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Virginia Commonwealth University, 2018 
 
 
 

Director: Larisa Litovchick, MD, PhD, Associate Professor, Internal Medicine 
 
 

 
High expression of B-Myb (encoded by MYBL2), an oncogenic transcription factor, 

is associated with cell cycle deregulation and poor prognosis in several cancers, including 

ovarian cancer. However, the mechanism by which B-Myb alters the cell cycle is not fully 

understood. In proliferating cells, B-Myb interacts with the MuvB core complex including 

LIN9, LIN37, LIN52, RBBP4, and LIN54, forming the MMB (Myb-MuvB) complex, and 

promotes transcription of genes required for mitosis. Alternatively, the MuvB core 

interacts with Rb-like protein p130 and E2F4-DP1 to form the DREAM complex that 

mediates global repression of cell cycle genes in G0/G1, including a subset of MMB target 

genes. Here, we show that overexpression of B-Myb disrupts the DREAM complex in 

human cells, and this activity depends on the intact MuvB-binding domain in B-Myb. 



 

 

vii 

Furthermore, we found that B-Myb regulates the protein expression levels of the MuvB 

core subunit LIN52, a key adaptor for assembly of both the DREAM and MMB complexes, 

by a mechanism that requires the S28 phosphorylation site in LIN52. To validate our 

cellular findings, we determined the effect of B-Myb levels on DREAM target gene 

expression in HGSOC tissue samples and corresponding patient outcomes. Given that 

high expression of B-Myb correlates with global loss of repression of DREAM target 

genes in breast and ovarian cancer, our findings offer mechanistic insights for 

aggressiveness of cancers with MYBL2 amplification and establish the rationale for 

targeting B-Myb to restore cell cycle control. 
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Chapter 1: Introduction 
 

Adapted from  
 
Iness A.N. & Litovchick L. (2018). MuvB: A Key to Cell Cycle Control in Ovarian Cancer. 
Front. Oncol. 8:223. doi: 10.3389/fonc.2018.00223 

 
 
Cell cycle regulation and cancer 

Cancer cells are characterized by uncontrolled proliferation, whereas the ability to 

enter quiescence or dormancy is important for cancer cell survival and disease 

recurrence. Therefore, understanding the mechanisms regulating cell cycle progression 

and exit is essential for improving patient outcomes (1). The MuvB complex of five 

proteins (LIN9, LIN37, LIN52, RBBP4, and LIN54), also known as LINC (LIN complex), is 

important for coordinated cell cycle gene expression. By participating in the formation of 

three distinct transcriptional regulatory complexes, including DREAM (DP, RB-like, E2F, 

and MuvB), MMB (Myb-MuvB) and FoxM1-MuvB, MuvB represents a unique regulator 

mediating either transcriptional activation (during S-G2 phases) or repression (during 

quiescence). With no known enzymatic activities in any of the MuvB-associated 

complexes, studies have focused on the therapeutic potential of protein kinases 

responsible for initiating DREAM assembly or downstream enzymatic targets of MMB (2-

4). Furthermore, the mechanisms governing the formation and activity of each complex 

(DREAM, MMB, or FoxM1-MuvB) may have important consequences for therapeutic 

response. The MMB complex is associated with prognostic markers of aggressiveness in 

several cancers whereas the DREAM complex is tied to disease recurrence through its 

role in maintaining quiescence (5-7). 
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MuvB regulates cell cycle gene activation and repression  

Understanding the processes governing cell cycle regulation is especially 

important in high grade serous ovarian cancer (HGSOC) because of high rates of 

treatment resistance and recurrence. Retinoblastoma (Rb) family proteins, including pRb 

(retinoblastoma protein encoded by the RB1 tumor suppressor gene), p107 (RBL1) and 

p130 (RBL2), are essential for entry into quiescence in mammalian cells (8, 9). pRb, p107 

and p130 are also known as “pocket proteins” because they bind E2F transcription factors 

that regulate cell cycle dependent genes using a conserved “pocket” domain (10). While 

the tumor suppressor role of pRb is well established, the roles of p107 and p130 in cancer 

are not fully understood. However, Rb-like proteins (but not pRb) can recruit the 

evolutionarily conserved DNA binding protein complex MuvB to regulate gene expression. 

Recent studies reveal that through interaction with MuvB, p130 and p107 could play a 

unique and significant role in determining cancer aggressiveness and response to 

therapy. 

Structurally related MuvB complexes including proteins encoded by the LIN9, 

LIN37, LIN52, LIN54 and RBBP4 genes, or their orthologs, have been shown to regulate 

gene expression in different organisms including C. elegans, Drosophila and Homo 

sapiens (11-14). In mammalian cells, MuvB participates in both repressor and activator 

gene regulatory complexes by alternating its binding partners at different points in the cell 

cycle. In G0/G1, MuvB is a component of the DREAM complex, which functions to repress 

gene expression for entering and maintaining quiescence. DREAM consists of p130, 

E2F4, and DP1 bound to MuvB, and its assembly requires phosphorylation of the LIN52 
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subunit of MuvB by dual-specificity tyrosine phosphorylation-regulated kinase (DYRK1A) 

(13, 15). DREAM disassembly occurs during the G1/S transition when cyclin-dependent 

kinases CDK4 and CDK2 phosphorylate p130 and MuvB subunits (13, 16-18). MuvB then 

dissociates from p130 and E2F4, leading to transcription of early and  late cell cycle 

genes, including B-Myb and FoxM1 transcription factors. B-Myb recruits MuvB during the 

S phase, forming the MMB complex that binds to promoters of late cell cycle genes (15, 

18-20). Furthermore, upon proteasomal degradation of B-Myb in S/G2, MuvB mediates 

timely recruitment of FoxM1 transcription factor to promoters of genes required for mitosis 

(20, 21). Therefore, by sequential association with three different DNA-binding 

transcription factors (E2F4, B-Myb, and FoxM1), MuvB coordinates cell cycle gene 

expression from quiescence through mitosis (Fig. 1) (2, 22). This unique function of MuvB 

is central to maintaining cell cycle regulation and appropriate responses to environmental 

stimuli. The degree of MuvB participation in quiescence-related (DREAM) or proliferation-

related (MMB or FoxM1-MuvB) complexes could be an important factor in cancer biology 

and therapeutic response.  
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Figure 1.  MuvB contributes to gene regulation throughout the cell cycle. MuvB 
binds p130/p107 and E2F4-DP1 in G0/G1 to form the DREAM complex and repress both 
early and late cell cycle genes. Upon cell cycle re-entry and during the S phase, MuvB 
binds B-Myb, forming MMB for expression of early cell cycle genes. The interaction 
between B-Myb and MuvB is important for recruiting FoxM1 for late cell cycle gene 
expression and subsequent mitosis. 

 
High grade serous ovarian cancer is the most common of the epithelial 

malignancies in this disease site. Analysis of  HGSOC data from The Cancer Genome 

Atlas (TCGA) reveals widespread variable genetic alterations of the factors involved in 

MuvB function (Fig. 2) (23). Interestingly, genes encoding different MuvB subunits appear 

to be targeted both by gene copy number losses (LIN52, LIN54) or gains (LIN9, LIN37). 

MuvB’s involvement in complexes with different functions makes it challenging to parse 

out the contributions of individual proteins without understanding of their exact roles in 

the context of each complex. Unlike pRb, mutations targeting p130 or p107 in cancer are 

rare (24-26). However, perturbations in DREAM activity could occur through its altered 
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formation (e.g. aberrant activation of CDKs, inhibition of DYRK1A, or availability of MuvB 

components).  

  

Figure 2. Alterations in genes involved in MuvB complex function. Figure shows 
summary of copy number alteration and mutation data from high-grade ovarian carcinoma 
samples (N = 316) visualized using cBio.org resource (23, 27). Note that the factors 
required for the G0/G1 function of the MuvB more frequently undergo genetic losses (blue 
color), whereas regions encoding genes associated with MuvB in S/G2 are frequently 
gained (pink) or amplified (red). 

Structural and functional studies of MuvB subunits reveal their unique roles 

Since the discovery of mammalian DREAM in 2007, the structure and specific 

functions of the MuvB subunits are now beginning to emerge (28). Histone-binding protein 

RBBP4 (alias RbAp48) has been extensively characterized for its involvement in various 

chromatin-modifying complexes (29-31). Although there is no direct evidence of 

interaction between DREAM and any chromatin co-repressor complexes, RBBP4 likely 

serves as an adaptor to recruit such complexes to DREAM-regulated promoters. A recent 

study of mouse fibroblasts devoid of MuvB subunit LIN37 found that although the 

remaining subunits were able to assemble a DREAM-like DNA-binding complex, its 
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repressor function was lost (32). Interestingly, the MMB-mediated transcription was not 

affected, suggesting that LIN37 specifically contributes to the repressor role of MuvB. The 

smallest (116 a.a.) MuvB subunit LIN52 plays a key role in DREAM formation by direct 

interaction with p130 or p107. This interaction requires phosphorylation of serine 28 in 

LIN52 by DYRK1A (15, 16). Importantly, a different region in LIN52 is also essential for 

MMB complex formation. Therefore, LIN52 phosphorylation status and availability could 

impact the function of both complexes (16). Studies in cell lines and mouse genetic 

models reveal the importance of another MuvB subunit, LIN9, for both cell proliferation 

and tumor suppression, emphasizing its structural role in both DREAM and MMB (16, 33-

35). Recent work also implicated LIN9 in direct binding with FoxM1 for formation of the 

FoxM1-MuvB complex required for mitotic gene expression (36). Interestingly, while 

MuvB associates with DNA-binding transcription factors to achieve target gene specificity, 

it also possesses intrinsic DNA-binding activity through MuvB subunit LIN54 (37). LIN54 

recognizes specific DNA sequences called cell cycle homology regions (CHR), and 

mutations disrupting the LIN54-DNA interface abolish the recruitment of MuvB to 

promoters harboring the CHR elements (21, 38). Many mitotic genes contain CHR 

elements required for their expression, consistent with the finding that loss of LIN54 

results in cell cycle arrest and mitotic defects (21, 37, 39, 40). Together, these findings 

characterize the contributions of the individual subunits that can, in part, explain the 

multifunctional nature of the MuvB complex.  

MuvB function is influenced by major tumor suppressor pathways  

Discovery of mammalian MuvB complex further clarified the overlapping and 

unique roles of the Rb family members in cell cycle control. While pRb itself does not 



 

 

7 

interact with MuvB directly, formation of DREAM appears to be the major role of the other 

pocket proteins, p130 and p107 in vivo (13, 41). Previous studies demonstrated that 

inactivation of all three pocket proteins (pRb, p107 and p130) in mouse fibroblasts is 

necessary to block entry into quiescence (8, 42). Similarly, fibroblasts lacking MuvB 

subunit LIN37, or cells defective in MuvB-pocket protein interaction, are able to arrest in 

G0/G1 despite de-repression of DREAM target genes and aberrant formation of the 

proliferation-related MMB complex under the conditions of G0/G1 arrest (32, 41). 

However, depletion of pRb resulted in escape from G0/G1 arrest in LIN37 knockout cells 

(32). MuvB therefore becomes an essential regulator of the cell cycle and guardian of 

quiescence in the absence of functional pRb. Notably, copy number losses or mutations 

in the RB1 gene (encoding pRb) are present in 67% of TCGA HGSOC samples. 

In addition to cooperating with pRb for cell cycle exit, MuvB is functionally linked 

with p53. Activation of p53 in response to environmental stimuli, such as DNA damage, 

results in replacement of MMB with DREAM through a p21-dependent pathway (43-45). 

This switch is required for global cell cycle gene repression. Frequent mutations of the 

TP53 gene in cancer (notably in 96% of HGSOC tumors) could lead to de-repression of 

oncogenic DREAM target genes, such as Survivin (BIRC5), CDC25C, and PLK1 (23, 44, 

46, 47). Therefore, deregulation of the p53-p21-MuvB pathway could have important 

implications for clinical outcomes in cancer.  Indeed, in p53-mutant breast cancer cells, 

MuvB failed to dissociate from B-Myb (MMB complex) and bind p130/E2F4 upon DNA 

damage to form DREAM (48). Similarly, doxorubicin treatment of HCT116 colon 

carcinoma cells led to an increase in the population of G2/M cells and mRNA levels of 

late cell cycle genes when p53 was inhibited (44, 47). Basal MMB was also more 
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abundant in p53-mutant hepatocellular carcinoma (HCC) cells versus those with wild-type 

p53. Whereas DREAM assembly was increased with doxorubicin treatment in p53 wild-

type cells, MMB complex formation was paradoxically increased upon treatment of p53 

null cells (49). Importantly, MMB formation was essential for survival of p53 null HCC cells 

after doxorubicin-induced DNA damage, suggesting that inactivation of DREAM and 

aberrant formation of MMB contributes to chemoresistance of cancers with functional loss 

of p53, including HGSOC. 

Oncogenic human papilloma viruses, such as HPV16 and HPV18, are known to 

inactivate pRb and p53 pathways through actions of viral proteins E7 and E6, respectively 

(50, 51). The structure of the LIN52-p107 complex revealed that E7 protein disrupts the 

DREAM complex by competing with MuvB subunit LIN52 for direct binding to p107/p130 

(16). Indeed, LIN52 binds to a cleft in p130 or p107 bound by the LxCxExL motif present 

in HPV E7 and other oncogenic viral proteins, suggesting that displacement of the MuvB 

from DREAM could be essential for viral genome replication. In cancer cells expressing 

oncogenic HPV E7, MuvB is predominantly recruited to the MMB complex and contributes 

to proliferation of these cells (52-54). Interestingly, expression of E7 can impair the p53-

dependent cell cycle checkpoint, independently of E6-mediated p53 degradation, by 

blocking p53-induced downregulation of DREAM target genes (55, 56).  These findings 

demonstrate the importance of the p53-p21-MuvB pathway for maintaining the checkpoint 

function of p53, regulation of gene expression, and cell cycle arrest that is often altered 

in cancer (57).   
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MuvB involvement in cancer 

The significance of MuvB subunit expression in human cancers has not been 

extensively studied, and MuvB is mostly linked to prognosis through association with B-

Myb. Both amplification of the 20q13 MYBL2 locus (encoding B-Myb) and over-

expression of MMB target genes are associated with aberrant cell proliferation, cell cycle 

deregulation, and poor prognosis in many cancers including breast, liver, and ovarian (49, 

58, 59). In biochemical studies of HCC tumor-derived tissues, high LIN9-B-Myb (MMB) 

and low LIN9-p130 (DREAM) complex formation was associated with poor overall 

survival, despite no significant difference in LIN9 levels (49). These findings were 

independently corroborated in a bioinformatics study of HCC data from TCGA showing a 

significant correlation between elevated expression of MYBL2, LIN9, LIN52, or FOXM1 

and poor overall survival (60).   

A recent study using a K-RasG12D;p53null mouse model of lung cancer revealed an 

important role for MMB in tumorigenesis whereby a conditional deletion of B-Myb or Lin9 

significantly suppressed tumor formation (3). This study also demonstrated that MMB 

target gene KIF23 (MKLP1) was required for lung tumor formation and represents a 

potentially druggable MMB target. Investigation of MuvB, B-Myb, and FOXM1 targets in 

breast cancer cells yielded further ties to MMB-regulated kinesins whereby inhibition of 

two targets (KIF23 and PRC1) significantly reduced MDA-MB-231 cell proliferation. 

