7,200 research outputs found

    Mechanisms of B-Myb oncogenicity in ovarian cancer

    Get PDF
    High expression of B-Myb (encoded by MYBL2), an oncogenic transcription factor, is associated with cell cycle deregulation and poor prognosis in several cancers, including ovarian cancer. However, the mechanism by which B-Myb alters the cell cycle is not fully understood. In proliferating cells, B-Myb interacts with the MuvB core complex including LIN9, LIN37, LIN52, RBBP4, and LIN54, forming the MMB (Myb-MuvB) complex, and promotes transcription of genes required for mitosis. Alternatively, the MuvB core interacts with Rb-like protein p130 and E2F4-DP1 to form the DREAM complex that mediates global repression of cell cycle genes in G0/G1, including a subset of MMB target genes. Here, we show that overexpression of B-Myb disrupts the DREAM complex in human cells, and this activity depends on the intact MuvB-binding domain in B-Myb. Furthermore, we found that B-Myb regulates the protein expression levels of the MuvB core subunit LIN52, a key adaptor for assembly of both the DREAM and MMB complexes, by a mechanism that requires the S28 phosphorylation site in LIN52. To validate our cellular findings, we determined the effect of B-Myb levels on DREAM target gene expression in HGSOC tissue samples and corresponding patient outcomes. Given that high expression of B-Myb correlates with global loss of repression of DREAM target genes in breast and ovarian cancer, our findings offer mechanistic insights for aggressiveness of cancers with MYBL2 amplification and establish the rationale for targeting B-Myb to restore cell cycle control

    Conduits of Intratumor Heterogeneity: Centrosome Amplification, Centrosome Clustering and Mitotic Frequency

    Get PDF
    Tumor initiation and progression is dependent on the acquisition and accumulation of multiple driver mutations that acti­vate and fuel oncogenic pathways and deactivate tumor suppressor networks. This complex continuum of non-stochastic genetic changes in accompaniment with error-prone mitoses largely explains why tumors are a mosaic of different cells. Contrary to the long-held notion that tumors are dominated by genetically-identical cells, tumors often contain many different subsets of cells that are remarkably diverse and distinct. The extent of this intratumor heterogeneity has bewildered cancer biologists’ and clinicians alike, as this partly illuminates why most cancer treatments fail. Unsurprisingly, there is no “wonder” drug yet available which can target all the different sub-populations including rare clones, and conquer the war on cancer. Breast tumors harbor ginormous extent of intratumoral heterogeneity, both within primary and metastatic lesions. This revelation essentially calls into question mega clinical endeavors such as the Human Genome Project that have sequenced a single biopsy from a large tumor mass thus precluding realization of the fact that a single tumor mass comprises of cells that present a variety of flavors in genotypic compositions. It is also becoming recognized that intratumor clonal heterogeneity underlies therapeutic resistance. Thus to comprehend the clinical behavior and therapeutic management of tumors, it is imperative to recognize and understand how intratumor heterogeneity arises. To this end, my research proposes to study two main features/cellular traits of tumors that can be quantitatively evaluated as “surrogates” to represent tumor heterogeneity at various stages of the disease: (a) centrosome amplification and clustering, and (b) mitotic frequency. This study aims at interrogating how a collaborative interplay of these “vehicles” support the tumor’s evolutionary agenda, and how we can glean prognostic and predictive information from an accurate determination of these cellular traits

    Ladarixin, a dual CXCR1/2 inhibitor, attenuates experimental melanomas harboring different molecular defects by affecting malignant cells and tumor microenvironment.

    Get PDF
    CXCR1 and CXCR2 chemokine receptors and their ligands (CXCL1/2/3/7/8) play an important role in tumor progression. Tested to date CXCR1/2 antagonists and chemokine-targeted antibodies were reported to affect malignant cells in vitro and in animal models. Yet, redundancy of chemotactic signals and toxicity hinder further clinical development of these approaches. In this pre-clinical study we investigated the capacity of a novel small molecule dual CXCR1/2 inhibitor, Ladarixin (LDX), to attenuate progression of experimental human melanomas. Our data showed that LDX-mediated inhibition of CXCR1/2 abrogated motility and induced apoptosis in cultured cutaneous and uveal melanoma cells and xenografts independently of the molecular defects associated with the malignant phenotype. These effects were mediated by the inhibition of AKT and NF-kB signaling pathways. Moreover, systemic treatment of melanoma-bearing mice with LDX also polarized intratumoral macrophages to M1 phenotype, abrogated intratumoral de novo angiogenesis and inhibited melanoma self-renewal. Collectively, these studies outlined the pre-requisites of the successful CXCR1/2 inhibition on malignant cells and demonstrated multifactorial effects of Ladarixin on cutaneous and uveal melanomas, suggesting therapeutic utility of LDX in treatment of various melanoma types

    Characterization of Hemoglobin, Water, and NIR Scattering in Breast Tissue: Analysis of Intersubject Variability and Menstrual Cycle Changes

