207_50t_10w | 1308 | 10000 | -58001404.1200 | -125097967.7600 | 53.6352 |
| R208_100t_20w | 3601 | 7620 | -564711200.2401 | -1042965700.1000 | 45.8552 |
| R208_25t_5w | 260 | 10000 | -443556.9401 | -5060560.5800 | 91.2350 |
| R208_50t_10w | 1937 | 10000 | -56702907.8401 | -125098091.9200 | 54.6732 |
| R209_100t_20w | 3600 | 9560 | 1902214701.5199 | -1013243421.1000 | 287.7352 |
| R209_25t_5w | 184 | 10000 | -109586.0200 | -5060483.0600 | 97.8344 |
| R209_50t_10w | 1477 | 10000 | -119469995.2000 | -125097999.8800 | 4.4988 |
| R210_100t_20w | 3424 | 10000 | 2720921136.8598 | -978117773.2200 | 378.1792 |
| R210_25t_5w | 217 | 10000 | -721602.0800 | -5171642.3200 | 86.0469 |
| R210_50t_10w | 1046 | 10000 | -58867197.9600 | -125097934.6800 | 52.9431 |
| R211_100t_20w | 3600 | 9228 | 5206761206.6198 | -942991911.9800 | 652.1533 |
| R211_25t_5w | 156 | 10000 | -721316.9600 | -5060502.8400 | 85.7461 |
| R211_50t_10w | 1292 | 10000 | -56270287.9200 | -122500836.0400 | 54.0653 |
| RC101_100t_20w | 77 | 10000 | 23466874373.1198 | 15814809991.8800 | 48.3854 |
| RC101_25t_5w | 10 | 10000 | 39438826.3999 | 27034405.3800 | 45.8838 |
| RC101_50t_10w | 22 | 10000 | 980031178.0799 | 190034189.6200 | 415.7130 |
| RC102_100t_20w | 98 | 10000 | 19351728427.7198 | 15822916717.4800 | 22.3019 |
| RC102_25t_5w | 12 | 10000 | 39550117.2999 | 26645148.4800 | 48.4327 |
| RC102_50t_10w | 19 | 10000 | 982195906.6799 | 578756222.9600 | 69.7080 |
| RC103_100t_20w | 136 | 10000 | 16914524738.3797 | 17527878844.9600 | 3.6261 * |
| RC103_25t_5w | 14 | 10000 | 35044648.4199 | 21805915.8800 | 60.7116 |
| RC103_50t_10w | 28 | 10000 | 771385709.1599 | 767922882.8400 | 0.4509 |
| RC104_100t_20w | 182 | 10000 | 13634296649.3597 | 18130424572.1200 | 32.9766 * |
| RC104_25t_5w | 14 | 10000 | 29982778.9999 | 25810879.2400 | 16.1633 |
| RC104_50t_10w | 35 | 10000 | 573994861.8199 | 498674346.2200 | 15.1041 |
| RC105_100t_20w | 91 | 10000 | 20219070482.6198 | 10907978098.4200 | 85.3603 |
| RC105_25t_5w | 12 | 10000 | 39272067.1599 | 30761388.4200 | 27.6667 |
| RC105_50t_10w | 23 | 10000 | 1234994796.6599 | 448893536.2400 | 175.1197 |
| RC106_100t_20w | 123 | 10000 | 13658614340.6998 | 11529438265.0600 | 18.4673 |

| Instance | Table E. 9 - continued from previous page | | | Best(SolGH) | Gap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Time | Iterations | Objective Value | | |
| RC106_25t_5w | 13 | 10000 | 35433819.8199 | 22417682.5200 | 58.0619 |
| RC106_50t_10w | 20 | 10000 | 777445722.5799 | 515989390.5800 | 50.6708 |
| RC107_100t_20w | 139 | 10000 | 18592466464.3797 | 16638920438.6600 | 11.7408 |
| RC107_25t_5w | 11 | 10000 | 39105229.9399 | 30761589.8800 | 27.1235 |
| RC107_50t_10w | 24 | 10000 | 720306398.2399 | 575726019.2200 | 25.1127 |
| RC108_100t_20w | 156 | 10000 | 16852378461.7198 | 14823176358.6800 | 13.6893 |
| RC108_25t_5w | 12 | 10000 | 35322802.2799 | 30372205.5600 | 16.2997 |
| RC108_50t_10w | 27 | 10000 | 772251501.7799 | 630268451.2000 | 22.5273 |
| RC201_100t_20w | 1822 | 10000 | -1399627245.4002 | -1378013035.7800 | 1.5442 * |