Analysis of the TCGA breast cancer data revealed correlations between high expression 

of mitotic kinesins and poor outcomes, suggesting that these MMB-regulated genes could 

serve as a prognostic signature or therapeutic targets (61). Furthermore, several MMB 



 

 

10 

downstream targets are included in a chromosomal instability signature, used to predict 

clinical outcomes in multiple cancer types (62, 63). 

Whereas high MMB levels are associated with a poor prognosis in many cancers, 

DREAM could contribute to cancer recurrence by promoting cancer cell survival under 

stressful conditions. In gastrointestinal stromal tumors (GIST), the DREAM complex has 

been implicated in imatinib mesylate resistance by promoting entry into quiescence (1, 

7). Depletion of LIN52, or simultaneous knock-down of both E2F4 and LIN54, significantly 

enhanced imatinib-induced GIST cell apoptosis as compared with drug treatment alone. 

Pharmacological inhibition of DYRK1A also significantly increased imatinib-induced GIST 

apoptosis. Therefore, modulating DREAM formation through DYRK1A kinase activity is a 

potential therapeutic angle. 

MuvB in ovarian cancer 

The cell cycle effects of DREAM and MMB are of particular interest in the context 

of HGSOC (64). HGSOC is the most lethal of the gynecologic malignancies that is 

typically diagnosed at an advanced stage, with a median survival rate <5 years (65, 66). 

The majority of patients treated with surgery and platinum-based chemotherapy have a 

complete response to therapy, while 25% patients have primary platinum resistance 

associated with decreased survival (67). While long disease-free intervals are common, 

they typically shorten over time, and patients become platinum-resistant (68). HGSOC 

tumors are characterized by loss-of-function p53 mutations, making it plausible that the 

inability to assemble DREAM and enter quiescence could contribute to the initial high 

treatment sensitivity of HGSOC. It is important to investigate the status of key cell cycle 
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regulators, including DREAM and MMB, in HGSOC with primary and acquired platinum 

resistance.  

Ovarian cancer recurrence has been linked to formation of cellular aggregates 

(spheroids) comprised of quiescent cells and disseminated through peritoneal fluid. The 

DREAM complex is assembled upon spheroid formation and plays an active role in 

maintaining quiescence (69). Inactivation of DREAM by depleting DYRK1A or LIN52 in 

the ascites-derived HGSOC primary cell lines resulted in reduced spheroid cell viability 

upon carboplatin treatment. DREAM inactivation led to enhanced cell death. Similarly, 

DYRK1A inhibition with small molecule drug INDY led to MMB complex formation, 

compromised DREAM-mediated cell cycle gene repression, and enhanced cell death in 

HGSOC primary cultures in response to carboplatin treatment (69, 70). This result 

provides rationale for investigating the therapeutic potential of targeting DREAM in 

combination with cytotoxic chemotherapy. Pharmacological inhibition of DYRK1A is 

currently under consideration for the treatment of conditions in which it is overexpressed 

(Down syndrome and Alzheimer disease) as well as Down syndrome-associated pediatric 

leukemia (71, 72). Several specific and efficient DYRK1A inhibitors have been reported 

but further studies are needed to identify candidates suitable for clinical use. The plant-

derived alkaloid drug harmine is an effective inhibitor of DYRK1A, but its clinical utility is 

limited by its potent monoamine oxidase A inhibitory activity (1, 72, 73). A recent report 

describes a clinically safe and potent new DYRK1A inhibitor CX-4549 that is active 

against several DYRK1A substrates in cell and animal-based assays (74). Its ability to 

block DREAM assembly and entry into quiescence has not yet been evaluated.  
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Pharmacologically targeting DYRK1A could be challenging because this 

ubiquitously expressed kinase is involved in a variety of processes in different cell types. 

Some cancers express high levels of DYRK1B, a close homologue present mostly in 

skeletal muscle.  Like DYRK1A, DYRK1B also phosphorylates S28 in LIN52 and 

stabilizes DREAM (15). DYRK1B inhibition was thus proposed as a way to circumvent 

the untoward effects of DYRK1A pharmacological inhibitors (4, 75).  Several studies 

suggest that tumor cells expressing DYRK1B more heavily rely on its activity and that 

DYRK1B depletion compromises the ability to maintain quiescence (76-79). Notably, 

DYRK1B protein expression is detected in 75% of resected ovarian tumors and up to 10% 

of ovarian cancers have DYRK1B gene amplification (23, 78, 80). Treatment of the 

ovarian cancer cells overexpressing DYRK1B with RO5454948 (inhibitor of both DYRK1 

kinases) resulted in cell cycle re-entry and apoptosis whereas the normal ovarian 

epithelial cells remained viable (79). However, the only known drug with some selectivity 

against DYRK1B (5-fold higher potency than for DYRK1A in vitro), AZ191, has not been 

evaluated in vivo (81). 

Conclusion  

Overall, the dual role of MuvB in both cellular quiescence and proliferation 

highlights the intricacy of cell cycle control as well as the importance of cooperation 

between tumor suppressor pathways. While MMB function is tied to aggressive disease 

and poor prognosis in cancer, there is robust evidence implicating DREAM function in 

chemotherapy resistance and cancer cell survival. Therefore, a shift in the utilization of 

MuvB, for either DREAM or MMB formation, could represent a strategy by which cancer 

cells exploit the cell cycle. Manipulating MuvB could provide substantial regulatory control 
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over the cell cycle, as supported by evidence that both DREAM (via blocking DYRK1 

kinases), or MMB (via druggable downstream targets), could be targeted for cancer 

therapy. Given the ongoing development of clinically-viable drugs, the next challenge will 

be to determine optimal conditions for applying these treatments. Further structure-

function studies of the DREAM and MMB, as well as their regulatory signaling pathways, 

will inform treatment strategies for targeting specific states of MuvB--either inhibiting cell 

proliferation or entry into quiescence. Although MuvB has been explored at the cellular 

level, studies with patient samples and clinical data are needed to validate in vitro findings 

and develop the personalized treatments required to modulate the cell cycle key, MuvB.   
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Chapter 2: The cell cycle regulatory DREAM complex is disrupted by high 
expression of oncogenic B-Myb 

 
Adapted from  

 
Iness, A.N., Felthousen, J., Ananthapadmanabhan, V., Sesay, F., Saini, S., Guiley, K.Z., 
. . . Litovchick, L. (2018). The cell cycle regulatory DREAM complex is disrupted by high 
expression of oncogenic B-Myb. Oncogene. LID - 10.1038/s41388-018-0490-y [doi]. 
(1476-5594 (Electronic)). 
 
Guiley, K.Z., Iness, A.N., Saini, S., Tripathi, S., Lipsick, J. S., Litovchick, L., & Rubin, S.M. 
(2018). Structural mechanism of Myb–MuvB assembly. Proceedings of the National 
Academy of Sciences. 

 
 
Introduction  

 Since its discovery in 1988, several studies have established MYBL2 (encoding B-

Myb) as a clinically important oncogene (59, 82). Indeed, MYBL2 is part of the Oncotype 

DX® screening panel and validated DCIS (Ductal Carcinoma in situ) ScoreTM, used to 

predict the risk of local recurrence in patients with breast cancer (83, 84). However, the 

specific cellular mechanisms of B-Myb’s oncogenic activities are not fully understood. 

 Previous studies characterized B-Myb as a transcription factor involved in cell 

cycle regulation and expressed in proliferating cells (85). The essential role of B-Myb for 

cell proliferation is evidenced by failure of inner cell mass formation and embryonic death 

of MYBL2 knock-out mice (86). Oncogenic functions of B-Myb have been attributed to its 

transcriptional activity, resulting in deregulated cell cycle gene expression (3, 6, 87). 

Studies in Drosophila and human cells revealed that B-Myb regulates transcription of 

developmental and cell cycle genes as part of an evolutionarily conserved multi-subunit 

protein complex, which shares common subunits with DNA-binding complexes formed by 

retinoblastoma (RB) family members (2, 28). In Drosophila, Myb functions as part of the 
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dREAM (RB, E2F, and Myb) complex that includes five proteins homologous to the 

products of the C. elegans multi-vulva class B (MuvB) genes: LIN9, LIN37, LIN52, 

LIN53/RBBP4 and LIN54 (88, 89). In the mammalian cell cycle, the orthologous DREAM 

(DP, RB-like, E2F, and MuvB) complex does not include Myb, and promotes cell cycle 

exit by repressing more than 800 cell cycle genes (including MYBL2) in quiescent cells 

(Fig. 3) (13, 14, 18). Interestingly, although pRb does not interact with the MuvB core, 

which only accommodates RB-like p130 or p107 (13, 16), this tumor suppressor 

functionally cooperates with DREAM in establishing and maintaining quiescence (32). 

DREAM is assembled in G0/G1 and depends on DYRK1A (dual-specificity tyrosine-

phosphorylation regulated kinase 1A) phosphorylation of LIN52 (MuvB subunit) at serine 

28 (S28) for bringing together p130 and the MuvB core (90). 

 

Figure. 3. Schema of the DREAM (repressor) and MMB (activator) complexes. These 
complexes use a common MuvB core (pentagons) to regulate both unique and shared 
target genes (Venn diagram)  
 
Upon cell cycle progression, p130 is phosphorylated by cyclin-dependent kinases (CDKs) 

and dissociates from MuvB (16). In the S phase, MuvB binds B-Myb, forming the MMB 

(Myb-MuvB) complex that cooperates with FOXM1 transcription factor to activate G2/M 
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gene expression (20, 91). Importantly, LIN52 is required for MuvB to bind B-Myb, making 

LIN52 an essential component of both the DREAM and MMB complexes (16). Unlike 

DREAM, LIN52 binding to B-Myb is independent of S28 phosphorylation. Interestingly, 

the Drosophila dREAM complex includes the Myb and RB proteins together with MuvB, 

whereas the mammalian DREAM and MMB complexes exist in a cell cycle-dependent, 

mutually exclusive manner (12, 13, 18, 88). An in vitro study with reconstituted human 

complexes demonstrated that both B-Myb and p130 could simultaneously bind to MuvB, 

suggesting that their mutually exclusive binding in vivo is not due to structural constraints 

(16).  

 Studies of DREAM disruption by genome editing show that DREAM-deficient cells 

have abnormal binding of B-Myb to MuvB and loss of DREAM target gene repression 

under the conditions of G0/G1 cell cycle arrest (32, 41). Since B-Myb overexpression also 

deregulates the cell cycle (92, 93), we investigated whether B-Myb, when over-

expressed, could play a causal role in disrupting DREAM. Our data shown here support 

the regulation of DREAM by B-Myb as a potential mechanism for the cell cycle defects 

observed in cancers with high B-Myb levels. Furthermore, we demonstrate that increased 

expression of B-Myb disrupts DREAM by compromising recruitment of LIN52 to the 

complex, and describe the regulation of LIN52 expression by B-Myb. These findings 

implicate global cell cycle deregulation by disrupting the DREAM repressor function as a 

means by which B-Myb exerts its oncogenic effects and promotes cancer progression.  
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Results 
 
B-Myb inhibits DREAM assembly in non-transformed human fibroblasts 

B-Myb overexpression is associated with a proliferative phenotype, which could be 

due to loss of DREAM function. Therefore, we assessed the effect of B-Myb gain of 

function on DREAM formation by expressing HA-B-Myb in non-transformed human 

fibroblasts immortalized with hTERT (BJ-hTERT) (90, 94). We first measured the 

proliferation rate of cells expressing HA-B-Myb compared to control cells expressing HA-

GFP, using an ATP-dependent metabolic assay (95). As expected, BJ-hTERT cells 

expressing HA-B-Myb exhibited a significantly greater proliferation rate than controls (Fig. 

4A). We then determined the effect of high B-Myb levels on DREAM assembly. While 

both the LIN37-p130 complexes (specific to DREAM) and LIN37-B-Myb complexes 

(corresponding to MMB) were present in the asynchronously cycling control cells, B-Myb 

overexpression resulted in almost no detectable p130 co-precipitating with LIN37. To 

clarify the effect of B-Myb on DREAM, we serum starved these cells to induce DREAM 

formation. As expected, DREAM formation increased in serum-starved control BJ-hTERT 

cells. Although B-Myb overexpressing cells formed p130/LIN37 complexes, DREAM 

levels were significantly diminished with HA-B-Myb expression (Fig. 4B-D). This result 

suggests that even in the presence of high B-Myb, DREAM disassembly remains partially 

dependent on environmental factors. Similar findings were obtained under alternative 

growth arrest conditions with palbociclib (CDK4/6 inhibitor) treatment (Fig. 4E, F). 

Therefore, although we previously showed that p130 and B-Myb could simultaneously 

bind to MuvB (16), here we observed that overexpression of B-Myb in non-transformed 

cells results in MMB formation under conditions that normally favor DREAM assembly.  
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Figure 4. B-Myb overexpression interferes with DREAM assembly in BJ-hTERT 
cells under the conditions of growth arrest. (A) Increased proliferation of BJ-hTERT 
cell line expressing HA-B-Myb compared to HA-GFP (control). Graph shows average 
increase (N=3) of cell density on day 5 relative to day 3 after plating, to account for 
differences in plating efficiency between the cell lines (* - p<0.05). (B) IP/WB analysis of 
DREAM and MMB complexes in BJ-hTERT fibroblasts stably expressing HA-GFP 
(control) or HA-B-Myb. Where indicated, cells were incubated without serum for 48h to 
promote DREAM complex formation. (C) Quantification of 1B. Relative abundance of 
p130 to LIN37 in B-Myb overexpressing cells was compared to that in the HA-GFP control 
cells (taken as 1). Graph shows average ± stdev of four independent experiments (** - 
p<0.01). (D) WB analysis of extract from 1B showing alterations in LIN9 level and LIN52 
phosphorylation state. pS28/LIN52 ratio shows changes in pS28-LIN52 band density 
relative to the total LIN52 (both forms combined). The solid black arrow indicates pS28-
LIN52 band here and throughout the remaining figures. Vinculin blot is shown to confirm 
equal loading. (E) IP/WB analysis of DREAM and MMB formation in BJ-hTERT stable cell 
lines expressing HA-B-Myb compared to HA-GFP control cells. Cells were incubated with 
10μM palbociclib to induce G0/G1 arrest, or vehicle, for 24h before harvesting. (F) 
Quantification of 1E analyzed as described previously in 1C. 
 
B-Myb requires binding to MuvB for DREAM disassembly  

To test the importance of MuvB binding for B-Myb-mediated DREAM disruption, 

we compared cell lines stably expressing either wild-type HA-B-Myb or a MuvB-binding 

deficient (MBD) mutant Q674A/M677A-B-Myb(96). As shown in Fig. 5A, B, expression 

of the HA-MBD mutant B-Myb negated the ability of B-Myb to disrupt DREAM formation 
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in both BJ-hTERT (Fig. 5A) and T98G cells (Fig. 5B), as indicated by comparable levels 

of p130-LIN37 complexes between parental and HA-MBD-expressing cells. Additionally, 

we validated the MuvB-binding deficient mutant B-Myb in HeLa cells (Fig. 5C). Since 

HeLa cells contain a known DREAM inhibitor, Human Papilloma Virus (HPV) viral 

oncoprotein E7, they serve as a model for further studying B-Myb-MuvB interactions (52). 

Here, we again noted disruption of B-Myb binding to MuvB, as revealed by the lack of 

HA-tagged protein co-precipitation with MuvB component LIN37. 