    Get PDF
    Near-infrared imaging was used to quantify typical values of hemoglobin concentration, oxygen saturation, water fraction, scattering power, and scattering amplitude within the breast tissue of volunteer subjects. A systematic study of the menstrual variations in these parameters was carried out by measuring a group of seven premenopausal normal women (aged 41 to 47 years) in the follicular (days 7 to 14 of the cycle) and secretory phases (days 21 to 28) of the cycle, for two complete menstrual cycles. An average increase in hemoglobin concentration of 2.6 ÎŒM or 13% of the background breast values was observed in the secretory phase relative to the follicular phase (p\u3c0.0001), but no other average near-infrared parameter changes were significant. While repeatable and systematic changes were observed in all parameters for individual subjects, large intersubject variations were present in all parameters. In a survey of thirty-nine normal subjects, the total hemoglobin varied from 9 to 45 ÎŒM, with a systematic correlation observed between total hemoglobin concentration and breast radiographic density. Scattering power and scattering amplitude were also correlated with radiographic density, but oxygen saturation and water fraction were not. Images of breast lesions indicate that total hemoglobin-based contrast can be up to 200% relative to the background in the same breast. Yet, since the background hemoglobin values vary considerably among breasts, the maximum hemoglobin concentrations observed in cancer tumors may vary considerably as well. In light of these observations, it may be important to use hemoglobin contrast values relative to the background for a given breast, rather than absolute hemoglobin contrast when trying to compare the features of breast lesions among subjects

    Suppression of endogenous lipogenesis induces reversion of the malignant phenotype and normalized differentiation in breast cancer

    Get PDF
    Altres ajuts: We are greatly indebted to Prof. Robert A. Weinberg (Whitehead Institute for Biomedical Research, Cambridge, MA, USA) for providing the HMLERshCntrol and HMLERshEcad cells used in this work. Plan Nacional de I+D+I, Spain and the Departament d'Economia I Coneixement, Catalonia, Spain to Javier A. Menendez. Elisabet CuyĂ s is the recipient of a "Sara Borrell" post-doctoral contract (CD15/00033, Ministerio de Sanidad y Consumo, Fondo de InvestigaciĂłn Sanitaria -FIS-, Spain).The correction of specific signaling defects can reverse the oncogenic phenotype of tumor cells by acting in a dominant manner over the cancer genome. Unfortunately, there have been very few successful attempts at identifying the primary cues that could redirect malignant tissues to a normal phenotype. Here we show that suppression of the lipogenic enzyme fatty acid synthase (FASN) leads to stable reversion of the malignant phenotype and normalizes differentiation in a model of breast cancer (BC) progression. FASN knockdown dramatically reduced tumorigenicity of BC cells and restored tissue architecture, which was reminiscent of normal ductal-like structures in the mammary gland. Loss of FASN signaling was sufficient to direct tumors to a reversed phenotype that was near normal when considering the development of polarized growth-arrested acinar-like structure similar to those formed by nonmalignant breast cells in a 3D reconstituted basement membrane in vitro. This process, in vivo, resulted in a low proliferation index, mesenchymal-epithelial transition, and shut-off of the angiogenic switch in FASN-depleted BC cells orthotopically implanted into mammary fat pads. The role of FASN as a negative regulator of correct breast tissue architecture and terminal epithelial cell differentiation was dominant over the malignant phenotype of tumor cells possessing multiple cancer-driving genetic lesions as it remained stable during the course of serial in vivo passage of orthotopic tumor-derived cells. Transient knockdown of FASN suppressed hallmark structural and cytosolic/secretive proteins (vimentin, N-cadherin, fibronectin) in a model of EMT-induced cancer stem cells (CSC). Indirect pharmacological inhibition of FASN promoted a phenotypic switch from basal- to luminal-like tumorsphere architectures with reduced intrasphere heterogeneity. The fact that sole correction of exacerbated lipogenesis can stably reprogram cancer cells back to normal-like tissue architectures might open a new avenue to chronically restrain BC progression by using FASN-based differentiation therapies

    Overexpression of tumour-associated carbohydrate antigen sialyl-Tn in advanced bladder tumours

    Get PDF
    Little is known on the expression of the tumour-associated carbohydrate antigen sialyl-Tn (STn), in bladder cancer. We report here that 75% of the high-grade bladder tumours, presenting elevated proliferation rates and high risk of recurrence/progression expressed STn. However, it was mainly found in non-proliferative areas of the tumour, namely in cells invading the basal and muscle layers. STn was also found in tumour-adjacent mucosa, which suggests its dependence on a field effect of the tumour. Furthermore, it was not expressed by the normal urothelium, demonstrating the cancer-specific nature of this antigen. STn expression correlated with that of sialyltransferase ST6GalNAc.I, its major biosynthetic enzyme. The stable expression of ST6GalNAc.I in the bladder cancer cell line MCR induced STn expression and a concomitant increase of cell motility and invasive capability. Altogether, these results indicate for the first time a link between STn expression and malignancy in bladder cancer. Hence, therapies targeting STn may constitute new treatment approaches for these tumours