| RC201_25t_5w | 88 | 10000 | -5003835.8200 | -5171005.4000 | 3.2328 |
| RC201_50t_10w | 403 | 10000 | -123363742.0002 | -125096456.0400 | 1.3851 |
| RC202_100t_20w | 2096 | 10000 | 1902215724.7197 | -848419159.5200 | 324.2070 |
| RC202_25t_5w | 100 | 10000 | -721207.8400 | -5171480.4200 | 86.0541 |
| RC202_50t_10w | 404 | 10000 | 15588209.9998 | -125096955.0600 | 112.4609 |
| RC203_100t_20w | 2603 | 10000 | -559306081.1203 | -915968950.1800 | 38.9383 |
| RC203_25t_5w | 206 | 10000 | -721475.4200 | -5171505.3800 | 86.0490 |
| RC203_50t_10w | 700 | 10000 | 77055884.3598 | -125096765.1800 | 161.5970 |
| RC204_100t_20w | 3600 | 9231 | -559305976.1602 | -1032155821.9000 | 45.8118 |
| RC204_25t_5w | 161 | 10000 | -554372.4600 | -5060413.3600 | 89.0449 |
| RC204_50t_10w | 1291 | 10000 | 9094797.9999 | -125097014.9000 | 107.2701 |
| RC205_100t_20w | 2182 | 10000 | 1099722278.2797 | -856525543.8000 | 228.3934 |
| RC205_25t_5w | 90 | 10000 | -5059843.1600 | -5171462.0600 | 2.1583 |
| RC205_50t_10w | 524 | 10000 | 11260334.2598 | -125096766.4200 | 109.0012 |
| RC206_100t_20w | 2783 | 10000 | -556603315.8802 | -905161565.1000 | 38.5078 |
| RC206_25t_5w | 123 | 10000 | -5004067.1400 | -5171397.9400 | 3.2356 |
| RC206_50t_10w | 716 | 10000 | -120766725.9201 | -125097137.7600 | 3.4616 |
| RC207_100t_20w | 2577 | 10000 | 1102424195.3998 | -907864881.6600 | 221.4304 |
| RC207_25t_5w | 185 | 10000 | -4447914.4400 | -5059890.2000 | 12.0946 |
| RC207_50t_10w | 719 | 10000 | -119468826.4401 | -122499526.2000 | 2.4740 |
| RC208_100t_20w | 3200 | 10000 | 2734432112.6797 | -978116228.2000 | 379.5610 |
| RC208_25t_5w | 182 | 10000 | -4726710.9000 | -5060744.0000 | 6.6004 |
| RC208_50t_10w | 909 | 10000 | -56268580.4801 | -125096819.1800 | 55.0199 |
| test150-0-0-0-0_d0_tw0 | 3600 | 4056 | 6897664625.3999 | -28349336446.9000 | 124.3309 |
| test150-0-0-0-0_d0_tw1 | 3600 | 7802 | -55870971772.2999 | -30832491493.7000 | 44.8148 * |
| test150-0-0-0-0_d0_tw2 | 3600 | 8672 | -55870971432.3001 | -28832172176.8000 | 48.3950 * |
| test150-0-0-0-0_d0_tw3 | 3600 | 9460 | -55870971746.7008 | -27383664735.0000 | 50.9876 * |
| test150-0-0-0-0_d0_tw 4 | 3600 | 9108 | 101050622709.4000 | -26142085667.0000 | 486.5438 |
| test250-0-0-0-0_d0_tw0 | - | - | - | 23650649218.5000 | - |
| test250-0-0-0-0_d0_tw1 | - | - | - | -292254131472.0000 | - |
| test250-0-0-0-0_d0_tw2 | 3600 | 2546 | -214544937458.1017 | -275698693917.1000 | 22.1813 |
| test250-0-0-0-0_d0_tw3 | 3600 | 2924 | -214544933324.4147 | -266914175565.0000 | 19.6202 |
| test250-0-0-0-0_d0_tw 4 | - | - | - | -231776103927.7000 | - |
| test50-0-0-0-0_d0_tw0 | 2621 | 10000 | -842598905.0999 | -842599324.2000 | 0.0000 |
| test50-0-0-0-0_d0_tw1 | 1091 | 10000 | -842598625.1999 | -842599506.6000 | 0.0001 |
| test50-0-0-0-0_d0_tw2 | 911 | 10000 | -842598189.0999 | -842599560.3000 | 0.0001 |
| test50-0-0-0-0_d0_tw3 | 735 | 10000 | -842597667.5999 | -842598590.0000 | 0.0001 |
| test50-0-0-0-0_d0_tw4 | 815 | 10000 | -842598471.6999 | -842599753.8000 | 0.0001 |

[^0]: ${ }^{1}$ see http://info.ktponline.org.uk/action/details/partnership.aspx?id=9240