 
Figure 5. Disruption of B-Myb-MuvB binding across three sets of cell lines. (A) 
IP/WB analysis for DREAM/MMB assembly in BJ-hTERT cells stably expressing HA-GFP 
(control), HA-tagged WT or MuvB-binding deficient mutant (MBD) B-Myb. (B) Same as in 
5A except in T98G parental cells. (C) Validation of disrupted B-Myb-MuvB binding in 
HeLa cells that innately lack DREAM formation.  
 

Additionally, expression of HA-MBD B-Myb significantly inhibited cell growth, as 

compared with cells expressing HA-B-Myb WT protein. However, there was no significant 

difference between growth of the parental control cells and either HA-B-Myb WT or MBD 

mutant cell lines (Fig. 6A). Chromatin immunoprecipitation (ChIP) of HA indicated loss of 

HA-MBD mutant binding to the CCNB1 promoter (encoding cyclin B1), a known CHR-

containing and MuvB-targeted promoter (Fig. 6B) (38). Collectively, these data indicate 
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that B-Myb binding to MuvB is required for DREAM disruption. Lack of promoter binding 

by the HA-MBD mutant further reinforces the conclusion that B-Myb exerts its effects 

through contact with MuvB.  

 
Figure 6. Functional characterization of HA-MBD HeLa cells. (A) HeLa cells stably 
expressing HA-tagged wild-type or MBD mutant (Q674A/M677A) B-Myb were counted at 
3 and 5 days after plating. Graph shows average ± stdev of four independent experiments. 
(B) ChIP of HA in HeLa cells expressing HA-B-Myb WT or MBD mutant. Parental cells 
are a control. Data represent 2 biological replicates and 1 technical replicate). Graph 
shows average ± stdev (** - p<0.01) 

 
Regulation of MuvB by high B-Myb expression 

Though MuvB binding is necessary for B-Myb to disrupt DREAM, B-Myb 

overexpression did not affect the interaction between LIN37 and MuvB proteins LIN9 and 

LIN52 (Fig. 4B, 5). However, we noted an increased abundance of LIN9 and LIN52 

proteins in the non-starved B-Myb overexpressing BJ-hTERT cells compared to control 

(Fig. 4B, D). This could be attributable to transcriptional regulation, as DREAM binds to 

LIN9 and LIN52 promoters (43). In line with DREAM-mediated repression, RT-qPCR 

analysis confirmed downregulation of LIN9 and LIN52 mRNA with serum starvation. In 

non-starved cells, HA-B-Myb was significantly associated with increased LIN9 and LIN52 
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expression, a trend also observed with both genes in the serum starved state (Fig. 7A, 

B). Given a modest 1.5-fold increase of LIN52 mRNA levels in the presence of HA-B-

Myb, we measured LIN52 protein stability in BJ-hTERT cells using cycloheximide (CHX) 

chase assays and found that it was more abundant after 10h of CHX treatment in the HA-

B-Myb-expressing cells as compared with control (Fig. 7C). Since LIN52 is a MuvB 

component essential for formation of both DREAM and MMB, we further investigated the 

effect of B-Myb overexpression on LIN52.  

Figure 7. B-Myb influences MuvB expression. (A) RT-qPCR analysis of LIN9 and 
LIN52 mRNA expression in BJ-hTERT cell lines expressing GFP or HA-B-Myb. Cells 
were grown in the presence of serum, or serum-starved for 48 hours before analysis. 
Graph shows average ± stdev (N=3). Student’s t-test p-values * - <0.05, ** - <0.01. (B) 
WB analysis of cycloheximide (CHX) chase assay of endogenous LIN52 in BJ-hTERT 
cells reveals increased expression and stability of LIN52 in HA-B-Myb-overexpressing 
cells compared to GFP (control).  
 
High B-Myb levels influence LIN52 regulation 

In addition to increased expression, we noted alterations in the relative abundance 

of S28-phosphorylated and un-phosphorylated LIN52 in the presence of HA-B-Myb (Fig. 

4D). We have previously shown that slower migrating form of LIN52 appears when this 

protein is phosphorylated at S28 by DYRK1A kinase (15). Using a phospho-specific 

antibody, we confirmed that relative abundance of S28-phosphorylated LIN52 was 

decreased in the presence of HA-B-Myb in BJ-hTERT cells though it was not associated 

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

GFP B-Myb

A B

L
IN

5
2

 m
R

N
A

 (
R

e
la

ti
v

e
 t
o

 1
8

S
) 

x
1

0
-5

Serum + - + -

*

*

*

1

2

3

4

5

6

7

8

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

GFP B-Myb

Serum + - + -

*10

9

8

7

6

5

4

3

2

1

L
IN

9
 m

R
N

A
 (

R
e

la
ti

v
e
 t

o
 1

8
S

) 
x

1
0

-4

* C BJ-hTERT HA-GFP

CHX, h

MG132
0

-
1

-
10

-
10

+

HA-B-Myb

LIN52

Actin

HA (B-Myb)

HA (GFP)

0

-
1

-
10

-
10

+



 

 

22 

with changes in DYRK1A level or kinase activity (Fig. 8A), suggesting that B-Myb could 

inhibit DREAM assembly by interfering with the key phosphorylation event required for 

MuvB binding to p130 (43).  

 

Figure 8. B-Myb alters the relative abundance of pS28-LIN52 through a DYRK1A-
independent mechanism. (A) In vitro kinase assay using recombinant GST-LIN52 as a 
substrate shows no difference in DYRK1A kinase activity in the control and HA-B-Myb 
expressing BJ-hTERT cells. Purified GST-LIN52 was incubated with cell extracts and 
ATP, resolved on SDS-PAGE and analyzed using phosphoS28-specific antibody. See 
also Figure 13A confirming the specificity of the assay. (B) WB using extracts from T98G 
cells in 5B showing changes in LIN52 protein and relative abundance of pS28-LIN52. 

 
To further validate and characterize the effect of B-Myb on DREAM assembly, we 

used T98G glioblastoma cells because they have been studied extensively in cell cycle 

research, including initial characterization of DREAM and MMB (13). Although this cancer 
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Myb (13, 90, 92, 97). Similar to BJ-hTERT cells (Fig. 5A), expression of wild-type B-Myb, 
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or the cells expressing MBD HA-B-Myb (Fig. 8B). These findings reinforced the important 

role of B-Myb-MuvB binding not only for DREAM disruption, but also for influencing LIN52 

protein, and led us to further investigate regulation of LIN52 as a novel mechanism by 

which B-Myb impacts cell cycle gene expression. 

 

Figure 9. Effects of B-Myb and LIN52 overexpression in T98G cells reveal regulation 
at the protein level. (A) IP/WB analysis of T98G cells stably expressing LIN52-V5, HA-
B-Myb, or both, compared with control parental cells. Open arrow indicates position of the 
indicated proteins here and throughout the following figures.  (B) WB analysis shows 
downregulation of endogenous LIN52 in T98G cells stably expressing LIN52-V5. (C) RT-
qPCR analysis with primers specific to endogenous LIN52 mRNA reveals no significant 
changes in the presence of ectopic LIN52. Graph shows average ± stdev (N=3, p>0.05). 
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(D) WB analysis of cycloheximide (CHX) chase experiment using T98G stable cell lines 
expressing empty vector or LIN52-V5. (E) RT-qPCR analysis shows similar expression 
of the wild-type and S28A-mutant LIN52 mRNA detected using primers specific to the 
open reading frame (ORF). Graph shows average ± stdev of three independent 
experiments (Student’s t-test p>0.05).  
 
LIN52 expression is controlled at the protein level 

Since B-Myb disrupts DREAM and also increases LIN52 protein abundance, we 

tested whether DREAM assembly is influenced by ectopic overexpression of LIN52 alone. 

However, analysis of T98G cells stably expressing LIN52-V5, HA-B-Myb, or both, showed 

no substantial impact of ectopically expressed LIN52 on DREAM assembly (Fig. 9A). 

Furthermore, LIN52-V5 appeared to replace endogenous LIN52 from LIN37 complexes, 

likely because of decreased endogenous LIN52 expression in the presence of LIN52-V5 

(Fig. 9B). RT-qPCR analysis with primers specific for endogenous LIN52 mRNA revealed 

no significant changes in the presence of LIN52-V5, indicating that LIN52 downregulation 

occurs at the protein level (Fig. 9C). This prompted us to assess the stability of both 

endogenous and ectopically expressed LIN52 using CHX chase assays. We noted that 

both endogenous and ectopically expressed LIN52 proteins were both markedly depleted 

after 3h of CHX treatment (Fig. 9D), suggesting that LIN52 was less stable in T98G cells 

than in BJ-hTERT (Fig. 7C). We were not able to estimate the turnover rate of 

endogenous LIN52 in LIN52-V5-expressing cells because of its low expression. Of note, 

we did not observe significant degradation of MuvB protein LIN37 under these conditions.  
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Figure 10. LIN52 protein level is associated with changes in B-Myb expression. (A) 
WB analysis of T98G cells stably expressing LIN52-V5 alone, or together with HA-B-Myb 
shows that B-Myb overexpression causes upregulation of the ectopically expressed 
LIN52. (B) Same as 10A, only after transient knockdown of B-Myb using siRNA. siNT, 
non-targeting siRNA control. Blots show both ectopic and endogenous LIN52.  
 

To further validate our finding that B-Myb regulates LIN52 protein expression, we 

altered B-Myb levels in T98G cells stably expressing LIN52-V5. As in case of endogenous 

LIN52, overexpression of B-Myb resulted in increased expression of the LIN52-V5 protein 

in T98G cells (Fig. 10A). Furthermore, siRNA knockdown of B-Myb led to downregulation 

of LIN52-V5 as well as the endogenous LIN52 protein (Fig. 10B). Together, our data 

presented above show that B-Myb is able to disrupt DREAM assembly when highly 

expressed, and support the role of B-Myb in regulation of LIN52 expression at the protein 

level.  
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Figure 11. B-Myb overexpression in T98G cells stabilizes LIN52 but not S28A-LIN52 
mutant. (A) Representative immunoblots show CHX chase assays using T98G cells 
stably expressing LIN52-V5 or LIN52-S28A-V5 proteins alone, or together with HA-B-
Myb. (B, C) Quantitative analysis of LIN52-V5 and LIN52-S28A-V5 CHX chase assays 
shown in 11A. In panel B, graph represents average ± stdev (N=5) of LIN52 LIN52-S28A 
band density in control cells without B-Myb overexpression. LIN52 band density was first 
normalized to actin and then plotted relative to 0h (** - p<0.01). In panel C, graph shows 
the average change in LIN52 band density at 3h compared to 0h, in the presence of HA-
B-Myb relative to that in the control cells. Note that LIN52-V5 stability in the presence of 
HA-B-Myb is significantly greater than in cells expressing LIN52-V5 alone (N=3, * - 
p<0.05) whereas LIN52-S28A-V5 is not significantly affected by HA-B-Myb.  
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Regulation of LIN52 stability by B-Myb requires intact S28 residue 

 We then examined the relative effects of B-Myb expression and S28 

phosphorylation on LIN52 protein stability in a series of quantitative CHX assays by 

comparing the effect of B-Myb on wild-type LIN52 and non-phosphorylatable S28A-LIN52 

mutant using established T98G cell lines (90). The S28A mutation abolishes the 

DYRK1A-phosphorylation site essential for DREAM formation without interfering with the 

MMB complex assembly (16). Using CHX assays, we determined that the half-life of wild 

type LIN52-V5 in T98G cells was approximately 3h (Fig. 11A, B). Using MG132 together 

with CHX blocked the degradation of LIN52-V5 in this assay, suggesting that LIN52 

degradation involves the proteasome. As expected, expression of HA-B-Myb in these 

cells resulted in significant stabilization of ectopically expressed LIN52-V5 by 

approximately 40% (Fig. 11A, C). Interestingly, the LIN52-S28A mutant remained 

significantly more abundant at the 3h time point than wild-type LIN52-V5 (Fig. 11B). 

Furthermore, whereas the stability of wild-type LIN52-V5 was significantly impacted by 

the presence of HA-B-Myb, stability of the S28A mutant LIN52 remained unchanged (Fig. 

11A, C). Despite this finding, we noted that there is an apparent persistence of the upper 

LIN52 band over the time course of CHX treatment, suggesting that a subset of 

phosphorylated LIN52 may be protected from degradation. We also monitored levels of 

LIN9, LIN37 and p130 in the same CHX chase experiments, and stability of these proteins 

did not show the same dependency on B-Myb as LIN52 (Fig. 11A). Together, these data 

show that stability of LIN52 is regulated by B-Myb and requires an intact S28 residue.  
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Figure 12. Depletion of B-Myb in T98G cells increases turnover of LIN52 but not the 
S28A-LIN52 mutant. (A) Representative immunoblots show that RNAi knockdown of B-
Myb decreases stability of wild type LIN52, but not LIN52-S28A-V5. T98G cells stably 
expressing LIN52 proteins were transfected with siNT (non-targeting) or B-Myb-specific 
siRNA, and used for CHX chase assays after 36 hours. Note the relative stability of LIN9 
and LIN37 compared with that of LIN52. Asterisk indicates non-specific band.  (B) Graph 
shows average change in LIN52 band density at 3h compared to 0h, in siB-Myb 
transfected cells relative to that in siNT cells. Note that LIN52-V5 stability in the presence 
of siB-Myb is significantly lower than in siNT-transfected cells (N=3, * - p<0.05) whereas 
LIN52-S28A-V5 is not significantly affected  
 

These conclusions were additionally supported when LIN52 stability was analyzed 

under the conditions of B-Myb knock-down. Indeed, LIN52-V5 protein decayed more 

rapidly after CHX treatment in T98G cells with RNAi-mediated B-Myb knock-down 

compared to cells transfected with non-targeting (NT) control siRNA (Fig. 12A, B). Here, 

we again found that B-Myb exhibits no significant effect on LIN52-S28A-V5 protein 

stability. Since B-Myb is still able to bind to LIN52-S28A-V5 (90), these results suggest 

that phosphorylation at the S28 plays a role in regulating LIN52 levels.  
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Figure 13. Phosphorylation of LIN52 by DYRK1A at S28 regulates its stability. (A) 
In vitro kinase assay showing LIN52 phosphorylation at S28 by DYRK1A kinase in control 
T98G cells, but not in the DYRK1A-KO cells. GST-LIN52 was incubated with cell extracts 
in the presence of ATP as indicated. Presence of LIN52 phosphorylation at S28 as well 
as the total GST-LIN52 and DYRK1A, was assessed by WB. Asterisk denotes non-
specific band. (B) WB analysis of the endogenous LIN52 and pS28-LIN52 in control T98G 
cells, DYRK1A knockout (KO) cells, or cells after harmine inhibition of DYRK1A kinase 
activity. (C, D) CHX chase assays show that endogenous LIN52 protein is more stable in 
DYRK1A-KO cells or in harmine-treated cells, as compared to control. (E) RT-qPCR 
analysis reveals a modest increase in LIN52 mRNA expression when DYRK1A is 
inhibited, as compared to control cells. Graph shows average ± stdev (N=3, * and ** 
correspond to p-value <0.05 and <0.01, respectively).  
 

