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Abstract

This thesis investigates new optimization methods for structural topology optimization
problems. The aim of topology optimization is finding the optimal design of a structure.
The physical problem is modelled as a nonlinear optimization problem. This powerful
tool was initially developed for mechanical problems, but has rapidly extended to many
other disciplines, such as fluid dynamics and biomechanical problems. However, the
novelty and improvements of optimization methods has been very limited. It is, indeed,
necessary to develop of new optimization methods to improve the final designs, and at the
same time, reduce the number of function evaluations. Nonlinear optimization methods,
such as sequential quadratic programming and interior point solvers, have almost not
been embraced by the topology optimization community. Thus, this work is focused on
the introduction of this kind of second-order solvers to drive the field forward.

The first part of the thesis introduces, for the first time, an extensive benchmarking
study of different optimization methods in structural topology optimization. This com-
parison uses a large test set of instance problems and three different structural topology
optimization problems.

The thesis additionally investigates, based on the continuation approach, an alterna-
tive formulation of the problem to reduce the chances of ending in local minima, and at
the same time, decrease the number of iterations.

The last part is focused on special purpose methods for the classical minimum compli-
ance problem. Two of the state-of-the-art optimization algorithms are investigated and
implemented for this structural topology optimization problem. A Sequential Quadratic
Programming (TopSQP) and an interior point method (TopIP) are developed exploiting
the specific mathematical structure of the problem. In both solvers, information of the
exact Hessian is considered. A robust iterative method is implemented to efficiently solve
large-scale linear systems. Both TopSQP and TopIP have successful results in terms of
convergence, number of iterations, and objective function values. Thanks to the use of
the iterative method implemented, TopIP is able to solve large-scale problems with more
than three millions degrees of freedom.
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Resumé (In Danish)

Denne afhandling undersøger nye optimeringsmetoder for strukturelle topologiske opti-
meringsproblemer. Målet med topologisk optimering er at finde det optimale design af
en struktur. Det fysiske problem er modelleret som et ikke-lineært optimeringsproblem.
Dette stærke værktøj var oprindeligt udviklet til mekaniske problemer, men har siden
udviklet sig hastigt til andre discipliner såsom strømningsmekanik (fluid dynamics) og
biomekaniske problemer. Ikke desto mindre har nytænkningen og forbedringerne af opti-
mieringsmetoderne været meget begrænset. Det er i den grad nødvendigt at udvikle nye
optimeringsmetoder til at forbedre det endelige design og på samme tid reducere antallet
af funktionsevalueringer. Ikke-lineære optimeringsmetoder, såsom sekvensiel kvadratisk
programming og indre punkts metoder, har næsten ikke fået opmærksomhed af det topol-
ogiske optimeringsfaglige fællesskab. Derfor fokuserer dette arbejde på at introducere
disse anden-ordens løsningsmetoder for at drive feltet fremad.

Den første del af afhandlingen introducerer, for første gang, et omfattende bench-
mark studie af forskellige optimeringsmetoder indenfor strukturel topologisk optimering.
Denne sammenligning anvender et stort testsæt og tre forskellige strukturelle optimer-
ingsproblemer.

Afhandlingen undersøger desuden, baseret på kontinuerte tilgange, en alternativ for-
mulering af problemet for at reducere risikoen for at ende i et lokalt minimum, og samtidig
mindske antallet af iterationer.

Den sidste del fokuserer på skrædersyede metoder til det klassiske minimum com-
pliance problem. To af de mest velansete optimeringsalgoritmer er undersøgt og im-
plementeret for dette struturalle optimeringsproblem. En sekvensiel kvadratisk pro-
grammerings (TopSQP) og en indre punks metode (TopIP) er udviklet til at udnytte
problemets specielle matematiske struktur. I begge løserer bruger vi eksakt Hessian
information. En robust iterativ metode er implementeret til effektivt at løse lineære
systemer i stor skala. Både TopSQP og TopIP opnår successfulde resultater, både hvad
angår konvergens, antallet af iterationer og objektivværdien. Takket været den imple-
menterede iterative metode, kan TopIP løse problemer i stor skala med mere end tre
millioner frihedsgrader.
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1
Introduction

Structural topology optimization [74] is a relatively mature field that has rapidly ex-
panded due to its interesting theoretical implications in mathematics, mechanics, and
computer science. It has, additionally, important practical applications in the manufac-
turing, automotive, and aerospace industries [34]. This discipline is focused on finding
the optimal distribution of material in a prescribed design domain given some boundary
conditions and external loads. Topology optimization is commonly used in the concep-
tual design phase presenting new and innovative structures. Classical structural topology
optimization problems are, for instance, maximization of the stiffness (minimize the com-
pliance) or minimization of the total weight (volume) of the structure, subject to some
constraints on the total volume, total stiffness, maximum displacements, or stresses [10].
The design domain is often discretized using finite elements, where the variables represent
the density of each element.

Topology optimization was first initiated in the 1960s, with the introduction of truss
topology design in [39]. The continuum approach appeared in the late 1980s [8]. Topology
optimization can be regarded as an extension of sizing and shape optimization. The goal
of sizing optimization consists of finding the thickness of the structure for a fixed design
domain, whereas shape optimization finds the optimal shape of a domain. Topology
optimization is now well-establish and can be applied in many different research areas
such as fluid dynamics, electromagnetic problems, nuclear physics, and biomechanical
problems, among others [10]. However, the discussion in this thesis is limited to structural
topology design problems.

3



Figure 1.1 shows some of the practical applications of structural topology optimiza-
tion. In the last decade plenty of new applications have emerged in this field [34]. On
the other hand, very few improvements and insights are done regarding the optimization
techniques. The development of novel mathematical optimization methods to accurately
solve large-scale topology optimization problems, is crucial to improve the final designs
in these and in many other applications ([103]).

(a) Aerospace applications (b) Architecture applica-
tions

(c) Medical applications (d) Micromachine
applications

(e) Automotive ap-
plications

Figure 1.1: Examples of some practical structural topology optimization applications (from
[76], [111], [110], [97], and [88], respectively).

First of all, the physical problem needs to be suitably formulated in a mathematical
problem. Then, it is discretized and optimized. Figure 1.2 shows the general flow used in
this work for obtaining an optimized design using a mathematical programming method.
In particular, standard finite element analysis and classical formulations of the topology
optimization problem are considered. This thesis concerns with the optimization step
rather than the pre-processing, the post-processing, and the structural analysis. New
techniques are implemented and developed to improve the performance of the "black-
box" that is usually considered the optimization solver.
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CHAPTER 1. INTRODUCTION

Initialization

Sensitivity Analysis
Optimization

Post processing

Structural Analysis

Problem formulation

Figure 1.2: Flow chart of topology optimization design using mathematical programming
methods. The research presented here is focused on the optimization step.

While a variety of large-scale nonlinear solvers could be applied, structural topology
optimization problems are usually solved by sequential convex approximation methods
such as the Method of Moving Asymptotes (MMA) [112] and [131], and the Convex
Linearization (CONLIN) method [48], or by using Optimality Criteria (OC) methods,
see e.g. [93], [130], and [4]. These methods were specially designed for optimal design
purposes and are now extensively used in commercial optimal design software as well
as academic research codes. However, they are first-order methods with slow conver-
gence rates. In addition, methods such as the original CONLIN and MMA have lack of
convergence proof.

