276 research outputs found

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual â„“\ell1 linearly constrained Lagrangian (pdâ„“\ell1-LCL) method

    Global convergence of a stabilized sequential quadratic semidefinite programming method for nonlinear semidefinite programs without constraint qualifications

    Full text link
    In this paper, we propose a new sequential quadratic semidefinite programming (SQSDP) method for solving nonlinear semidefinite programs (NSDPs), in which we produce iteration points by solving a sequence of stabilized quadratic semidefinite programming (QSDP) subproblems, which we derive from the minimax problem associated with the NSDP. Differently from the existing SQSDP methods, the proposed one allows us to solve those QSDP subproblems just approximately so as to ensure global convergence. One more remarkable point of the proposed method is that any constraint qualifications (CQs) are not required in the global convergence analysis. Specifically, under some assumptions without CQs, we prove the global convergence to a point satisfying any of the following: the stationary conditions for the feasibility problem; the approximate-Karush-Kuhn-Tucker (AKKT) conditions; the trace-AKKT conditions. The latter two conditions are the new optimality conditions for the NSDP presented by Andreani et al. (2018) in place of the Karush-Kuhn-Tucker conditions. Finally, we conduct some numerical experiments to examine the efficiency of the proposed method

    A globally convergent SQP-type method with least constraint violation for nonlinear semidefinite programming

    Full text link
    We present a globally convergent SQP-type method with the least constraint violation for nonlinear semidefinite programming. The proposed algorithm employs a two-phase strategy coupled with a line search technique. In the first phase, a subproblem based on a local model of infeasibility is formulated to determine a corrective step. In the second phase, a search direction that moves toward optimality is computed by minimizing a local model of the objective function. Importantly, regardless of the feasibility of the original problem, the iterative sequence generated by our proposed method converges to a Fritz-John point of a transformed problem, wherein the constraint violation is minimized. Numerical experiments have been conducted on various complex scenarios to demonstrate the effectiveness of our approach.Comment: 34 page

    Local convergence of a sequential quadratic programming method for a class of nonsmooth nonconvex objectives

    Full text link
    A sequential quadratic programming (SQP) algorithm is designed for nonsmooth optimization problems with upper-C^2 objective functions. Upper-C^2 functions are locally equivalent to difference-of-convex (DC) functions with smooth convex parts. They arise naturally in many applications such as certain classes of solutions to parametric optimization problems, e.g., recourse of stochastic programming, and projection onto closed sets. The proposed algorithm conducts line search and adopts an exact penalty merit function. The potential inconsistency due to the linearization of constraints are addressed through relaxation, similar to that of Sl_1QP. We show that the algorithm is globally convergent under reasonable assumptions. Moreover, we study the local convergence behavior of the algorithm under additional assumptions of Kurdyka-{\L}ojasiewicz (KL) properties, which have been applied to many nonsmooth optimization problems. Due to the nonconvex nature of the problems, a special potential function is used to analyze local convergence. We show that under acceptable assumptions, upper bounds on local convergence can be proven. Additionally, we show that for a large number of optimization problems with upper-C^2 objectives, their corresponding potential functions are indeed KL functions. Numerical experiment is performed with a power grid optimization problem that is consistent with the assumptions and analysis in this paper

    On the Burer-Monteiro method for general semidefinite programs

    Full text link
    Consider a semidefinite program (SDP) involving an n×nn\times n positive semidefinite matrix XX. The Burer-Monteiro method uses the substitution X=YYTX=Y Y^T to obtain a nonconvex optimization problem in terms of an n×pn\times p matrix YY. Boumal et al. showed that this nonconvex method provably solves equality-constrained SDPs with a generic cost matrix when p≳2mp \gtrsim \sqrt{2m}, where mm is the number of constraints. In this note we extend their result to arbitrary SDPs, possibly involving inequalities or multiple semidefinite constraints. We derive similar guarantees for a fixed cost matrix and generic constraints. We illustrate applications to matrix sensing and integer quadratic minimization.Comment: 10 page
    • …
    corecore