 

B

DC

A

LIN52

DYRK1A

C
o

n
tr

o
l

D
Y

R
K

1
A

-K
O

H
a

rm
in

e

Vinculin

pS28-LIN52

DYRK1A

GST-LIN52

IVK, h

Cell 

extract

LIN52

0

-

+

0

+

+

0.5

+

+

1

+

+

2

+

+

3

+

+

0

-

+

0

+

+

0.5

+

+

1

+

+

2

+

+

3

+

+

0

+

-

*

T98G Control DYRK1A-KO

CHX, h

MG132

0

-

1

-

3

-

3

+

0

-

1

-

3

-

T98G Control DYRK1A-KO

3

+

LIN52

Actin

DYRK1A

CHX, h 0 1 3 0 1

T98G Vehicle Harmine

3

LIN52

Actin

* **

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

L
IN

5
2
 m

R
N

A
 (

R
e

la
ti

v
e
 t

o
 C

o
n

tr
o
l)

3' UTR-1   3' UTR-2

DYRK1A-KO

Harmine

E

GAPDH

pS28-LIN52

pS28/LIN52 1 0.2 0.2



 

 

30 

DYRK1A regulates LIN52 stability 

 Given that LIN52 phosphorylation at S28 is mediated by DYRK1A (90), we wanted 

to determine the role of DYRK1A in regulating LIN52 levels. We used the CRISPR/Cas9 

genome editing approach (98) to generate T98G cells devoid of DYRK1A protein 

(DYRK1A-KO). To validate the specificity of DYRK1A as S28-LIN52 kinase, we 

performed an in vitro kinase assay with extracts from T98G parental and DYRK1A KO 

cells using WB detection of pS28-LIN52 as readout. As shown in Fig. 13A, S28-LIN52 

kinase activity was greatly diminished in T98G DYRK1A KO cells compared to control. 

LIN52 was expressed at higher steady-state levels and appeared in a predominantly un-

phosphorylated form in DYRK1A-KO cells or in T98G cells treated with a DYRK1A kinase 

inhibitor, harmine (99) (Fig. 13B). Phosphospecific WB confirmed a substantial reduction 

in S28-phosphorylated LIN52 with either harmine treatment or DYRK1A KO. The 

remaining pS28-LIN52 in DYRK1A-inhibited cells could be due to phosphorylation by 

alternative LIN52 kinases, such as CDKs (100). Additionally, DYRK1B, a homologue of 

DYRK1A that is less abundant in T98G cells, could partly compensate for the lack of 

DYRK1A in KO cells (15).  

We then performed CHX chase experiments and showed that the stability of 

endogenous LIN52 is enhanced when DYRK1A is absent or inhibited by harmine (Fig. 

13C, D). RT-qPCR analysis revealed a modest increase in LIN52 mRNA expression when 

DYRK1A is knocked out or inhibited (Fig. 13E), suggesting that LIN52 is also regulated 

by DYRK1A at the level of transcription. Taken together, our data demonstrate that LIN52 

is regulated at the protein level, and that DYRK1A-dependent phosphorylation is involved 

in the control of LIN52 stability. 
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Figure 14. Effect of B-Myb on the DREAM complex function in cancer cells. (A) WB 
analysis of the extracts from siRNA-transfected SKOV3 cells shows decreased 
expression of LIN52 in B-Myb-depleted cells compared to control. (B) IP/WB analysis 
shows increased binding of p130 to LIN37 (indicative of DREAM formation) in SKOV3 
cells transfected with B-Myb-specific siRNA compared to control cells. (D) Quantification 
of 14B. Relative abundance of p130 to LIN37 in siB-Myb transfected cells was compared 
to that in the siNT treated control cells (taken as 1). Graph shows average ± stdev of three 
independent experiments (* - p<0.05). (D) RT-qPCR analysis shows decreased 
expression of FOXM1 (DREAM target) and CCNB2 (DREAM and MMB target) genes 
upon B-Myb knockdown in SKOV3 cells. Graph shows average ± stdev of three 
independent experiments (* - p<0.05).  
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Model of B-Myb-mediated DREAM disruption in cancer  

 Finally, we sought to apply our model of B-Myb-mediated DREAM disruption to 

clinically relevant cancer models, such as SKOV3 serous ovarian carcinoma cells known 

to harbor MYBL2 gene amplification (101). As shown in Fig. 14A, B-Myb knock-down 

resulted in downregulation of LIN52, as we observed previously in T98G cells expressing 

LIN52-V5 (Fig. 10B). Asynchronously growing SKOV3 cells contain low steady state 

levels of DREAM, and a robust increase of DREAM formation was detected after RNAi-

mediated knock-down of B-Myb (Fig. 14B, C). RT-qPCR analysis shown in Figure 14D 

confirms the knockdown of MYBL2, as well as a decreased expression of a known MMB-

target gene CCNB2 (43). Importantly, this analysis also revealed decreased expression 

of a representative DREAM-only target gene (FOXM1), in agreement with the observed 

increase of the DREAM formation (Fig. 14C). LIN52 mRNA levels were not significantly 

influenced by depletion of B-Myb, further supporting the conclusion that B-Myb regulates 

LIN52 predominantly at the protein level.  

Overall, our data support a model by which B-Myb accumulation during cell cycle 

progression or due to overexpression in cancer interferes with LIN52 phosphorylation at 

S28 by DYRK1A kinase that is required for the DREAM assembly. This leads to increased 

LIN52 abundance and stability, while also disrupting DREAM assembly, so that more 

MMB complex is formed, ultimately resulting in compromised repression of DREAM-

target genes (Fig. 15).  
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Figure 15. Model of opposing regulation of DREAM by B-Myb and DYRK1A. High 
expression of B-Myb or inhibition of DYRK1A can interfere with DREAM assembly by 
promoting accumulation of unphosphorylated LIN52, resulting in deregulation of cell cycle 
expression in cancer. 
 
Discussion 

 The DREAM and MMB complexes share the common MuvB core and appear to 

assemble in a mutually exclusive manner during mammalian cell cycle progression (2, 

28). Several studies demonstrated that the DREAM and MMB complexes exist during 

different stages of the cell cycle with minimal overlap during the G1-S transition (13, 18, 

20, 90). It was also shown that release of the MuvB core from DREAM requires cyclin-

CDK phosphorylation of DREAM components and that chemical inhibition of either CDK4 

or CDK2 stabilizes the DREAM under the conditions of cell cycle re-entry (16, 17). 

However, since B-Myb was not expressed in CDK-inhibited cells, it was unclear whether 

B-Myb could play an active role in DREAM disassembly.  Here we show that DREAM is 

disrupted in human cells when B-Myb is highly expressed and is able to bind to MuvB 

core. Given our previous observation and studies in Drosophila that both RB-like protein 

and B-Myb can simultaneously associate with MuvB, we do not propose that p130 and 

B-Myb compete for LIN52 binding (12, 16). Alternatively, we suggest that B-Myb promotes 

DREAM disassembly by inhibiting LIN52 phosphorylation. LIN52 is then stabilized for 
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formation of additional MMB complexes that, in turn, are required to facilitate transcription 

of the duplicated genome after DNA replication is complete in late S-G2 phases. In this 

model, CDKs and B-Myb could cooperate to establish a positive feedback loop to disrupt 

the DREAM and relieve the E2F-mediated repression of cell cycle genes.  

We found that levels of LIN52 and LIN9 in the cell are tightly controlled and 

regulated by B-Myb, both directly by transcription of mRNA and, in case of LIN52, also at 

the post-transcriptional level. Regulation of LIN52 by B-Myb is especially interesting given 

its role as the key MuvB component required for assembly of both DREAM and MMB. We 

observe that LIN52 is tightly regulated at the protein level and ectopic LIN52 expression 

results in increased turnover of the protein by both proteasome-dependent and 

independent mechanisms. We have previously demonstrated that the phosphorylated 

S28 residue plays a key role in direct binding of LIN52 to p130, required for DREAM 

assembly (16, 90). Our observation that overexpression of B-Myb in human cells 

promotes accumulation of un-phosphorylated LIN52 could partly explain the increased 

stability of LIN52 protein in the presence of highly expressed B-Myb. In support of this 

mechanism, unlike the wild-type LIN52, changes in B-Myb level do not impact the stability 

of LIN52-S28A. It remains to be established how B-Myb can interfere with LIN52 

phosphorylation and degradation. B-Myb could stabilize LIN52 by regulating expression 

of proteins that degrade or stabilize LIN52, or by recruiting a phosphatase that will remove 

the LIN52 phospho-S28 mark. It is also possible that steric hindrance by B-Myb could 

block DYRK1A’s access to the S28 site in LIN52. In our study, inhibition of S28A LIN52 

phosphorylation consistently resulted in accumulation of total LIN52 protein. However, 

given the continued presence of the slower migrating form of LIN52 in CHX chase assays, 
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phosphorylation state does not completely account for LIN52 protein regulation. 

Therefore, further studies are needed to investigate these mechanisms.   

This study also provides important insights into subunit interactions within the 

MuvB complex. Here, LIN52 appears to have shorter half-life than LIN9 or LIN37, possibly 

because of its special regulatory role. Indeed, LIN52 is required for both DREAM and 

MMB formation and makes direct contact with both p130/p107 and B-Myb (16, 96). 

Therefore, changes in LIN52 levels will influence the overall functional integrity of MuvB 

core. This is supported by diminished co-immunoprecipitation of MuvB complex 

components when LIN52 is depleted by shRNA (90). However, other studies have shown 

that LIN37 and LIN54 are also downregulated when LIN9 is depleted, suggesting a 

possibility that some of MuvB subunits need to co-fold together during translation (14). A 

recent study found that in LIN37 knockout cells, the remaining MuvB subunits were 

normally expressed and formed a complex capable of binding to either p130, or B-Myb, 

and while the MMB function remained intact, the DREAM repressor function was 

compromised (32). It is also intriguing to note that B-Myb was unable to contact the 

CCNB1 promoter or disrupt DREAM assembly independent of MuvB binding. This 

supports the importance of B-Myb’s regulation of MuvB (particularly LIN52) for its impact 

on cell cycle gene expression. Together, these findings suggest that the abundance of 

MuvB core could be important for its biological functions, for example to ensure the 

specificity of binding to the promoter sites, and needs to be tightly regulated. In the future, 

it will be interesting to investigate the consequences of failure to maintain the proper levels 

of MuvB core subunits in the cell as well as the independent function of MuvB, which 

remains largely unknown. 
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 B-Myb is overexpressed in many types of cancer and is recognized as a poor 

prognostic factor, but the known role of B-Myb as a transcription factor required for mitotic 

progression does not fully explain its established association with a more aggressive 

cancer phenotype. Our finding that B-Myb disrupts the DREAM complex in cells could 

explain why high expression of B-Myb leads to cell cycle deregulation in human cancers. 

Since MYBL2 itself is a DREAM target gene, this might create a positive feedback loop 

in which increased B-Myb expression perpetuates DREAM disruption and further loss of 

transcriptional regulation. Several of the MMB downstream targets upregulated in late S-

G2 phases of the cell cycle, such as Aurora kinase A, Polo-like kinase B and others have 

been proposed for developing anti-cancer therapies (3). Better understanding of the 

mechanisms that bring about high expression of these genes in cancer will be important 

to inform the future pre-clinical and clinical studies and to optimize patient stratification. 

Overall, we have shown a novel model describing some of the molecular processes 

underlying deregulated cell cycle gene expression in cancers with B-Myb amplification or 

overexpression. These findings argue that B-Myb is not only a negative prognostic factor 

through increased MMB formation and activation of the mitotic gene expression program, 

but also through decreased DREAM assembly and loss of repression of more than 800 

cell cycle-regulated genes. Further studies with tumor samples are needed to validate our 

model in patients and evaluate methods of targeting B-Myb to restore cell cycle control.  
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Chapter 3: Clinical pathologic expression of cell cycle regulatory complexes in 
high grade serous ovarian carcinoma. 

 
 

Introduction 
 

Cell cycle regulation is a key factor influencing treatment response and outcomes 

of HGSOC patients. The DREAM complex has been shown to mediate recurrence by 

maintaining cells in a dormant state and, in turn, treatment resistance (69). One of the 

main determinants of progression free survival in HGSOC patients is response to therapy 

(66). However, survival rates do not directly relate to therapeutic response. Low grade 

lesions are generally associated with longer progression free survival than high grade 

lesions, but also are known to exhibit more chemoresistance. The proposed explanation 

for this observation is that the slower proliferation rate of low grade carcinomas limits the 

opportunity for platinum intercalation induced DNA damage, yet the less aggressive 

nature of these lesions is generally equated with longer progression free survival (102).  

Additionally, HGSOC patients could benefit from development of a predictive 

biomarker—an indicator of treatment response. Current standard of care for HGSOC 

patients involves aggressive surgery and subsequent chemotherapy (platinum-taxane). 

About 25% of patients have platinum-resistant disease that recurs within 6 months of 

finishing chemotherapy (103). A predictive biomarker would allow physicians to tailor 

therapies to either reduce toxicity for patients with platinum-sensitive disease or inform 

the use of alternative or more aggressive treatment of predicted platinum resistant 

disease. Currently, no such widely-accepted biomarkers exist (104). Given that B-Myb 

expression levels are often increased in HGSOC, and its prominent cell cycle effects, it 
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is worthwhile to investigate B-Myb's potential as a predictive marker. Also, since the 

DREAM complex has been tied to cellular dormancy and resistance to platinum-based 

chemotherapy, then perhaps B-Myb levels influence treatment response through DREAM 

disruption and increased MMB formation (Fig. 16).  

 
Figure 16. Working model of B-Myb-driven cell cycle deregulation and cellular 
proliferation. B-Myb is highly expressed in HGSOC and sequesters MuvB, leading to 
increased MMB formation and disrupted DREAM assembly. In turn, expression of both 
DREAM and MMB target genes are increased. Compromised cell cycle gene regulation 
leads to increased cell proliferation and worse patient outcomes. 
 

Modeling B-Myb-mediated DREAM disruption with The Cancer Genome Atlas  

To further investigate the functional relationship between B-Myb level and 

regulation of cell cycle dependent transcription, we analyzed gene expression data from 

The Cancer Genome Atlas (TCGA). We first looked at the MYBL2 gene expression 

across all cancers and the corresponding normal tissue samples, when available. As 

previously reported, the MYBL2 gene was overexpressed in multiple cancer types (Fig. 

17A).  For further analysis of transcriptome changes associated with high MYBL2 
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expression, we chose to focus on high grade serous ovarian carcinoma (HGSOC), since 

MYBL2 gene copy number gain is present in 55% of the TCGA HGSOC samples and 

associated with a poor prognosis (Fig. 17B) (23). Similar analyses were conducted in 

parallel for breast cancer, for which the significance of B-Myb overexpression is well-

documented (5, 59, 105, 106). We first validated that MYBL2 genomic amplification 

correlated with increased B-Myb mRNA expression (Fig. 18A) as well as with significant 

up-regulation of cell cycle regulated genes (Fig. 18B, C) then proceeded to characterize 

the most differentially expressed genes between tumor samples with high and low MYBL2 

expression levels.  

 

Figure 17. B-Myb is highly expressed in many cancers and is associated with poor 
overall survival in HGSOC. (A) Analysis of MYBL2 (encoding B-Myb) expression across 
all cancers shows widespread upregulation. (B) Kaplan-Meier survival analysis from 
HGSOC TCGA data set. 
 