Throughout this thesis, different alternatives to the classical structural topology op-
timization solvers based on second-order information are presented. It is well-known in
the mathematical optimization community, that second-order methods converge in fewer
iterations and produce more accurate solutions than first-order solvers [38]. Although
second-order methods have not been embraced by the topology optimization community,
this thesis will show that the introduction of this kind of solvers is necessary to drive the
field forward. The use of second-order information is essential to obtain good optimized
designs in few iterations.

The problem is frequently defined in its nested form, meaning that the state (nodal
displacement) variables are related to the design (density) variables through the equi-
librium equations [10]. When second-order solvers are applied to this formulation, the
computational effort is dominated by both, the solution of the equilibrium equations and
the computation of the Hessian. In such cases, efficient approaches to reduce the compu-
tational time and memory usage are needed. Thus, the implementation of the methods
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presented in this thesis exploits the specific mathematical structure of the problem.
Ultimately, new techniques for large-scale problems will enable the solution of real

structural topology optimization problems. More specifically, the use of iterative methods
for solving large-scale linear systems such as multigrid techniques and Krylov sub-space
methods is necessary to apply general nonlinear solvers to this type of problems [103].

This thesis concerns with the comparison, research, and implementation of numeri-
cal optimization methods for structural topology optimization problems, such as interior
point methods [52], and Sequential Quadratic Programming (SQP) methods [15]. The
discussion is almost restricted to the minimum compliance problem. Further investiga-
tions regarding different topology optimization problems or finite element analysis are
out of the scope in this work.

This thesis consists of four separate journal papers related to numerical optimization
programming in topology optimization problems. Part I regards with the general back-
ground of topology optimization problems (Chapter 2), numerical optimization (Chapter
3), and linear algebra methods (Chapter 4). This covers the essentials needed to fully
understand the rest of the thesis. Chapter 5 includes a brief summary of the different
papers collected in the thesis, with the main results and contributions. In the second
part of the thesis the four research articles are included. Chapter 6 collects "Benchmark-
ing optimization solvers for structural topology optimization", Chapter 7 presents "An
automatic penalty continuation in structural topology optimization problems", Chapter
8 gathers "An efficient second-order SQP method for structural topology optimization
problems". Finally, Chapter 9 deals with "Solving large-scale structural topology opti-
mization problems using a second-order interior point method".
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2
Structural topology optimization

Structural topology optimization obtains an optimal material distribution in a prescribed
design domain for some boundary conditions and loads. This optimized design is found by
minimizing an objective function subject to some constraints modelling technical specifi-
cations. Structural topology optimization has become a multidisciplinary field of research
and has been very active since 1988 with the publication of [7] and [8]. It is also consid-
ered a very powerful tool for industrial applications, such as the construction of aircrafts
and automobiles [34]. These applications require, for instance, a light structure but at
the same time as stiff as possible. In topology optimization, there are no assumptions in
the final design of the structure, and ideally, the goal is to decide whether to put material
among all the points in the design domain. The choice of the topology of the structure
in this conceptual phase gives innovative and novel designs. In general, the structure is
discretized using finite element method (FEM) for design parametrization and structural
analysis.

The main purpose of this chapter is to give a brief introduction and a literature review
of structural topology optimization problems. Firstly, the topology optimization problem
formulation considered throughout the thesis is introduced. Then, an overview of some
optimization methods commonly used in this field is presented. Finally, the standard set
of benchmark problems is discussed.
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2.1 Problem formulation

The classical structural topology optimization problem consists of maximizing the stiff-
ness of the structure (or minimizing the compliance) with a constraint on the total volume
or weight [10]. This problem, without any type of regularization, is well-known to be
ill-posed, see e.g. [18], [42], and [9]. This means, the problem lacks existence of solu-
tions in the original design domain. To simplify the notation, the variational problem
formulation is presented without regularization techniques. Thus, the problem as stated
in this section is ill-posed. For the complete and correct description of the problem, see
e.g. [18]. The variational problem is defined as in [10], [107], and [18].

Let Ω ∈ Rdim describes the bounded domain, with a Lipschitz boundary Γ [33].
For notation purposes, the Sobolev space W k,p for k = 1 and p= 2 is defined as

H1(Ω) = {f ∈ L2(Ω), s.t. ∇f ∈ L2(Ω)},

with
Lp(Ω) = {f :Ω→ R, s.t. ||f ||Lp(Ω) <∞},

||f ||Lp(Ω) =





(∫

Ω
|f(x)|pdx

)1/p
1≤ p <∞,

inf{α : |f(x)| ≤ α for almost every point x ∈Ω} p=∞.

The standard notation H1(Ω)dim will be used for the Sobolev space of function f :Ω→
Rdim. More details on Sobolev spaces can be found in [33].

In the following formulation, the term U refers to the space of kinematically admissible
displacements, and H to the set of feasible designs [18], i.e.,

U = {u ∈H1(Ω)dim, such that u = 0 on Γu},

H= {t ∈ L∞(Ω)∩L1(Ω) : 0< t≤ t≤ 1 on Ω, and
∫

Ω
tdΩ ≤ V }. (2.1)

For any given t > 0 and maximum volume V > 0. For convenience, the boundary is
partitioned, Γ = Γu∪Γt such that Γu∩Γt = ∅. Γt refers to the part of the boundary with
non-fixed displacements, i.e., where the tractions are assigned [10].

The minimum compliance problem is stated as

minimize
u∈U ,t∈H

l(u)

subject to a(u,v) = l(v) ∀v ∈ U .

The problem minimizes the load linear form [10], described as

l(u) =
∫

Ω
fb ·udΩ+

∫

Γt

ft ·uds,

8



CHAPTER 2. STRUCTURAL TOPOLOGY OPTIMIZATION

Here, the variable fb ∈L2(Ω)dim represents the body forces and ft ∈L2(Γt)dim the bound-
ary tractions. For a fixed and admissible design t ∈ H, the displacement u ∈ U satisfies
the state equation in its variational form [107],

a(u,v) =
∫

Ω
fb ·vdΩ+

∫

Γt

ft ·vds ∀v ∈ U ,

with the energy bilinear form defined as

a(u,v) =
∫

Ω
t E ε(u) ·ε(v)dΩ.

The term ε(u) refers to the strain tensor and E is the elasticity tensor. Existence of
solutions to the state equations are ensured, see for instance [18]. Assuming, small
displacements, the linearized strain is

ε(u) = 1
2
(
∇u+∇uT

)
.

For computational purposes, the space U (and H) is usually discretized. Let Vh ⊂
U (Qh ⊂ H) be any finite dimensional sub-space. Here, h refers to the discretization
parameter. Then, the finite dimensional problem finds the approximated solution uh ∈Vh

(and th ∈Qh) such that
a(uh,vh) = l(uh) ∀vh ∈Vh.

In particular, the domain Ω is discretized using finite elements. In the following, the
finite element method is presented for a 2D domain (assuming constant thickness and
plane stress condition). More details of the finite element method (FEM) can be found
in [31] and [30].

The strain-displacement relationship on the element e is

εe = ∂uhe .

