1,487 research outputs found

    Numerical Model Reduction and Error Control for Computational Homogenization of Transient Problems

    Get PDF
    Multiscale modeling is a class of methods useful for numerical simulation of mechanics, in particular, when the microstructure of a material is of importance. The main advantage is the ability to capture the overall response, and, at the same time, account for processes and structures on the underlying fine scales. The FE2 procedure, "finite element squared", is one standard multiscale approach in which the constitutive relation is replaced with a boundary value problem defined on an Representative Volume Element (RVE) which contains the microscale features. The procedure thus involves the solution of finite element problems on two scales: one macroscopic problem and multiple RVE problems, typically one for each quadrature point in the macroscale mesh. While the solution of the independent RVE problems can be trivially parallelized it can still be computationally impractical to solve the two-scale problem, in particular for fine macroscale meshes. It is, therefore, of interest to investigate methods for reducing the computational cost of solving the individual RVE problems, while still having control of the accuracy.In this thesis the concept of Numerical Model Reduction (NMR) is applied for reducing the RVE problems by constructing a reduced spatial basis using Spectral Decomposition (SD) and Proper Orthogonal Decomposition. Computational homogenization of two different transient model problems have been studied: heat flow and consolidation. In both cases the RVE problem reduces to a system of ordinary differential equations, with dimension much smaller than of the finite element system.With the reduced basis and decreased computational time comes also loss of accuracy. Thus, in order to assess results from a reduced computation, it is useful to quantify the error. This thesis focuses solely on estimation of the error stemming from the reduced basis by assuming the fully resolved finite element solution to be exact, thereby ignoring e.g. time- and space-discretization errors. For the linear model problems guaranteed, fully computable, bounds are derived for the error in (i) a constructed "energy" norm and (ii) a user-defined quantity of interest within the realm of goal-oriented error estimation. In the non-linear case approximate, fully computable, bounds are derived based on the linearized error equation.In all cases an associated (non-physical) symmetrized variational problem in space-time is introduced as a "driver" for the estimate. From this residual-based estimates with low computational cost are obtained. In particular, no extra modes than the ones used for the reduced basis approximation are required. The performance of the estimator is demonstrated with numerical examples, and, for both the heat flow problem and the poroelastic problem, the error is overestimated by an order of magnitude, which is deemed acceptable given that the estimate is fully explicit and the extra cost is negligible

    On Error-Controlled Numerical Model Reduction for Linear Transient FE\ub2 Analysis

    Get PDF
    Multiscale modeling is of high interest in the engineering community due to its ability to capture the overall response, while still accounting for processes and structures on underlying fine scales. One standard approach to multiscale modeling is the so-called FE\ub2 procedure, where the classic constitutive relation is replaced by a boundary value problem on a Representative Volume Element (RVE) comprising the underlying microscale features. It is well realized that straight-forward use of the FE\ub2-strategy can be computationally intractable for a fine macroscale mesh. Therefore, it is of interest to reduce the cost of solving the individual RVE-problem(s) by introducing some kind of reduced basis, here denoted Numerical Model Reduction (NMR). However, it is important to note that the richness of the reduced basis will determine the accuracy of the solution, which calls for error control.This thesis concerns numerical model reduction for linear transient problems in the FE\ub2 setting, in particular the problems of heat flow and poroelasticity. Two different reduction techniques – Spectral Decomposition and Proper Orthogonal Decomposition – are applied in order to obtain an efficient method of solving and evaluating homogenized quantities on the microscale. For the model problem of linear transient heat flow, the microscale finite element problem reduces to a set of (uncoupled) ordinary differential equations, which, obviously, can be solved more efficiently than the original fully resolved finite element problem.For the error estimation, we focus solely on the error due to the reduced basis and ignore time- and space-discretization errors. We derive guaranteed, explicit bounds on the error in (i) a constructed “energy” norm and (ii) a user-defined quantity of interest (QoI) within the realm of goal-oriented error estimation. As a “workhorse” for the error computation, we introduce an associated (non-physical) symmetrized variational problem in space-time. We obtain low cost estimators, based on the residual, which, in particular, requires no extra modes than the ones used for the reduced basis approximation. The performance of the estimator is demonstrated with numerical examples, and, for both the heat flow problem and the poroelastic problem, we overestimate the error with an order of magnitude, which is deemed acceptable given that the estimate is fully explicit and the extra cost is negligible

    A posteriori error estimation for numerical model reduction in computational homogenization of porous media

    Get PDF
    Numerical model reduction is adopted for solving the microscale problem that arizes from computational homogenization of a model problem of porous media with displacement and pressure as unknown fields. A reduced basis is obtained for the pressure field using (i) spectral decomposition (SD) and (ii) proper orthogonal decomposition (POD). This strategy has been used in previous work—the main contribution of this article is the extension with an a posteriori estimator for assessing the error in (i) energy norm and in (ii) a given quantity of interest. The error estimator builds on previous work by the authors; the novelty presented in this article is the generalization of the estimator to a coupled problem, and, more importantly, to accommodate the estimator for a POD basis rather than the SD basis. Guaranteed, fully computable and low-cost bounds are derived and the performance of the error estimates is demonstrated via numerical results

    Tensor-based methods for numerical homogenization from high-resolution images

    Get PDF
    International audienceWe present a complete numerical strategy based on tensor approximation techniques for the solution of numerical homogenization problems with geometrical data coming from high resolution images. We first introduce specific numerical treatments for the translation of image-based homogenization problems into a tensor framework. It includes the tensor approximations in suitable tensor formats of fields of material properties or indicator functions of multiple material phases recovered from segmented images. We then introduce some variants of proper generalized decomposition (PGD) methods for the construction of tensor decompositions in different tensor formats of the solution of boundary value problems. A new definition of PGD is introduced which allows the progressive construction of a Tucker decomposition of the solution. This tensor format is well adapted to the present application and improves convergence properties of tensor decompositions. Finally, we use a dual-based error estimator on quantities of interest which was recently introduced in the context of PGD. We exhibit its specificities when it is used for assessing the error on the homogenized properties of the heterogeneous material. We also provide a complete goal-oriented adaptive strategy for the progressive construction of tensor decompositions (of primal and dual solutions) yielding to predictions of homogenized quantities with a prescribed accuracy

    Combining spectral and POD modes to improve error estimation of numerical model reduction for porous media

    Get PDF
    Numerical model reduction (NMR) is used to solve the microscale problem that arises from computational homogenization of a model problem of porous media with displacement and pressure as unknown fields. The reduction technique and an associated error estimator for the NMR error have been presented in prior work, where both spectral decomposition (SD) and proper orthogonal decomposition (POD) were used to construct the reduced basis. It was shown that the POD basis performs better w.r.t. minimizing the residual, but the SD basis has some advantageous properties for the estimator. Since it is the estimated error that will govern the error control, the most efficient procedure is the one that results in the lowest error bound. The main contribution of this paper is further development of the previous work with a proposed combined basis constructed using both SD and POD modes together with an adaptive mode selection strategy. The performance of the combined basis is compared to (i) the pure SD basis and (ii) the pure POD basis via numerical examples. The examples show that it is possible to find a combination of SD/POD modes which is improved, i.e. it yields a smaller estimate, compared to the cases of pure SD or pure POD

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation
    • …
    corecore