As expected, we found that most differentially expressed genes in both cancer 

types were highly enriched in functional gene ontology categories representing cell cycle 

processes. Furthermore, both MMB and DREAM target genes were overrepresented 

among the most differentially expressed genes in the high-MYBL2 samples (Fig. 19A, 
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B), and high B-Myb levels were associated with increased MMB and DREAM target gene 

expression. Remarkably, the top 50 upregulated genes associated with high MYBL2 in 

breast cancer analysis, and top 49 genes in HGSOC, have been previously annotated as 

DREAM target genes identified in global location studies (Fig. 20A, B) (13, 43). Since 

MMB does not regulate some of these genes directly, this finding supports the model 

whereby B-Myb-mediated DREAM disruption plays a role in deregulation of cell cycle 

gene expression program in cancers with high B-Myb expression. 

 

 

Figure 18. MYBL2 gain or amplification impacts cell cycle processes. (A) Correlation 
between the copy number gains of MYBL2 (B-Myb) and its high expression in breast and 
ovarian cancers. Table shows resulting p-values from the indicated pair-wise comparison 
t-tests. (B) Gene Ontology analysis of the genes significantly upregulated in breast cancer 
samples with MYBL2 (B-Myb) amplification shows enrichment of cell cycle-related 
categories. Ten most significantly enriched Biological Process (BP) categories are shown. 
Genes significantly up-regulated in TCGA breast invasive carcinoma samples (107) with 
amplification of MYBL2 gene (25% of total tumors) were downloaded from cBioportal.org 
(N=243),  and filtered to remove genes located on 20q as possibly co-amplified with 
MYBL2. The remaining 171 genes were then analyzed using MSigDB gene ontology 
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annotation software to identify significantly enriched biological process categories (108, 
109). (C) Same analysis as 18B except with TCGA HGSOC samples (23). MYBL2 gene 
was underwent gains or amplifications in 55% of all tumors. Of the initial data from 
cBioportal.org (N=1106), the remaining 916 genes (after correcting for potential q20 co-
amplification) were then analyzed (108, 109).  
 
 

 

Figure 19. Differential gene expression analysis in the presence of high or low B-
Myb. (A, B) Heatmaps of functional enrichment results of MYBL2 up and downregulated 
gene sets overlapping DREAM or MMB target genes in breast (A) and ovarian (B) 
cancers. The gray, yellow and red gradient indicates non-significant, less significant and 
more significant enrichment of functional terms of the corresponding gene sets, 
respectively. In both cancers, DREAM target genes were significantly upregulated when 
MYBL2 expression is high, are significantly enriched in cell cycle and DNA replication-
related processes. Note that the MMB-target genes show less significant enrichment in 
those processes. The down-regulated DREAM- and MMB-target genes do not show 
significant functional enrichment. 
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Figure 20. DREAM and MMB targets are represented among the top 50 most 
differentially expressed genes in the presence of high or low B-Myb.  (A, B) DREAM 
and MMB target genes are significantly upregulated in breast and ovarian cancers with 
high B-Myb expression (Fisher’s exact test p-values 1.2-102 and 0.0065, respectively). Top 
50 up-regulated genes in TCGA gene expression dataset of breast and ovarian cancer 
tumors with high expression of B-Myb are shown (χ2 with Yates correction p<0.001). 
Genes were annotated as DREAM or MMB targets using http://www.targetgenereg.org 
(43). 
 
Characterization of HGSOC clinical specimens 

We have shown that high B-Myb expression disrupts DREAM formation in human 

cell lines, resulting in increased proliferation. Additionally, our analysis of TCGA data 

supported our cellular model and showed that MYBL2 undergoes gene copy number gain 
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in the majority of HGSOC tumor samples. We next sought to validate these findings with 

clinical specimens and to investigate the role of DREAM- and MMB-regulated gene 

expression in HGSOC patient outcomes. To this end, we assessed MYBL2 and DREAM 

target gene expression by RT-qPCR, relating them to each other as well as 

clinicopathologic measures.  

 

Figure 21. Characterization of HGSOC tumor samples. (A) Clinicopathologic 
characteristics of HGSOC lesions. (B) RT-qPCR gene expression analysis for MYBL2. 
Data are normalized to 18S ribosomal RNA as a housekeeping gene control. The red box 
outlines sections of normal-like tissue. 
  

This retrospective investigation utilized tissue bank surgical pathology and 

cytology samples taken from 57 HGSOC lesions collected between November, 2000 and 

April, 2017. Only samples for which there were available matched clinical data were 

analyzed (N=52). Demographic information, follow-up, treatment, and outcomes data 

were obtained by chart review by an investigator blinded to the primary research question 

and laboratory findings (Fig. 21A). Samples from patients lost to clinical follow up were 

also excluded. Our HGSOC patient population, though relatively small, is clinically 

representative of the national population with stage of diagnosis (86% stages 3 and 4 

versus 85% nationally) and percent recurrence (79% versus 80-85% nationally for stages 
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3 and 4) (23). Whereas 8% of our study population possessed BRCA1/2 mutations, rates 

of approximately 13% have been reported in other studies (110). Finally, our population 

was, on average, slightly younger than the national average (58 years versus 63 

nationally) (66). We also characterized the relative degree of MYBL2 expression across 

our study population. TCGA analysis showed genetic alterations resulting in aberrantly 

high expression of MYBL2 in approximately 55% of HGSOC cases. In our study 

population, 51% of samples had MYBL2 expression levels greater than that of two 

adjacent normal-like tissue samples (Fig. 21B).  

Testing the B-Myb-mediated DREAM disruption model using gene expression 

analysis 

After assessing the representativeness of our study population, we proceeded to 

test our working model of DREAM disruption by high B-Myb level using RT-qPCR analysis 

of HGSOC lesions. We used expression levels of DREAM-and MMB-controlled genes as 

a functional readout for the status of these opposing transcriptional regulators. MYBL2 

and DREAM target gene expression were measured and correlated. Target genes of 

interest were selected based on criteria of high differential gene expression (Fig. 20B), 

established cell cycle role, and clinical interest (Fig. 22A, B). After selection, all primers 

for these genes were validated before proceeding with RT-qPCR. A panel of 

housekeeping control genes (18S, actin, GAPDH) were tested to determine which yields 

the most consistent results across tumor samples (111). This lead us to proceed with 18S 

ribosomal RNA as our housekeeping control. Additionally, since two independent sets of 

RNA were prepared per sample and multiple reactions were run for comparison, MYBL2 
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expression was used as an internal control. MYBL2 expression was compared across 

batches of RNA to ensure consistent results across reactions (Fig. 22C).  

Of the selected genes, FOXM1 is of particular interest due to its reported robust 

upregulation and prognostic role in HGSOC (23, 112-114). RT-qPCR analysis of DREAM 

target genes (AURKA, KIF23, CCNB2, LIN9, E2F1, and FOXM1) revealed positive and 

significant correlations between MYBL2 and all genes tested, with the exception of LIN9: 

LIN9 (ρ=0.2599, p=0.0553), AURKA (ρ=0.4114, p<0.01), KIF23 (ρ=0.4953, p<0.001), 

CCNB2 (ρ=0.3278, p<0.05), E2F1 (ρ=0.3926, p<0.01) and FOXM1 (ρ=0.5033, p<0.001) 

(Fig. 23). Corresponding analyses of TCGA data produced similar results (Fig. 24). 

However, whereas LIN9 and MYBL2 expression were not correlative in our patient 

samples, LIN9 did significantly correlate with MYBL2 expression in the TCGA data. 

Additionally, all genes tested were upregulated in HGSOC TCGA data. Collectively, these 

data support our model, as evidenced by derepression of DREAM target genes and high 

expression of MMB target genes positively correlating with MYBL2 expression. Our data 

corroborate previous TCGA analyses and suggest a possible MYBL2 amplification gene 
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expression signature characterized by derepression of DREAM target promoters.

 

Figure. 22 RT-qPCR methods for measuring DREAM status. (A) Workflow for 
establishment of DREAM target gene RT-qPCR assay in HGSOC tumor samples. (B) 
Selected genes of interest and their corresponding transcriptional regulators. (C) 
Comparison in gene expression of MYBL2 (relative to 18S) across two independent 
batches of eight RNA samples from the same tumors.  
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Figure 23. MYBL2 expression correlates with DREAM and MMB target gene 
expression. (A-F) RT-qPCR analysis of human ovarian tumor surgical sections (N=54). 
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Expression of DREAM target genes is shown relative to that of MYBL2. Spearmann Rank 
Correlations were used for analysis. 
 

 
 

Gene of interest v. 
MYBL2 expression 

Pearson correlation 
coefficient 

p-value 

FOXM1 0.58464 2.5929E-58 
AURKA 0.655 2.0862E-59 

KIF23 0.541 9.193E-46 
CCNB2 0.553 1.6334E-49 
E2F1 0.571 4.0019E-53 
LIN9 0.263 2.8341E-09 

 
Figure 24. MYBL2 expression correlates with DREAM and MMB target gene 
expression in the TCGA data set. (A-F) HGSOC TCGA gene expression data relating 
MYBL2 expression to DREAM target genes of interest. Table shows results of Pearson 
correlations analysis.  
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To assess the clinical relevance of our RT-qPCR data, we next determined the 

relationship between gene expression and clinical classifications in the TCGA data set. 

The Cancer Genome Atlas Research Network reported four transcriptional subtypes of 

ovarian cancer based on mRNA expression patterns: immunoreactive, differentiated, 

proliferative, and mesenchymal (23). Recent studies have assigned histological 

classifications to these transcriptional profiles and are characterizing them clinically (115). 

We therefore began by evaluating the expression of our genes of interest across the four 

subtypes. 

Intriguingly, all genes (with the exception of AURKA) were highly expressed in the 

proliferative subtype and more significantly expressed as compared with the 

mesenchymal subtype (Fig. 25). Though the Cancer Genome Atlas Research Network 

reported no significant differences in survival between the various subtypes, more studies 

are emerging to suggest the subtypes are prognostic indicators (23, 115). In a study of 

312 HGSOC cases, OS was reportedly worst in the mesenchymal subtype (115). Another 

study found clinically significant benefits of PFS proliferative and mesenchymal subtypes 

in response to anti-VEGF therapy with bevacizumab, suggesting that these subtypes may 

also be utilized to guide personalized treatments (116). Therefore, we proceeded to 

evaluate the impact of our genes of interest on survival by ovarian cancer subtype.  
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Figure 25. Expression of genes of interest by transcriptional subtype. (A-G) All 
genes of interest, aside from AURKA, are significantly highly expressed in the proliferative 
subtype as compared with the mesenchymal subtype of HGSOC (ANOVA with Tukey-
HSD post-test, p<0.01).  
 

Using Kaplan-Meier survival analysis and log rank tests, we found that high 

expression of FOXM1 was associated with significantly decreased overall survival in the 

proliferative subtype (Fig. 26A) and the ovarian cancer data set collectively (HR 1.44; 
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95% CI, 1.04–1.99; p=0.027). This is in line with previous reports (23, 112, 114). High 

MYBL2 expression was associated with decreased survival in the proliferative subtype as 

well, though not reaching significance (Fig. 26B). Like FOXM1, MYBL2 expression was 

also indicative of a poor prognosis in the collective ovarian cancer data set, as shown 

previously in Fig. 17B. High CCNB2 and low LIN9 expression also significantly correlated 

with worse OS in ovarian cancer (HR 1.45; 95% CI, 1.05–2.01, p=0.023 and HR 0.7; 95% 

CI, 0.52–0.95, p=0.0019, respectively), but did not achieve significance in any of the four 

subtypes. KIF23 and E2F1 had no significant impact on OS in HGSOC cancer overall or 

any of the subtypes.  

 

 
Figure 26. Effect of FOXM1 and MYBL2 expression on survival in the proliferative 
subtype of HGSOC. (A, B) High FOXM1 (26A) or MYBL2 (26B) expression significantly 
associates with decreased overall survival in HGSOC patients with the proliferative 
disease subtype. Data show Kaplan-Meier curves and Cox proportional hazard model.  
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Together, the data suggest that MYBL2, FOXM1, and CCNB2 are indicative of a poor 

prognosis in ovarian cancer and may be especially relevant in the proliferative subtype of 

ovarian cancer.  

 Given our finding that many of the DREAM target genes are derepressed in the 

presence of high B-Myb and expression of these genes, in turn, is high in the proliferative 

subtype, we next explored the importance of B-Myb expression in the proliferative 

subtype. Using the TCGA HGSOC data set, we assessed the relationship between 

MYBL2 expression and expression of the proliferative subtype markers, MCM2 and 

PCNA. The correlations were positive and significant in both cases, suggesting that high 

B-Myb expression may be a contributor to the proliferative phenotype (Fig. 27). 

Additionally, both PCNA and MCM2 are DREAM target genes. Overall, these results 

imply a mechanism by which high B-Myb expression drives DREAM disruption and, 

ultimately, cellular proliferation in this subtype of HGSOC.  
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Figure 27. MYBL2 expression correlates with MCM2 and PCNA expression in 
HGSOC proliferative subtype TCGA data. (A, B) mRNA expression of HGSOC 
proliferative subtype markers significantly correlate with that of MYBL2. Pearson 
correlation analysis yielded ρ= 0.31356, p= 1.1902e-23 and ρ= 0.30555, p= 1.4144e-22 
for MCM2 and PCNA, respectively. 
 
Discussion 

We have shown that increased expression of selected cell cycle genes correlates 

to increased formation of MMB, and reduced DREAM assembly in HGSOC tissue. High 

expression of MYBL2 is also associated with deregulated cell cycle gene expression 

programs in HGSOC, suggesting that it may play an important role in the pathogenesis 

and clinical outcomes of patients. Larger scale studies would clarify the clinical prognostic 

value of the DREAM- and MMB-regulated gene expression. Additionally, it would be 

valuable to compare gene expression between HGSOC tumors and healthy control 
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fallopian tube cells. This would aid in better defining the “cutoff” point for “high” gene 

expression (111). 

We found that MYBL2, CCNB2, FOXM1, LIN9, KIF23, and E2F1 are all 

upregulated in the proliferative subtype (Fig. 25). The proliferative subtype is genetically 

defined by high expression of proliferation markers, MCM2 and PCNA (23). Interestingly, 

both of these markers are DREAM target genes and significantly correlate with MYBL2 

expression (43). Their high expression, and co-expression with other DREAM targets 

(MYBL2, CCNB2, and FOXM1), is consistent with a phenotype of DREAM disruption. 

Additionally, another DREAM target, p15PAF (KIAA0101), was shown to be highly 

expressed in several cancers and a is possible contributor to a poor prognosis (117). This 

PCNA (proliferating cell nuclear antigen)-associated factor competes with p21-PCNA 

binding. PCNA is an important for successful DNA replication and repair. p21 functions 

to inhibit cell proliferation by binding to PCNA and disrupting replication machinery. Since 

p15PAF competes with p21 for PCNA binding, high p15PAF expression in cancer could be 

advantageous for tumor cell proliferation. However, co-transfection of p15PAF and p21 in 

Saos-2 and 293 cells did not significantly impact p21-mediated cell cycle arrest (117). On 

the contrary, knockdown of p15PAF in HeLa cells inhibited cell cycle progression and loss 

of Rb/E2F control lead to increased p15PAF expression, which contributed to S-phase 

progression (118). 