In order to keep only the necessary information, the strain tensor is transformed in a vec-
tor with independent components ([31]). Here, the partial derivatives of the coordinates
are gathered in ∂

∂ =




∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x


 .

The displacement on a finite element can be written as

uhe = Ned,

where d is the vector with all nodal displacements (global level) and Ne is the shape
functions (interpolation functions).
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The strain tensor can be redefined as

εe = ∂uhe = ∂Ned = Bed,

with Be, the strain-displacement matrix (element level). The principle of virtual work
is applied to obtain the element stiffness matrix and forces expressions, similar to [31].
Notice that the state equations can be written as the summation of integrals over the
elements. Let v=Ned̂ define a virtual displacement (small perturbation of the displace-
ment), then the discretized bilinear energy form becomes

∑

e

d̂T
∫

Ωe

theBT
e EBedΩd =

∑

e

d̂T
(∫

Ωe

NT
e fhb dΩ+

∫

(Γt)e

NT
e fht ds

)
. (2.2)

Here, the represents the material of the element e. The discretized problem is defined on
an element level. The vector of nodal loads applied to the element e is

fe =
∫

Ωe

NT
e fhb dΩ+

∫

(Γt)e

NT
e fht ds,

and
Ke =

∫

Ωe

teBT
e EBedΩ, (2.3)

the element stiffness matrix. The isotropic stiffness tensor E is defined based on the
Hooke’s law as follows [31]

E = E

1−ν2




1 ν 0
ν 1 0
0 0 (1−ν)/2


 ,

with ν the Poisson’s ratio of the material, and E the Young’s modulus constant. From
now on, the global density, displacement (state variable), and force vectors are defined
with the terms t ∈Rn, u ∈Rd (instead of d) and f ∈Rd, respectively, with n the number
of elements and d the total number of degrees of freedom. Then, the global equilibrium
equations are obtained by the assembly of all elements,

Ku = f,

with
K =

n∑

e=1
Ke.

The summation symbol refers to the expansion to the element terms to the global vector
(or matrix), i.e. K : Rn→∈ Rd×d.For more information about the finite element method
and its expressions, see [30] and [31].

Throughout the rest of the thesis the problem is always formulated in its discretized
version. Isotropic materials and a regular grid with a constant density throughout each
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CHAPTER 2. STRUCTURAL TOPOLOGY OPTIMIZATION

element are considered. In particular, bilinear quadrilateral elements are considered. In
this scenario, the element stiffness matrix is assumed to be the same for all elements.
Additionally, the integral (2.3) is evaluated using 2×2 Gauss-point quadrature. Finally,
only design-independent loads are considered. Along the thesis, the isotropic stiffness
tensor is defined based on the density of the element, i.e. E(te) (see Section 2.2). Thus,
the equilibrium equations are defined as in [10],

K(t)u = f

K(t) =
n∑

e=1
E(te)Ke.

Finally, throughout the rest of the thesis, the stiffness matrix is assumed to be positive
definite to avoid singularity. In other words, E(ti)> 0 (see Section 2.2).

The discretized minimum compliance problem is formulated as

minimize
t∈Rn,u∈Rd

fTu

subject to K(t)u− f = 0
vT t≤ V
0≤ t≤ 1.

(P cS)

The volume constraint is defined as a linear inequality with v = (v1, . . . ,vn)T ∈ Rn the
relative volume of each element and 0 < V < 1 the maximum volume fraction allowed.
The discretized equilibrium equations are described as explicit constraints.

In its original formulation (2.1), the density variable specifies the design of the struc-
ture, taking either ti = 1, if the ith element contains material (solid), or ti = 0, if the
element remains void. However, in practice, the integer variables are replaced by contin-
uous variables. The solid and void topology optimization problem is modified, so that
the density variables can take any value between 0 (void) and 1 (solid) (see Section 2.2).

The minimum compliance formulation described in (P cS) is the so-called Simultaneous
Analysis and Design (SAND) [5], since both, design and state variables, are simultane-
ously optimized. The main advantage of this formulation is the ease of the objective
function, which is linear. On the other hand, optimization algorithms need to deal with
a large number of nonlinear equality constraints and infeasible iterations.

The problem is frequently defined in a nested form, where the equilibrium equations
are implicit in the objective function. Therefore, only the design variables are optimized,
while the state variables are computed by solving the equilibrium equations at each
objective function evaluation. The nested formulation is described as in (P cN ).

minimize
t∈Rn

uT (t)K(t)u(t) (or fTK−1(t)f)

subject to vT t≤ V
0≤ t≤ 1,

(P cN )

11



with u(t) =K−1(t)f. Although the objective function of the nested form is highly nonlin-
ear (and typically nonconvex), it has the advantage of containing only linear constraints.
Thus, the development and implementation of nonlinear optimization methods for this
specific formulation (see Chapters 8 and 9) are focused on dealing with the nonconvexity
and the computational effort of the objective function, rather than incorporating different
techniques to cope with the infeasibility and unboundedness of the problem.

Two more topology optimization problems are considered in Chapters 6 and 7, namely
the minimum volume and the compliant mechanism design problems (see [22] and [101]).
For the former, a constraint controlling the value of the compliance of the structure is
required. Problem (PwS ) describes the minimum volume problem in the nested form.

minimize
t∈Rn

vT t

subject to uT (t)K(t)u(t)≤ C
0≤ t≤ 1.

(PwN )

The SAND formulation is stated as
minimize
t∈Rn,u∈Rd

vT t

subject to K(t) u− f = 0
fTu≤ C
0≤ t≤ 1.

(PwS )

Here C > 0 is a given upper bound of the compliance.
In the compliant mechanism design problem, the displacement at a given point (out-

put spring) is maximized with a constraint on the volume. The domain contains an input
force fin and an input and output spring stiffness (kin, kout). The objective function is de-
fined by the use of a unit length vector (l) with zeros in all the degrees of freedom except
at the output [10]. Assuming a linear model for the equilibrium equations, the nested
and SAND formulations of this problem are described in (PmN ) and (PmS ), respectively.

maximize
t∈Rn

lTu(t)

subject to vT t≤ V
0≤ t≤ 1,

(PmN )

maximize
t∈Rn,u∈Rd

lTu

subject to K(t)u− f = 0
vT t≤ V
0≤ t≤ 1.

(PmS )

2.2 Density penalization and regularization techniques

The topology optimization problem is formulated such that the density of material t
varies continuously between 0 (void) and 1 (solid) [103]. However, it is desirable to obtain
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CHAPTER 2. STRUCTURAL TOPOLOGY OPTIMIZATION

designs close to a 0-1 solution. A material interpolation scheme is included to penalize
intermediate density values. These artificial densities are typically called grey regions [9].
Two of the most popular approaches to penalize these densities are the Solid Isotropic
Material with Penalization (SIMP) [7] and [130], and the Rational Approximation of
Material Properties (RAMP) [109]. These approaches use interpolation schemes to force
the density values go to the bounds. The Young’s modulus E is defined as

E(ti) =





Ev +(E1−Ev)tpi SIMP scheme

Ev +(E1−Ev) ti
1+q(1−ti) RAMP scheme.