    A study of the role of oncogenes and tumour suppressor genes in malignant pancreatico-biliary tumours

    Get PDF
    The molecular understanding of tumour development and progression has advanced considerably with the discovery of oncogenes and tumour suppressor genes. Surgical treatment is the only therapy that offers the potential for cure in hepatopancreatobiliary malignancy. Distinct from other solid tumours, HPB malignancies are unique in that many patients are considered unresectable despite only local, small volume disease. "Curative" resection unfortunately fails in 50% or more of cases. With such poor responses from conventional medical treatments, these tumours are potentially a target for genetic manipulation. The aim of this study was to identify those protein products abnormally expressed in HPB malignancy (by immunohistochemical analysis). In order to narrow down the field of protein products to be investigated, those that are abnormally expressed commonly in foregut tumours were chosen (p53, c-myc, MIB-1, Bcl-2 and c-erbB-2). Given that the embryological derivation of HPB tumours is also foregut, these factors were investigated in this group of neoplasms looking for distinguishing or diagnostic characteristics in expression. The results were compared with expression within pre- invasive, invasive and pre-malignant lesions of the same tissues. No classification based on expression of any of the oncogene products could be used to distinguish the site of tumour origin. Based on comparisons with benign and normal tissue examples, no useful diagnostic differences were discovered between expression of any of the markers. To assess whether expression was a feature of aggressive biological behaviour, comparisons were made for each grade of tumour. Only ampullary lesions had a significant increase in expression of p53 protein with advancing grade of tumour. Confirmed was the suspicion that immunohistochemically-expressed p53 protein is not confined to malignant cells alone. There was a high percentage of expression of c-myc and p53 proteins in all tumour sites, but seemingly no relevance to cancer development. Given this, the second stage of this study was to investigate controlling mechanisms around these proteins and assess whether these dictated the progression of the cell cycle to mitosis or release to differentiation, cell death or DNA repair pathways and thus avoidance of malignant change. In-situ hybridisation techniques were used to assess the expression of mRNA (MDM-2, p21WAF-1, Bax and BCLX1 cDNA probes constructed in-house) in serial sections of ten cholangiocarcinomas and two normal gallbladders. This was compared with expression of p53, MDM-2, p21WAF-1, Bax, c-erbB-2, Bcl-2, MIB-1 and c-myc proteins by immunohistochemistry and cell death (apoptosis) by histopathological assessment and the TUNEL assay. Heterogeneity of expression resulted in no correlation between markers being of any significance or in any pattern of expression within a tumour group compared to normal biliary epithelium. The third stage of the study was to assess whether any protein expression had prognostic significance in cholangiocarcinoma compared to accepted prognostic clinical and pathological criteria by Kaplan-Meier survival analysis. No marker performed usefully in assessing aggressiveness of disease. An incidental finding during this study was that Bcl-2 plays no part in regulating cell survival within the biliary tree. This is distinct from the overwhelming majority of other tissues where Bcl-2 does regulate survival. This role, in the biliary tree, is performed by a Bcl-2-related gene - BclxL. This is now being more formally assessed in further studies as well as the response of cholangiocarcinoma cells to manipulations of these and other cell survival factors

    Pattern classification approaches for breast cancer identification via MRI: state‐of‐the‐art and vision for the future

    Get PDF
    Mining algorithms for Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCEMRI) of breast tissue are discussed. The algorithms are based on recent advances in multidimensional signal processing and aim to advance current state‐of‐the‐art computer‐aided detection and analysis of breast tumours when these are observed at various states of development. The topics discussed include image feature extraction, information fusion using radiomics, multi‐parametric computer‐aided classification and diagnosis using information fusion of tensorial datasets as well as Clifford algebra based classification approaches and convolutional neural network deep learning methodologies. The discussion also extends to semi‐supervised deep learning and self‐supervised strategies as well as generative adversarial networks and algorithms using generated confrontational learning approaches. In order to address the problem of weakly labelled tumour images, generative adversarial deep learning strategies are considered for the classification of different tumour types. The proposed data fusion approaches provide a novel Artificial Intelligence (AI) based framework for more robust image registration that can potentially advance the early identification of heterogeneous tumour types, even when the associated imaged organs are registered as separate entities embedded in more complex geometric spaces. Finally, the general structure of a high‐dimensional medical imaging analysis platform that is based on multi‐task detection and learning is proposed as a way forward. The proposed algorithm makes use of novel loss functions that form the building blocks for a generated confrontation learning methodology that can be used for tensorial DCE‐MRI. Since some of the approaches discussed are also based on time‐lapse imaging, conclusions on the rate of proliferation of the disease can be made possible. The proposed framework can potentially reduce the costs associated with the interpretation of medical images by providing automated, faster and more consistent diagnosis
    • 

    corecore