Therefore, p15PAF could play a role in promoting cell cycle progression by its role 

in p21 inhibition. Additionally, one study recently identified p15PAF as a transcriptional 

target for FoxM1 in HGSOC (114). However, the specific regulation of p15PAF remains 

unclear, as it is not annotated as a FoxM1-MuvB target in another database (43). 
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Together, these points propose that the proliferative subtype might be the subtype with 

the most prominent DREAM disruption and, in turn, several mechanisms for perpetuating 

cellular proliferation (Fig. 28). It would be clinically valuable to further describe treatment 

responses in this subtype, especially since the DREAM complex has been implicated in 

recurrence (69).  

 

Figure 28. Possible positive feedback loops driven by DREAM disruption in the 
proliferative subtype of HGSOC. High B-Myb expression disrupts DREAM complex 
assembly which leads to increased expression of proliferative subtype markers, PCNA 
and MCM2 (purple parallelograms). MYBL2 expression is also increased, creating a 
positive feedback loop for further DREAM disruption. E2F1, another DREAM target, also 
contributes to FOXM1 expression. High FOXM1 expression may, in turn, increase p15PAF 

expression to alleviate inhibition of PCNA by p21. 
 

Our findings overall suggest potential therapeutic angles for restoring cell cycle 

control in HGSOC. Though DREAM is implicated in harboring disease recurrence (69), 

inhibition of B-Myb and, in turn, restoration of DREAM assembly may be an appropriate 

tactic for the proliferative subtype of HGSOC as well as in cases of FOXM1 (12% of 

cases) or MYBL2 (55% of cases) genetic amplification (112). DREAM formation may curb 

the pathogenic mechanisms exacted by FoxM1, which is overexpressed in 84% of 
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HGSOC cases and was shown to be activated by E2F1 (23, 112). This strategy might 

have secondary effects of repressing DNA damage repair genes, sensitizing cells to 

PARP inhibitors, (119) and enhancing responses to paclitaxel and cisplatinum in 

platinum-resistant disease (120). DREAM repression of E2F1 might also reign in FoxM1 

(112). Altogether, we propose a mechanism by which high MYBL2 expression leads to 

DREAM disruption and worse outcomes of HGSOC patients. Targeting and inhibiting B-

Myb may be a viable treatment option for certain patients.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 



 

 

57 

 
 

Chapter 4: Perspectives and future directions 
 

 
MuvB regulation 
 

One remaining question from our work is the significance of alterations in LIN52 

stability. We now understand that the half-life of LIN52 is much shorter than its MuvB 

counterparts, LIN9 and LIN37, and its phosphorylation at S28 influences its stability. It 

follows then that LIN52 perhaps plays an important role in stabilizing MuvB as a whole 

and, perhaps, p130 binding salvages MuvB from degradation. However, it is puzzling to 

rationalize that the same phosphorylation event that is essential for DREAM assembly 

also leads to decreased stability of a protein essential for DREAM formation. Our findings 

are also confounded by the fact that inhibition of S28 phosphorylation (whether by 

DYRK1A knock-down or S28A mutation) not only stabilizes LIN52, but also disrupts 

DREAM. It would be interesting to measure LIN52 stability in the presence of DREAM 

disruption by other means, such as with viral oncoproteins, to distinguish between the 

effects of phosphorylation and DREAM inhibition on LIN52 levels.  

We have shown that B-Myb must contact the MuvB core in order to disrupt DREAM 

and it must be expressed at high levels to disrupt DREAM assembly. However, we did 

not explore the importance of B-Myb activity on DREAM formation. It would be interesting 

to determine the effect of C-terminal truncated of B-Myb on DREAM formation. The 

negative regulatory domain of this protein is deleted; therefore, B-Myb transcriptional 

activity is functionally amplified, but not at the genetic or protein levels. Perhaps it would 

have implications for HGSOC as well (121).  
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Strategic modulation of cell cycle gene expression in high grade serous ovarian 
carcinoma  

 
To place our studies into the context of the current clinical state of HGSOC 

treatment, we review the progress made toward new HGSOC therapies and propose 

novel mechanisms for taking advantage of the cancer cellular response to chemotherapy 

for maximal treatment benefit. Since chemotherapy induces gene expression changes 

and causes molecular derangement over time, we focus our discussion on cell cycle and 

DNA damage response gene transcriptional regulators: DREAM (DP, RB, E2F1, and 

MuvB), MMB (B-Myb-MuvB), and FOXM1-MuvB (122).  

Cell cycle regulation by MuvB-containing complexes 
 

In healthy cells, the cell cycle is a well-coordinated sequential set of signaling 

events that involves two waves of gene expression: “early genes” in G1/S phases and 

“late genes” in G2/M (2). The DREAM complex is responsible for global repression of 

both early and late cell cycle genes in quiescence (G0/G1). It is formed when CDK4/6 

activity is low and DYRK1A kinase phosphorylates LIN52 protein. This phosphorylation 

event brings together the binding of RB-like protein, p130, to a 5-protein complex, MuvB 

(containing LIN52, LIN9, LIN37, LIN54, and RBBP4) (13). Upon cell cycle re-entry, 

DREAM dissociates in a cyclin D-CDK4/6-dependent manner (90). MuvB then binds to 

B-Myb in the S phase to initiate the expression of late cell cycle genes. Maximal late cell 

cycle gene expression occurs when B-Myb recruits FoxM1 to MuvB (forming FoxM1-

MuvB complex) in the G2/M phases (20). Therefore, by forming three distinct 

transcriptional regulatory protein complexes, MuvB ensures proper expression of cell 

cycle genes throughout all phases of the cycle (123).  
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Interestingly, several components of these regulatory complexes have been 

associated with HGSOC disease processes. DREAM has been implicated in HGSOC 

spheroid formation and treatment resistance in human cancer cells derived from ascitic 

fluid (69). B-Myb, member of the MMB complex, is often genetically amplified in HGSOC 

and was recently shown to disrupt DREAM complex assembly (124). Several studies 

have investigated the role of FoxM1 in HGSOC, especially since it was identified as the 

driver of the most commonly active HGSOC signaling pathway in analysis of The Cancer 

Genome Atlas (23). All of these complexes share the MuvB subunit in common. 

Additionally, they are all connected through their regulation of each other, either by 

controlling gene expression of complex components, or by influencing cell cycle-

dependent processes. Therefore, understanding how MuvB-containing complexes are 

involved in response to chemotherapy could provide new avenues for treatment in 

HGSOC (Fig. 29). 
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DREAM 
complex 

• Represses expression of early and late cell cycle genes 

• Formed in G0/G1 and at the G1 DNA damage checkpoint (through 
the p53-p21-CHR pathway) (57) 

• Associated with spheroid formation, dormancy, and drug resistance 
(69) 

DNA 
damage 

• Homologous repair (HR) is an efficient process of DNA repair that, 
when performed successfully, contributes to cell survival. 

• HR can only occur in G2/M phases after DNA is replicated. 

• Error-prone non-homologous end joining (NHEJ) is a mechanism of 
DNA repair utilized in cell cycle phases in which DNA is not yet 
replicated. 

• HR-deficient HGSOC are associated with treatment sensitivity 
(especially to poly ADP-ribose polymerase, PARP, inhibitors) and 
better clinical outcomes because the inability to use HR leads to 
replication stress and cell death. 

• HR deficiency commonly occurs in the form of BRCA1/2 gene 
mutation or decreased expression. Resistance can occur through 
reversion mutations that restore functional BRCA1/2 proteins. 

• HGSOC is p53 deficient meaning that these cells are reliant on the 
G2/M checkpoint in response to DNA damage. 

• DREAM regulates expression of several genes in the DNA damage 
repair pathway. 

MMB 
complex 

• Formed in the S phase for recruitment FoxM1 to MuvB and activation 
of late cell cycle genes 

• Associated with proliferation and mitotic progression 

• Formed by B-Myb binding to MuvB: B-Myb is highly expressed in 
HGSOC and associated with a poor prognosis (23) 

• B-Myb expression is required for recovery from the G2/M DNA 
damage checkpoint (48). 

Therapeutic 
goals 

Concept Therapeutic window 

• Push cells into a state of 
replicative 
stress/mitotic crisis by 
damaging DNA and 
preventing its repair, 
leading to cell death 

• Permanently halt cell 
cycle progression, 
leading to senescence 

• HGSOC is often HR deficient whereas 
non-cancer cells are not. 

• Cancer cell proliferation is greater than 
normal cell proliferation. 

• Examples of cancer cell characteristics 
that open therapeutic windows: 
BRCA1/2 mutantations, DREAM 
deficiency (DYRK1A loss, B-Myb 
amplification) 

Figure 29. DREAM and MMB complex involvement in HGSOC treatment response. 
Modulation of DREAM and MMB formation could alter cell cycle-dependent expression 
of DNA damage response gene programs as well as cell cycle progression overall. 
Pharmacologic control of DREAM or MMB could be potentially harnessed for treating 
HGSOC.    
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DNA damage and repair 

Most chemotherapeutic agents used for treating HGSOC work by inducing DNA 

damage. Since HGSOC cells are often more proliferative than normal cells and exhibit 

defects in DNA repair pathways (such as BRCA1/2 mutations), chemotherapy 

preferentially impacts the cancer cells over normal cells. Over time, the damage will 

accumulate to eventually result in cell death (23). Chemotherapeutic induction of DNA 

double strand breaks (DSBs) induces G1 cellular arrest through the ATM-CHK2 pathway 

involving p53. CHK2 inhibits cell division cycle 25 (CDC25A) phosphatase that alleviates 

the inhibitory phosphorylation of cyclin A-CDK2 and cyclin E-CDK2 complexes, blocking 

progression into the S phase (125). The ATR-CHK1 pathway is responsible for S and G2 

arrest. ATR phosphorylates and activates CHK1 which goes on to activate Wee1 and 

inhibit CDC25A/C phosphatases. This overall leads to inhibited cell cycle progression 

through inactivation of cyclin dependent kinases, allowing time for proper DNA repair 

(126, 127). Importantly, the BRCA proteins (1 and 2), downstream mediators of these 

pathways, are essential for the process of homologous repair, and are often non-

functional in HGSOC patients (23). This opens up another therapeutic window by using 

treatments that force cells into the error-prone non-homologous end joining (NHEJ) repair 

pathway leading to further DNA damage and cell death. Additionally, the DREAM complex 

is known to repress several genes encoding the DNA damage response and repair 

proteins: CHK1, CHK2, BRCA1, BRCA2, RAD51, WEE1, and CDC25A/C (43). The 

DREAM complex also assembles in a p53-p21-depdendent manner for repression of late 

cell cycle genes, halting progression through mitosis (57). Therefore, the status of 
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DREAM complex assembly could be significant in determining cancer cell response to 

chemotherapy. 

 
 

Figure 30. Checkpoint and MMB inhibitors in HGSOC treatment. Prexasertib is an 
ATP-competitive small molecule inhibitor of CHK1 and CHK2, blocking the G2 checkpoint 
and preventing cell cycle arrest in response to DNA damage. MK-1775 is a Wee1 small-
molecule inhibitor that targets the CHK1-mediated pathway. Checkpoint inhibition might 
be more effective in cells with high cyclin E expression, driven by genetic amplification or 
DREAM disruption. Both checkpoint inhibitors are in clinical trials (phases II and I, 
respectively). B-Myb inhibition could compromise recovery from the G2 checkpoint and 
expression of late cell cycle genes, especially in patients harboring MYBL2 amplification.  

 
Checkpoint inhibitors 

Since HGSOC is p53 null, G1 checkpoint regulation is lost, making the S and G2 

checkpoints critical for preventing DNA damage-associated cell death. The synthetic 

ATR

E2F1

MYBL2

PCNA

p15-PAF

MMB

DREAM

G1

S

G2

M

KEY

↓in HGSOC *

↑in HGSOC underlined

p21

Cyclin B/CDK1

CDC25A/C

Cyclin E/
CDK2p53*

Cyclin A/CDK2

ATM
DNA 

Damage

X

X

X
MK-1775 

WEE1 BRCA1*

BRCA2*

RAD51

CHEK1

CHEK2

X Prexasertib



 

 

63 

lethality associated with TP53 inactivation and checkpoint inhibition is well described 

(127). Inactivating the ATR–Chk1–Wee1 pathway is therefore a possible mechanism to 

by-pass the DNA-damage–induced G2 checkpoint arrest and lead to mitotic catastrophe 

and cell death (127). Two such clinical drugs include prexasertib and MK-1775. 

Prexasertib (LY2606368) is an ATP-competitive small-molecule inhibitor of Chk1 and 

Chk2 (128, 129). A phase II study of 28 patients found that prexasertib was clinically 

active in HGSOC patients with wild-type BRCA1/2. Of the 19 patients with platinum-

refractory disease, 11 (58%) derived a clinical benefit from prexasertib treatment (129). 

MK-1775 is a Wee1 small-molecule inhibitor in phase I clinical studies. By abolishing the 

G2/M checkpoint, Wee1 inhibition enables cells to inappropriately enter mitosis, acquire 

further damage culminating in cell death. In a trial of 25 patients, two harboring BRCA1/2 

mutations (one with head and neck cancer and one with ovarian cancer) had partial 

responses to treatment with MK-1775 (125). 

The positive outcomes of these early phase trials are reinforced mechanistically. 

Independent of treatment duration, p53-null cells arrest in G2, but ultimately adapt for 

mitotic progression. However, they fail to complete cytokinesis, become multinucleated, 

and undergo apoptosis. On the other hand, wild-type p53 cells reversibly arrest and repair 

the damage. This poses a good therapeutic window between HGSOC cells and normal 

cells. It also means that the p53 mutant status of HGSOC can be leveraged for treatment-

induced cell death while minimizing the likelihood of toxicity (130).  

Another point of consideration is cyclin E1 status. CCNE1, a DREAM target gene, 

is genetically amplified in approximately 20% of HGSOC cases and is associated with 

chemotherapy resistance and homologous recombination proficiency (127, 131). 
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However, cyclin E1 activates CDK2 and high expression of CCNE1 leads to DNA 

damage, replication stress, and perhaps increased sensitivity to Chk1 (inhibits CDK2 to 

halt origins of replication) inhibition (127). Amplification of cyclin E could therefore make 

HGSOC tumors more susceptible for cell cycle checkpoint inhibition (131). In line with this 

rationale, of those with tumors over-expressing CCNE1, two thirds experienced benefits 

from prexasertib treatment (129). 

 
MMB inhibitors 
 

Recovery of p53 wild-type cells from reversible G1 or G2 cell cycle arrest involves 

p53-independent (Chk1 pathway) and dependent pathways as well as downregulation of 

DREAM cell cycle homology region (CHR)-containing targets, CDC5C and CCNB1. This 

argues that DREAM is involved in the DNA damage recovery process in some cancers 

through the p53-p21-CHR pathway. DREAM involvement is further supported by 

evidence of cells lacking p53 failing to downregulate target genes required for progression 

into mitosis. In p53 mutant cells, p130 does not replace B-Myb binding to MuvB. This 

leads to paradoxically increased G2/M gene expression following DNA damage. In p53 

null cells, G2/M genes were more highly expressed compared with cells harboring wild-

type p53. Interestingly, expression of PCNA, an “early” DREAM target gene, did not differ 

between p53 wild-type and mutant cells in response to DNA damage (48). Another “early” 

DREAM target gene dihydrofolate reductase (DHFR), expressed in G1/S, was also not 

strongly correlated with B-Myb expression or p53 status (48). These findings raise the 

question as to whether or not DREAM is still being assembled through a p53-p21-CHR-

independent mechanism in response to DNA damage (57). Evidence also suggests 

DREAM formation is a part of G2/M arrest in response to DNA damage by mechanisms 
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independent of p53. A DNA sequencing study of 20 HGSOC cases (p53 deficient) 

analyzed before and after neoadjuvant chemotherapy revealed 86 genes that had 

significant changes in expression after treatment. These 86 genes represented signaling 

pathways involved in cell cycle regulation and DNA damage. Notably, expression of 

E2F1, BRCA2, CCNB1, and CHEK1—all of which are DREAM targets and most lacking 

a CHR element—was decreased by up to almost 5-fold after chemotherapy treatment 

and were among the top 10 most differentially expressed genes between pre- and post-

treatment samples (122). On the contrary, another study of p53 null cells showed that 

cyclin B1, CDC2, and B-Myb might accumulate to a point of promoting cell cycle 

progression and eventual collapse in cytokinesis (48, 130). Given that these genes are 

early cell cycle genes that lack CHR elements, the mechanism whereby DREAM may 

influence them during DNA damage is unknown (43).  