(2.4)

Here, Ev > 0 and E1 ≫ Ev are the Young’s modulus for the "void" and solid material
respectively. In practice, the material penalization parameter is generally set to p= 3 and
q = 6, for the SIMP and RAMP approaches, respectively [71]. For values of p= 1 (q = 0),
the structural topology optimization problems described in Section 2.1 are convex, but,
in general, the problem becomes nonconvex for values of p > 1 (q > 0). In particular, the
four articles included in this thesis consider the penalization parameter greater than 1.
Chapters 6, 8, and 9 use the SIMP approach with p= 3, while Chapter 7 uses both the
SIMP (with p= 3) and the RAMP (with q = 6) approaches.

(a) No penalization parameter, p= 1. (b) Penalization parameter p= 3.

Figure 2.1: Example of a cantilever beam design using different penalization parameter
values. This figure illustrates how the material interpolation approaches affect the opti-
mized design. A density filter technique was used to obtain the design presented in Figure
2.1b.

Figure 2.1 shows an illustrative example where the design of a cantilever beam is
optimized with no penalization scheme, i.e. p = 1 (Figure 2.1a), and with the SIMP
approach using p= 3 (Figure 2.1b). In the latter, the grey regions (intermediate designs)
disappear. Throughout the rest of the thesis, terms such as almost solid-and-void and
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Figure 2.2: Example of the behaviour of the Young’s modulus at different material penal-
ization parameter values using the SIMP approach.

black-and-white designs are used to refer to this situation.
Additionally, Figure 2.2 shows the behaviour of the Young’s modulus (2.4) using

the SIMP approach with different penalization parameter values. When p ≫ 1, the
intermediate densities are highly penalized. However, the value p= 3 is normally sufficient
to produce almost solid-and-void designs [103].

Three numerical instabilities are detected for density-based topology optimization
problems, namely, checker-boards, mesh-dependencies, and local minima [104].

It is well-known that the density-based topology optimization problem is ill-posed in
the continuum setting, see [10] and [42]. In other words, the solution of the same problem
at different discretization meshes is different. This non existence of solutions is commonly
displayed as mesh-dependency, see Figure 2.3. Different regularization techniques emerge
in the literature to prevent this issue, such as the perimeter control [2] and [63], gradient
restrictions [90], and filtering techniques [18].

For the density-based topology optimization problems, the distribution of material
might form a checker-board pattern. This refers to the formation of regions where solid
material and "void" material are alternating forming a checker-board pattern [36]. For
an illustrative example, see Figure 2.4. The cause of this anomaly comes from the finite
element approximations, in which the modelling of the stiffness is overestimated [10].

In order to overcome this instability, either higher order finite elements or filtering
techniques [18] can be used. Filtering strategies are more common since they solve both
the mesh-dependency and the checker-boards. In contrast, if higher order finite elements
are used, other regularization techniques are needed, such as perimeter control or gradient
restriction techniques. Filtering methods include explicit limitations on the distribution
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CHAPTER 2. STRUCTURAL TOPOLOGY OPTIMIZATION

Figure 2.3: Example of mesh-dependency in a MBB beam. Different optimized designs
result for different discretizations. Figure taken from [104].

Figure 2.4: Example of a checker-board pattern in a cantilever beam.

of the density. The sensitivity filter [10], the density filter [18], and the PDE filter [77]
are, nowadays, some of the most popular choices, see e.g. [100] and [104].

In particular, only the density filter is considered to ensure regularity and existence
of solution [18]. It is implemented based on [4]. For a given element e, its filtered density
variable t̃e depends on a weighted average over the neighbours in a radius rmin.

t̃e = 1
∑
i∈Ne

Hei

∑

i∈Ne

Heiti

Hei = max(0, rmin−∆(e, i))

Here, Ne the set of elements for which the distance to element i (defined by ∆(e, i)) is
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smaller than the filter radius rmin.
Finally, the third numerical and theoretical challenge is the so-called local minima

[104]. Since topology optimization problems are generally defined as nonlinear and non-
convex problems, a global solution cannot be guaranteed. Different optimization methods
can produce different local solutions for the same problem (and the same discretization).
To avoid this issue, [104] suggests the use of continuation techniques. In these meth-
ods, either the radius of the filter or the material penalization parameter is gradually
decreasing or increasing (respectively) to reduce the chances of ending in local minima.
Thus, the continuation approach solves a sequence of optimization problems. A specific
continuation in the penalization parameter strategy is implemented in Chapter 7. In this
article, the performance of this method is compared with the classical formulation. The
results suggest that, indeed, continuation methods help to avoid local minima. Moreover,
the article proposes a new alternative to overcome this numerical issue.

In this section, the classical density-based topology optimization formulation has been
introduced. Yet, other alternative formulations are emerging in this field and becoming
very popular. For instance, in the review [103], topology optimization methods are princi-
pally classified in (i) density-based methods ([130] and [7]), (ii) evolutionary approaches
(such as Evolutionary Structural Optimization (ESO) [127] and [128]), (iii) level set
methods ([37] and [121]), (iv) phase field methods ([19] and [24]), and (v) topological
derivatives [106].

2.3 Topology optimization methods

Since topology optimization problems can be described as a 0-1 discrete problem, it is
indeed natural to solve them using discrete optimization methods [108]. Even so, the
solution of the discrete problem is very difficult to obtain, and large-scale problems are
nowadays impossible to solve [103]. Heuristic approaches, such as Genetic Algorithms,
can estimate an optimized design of the problem without any information of the gra-
dients, see for instance [122] and [6]. However, the computational effort of these non-
gradient methods is extremely large for large-scale problems and they are not practical
for real topology optimization problems [92] and [103]. Therefore, this thesis is focused
on gradient-based mathematical programming methods.

The Optimality Criteria (OC) method [93], [130], and [4], and the Method of Mov-
ing Asymptotes (MMA) [112], [113], and [131], are two of the most classical first-order
optimization solvers in structural topology optimization, see e.g. [8], [114], [3], and [102]
among others. With the sake of completeness, their principal ideas are briefly introduced.

Ultimately, several studies investigate second-order solvers for this type of problems.
Newton’s type and SQP methods are implemented for structural topology optimization
problems in the SAND formulation in, for instance, [70], [69], [68], and [40].
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Optimality Criteria

The origins of the Optimality Criteria method go back to the 1960-70s [91] and [10]. The
OC method updates the design variables of each point based on an estimation of the
optimality conditions. The method updates the designs independently, adding material
in those elements in which the estimation of the strain energy is high. For more details
of this method, see e.g. the text book [10], where the OC method is explained for the
minimum compliance and mechanism design problems.

The OC method used in Chapter 6 is based on 88-lines code implemented in MATLAB
[4]. Note that this optimization method, in contrast to the rest of the solvers developed
and used in this thesis, does not estimate the Lagrangian multipliers, and therefore,
there is no knowledge of the Karush-Kuhn-Tucker (KKT) conditions (see Chapter 3).
The KKT conditions are typically used to determine the convergence of the solvers.
Thus, the stopping criterion of this method depends only on the difference between two
consecutive iterate points.