It is proposed that p53 null cells are dependent on B-Myb for G2 checkpoint escape 

and subsequent survival of DNA damage. Depletion of LIN9 or B-Myb, significantly 

reduced G2/M gene expression by doxorubicin in HCT116 p53 null cells, suggesting that 

the MMB complex formation is required for maximal expression of late cell cycle genes. 

Whereas no p53 wild-type cells entered mitosis after doxorubicin treatment, a fraction of 

HCT116 p53 null cells entered mitosis 48 and 72 hours after DNA damage. B-Myb or 

LIN9 depleted p53 deficient cells failed to enter mitosis, arguing that MMB complex 

formation may be necessary for cell cycle re-entry (132). Reduced B-Myb activity is also 

associated with chromosomal instability (133). Therefore, by blocking G2 checkpoint 

recovery, therapeutic B-Myb inhibitors may be clinically relevant in the context of p53 

deficient cancers (48). 
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Recent studies have solved the partial crystal structure of B-Myb-MuvB binding, 

laying the foundation for development of small molecule inhibitors (96). Interestingly, 

whereas both DREAM and MMB require LIN52 for their assembly, p130 and B-Myb bind 

different regions of this protein (Fig. 31) (16, 134). This differential binding allows for the 

development of inhibitors specific for MMB assembly, leaving DREAM formation 

unaffected.  

 

Figure 31. p130 and B-Myb bind to different regions on LIN52. Whereas p130 
contacts the N-terminus of LIN52 for DREAM assembly, the C-terminus of LIN52 is 
required for MMB formation. This differential binding between DREAM and MMB 
formation allows for specificity of inhibitors for disrupting MMB.  
 

Another potential target for B-Myb inactivation is by inhibiting cyclin A/CDK2, 

activator of B-Myb (6). It was recently shown that high B-Myb expression can lead to 

DREAM complex disruption (124). Since MYBL2 is a DREAM target gene, this means 

that release from DREAM-mediated arrest is necessary for cell cycle re-entry and 

recovery from DNA damage (2). This also means that B-Myb-mediated DREAM 

disruption could potentiate a positive feedback loop: more B-Myb expression leads to 

further compromised DREAM assembly and de-repression of late cell cycle genes for 

checkpoint recovery and DNA damage repair (Fig. 30). Therefore, the approximately 55% 

of HGSOC cancers with 20q13 amplification or high B-Myb expression could be 

especially susceptible to MMB inhibition. Collectively, the reliance of HGSOC tumors on 

the G2 checkpoint, and B-Myb expression for checkpoint recovery, could make 
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checkpoint and MMB complex inhibitors viable therapeutic targets, especially in patients 

with high B-Myb expression.  

Homologous recombination repair 

TCGA analysis shows that 50% of HGSOC cases are deficient in homologous 

recombination (23). Patients harboring germline BRCA1/2 mutations exhibit better 

responses to chemotherapy and, in turn, more favorable clinical outcomes (135). The 

specific mechanism for a more favorable prognosis is not known, though it is thought to 

be a product of more robust responses to platinum-based chemotherapy. The cell death 

associated with the use of poly ADP-ribose polymerase (PARP) inhibitors in BRCA-

deficient cells is a form of ‘synthetic lethality:’ cells with intact HR repair will use PARP to 

restore single-stranded DNA breaks; whereas, in HR defective cells, PARP inhibition 

prevents DNA repair, resulting in double strand breaks, irreparable damage, and death 

(136). Specifically, since PARP is primarily involved in base excision repair, its inhibition 

is associated with the formation of single-strand breaks, stalled replication forks, and 

progression into major DSBs. In HR deficient cells, DNA can only be repaired through the 

error-prone non-homologous end joining (NHEJ) pathway (137). Upregulation of NHEJ 

ultimately leads to catastrophic damage and cell death and it is thought that 

downregulation of NHEJ might be a means by which tumors become resistant to PARP 

inhibition (138).  

A recent study assessed the importance of BRCA1/2 expression on ovarian cancer 

outcomes. Utilizing 12 non-neoplastic fallopian tubes as controls and 201 epithelial 

ovarian cancer lesions, this study related BRCA1/2 expression to clinical characteristics. 

Ovarian cancers exhibited significantly higher expression (1.6- and 5-fold) of BRCA1 and 
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2, respectively, as compared with normal fallopian tubes. Surprisingly, there were no 

correlations between BRCA1/2 mutation status and any of the clinicopathologic 

characteristics studied. There was also no significant impact of promoter methylation 

status on patient outcomes. However, low BRCA1 and BRCA2 expression was 

associated with better overall survival (OS) only in HGSOC samples with wild-type 

BRCA1. Platinum sensitive disease was also characterized by lower BRCA1/2 expression 

among BRCA1 wild-type cases as compared with platinum refractory disease (135). 

Similarly, previous reports used siRNA knockdown of BRCA1 in ovarian cancer cell lines 

to show that responsiveness to platinum agents was increased whereas efficacy of anti-

microtubule therapies, such as taxanes, was abrogated. This same study found similar 

results in patients with low levels of BRCA1 mRNA (139).  Overall, BRCA1/2 expression 

may be a predictive biomarker to gauge the sensitivity of cancers to platinum therapy and 

PARP inhibitors (135).  

Indeed, response to platinum therapy has served as a surrogate predictor of HR 

status and maintenance therapy with PARP inhibition (136). However, there is currently 

no validated functional biomarker for the status of HR. Assays for HR deficiency are 

limited by their inability to differentiate tumors that are actively HR deficient from those 

with previously-acquired damage that have reverted back to being HR proficient (127). 

This is a common problem because one of the main mechanisms for HGSOC treatment 

resistance is restoration of BRCA1/2 activity. BRCA1/2 can undergo revertant mutations 

and loss of methylation to re-express functional protein and, in turn, confer resistance to 

therapy (136). Increased activity of another DREAM target, RAD51, may also result in 

PARP inhibitor resistance, as it is an essential part of the HR repair mechanism (138). 
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There is also always the possibility that tumors might be sensitive to PARP inhibition 

despite platinum resistance (127). For example, whereas PARP inhibitors were initially 

indicated in cases of BRCA1/2 germline mutation, demonstrated clinical benefits lead the 

FDA to approve the use of niraparib as maintenance therapy for recurrent platinum 

sensitive ovarian cancer regardless of the BRCA1/2 status and olaparib use was also 

expanded for this indication (137, 140). Therefore, BRCA1/2 status alone cannot be a 

definitive predictive marker of treatment response and additional markers needed.  

Combining platinum therapy or PARP inhibition with an HR inhibitor might sensitize 

cells to DNA damaging treatments. However, this combination my pose the risk of a low 

therapeutic window and the risk of enhanced toxicity (127, 137). Timing of combination 

therapy is also an important consideration. It is known that platinum therapy induces G1 

arrest 24 hours after treatment whereas G2/M arrest occurs at 72 hours after treatment 

onset. Therefore, platinum therapy could potentially antagonize the effect of PARP 

inhibition by stalling the cells in G1. Arrest in G2/M also promotes resistance to PARP 

inhibition by preventing replication stress (137). Consecutive administration of the two 

drugs may produce different outcomes than concurrent administration. In support of this 

concept, a Phase I/Ib clinical trial showed that administration of carboplatin followed by 

combination therapy with olaparib had no effect on DNA adduct formation (141). 

LIN54-CHR inhibitors 
 

Given that DREAM regulates the expression of mediators of the DNA damage 

response pathways, and recent studies have shown the importance of their expression, 

DREAM formation may be an indicator of HR status and provide insights into treatment 

response. Whereas a large proportion of E2F motifs are found in early cell cycle genes, 
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CHR elements are required for the orderly progression of DREAM, MMB and FoxM1-

MuvB complex binding to late cell cycle genes (21). Genes with CHR elements are 

annotated with processes related to mitosis, DNA metabolic process, response to DNA 

damage stimulus (21). They are present in 82% in the set of genes bound by DREAM, 

MMB, and FoxM1-MuvB. In contrast, E2F sites are enriched in DREAM-bound genes only 

(13). Cell cycle-dependent regulation of MuvB target genes was disrupted with CHR 

mutation (21). This could be a potential avenue for specifically targeting repression of 

early cell cycle genes, such as BRCA1/2, while preventing cell cycle arrest and, in turn, 

escape from DNA damaging drugs.  

The mechanism of by which MuvB is targeted to CHR elements was revealed by 

the crystal structure of LIN54 bound to a CHR (38). This knowledge could be utilized for 

developing a LIN54-CHR inhibitor. By compromising MuvB contact with CHR elements, 

repression of late cell cycle genes would be alleviated while likely retaining repression of 

early cell cycle genes through contact with E2F sites. This means that a host of DNA 

repair genes (BRCA1/2, RAD51, CHEK1/2) would be repressed, likely rendering the cells 

HR deficient. This might be an especially good tactic for PARP-resistant cancers that are 

able to revert back to functional BRCA proteins. Similar to BRCA mutant tumors, 

repression of the HR pathway might also sensitize cells to PARP inhibitors. Therefore, 

LIN54-CHR inhibition might be an especially beneficial treatment option in patients with 

wild-type BRCA1/2. However, expression of late cycle genes could possibly promote 

inappropriate progression through mitosis in the face of unrepaired DNA damage, which 

could result in further accumulation of genomic alterations (Fig. 32). Alternatively, since 

MYBL2 (an early cell cycle gene lacking a CHR element) would be repressed, the cells 
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may fail to recover from G2 arrest, similar to the effects of a MMB inhibitor. This could 

ultimately lead to clinical benefit of permanent arrest in senescence or cancer cell death.  

Early cell cycle (G1/S, no CHR) Late cell cycle (G2/M, contains CHR) 
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Figure 32. Possible gene expression and cellular consequences of LIN54-CHR 
inhibition. 
 

A LIN54-CHR inhibitor could be especially powerful when combined with a CDK4/6 

inhibitor in cancers with high cyclin D expression. The high cyclin D expression creates a 

therapeutic window between cancer and normal cells, making cancer cells more 

susceptible to treatment with a CDK4/6 inhibitor, such as palbociclib. An open label phase 

II study of the palbociclib for recurrent ovarian cancer with intact pRb function and 

diminished p16 expression is ongoing (142). Another ongoing study is aimed at 

measuring the effects of combined palbociclib with platinum therapy in patients with 

metastatic cancer (143). Interestingly, cyclin D-CDK4/6 plays a role in DREAM 



 

 

72 

disassembly by phosphorylating p130 (90). Therefore, palbociclib could be used to 

stabilize DREAM through preventing p130 phosphorylation. A LIN54-CHR inhibitor could 

then be added to the treatment regimen for targeted de-repression of late cell cycle genes. 

Though CDK4 is an early cell cycle gene containing an E2F site, CDK6 contains a CHR 

and could be expressed for phosphorylation of p130. Palbociclib treatment would further 

protect retained repression of early cell cycle genes by guarding against any increase in 

CDK6 level. Collectively, this ensures that DNA damage repair genes are sufficiently 

repressed while late cell cycle gene are expressed. Therefore, the ability to differentially 

regulate cell cycle gene expression programs could possibly be fine-tuned with use of 

small molecule inhibitors.  

Patients with high cyclin D1-expressing tumors might also benefit from anti-

estrogen therapy. Cyclin D1, often upregulated in HGSOC, is capable of binding to and 

activating estrogen receptor  (ER) (144). High estrogen (E2) level is a risk factor for 

ovarian cancer (145) and, since ovarian tissue is hormonally responsive, estrogen 

antagonists (such as tamoxifen) and aromatase inhibitors have been of interest in ovarian 

cancer treatment. Studies using immunohistochemistry to determine expression of the 

estrogen ER receptor found that it is strongly expressed in 30-60% of HGSOC cases. 

Some studies report positive ER is associated with better OS and PFS; however, 

contradictory reports make the prognostic value of ER expression remain a matter of 

debate (146). One such study utilized data from 894 ovarian cancer patients to assess 

for potential connections between ER status and either lymph node or peritoneal 

metastasis (145). There was no association between ER positivity and lymph node 

metastases. However, 86% of HGSOC peritoneal metastases were ER positive and there 
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was significantly higher ER positivity in peritoneal metastases of recurrent HGSOC than 

any other ovarian cancer subtype. Therefore, the association between ER positivity and 

better clinical outcomes in some studies may depend on the subtypes of ovarian cancer 

studied (145). Therefore, anti-estrogen therapy might be a rational treatment for HGSOC. 

Most of the clinical trials with estrogen antagonists, however, are small phase II trials or 

retrospective studies. Data thus far show that tamoxifen produces a response rate on the 

order of 10% whereas studies with letrozole, an aromatase inhibitor, produce responses 

in about 20% of patients (147, 148). Another retrospective study of 97 relapsed HGSOC 

patients treated with either tamoxifen (competitive estrogen inhibitor) or letrozole 

(aromatase inhibitor) found that the duration of response was significantly longer in those 

treated with letrozole as compared with those receiving tamoxifen therapy. Almost 60% 

of patients had a positive clinical response or stable disease for ≥3 months, suggesting 

that hormonal therapy provides a treatment option for stabilization of recurrent ovarian 

cancer (149).  

Overall, more large-scale studies are needed to clarify the clinical utility of estrogen 

antagonists and aromatase inhibitors. Additionally, since no steps were taken to stratify 

patients based cyclin D level, it is unknown whether or not these treatments would 

produce more robust outcomes in certain subsets of patients. It would also be informative 

to determine the effects of palbociclib in combination with estrogen antagonists and 

aromatase inhibitors in patients with high cyclin D expression.  
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Figure 33. FoxM1 signaling in HGSOC. FoxM1 has been associated with treatment 
resistance and a poor prognosis in HGSOC. It is not yet certain whether or not these 
effects are mediated through interaction with MuvB in HGSOC. However, both MMB and 
LIN54-CHR inhibitors might curtail untoward effects of FoxM1 by blocking B-Myb-MuvB 
binding and MYBL2 expression, respectively, ultimately eliminating FoxM1-MuvB 
formation.  
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activated in greater than 84% of HGSOC cases, mostly through genomic amplification of 

FOXM1, inhibition of p53 and pRb, and E2F1 activation (Fig. 33). These studies, 

however, did not assess DREAM status (112). FoxM1 upregulates the expression of 

genes involved in the HR DNA damage and repair pathway (119). Whereas FoxM1-MuvB 

activates these genes, DREAM represses them as well as the gene encoding FoxM1(43). 

In line with the p53-p21-CHR model of p53-mediated DREAM assembly, p53 was found 

to be a negative regulator of FoxM1. Likewise, DNA-damage resulted in upregulated 

FoxM1 in the absence of p53. This finding corroborates the idea of inappropriate MMB 

formation in response to DNA damage in the absence of p53. It was also proposed that 

DNA-damaging agents may not be as effective in the absence of p53 since FoxM1 is 

increased, protecting the cell against DNA-damage-induced apoptosis. Indeed, FoxM1 

deficiency is associated with increased DNA breaks and knockdown of FOXM1 sensitized 

cells to DNA damage (150, 151). Another study found that inhibition of FoxM1 with 

thiostrepton produced "BRCAness" and enhanced sensitivity to PARP inhibitors (119). 

FoxM1 is also highly expressed in ascitic metastatic cancer cells. Thiostrepton treatment 

decreased FOXM1 mRNA expression as well as that of CCNB1 and CDC25B. This 

ultimately led to cell death in cell lines and patient-derived ascites cancer cells. 

Combination treatment of patient-derived ascites cells ex vivo with thiostrepton, 

paclitaxel, and cisplatin revealed synergistic effects (120).  

Despite all of these negative effects associated with high FOXM1 expression, both 

LIN54-CHR and MMB inhibition may paradoxically thwart these damaging processes. B-

Myb-MuvB binding is required for recruitment of FoxM1 to its promoters (2). MYBL2 and 

FOXM1 expression are upregulated in many p53 mutant cancers (48, 152). Like MYBL2, 
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FOXM1 is also part of chromosomal instability signatures (CIN 70 and 25), characteristic 

of aneuploid tumors (62). B-Myb expression phases out at the end of the S phase while 

FoxM1-MuvB phosphorylation and activation dominates G2/M phase. The FoxM1-MuvB 

complex eventually dissociates as a result of APC/C-CDH1-mediated degradation in the 

M phase. Therefore, FoxM1 and B-Myb are interdependent. This is demonstrated by the 

depletion of B-Myb resulting in stalled replication forks and double-strand breaks being 

partly attributable to deregulation of FOXM1 transcription (6). Decreased B-Myb level 

results in lower expression of G2/M phase-expressed genes and mitotic arrest. Similarly, 

FoxM1 depletion results in delayed mitotic entry as well as defective mitosis and 

cytokinesis (2). If B-Myb cannot bind to MuvB, then FoxM1 cannot be recruited to MuvB. 

If LIN54-CHR binding is disrupted, FoxM1 may be expressed, but B-Myb will not. In both 

cases, the MMB complex cannot form and FoxM1 cannot be recruited to its promoters. 

Additionally, E2F1, an activator of FoxM1, will remain repressed despite LIN54-CHR 

disruption (112). There some studies connecting the importance of FoxM1-MuvB to lung 

and breast cancer pathogenesis, but further studies are needed for HGSOC to define the 

molecular mechanisms by which FoxM1 exerts its unfavorable effects (3, 61).  

Discussion 

 HGSOC has overall proven a challenging disease to treat. DNA damaging agents, 

such as carboplatin, remain the mainstay chemotherapy and more personalized therapies 

are needed. PARP inhibitors are also gaining traction; however, survival rates remain 

constant over the past several years. Given that susceptibility to DNA damage and 

initiation of the DNA damage response are cell cycle-dependent processes, an alternative 
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approach may be to complement DNA damaging agents with drugs having cell cycle 

modulatory properties.  

 

Figure 34. Factors contributing to and effects of DREAM assembly (A) and 
disassembly (B). Both DREAM formation and disruption have potentially unwanted 
effects depending on the state of HGSOC. Specific regulation of subsets of DREAM target 
genes may be a mechanism to circumvent the negative effects of global DREAM 
modulation. 
 

To best utilize these cell cycle regulatory agents, it is important to first understand 

the cell cycle regulatory properties of the specific tumor, such as DREAM status. DREAM 

status may provide insights into treatment susceptibility. For example, if DREAM is 

disrupted, DNA damage response and repair pathways will be upregulated, contributing 

to possible resistance. On the other hand, if DREAM is assembled, then the cancer cells 

could enter a dormant state for spheroid formation and escape DNA-damaging therapy  

(69). Figure 34 highlights some potential mechanisms by which DREAM formation may 

be increased or decreased. It is important to note that both of these conditions (global 

DREAM formation and DREAM disruption) carry pros and cons to HGSOC therapy. This 

further argues that specific modulation of DREAM, such as with LIN54-CHR inhibitor, is 
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likely needed to obtain desired therapeutic effects. Given that there are no reliable 

predictive biomarkers for HGSOC, DREAM status might be one indicator for guiding 

treatment methodology.  DREAM formation could be assayed by using expression of 

DREAM target genes as a functional readout for its assembly. One such potential clinical 

approach is described in Figure 35.  

 

 

Figure 35. Potential clinical algorithm for treating HGSOC with a combination of 
DNA damaging agents and cell cycle modulators. Treatment could be personally 
tailored to individual patients based on the pattern of expression of cell cycle regulatory 
components. 
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expressionàDREAM
disruptionàhigh CCNE1 

expression, more likely to 
have G2/M recovery

CHK1 is DREAM target
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 Another important consideration in treatment selection is HGSOC transcriptional 

subtype. The Cancer Genome Atlas Research Network reported four transcriptional 

subtypes of ovarian cancer based on mRNA expression patterns: immunoreactive, 

differentiated, proliferative, and mesenchymal (23). Recent studies have assigned 

histological classifications to these transcriptional profiles and are characterizing them 

clinically (115). The proliferative subtype is genetically defined by high expression of 

proliferation markers, MCM2 and PCNA (23). Interestingly, both of these markers are 

DREAM target genes (43). Their high expression, and co-expression with other DREAM 

targets (MYBL2, CCNB2, and FOXM1) is consistent with a phenotype of DREAM 

disruption. Additionally, another DREAM target, p15PAF (KIAA0101), was shown to be 

highly expressed in several cancers and a possible contributor to poor prognosis (117). 

This PCNA-associated factor competes with p21-PCNA binding to promote cell cycle 

progression and was recently suggested as a transcriptional target upregulation by 

FoxM1 in HGSOC (114). Together, these points propose that the proliferative subtype 

might be the subtype with the most prominent DREAM disruption and, in turn, several 

mechanisms for perpetuating cellular proliferation. It would be clinically valuable to further 

describe treatment responses in this subtype, especially since the DREAM complex has 

been implicated in recurrence (69).  

Overall, much work remains to develop and test novel treatments for HGSOC. 

Further studies of the DREAM and MMB-mediated cell cycle regulation will inform specific 

treatments. Importantly, the impact of these signaling mechanisms on cell cycle control 

must be validated and related to clinical outcomes to provide sound rationale for targeted 
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therapy. Although several studies have focused on DNA damage response and repair, 

more are needed to further exploit the cell cycle for effective HGSOC treatment.   
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Chapter 5: Materials and Methods 
 

Cells 

 T98G and SKOV3 cell lines were purchased from ATCC and used at low passage 

(<10) with routine mycoplasma testing. T98G cells stably expressing V5-tagged LIN52 or 

LIN52-S28A and BJ-hTERT cells were previously described (13, 90). T98G and BJ-

hTERT cells were infected with a HA-FLAG-B-Myb (WT) or MuvB-binding deficient 

mutant B-Myb (Q674A/M677A) retroviruses produced using pMSCV-Puro vector, and 

selected on 1 μg/ml puromycin (13, 90). T98G DYRK1A KO cells were established using 

GeneArt CRISPR nuclease vector with OFP reporter (Life Technologies) harboring a 

DYRK1A-specific guiding RNA sequence (Fig. 36). For cell proliferation assay, 3,000 

cells were plated per well of a 96-well plate, and luminescence was measured using 

ATPLite kit (PerkinElmer) at days 3 and 5. Invitrogen RNAiMAXTM was used for 

transfections of Ambion® Silencer® Select MYBL2 (s9117 and s9118), DYRK1A (s4399) 

and Negative Control No. 1 (4390843) siRNA oligonucleotides. Transfections of plasmid 

DNA were performed using polyethylenimine (153).  

Primers Sequences (5'-3') 
DYRK1A gRNA top strand TCAGCAACCTCTAACTAACC 

DYRK1A gRNA bottom strand GGTTAGTTAGAGGTTGCTGA 

Genomic PCR primers nested set #1 
Forward: AAACCTGGCAGCAGGTGC 
Reverse: CTCATCACACATCAAATATCCG 

Genomic PCR primers nested set #2 
Forward: AAACCTGGCAGCAGGTGC 
Reverse: ACTTTCACACAACTACAGC 

Figure 36. DNA oligos used to create and characterize T98G-DYRK1A KO cells. 

Immunoprecipitations and Western blots 

Antibodies for MuvB complex components LIN9, LIN37, LIN52 and pS28-LIN52 

were previously described (13, 90). Commercially available antibodies are listed in Figure 
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37. For IP/WB assays using rabbit antibodies, Reliablot® Western blot kit (Bethyl Inc.) 

was used for detection. Protein band densities were quantified using ImageJ software 

and statistically analyzed by Student’s two-tailed t-test to compare means of 3 biological 

repeats (154). 

For immunoblotting, cells were lysed in EBC or RIPA buffers for 10 min at 4 °C 

and then centrifuged at 14,000g for 15 min at 4 °C. Protein concentrations were 

determined by DC protein assay (BioRad). Protein samples were resolved using 

polyacrylamide gels (BioRad), transferred to nitrocellulose membrane (GE Healthcare) 

and probed by specific antibodies. For immunoprecipitation, cell extracts were incubated 

with appropriate antibodies (1 μg/ml) and Protein A Sepharose beads (GE Healthcare) 

overnight at 4 °C, washed five times with lysis buffer and re-suspended in Laemmli 

sample buffer (BioRad). Antibodies against LIN52 and phospho-S28-LIN52 were 

described in (90). 

Protein Vendor (Catalog #) 

Tubulin Sigma (SAB1411818) 

β-actin Cell Signaling (4970S) 

Vinculin Sigma (V9131) 

GFP Santa Cruz (sc-9996) 

p130 BD Biosciences (610262) 

B-Myb 
Santa Cruz (SC-724) 
Millipore (MABE886) 

DYRK1A Cell Signaling (3965) 

V5 Bio-Rad (clone SV5-Pk1) 

HA Cell Signaling (3724) 

Figure 37. Commercially available antibodies 

Drugs 

The following chemicals were obtained from Sigma-Aldrich: Cycloheximide (3-[2-

(3,5-Dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]glutarimide, C7698), MG132 (Z-Leu-Leu-
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Leu-al, C2211), Harmine (7-Methoxy-1-methyl-9H-pyrido[3,4-b]indole, 286044), 

Palbociclib (PD0332991 isethionate, PZ0199).  

Quantitative PCR 

RNA was isolated using TRIzol reagent (Invitrogen) and used to synthesize cDNA 

using SensiFASTTM kit (Bioline). qPCR with Maxima SYBR Green/ROX master mix 

(ThermoFisher) and gene specific primers (Fig. 38) was performed using Applied 

Biosystems 7900HT. Fold changes in mRNA expression relative to controls were 

calculated using the 2ΔΔCt methodology.  

Primers Sequences (5'-3') 

LIN52 3' UTR 1 
Forward: TCCGAAACCAAGCTCCCTTC 
Reverse: TCCTGGAGGTACACCCTCTG 

LIN52 3' UTR 2 
Forward: ACAATGCACACCTCACTGCT 
Reverse: CAGACGTGTAGAGTGCCAGG 

LIN52 ORF 
Forward: TCACGTGACATGGGTTGGAA 
Reverse: TCCAGATCTGTCCCGTCTGT 

18S rRNA 
Forward: AACCCGTTGAACCCCATT 
Reverse: CCATCCAATCGGTAGTAGCG 

FOXM1 
Forward: GTCTGGAGGGTCCACACTTG 
Reverse: CGACGGGGGCTAGTTTTCAT 

MYBL2 
Forward: CATTGTGGATGAGGATGTGAAGC 
Reverse: TGGTTGAGCAAGCTGTTGTCTTC 

CCNB2 
Forward: GCTCCAAAGGGTCCTTCTCC 
Reverse: TGCAGAGCAAGGCATCAGAA 

AURKA 
Forward: TGGCAAATGCCCTGTCTTACTGTCA 
Reverse: GGGGGCAGGTAGTCCAGGGT 

LIN9 
Forward: ATTCGGCGGCTTATGGGAAA 
Reverse: AGAGCCTTATTTTCTGCCGT 

KIF23 
Forward: TGCTGCCATGAAGTCAGCGAGAG 
Reverse: CCAGTGGGCGCACCCTACAG 

E2F1 
Forward: GCCACTGACTCTGCCACCATAG 
Reverse: CTGCCCATCCGGGACAAC 

Figure 38. qPCR primers. 

In vitro kinase assay 

Cell extracts from control and DYRK1A-KO T98G cells, or BJ-hTERT cell lines (3 

mg/ml) were prepared using EDTA-free EBC buffer (13, 90) supplemented with 
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phosphatase inhibitors, 2 mM DTT, 10 mM MgCl2, 10 mM MnCl2 and 200 μM ATP, and 

incubated at 30°C with 6 ng GST-LIN52 in a 100 μl reaction volume. Reactions were 

terminated by adding SDS-PAGE loading buffer and heating at 95°C for 10 min, and 

analyzed by WB. 

Biostatistics 

Differential gene expression: To calculate statistical significance, data from at least 

3 biological replicates was analyzed using two-tailed Student’s t-test. Open access TCGA 

gene expression data for breast and ovarian cancers (summarized as RSEM values) 

were obtained using the TCGA2STAT R package v. 1.2. Data for each cancer were 

obtained separately and log2-transformed. Analysis of significantly upregulated genes in 

TCGA breast (107) and ovarian (23) cancer samples with MYBL2 gene copy number 

gains was performed using cBio.org resource (http://www.cbioportal.org/). Gene set 

enrichment analysis was performed using MSigDB software 

(http://software.broadinstitute.org/gsea/msigdb/) (108). For differential expression 

analysis, samples in the selected cancer cohort were sorted by expression of MYBL2. 

Differentially expressed genes were detected between samples in the upper 75 and lower 

25 percentiles of the expression gradient using the limma R package v. 3.32.6. P-values 

were corrected for multiple testing using False Discovery Rate (FDR) method. Genes 

differentially expressed at FDR <0.01 were selected for Metascape 

(http://metascape.org/) functional enrichment analysis using the latest 03-16-2017 

database version (155). Top 50 genes up- and downregulated in the selected cancer were 

also overlapped with DREAM and MMB targets (13, 20, 43).   
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Survival Analysis:  Level 3 gene expression data summarized as RSEM values 

was obtained using the TCGA2STAT R package v 1.2, along with the corresponding 

clinical annotations. Data for each of the 34 cancers was obtained separately. The data 

was log2-transformed and analyzed using Kaplan-Meier curves and Cox proportional 

hazard model. Each gene of interest was analyzed for its effect on survival by separating 

patients into high/low expression subgroups. A modified approach from (156) was used 

to estimate the best gene expression cutoff that separates high/low expression subgroups 

with differential survival. We took the advantage of the availability of clinical annotations. 

To identify if expression of a gene of interest affects survival in any specific clinical 

subgroup, subsets of patients annotated with specific clinical annotations were selected 

(e.g., “males” or “females” in the “gender” clinical annotation). Subgroups with <40 

patients were not considered. 
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