The Method of Moving Asymptotes

The development of the first-order Convex Linearization (CONLIN) method [48] was the
basis for the Method of Moving Asymptotes. MMA was originally developed in 1987
[112], and was specifically implemented for structural optimization problems. It is still
one of the most popular solvers in the structural optimization community. MMA approx-
imates the objective and the constraint functions with convex and separable functions.
These local approximations appear from the Taylor expansion in the reciprocate and
shifted variables, and they only require one objective and gradient function evaluation
per iteration [107].

f̃(x)k = rk +
n∑

i=1

(
pki

Uki −xi
+ qki
xi−Lki

)
,

with

rk = f(xk)−
n∑

i=1

(
pki

Uki −xki
+ qki
xki −Lki

)
,

pki =





(
Uki −xki

)2 ∂f
∂xi

(xk) if ∂f
∂xi

(xk)> 0,
0 otherwise.

qki =





0 if ∂f
∂xi

(xk)≥ 0,
−
(
xki −Lki

)2 ∂f
∂xi

(xk) otherwise.

The variable Ui and Li are the asymptotes of the convex approximations. The values
of these variables depend on the previous iterations. They move apart if the iterates
are going in the same direction (the solver is making progress), and move closer (more
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conservative approximations) if the iterates display oscillatory behaviour. The updating
scheme of these variables is as follows

Lki −xki = γki (Lk−1
i −xk−1

i ),
Uki −xki = γki (Uk−1

i −xk−1
i ).

Here,

γki =





1.2 if (xki −xk−1
i )(xk−1

i −xk−2
i )> 0,

0.7 if (xki −xk−1
i )(xk−1

i −xk−2
i )< 0,

1.0 if (xki −xk−1
i )(xk−1

i −xk−2
i ) = 0.

Similar to other mathematical programming methods, MMA solves a sequence of
easier sub-problems until the KKT conditions (see Chapter 3) are satisfied. Although a
stopping criterion based only on the change between design variables is commonly used
in the literature (see for instance [3] and [1]), the stopping criterion of MMA in this thesis
is based on the first-order optimality conditions.

MMA is an inexpensive method in the sense that the sub-problems are normally
easily solvable. However, it does not have globally convergent properties. In contrast,
the globally convergent version, GCMMA, introduces conservative approximations of the
functions to ensure convergence at the expense of becoming potentially slower [113].

There is plenty of literature concerning extensions of MMA and separable convex
programming (SCP) methods, see for instance, [132], [131], [23], [120], and [129]. Ad-
ditionally, several articles, such as [50], [43], [49], and [13], are focused on MMA-type
solvers based on second-order approximations.

Both solvers are compared with other general nonlinear optimization methods in
Chapter 6. GCMMA is also used for the comparison of the continuation strategy studied
in Chapter 7. Since MMA and GCMMA use the Taylor expansion in the reciprocate vari-
ables, these methods cannot be applied in the automatic continuation strategy proposed
in Chapter 71.

2.4 Benchmark test problems and numerical experiments
in structural topology optimization

The numerical experiments in the topology optimization community are generally done
using very few examples, see for instance [35], [16], [3], and [63]. When only two or three
problems are used to compare different solvers, the results can be misleading. To illustrate
this fact, the minimum compliance problem in the nested formulation is considered. Table
2.1 shows the objective function value of three different design domains optimized with
GCMMA and IPOPT (interior point software) [117].

1This approach requires solvers in which the constraints are linearized (see Chapter 3 and Chapter 7).
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Table 2.1: Comparison of the objective function value between GCMMA and IPOPT using
three examples. These results are taken from the numerical experiments of Chapter 6.

Problem 1: Problem 2: Problem 3:
Solver Michell 40×40, V = 0.2 Michell 40×20, V = 0.5 Michell 40×20, V = 0.1

GCMMA f(t) = 43.54 f(t) = 73.72 f(t) = 2137
IPOPT f(t) = 43.74 f(t) = 73.73 f(t) = 1618

It is clear that if only the results of the first two problems are shown, GCMMA
is a better solver choice2. In contrast, if the third problem is under consideration, the
conclusion will be completely different. Additionally, the difference between the objective
function values is very important. In problems 1 and 2, IPOPT and GCMMA obtain
very similar designs, while in the third problem, the optimized design of GCMMA has an
objective function value noticeably worse than the one obtained with IPOPT. Thus, it is
not enough to show which solver obtains the best objective function values, but also how
big the difference between the results are. IPOPT might not obtain the best designs, but
it might produce good results for larger number of problems. Furthermore, there is no
available big test set of problems in which the results can be based on.

The possibility of improving the comparison of formulations and optimization solvers
in topology optimization motivates the introduction of performance profiles in this field.
For the description of this approach, see [38] and Chapter 6. Performance profiles are
nowadays the only acceptable tool used in the numerical optimization community to
fairly compare different optimization methods and choices of problem formulations. As a
result, a large benchmark library needs to be defined. Some of the well-known and well-
establish test problems for benchmarking the minimum compliance problem are cited in
[103]. In contrast, there is no standardization for compliant mechanism design problems.
Chapter 6 collects for the very first time a large benchmarking test set of problems
for minimum compliance, minimum volume, and compliant mechanism design problems.
As an illustrative example, Figures 2.5, 2.6 and 2.7 show some of these problems. On
the left side of the figures, their boundary conditions and external loads are defined.
A possible optimized design is included on the right side. Note that this final design
depends on the mesh discretization, length ratios, volume fraction, problem formulation,
and optimization solver, among other factors.

2Chapter 6 will refute this statement.
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Figure 2.5: Michell 2D domain with an example of a possible optimized design.

Figure 2.6: MBB 2D domain with an example of a possible optimized design.

Figure 2.7: Compliant gripper 2D domain with an example of a possible optimized design.
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3
Numerical Optimization

The thesis addresses numerical optimization methods for solving structural topology
optimization problems efficiently. In particular, two of the state-of-the-art second-order
optimization methods are developed and implemented. An efficient Sequential Quadratic
Programming (TopSQP) method is implemented in Chapter 8. Chapter 9 is focused on
an interior point method (TopIP). In the latter, special emphasis is given on investigat-
ing efficient linear algebraic solvers for obtaining the search direction, since large-scale
problems are considered.

This chapter provides the necessary background regarding mathematical optimization
theory and some optimization methods. First, some preliminary definitions and theorems
are introduced. Afterwards, general nonlinear gradient-based programming techniques
are discussed. More details of general numerical optimization theory can be found in
the text books [87], [78], and [57]. A general review of some iterative methods for linear
systems is covered in Chapter 4.
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3.1 Numerical Optimization

The considered nonlinear optimization problem can be stated as

minimize
x

f(x)
subject to gi(x) = 0 i ∈ E ,

gi(x)≤ 0 i ∈ Î,
li ≤ xi ≤ ui i= 1, . . . ,n,

(NLP)

with x = (x1, . . . ,xn)T ∈ Rn, f : Rn −→ R and gi : Rn −→ R (with i = 1, . . . ,m) being
continuously differentiable functions. The terms li and ui are the lower and the upper
bounds of the variable xi, respectively. The set Î contains the indices i such as the
constraint gi(x) is an inequality. The term E refers to the equality constraints. For
notational convenience, both general and bound constraints are gathered in ci(x), i.e.,

ci(x) =





(gj(x))j=1,...,m i= 1, . . . ,m
(xj−uj)j=1,...,n i=m+1, . . . ,m+n

(lj−xj)j=1,...,n i=m+n+1, . . . ,m+2n.

For this generalization, the indices i such that the constraint ci(x) is an inequality are
gathered in I (Î ⊂ I). Thus, E ∪I = {1, . . . ,m+2n} and E ∩I = ∅.

This section only outlines some theoretical aspects needed. The proofs of the theorems
can be found in [87], [20], and [78].

Definition 3.1. (from [87]) A feasible set Ω is the set of all points x for an optimization
problem that satisfy all the constraints.

Ω = {x ∈ Rn |ci(x)≤ 0, i ∈ I and ci(x) = 0, i ∈ E}.

A vector x ∈ Rn is a feasible point if x ∈Ω.

A set is a convex set [20] if it contains a line segment joining any two points x and
y in the set, i.e.,

x,y ∈Ω, θ ∈ [0,1]⇒ θx+(1−θ)y ∈Ω.

Examples of convex sets are, for instance, hyperplanes, halfspaces, Euclidean balls, and
polyhedra [20]. The feasible set of a nonlinear optimization problem must be non-empty
in order for the problem to admit a solution.

The constrained optimization problem (NLP) is described using inequality constraints.
In general, nonlinear optimization solvers can be categorized based on how the inequali-
ties are dealt with. With the aim of distinguishing whether these constraints are exactly
held or not, the active set is defined as follows.
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Definition 3.2. (from [87]) The active set of the optimization problem (NLP) at a
point x is defined as

A(x) = {i ∈ {1, . . . ,2n+m} such that ci(x) = 0}.

The active constraints restrict the possible directions from a feasible point x. On
the other hand, if a constraint is inactive in a feasible point, then any small enough
perturbation will end up in another feasible point.

Convex analysis

Convex optimization is a special case of mathematical optimization. One of the great
advantages of convex problems is that any local solution is a global solution. Thus, most
of the nonlinear optimization solvers, approximate (NLP) by convex sub-problems. Let
some preliminary concepts be introduced.

Definition 3.3. (from [20]) A function f :Rn−→R is a convex function if the domain
of f (dom f) is a convex set and

f(θx+(1−θ)y)≤ θf(x)+(1−θ)f(y)
∀x, y ∈ domf θ ∈ [0,1].

Here, the dom f specifies the subset of Rn of points x for which f(x) is defined.

Definition 3.4. (from [20]) A problem such as (NLP) is a convex optimization prob-
lem if f(x) and ci(x) with i ∈ I are convex functions, and ci(x) with i ∈ E are affine
functions.

Here, the term affine refers to functions with the form f(x) =Ax+b. It is important
to note that the feasible set of a convex problem is convex.

Theorem 3.1 relates the convexity property with the second-order information of the
function.

Theorem 3.1. (from [20]) Let be f a twice differentiable function with convex domain.

f is convex ⇐⇒∇2f(x)� 0 for all x ∈ dom f.

Here, (∇2f(x))ij = ∂2f(x)
∂xi∂xj

i, j = 1, . . . ,n is the Hessian of the function f . If ∇2f(x)� 0,
then f is strictly convex.

The expression "A � B" ("A � B") means that A−B is a positive semi-definite
(positive definite) matrix.

A vector x ∈Ω is a global solution of (NLP) if ∀ x ∈Ω, f(x)≤ f(x). In addition,
it is said a local solution of (NLP) if x ∈ Ω, and there is a neighbourhood N ⊂ Ω of x
such that f(x)≥ f(x) for x ∈N .
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Theorem 3.2 states one of the most important properties of convex optimization. For
nonconvex problems, implications in only one direction are satisfied, from the top to the
bottom. The proof of this theorem can be found in [20]. Definition 3.5 is included to
complete the theorem.

Definition 3.5. (from [20]) A vector d ∈ Rn is

• A feasible direction at x∈Ω if there exists a real number ε1 > 0 such that x+td ∈
Ω for all t ∈ (0, ε1).

• A descent direction at x ∈Ω if there exists a real number ε2 > 0 such that f(x+
td)< f(x) for all t ∈ (0, ε2).

• A feasible descent direction at x∈Ω if d is both feasible direction and a descent
direction at x.

Theorem 3.2. (from [20]) Suppose that (NLP) is a convex problem, and that x ∈ Ω.
Then the following are equivalent:

x is a global solution.
m

x is a local solution.
m

At x there is no feasible descent direction d.

Optimality conditions

The optimality conditions are some necessary and sufficient expressions to check if a
given point x is indeed a local solution. Nonlinear optimization solvers generally stop
when the first-order optimality conditions are satisfied for a given tolerance.

Constraint Qualifications (CQ) are regularity conditions in the constraints to ensure
that they do not show degenerate behaviour at the Karush-Kuhn-Tucker (KKT) point x
(cf. below). There are plenty of CQ. Here, two of the most popular ones are cited.

Definition 3.6 (Linear independence constraint qualification (LICQ) [87]). The
LICQ holds at x if the gradients ∇ci(x), i ∈ A(x) are linearly independent.

Definition 3.7 (Mangasarian-Fromovitz constraint qualification (MFCQ) [87]).
The MFCQ holds at x if there exists a vector d ∈ Rn such that

∇ci(x)Td< 0 i ∈ A(x)∩I
∇ci(x)Td = 0 i ∈ E

and the set of equality constraint gradients {∇ci(x) : i ∈ E} is linearly independent.
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In particular, if the feasible region is formed by only linear constraints, then the
constraint qualifications are met (see [87]). Therefore, in Chapter 8 and 9, the CQ are
satisfied for all feasible points since the minimum compliance problem is formulated in
the nested form (P cN ) (only linear constraints, see Chapter 2).

Definition 3.8. (from [87]) The Lagrangian function of (NLP) is defined as

L(x,λ) = f(x)+
m+2n∑

i=1
λici(x).

Here λ= (λ1, . . . ,λm+2n)T are the Lagrangian multipliers of all general constraints.

The first-order conditions for a point x to be a local solution of the problem (NLP),
are gathered Theorem 3.3.

Theorem 3.3 (First-order necessary conditions [87]). Suppose that x is a local
solution of (NLP) and that a CQ holds at x. Then, there is a Lagrangian multiplier
vector λ such that the following conditions are satisfied at (x,λ).

∇L(x,λ) =∇f(x)+J(x)Tλ= 0, (3.1)
ci(x)≤ 0 i ∈ I, (3.2)
ci(x) = 0 i ∈ E , (3.3)
λi ≥ 0 i ∈ I, (3.4)

ci(x)λi = 0 i ∈ I, (3.5)

where J(x) = [∇ci(x)T ]i=1,...,m+2n : Rn 7→ Rm+2n×n is the Jacobian matrix of the con-
straints. Equation (3.1) refers to the stationarity condition, equations (3.2)-(3.3) are the
primal feasibility conditions, and equation (3.5)) is the complementarity condition.

Finally, the second-order condition gathers how the second derivatives affect the op-
timality condition. The second-order conditions are assumed in some theoretical conver-
gence proofs for second-order methods (see Chapter 8).

Theorem 3.4 (Second-order sufficient conditions [87]). Suppose that for some fea-
sible point x there is a Lagrangian multiplier vector for which the KKT conditions are
satisfied. Suppose also that

pT∇2L(x,λ)p> 0 ∀p such that J(x)Tp = 0, with p 6= 0.

Then x is a strict local solution of (NLP).
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Duality Theory

This section outlines the duality theory which consists of defining the general nonlinear
optimization problem (NLP) alternatively. This new dual problem is defined using dual
variables λ instead of the primal variable x, as in the original problem (NLP). In some
cases the dual problem is much easier to solve, and computationally less expensive. The
purpose of this sub-section is to outline some theoretical details assumed in Chapter 81.

Definition 3.9. (from [20]) For a given optimization problem such as (NLP), the La-
grangian dual function ρ is defined as the minimum value the Lagrangian primal
function L can take over the primal variable x.

ρ(λ) = inf
x
L(x,λ).

The Lagrangian dual function is the infimum of a family of affine functions (linear
function of λ). Thus, ρ(λ) is always concave for any general problem (NLP). Let the
Lagrangian dual problem (NLPd) be defined as

maximize
λ

ρ(λ)

subject to λ≥ 0.
(NLPd)

One important property, called weak duality (see for instance [20] for the proof), is that
the Lagrangian dual function gives a lower bound of the optimal value of f(x), i.e.,

ρ(λ)≤ f(x).

The strong duality ([20]) holds when ρ(λ) = f(x), i.e. when there is no gap between these
two optimal values. When (NLP) is convex, the strong duality generally holds, however
some constraint qualification conditions are needed to ensure it.

3.2 Methods for nonlinear constrained problems

In this section, general aspects and characteristics of some existing nonlinear optimization
algorithms are described. Nonlinear optimization methods can be categorized as follows
[87].

• Penalty methods: The constrained optimization problem is replaced by a se-
quence of sub-problems in which the constraints are included in the objective func-
tion using a penalty function.

1In the proposed TopSQP (Chapter 8) the inequality quadratic problem (IQP) is reformulated into its
dual to avoid the storage and computation of the Hessian, and thus, to reduce memory and time demand.
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The resulting unconstrained sub-problem is, for instance,

minimize
x

f(x)+µ

(∑

i∈E
|ci(x)|+

∑

i∈I
[ci(x)]+

)
,

or
minimize

x
f(x)+ µ

2

(∑

i∈E
ci(x)2 +

∑

i∈I
([ci(x)]+)2

)
,

where the penalty parameter is µ> 0, and the operation [ci(x)]+ denotes max(ci(x),0).

The aim is to solve the unconstrained minimization problem for a sequence of
increasing values of µ ↑∞.

• Augmented Lagrangian methods: In this type of methods, the Lagrangian
multipliers are explicitly included in the objective function. The Augmented La-
grangian method combines properties of the Lagrangian function and the quadratic
penalization introduced above [28]. The inequality constraints are reformulated as
equality constraints using slack variables, and thus, the approximate sub-problem
to solve at each outer iteration is

minimize
x,s

f(x)−
∑

i∈I
λi(ci(x)+si)−

∑

i∈E
λici(x)+ µ

2

(∑

i∈I
(ci(x)+si)2 +

∑

i∈E
ci(x)2

)

subject to si ≥ 0 i ∈ I.
The sub-problem is solved for fixed values of λ and µ. Then, both parameters are
updated until the KKT conditions are satisfied.

MINOS [84], LANCELOT [29], and PENNON [75], are examples of nonlinear soft-
ware based on Augmented Lagrangian methods.

• Sequential Quadratic Programming: This nonlinear method obtains the search
direction d by minimizing a quadratic programming problem where the objective
function is normally a convex and quadratic approximation of the Lagrangian and
the constraints are linearized [15].

minimize
d

∇f(x)Td+ 1
2d

T∇2L(x,λ)d

subject to ci(x)+∇ci(x)Td≤ 0 i ∈ I,
ci(x)+∇ci(x)Td = 0 i ∈ E ,

SQP methods solve a sequence of Quadratic Programming (QP) problems. More
details of QP problems can be found in [87]. Once the search direction is estimated,
the primal variable x and the estimates of the Lagrangian multipliers are updated
until a KKT point is found.

Examples of existing SQP algorithms are SNOPT [55], NPSOL [56], FILTERSQP
[46], and KNITRO/ACTIVE [26]. Chapter 8 explains in more detail a SQP-type
method.
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• Interior point methods: Slack variables are introduced to transform the inequal-
ities to equality constraints. In addition, the objective function is defined with a
barrier function to deal with the bound constraints. For a given value of the barrier
parameter µ > 0, the algorithm solves the following sub-problem

minimize
x,s

f(x)−µ

∑

i∈Î
lnsi+

n∑

i=1
ln(xi− li)+

n∑

i=1
ln(ui−xi)




subject to gi(x)+si = 0, i ∈ Î,
gi(x) = 0, i ∈ E .

For a fixed µ, the goal is to obtain a local solution of the barrier problem using
a Newton’s method [41]. The search direction is obtained by solving the so-called
KKT system2. Generally, these sub-problems are not solved to optimality.

Then, the barrier parameter is decreased µ→ 0 until convergence, so that xµ→ x.

Examples of nonlinear interior point methods available in the community are LOQO
[116], IPOPT [117], KNITRO/DIRECT, and KNITRO/CG [26]. Chapter 9 gathers
more implementation details of an interior point method.

Interior point methods together with SQP methods are considered the most powerful
solvers nowadays [59], [38], and [11]. Therefore, both algorithms are implemented for
the minimum compliance problem in Chapters 8 and 9. Additionally, these methods
solve sequence of sub-problems in which the constraints are linearized. The topology
optimization formulation proposed in Chapter 7 is based on this property. Thus, both
SQP and interior point methods are suitable for this automatic continuation approach.

Nonlinear solvers need to deal with several challenges, such as how to solve the sub-
problems, how to deal with nonconvexity, how to deal with infeasible and unbounded sub-
problems, and how to ensure progress towards a KKT point, among others. Throughout
the rest of the section, some techniques and methods commonly used to solve these
challenges are introduced.

3.2.1 Strategies for determining the step

There exist two different techniques to ensure the progress of the solvers to a KKT point,
namely line search [82] and trust region [27] strategies. These strategies require the use
of either merit functions [14] or filters [47] to measure the progress. In particular, a
line search combined with a merit function is implemented in both the SQP in TopSQP
(Chapter 8) and the interior point method in TopIP (Chapter 9).

2Special saddle-point system appeared from a Newton’s method [83] iteration, with the form ∇F∆ =
−F, with F the KKT conditions. Here, ∆ is the search direction.
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Line search methods

Line search is a technique to decide how far the algorithm should move along the given
search direction dk. The new iterate solution is then xk+1 = xk+αkdk, where 0<αk ≤ 1
is the step length chosen by the line search at the kth iteration.

The aim of line search strategies is to find a step length α to give a substantial
reduction of f(x) [82]. Ideally, the goal is to find the minimizer of φ(α) = f(xk +αdk)
with 1 ≥ α > 0. However, this is computationally expensive. In practice, the algorithm
tries a sequence of candidates of α enforcing some sufficient decrease conditions. For
instance, to ensure the Wolfe conditions [87],

f(xk +αdk)≤ f(xk)+ c1α∇f(xk)Tdk
∇f(xk +αdk)Tdk ≥ c2∇f(xk)Tdk,

for some constants c1 ∈ (0,1), c2 ∈ (c1,1). The first condition is commonly called Armijo
condition [87]. Algorithm 1 outlines one of the most popular line search strategies based
on a backtracking search satisfying the Armijo condition. Nevertheless, there are other
conditions that a line search can follow to force a sufficient decrease, such as the Goldstein
conditions [87], the 1D-Gamma, and 2D-Gamma conditions [72]. Other more sophisti-
cated and complicated line search strategies based on finding the minimum of φ(α) can
be applied, for example interpolation techniques [87]. Finally, new approaches to extend
the search from line to curve using arc search strategies are found in the literature, see
e.g. [115] and [65].

Algorithm 1 Line search Backtracking algorithm [87].
Input: Choose τ ∈ (0,1) and c ∈ (0,1).
1: Initialize α= 1.
2: repeat
3: if f(xk+αdk)≤ f(xk)+ cα∇f(xk)Tdk then
4: sufficient decrease = true
5: else
6: α= τα.
7: end if
8: until sufficient decrease
9: return

For constrained optimization problems, a sufficient decrease in the objective function
is not enough. There is a need of balance between minimizing the objective function and
satisfying the constraints [87]. Then, the objective function in Algorithm 1 is replaced
with a merit function or with the use of filters (cf. below).

Line search strategies are used in some nonlinear software such as LOQO, KNI-
TRO/DIRECT, IPOPT, and SNOPT.
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Trust region methods

Trust region strategies are the alternative of line search methods. The main idea is to
define a region around the current iterate point xk such that a selected model fits ade-
quately with the real objective function, and thus, the method can trust the approximate
model in this area. The model is minimized in this region to be able to choose the step
for the current iterate [27].

The main difference between line search strategies and trust region methods is that
the latter finds αk and dk simultaneously. At every iteration, the size of the trust region
is modified depending on the performance of the step selected. Trust region methods
choose a suitable ∆k, such that the descent direction is inside the ball of radius ∆k, i.e.,

||dk|| ≤∆k.

This inequality is included as an extra constraint in the optimization problem. At a given
iteration, a ratio ρk is defined based on a model function mk and the original objective
function [87],

ρk = actual reduction
predicted reduction = f(xk)−f(xk +dk)

mk(0)−mk(dk)
.

Algorithm 2 Outline of a trust region method [87].
Input: Choose ∆max > 0, ∆0 ∈ (0,∆max) and κ ∈ [0, 1

4 ).
1: repeat
2: Obtain dk such that the model function mk(dk) is minimized and ||dk|| ≤∆k is satisfied.
3: Evaluate ratio ρk.
4: if ρk < 1

4 then
5: ∆k+1 = 1

4∆k.
6: else
7: if ρk > 3

4 and ||dk||=∆k then
8: ∆k+1 = min(2∆k,∆max).
9: else

10: ∆k+1 =∆k.
11: end if
12: end if
13: if ρk > κ then
14: xk+1 = xk+dk.
15: else
16: xk+1 = xk.
17: end if
18: k = k+1.
19: until convergence
20: return
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Depending on the ratio value, the size of the region will increase, decrease, or remain
the same (see Algorithm 2). Typically, the model function is a quadratic approximation
of the objective function. For nonlinear constraint problems, merit functions or filters
are used instead (cf. below).

Nowadays, there are several nonlinear optimization methods that are based on trust
regions strategies, such as KNITRO/CG, LANCELOT, and FILTERSQP.

Merit function

A merit function balances the conflicting goal of reducing the objective function and
satisfying the constraints. It is defined using a penalty parameter π > 0 which represents
the weight assigned to the satisfaction of the constraints [14]. Several alternative functions
to use as merit function are [87]:

• l1 merit function:

φ(x,π) = f(x)+π

(∑

i∈E
|ci(x)|+

∑

i∈I
[ci(x)]+

)
.

• Sum-of-squares merit function:

φ(x,π) = f(x)+ π

2

(∑

i∈E
ci(x)2 +

∑

i∈I
([ci(x)]+)2

)
.

• Fletcher’s augmented Lagrangian merit function:

φ(x,π) = f(x)−
∑

i∈E
λici(x)−

∑

i∈I
λi[ci(x)]+ + π

2

(∑

i∈E
ci(x)2 +

∑

i∈I
([ci(x)]+)2

)
.

The merit function is in charge of controlling the step length αk in line search methods,
and the ratio ρk in trust region methods. The penalty parameter is updated at every
iteration and it plays an important role in the convergence rate of the algorithm. For
different updating schemes, see for instance [119] and [32]. SNOPT and LOQO are
examples of nonlinear optimization software that use merit functions.

In particular, the implementation of both, TopSQP (Chapter 8) and TopIP (Chapter
9), are based on the l1-merit function with a very simple update rule for the penalty
parameter [87],

π = ||λ||∞.

Filters

The second mechanism to control the acceptance or rejection of the step is the use of
filters. It is based on multi-objective function since the idea is to minimize the objective
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function, but at the same time, satisfy the constraints [47]. In other words, both f(x)
and h(x) must be minimized, where

h(x) =
∑

i∈E
|ci(x)|+

∑

i∈I
[ci(x)]+.

Filters will accept a trial step depending on the value of the pair (fk,hk).

Definition 3.10. (from [87])

• A pair (fk,hk) is said to dominate another pair (fl,hl) if both fk ≤ fl and
hk ≤ hl.

• A filter is a list of pairs (fl,hl) such that no pair dominates any other.

• An iterate xk is said to be acceptable to the filter if (fk,hk) is not dominated by any
other pair in the filter.

Examples of nonlinear solvers with filter techniques are IPOPT and FILTERSQP.

3.2.2 Existence of solution of saddle-point problems

Some mathematical programming algorithms, such as interior point methods and some
QP solvers, require the solution of saddle-point systems. The saddle-point problem is
defined as the following linear system

W∆= F (3.6)

with

W =
[
A BT

1
B2 −C

]
.

Here, A and C are square matrices. The saddle-point must satisfy at least one of the
following conditions [12]:

• A is symmetric.

• 1
2(A+AT ) (symmetric part) is positive semi-definite.

• B1 = B2 = B.

• C is symmetric and positive definite.

• C = 0.
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The most typical scenario is when all the conditions are satisfied [12]. Examples of these
problems arise in Chapters 8 and 9.

For simplicity, let assume that A = H ∈ Rn×n is the Hessian of the Lagrangian func-
tion, C = 0 ∈ Rm×m, and B = J ∈ Rm×n is the Jacobian of the active constraints. In
this case, the matrix W is called the Karush-Kuhn-Tucker matrix. The next theorems
contain the requirements for a KKT matrix to ensure existence of solution of (3.6).

Theorem 3.5. (from [87]) Let J have a full row rank, and assume that the reduced-
Hessian matrix ZTHZ is positive definite. Then the KKT matrix W is nonsingular, and
hence there is a unique vector satisfying the linear system (3.6).

Here, Z ∈ Rn×n−m is a matrix which columns are a basis for the null-space of J [87].

Definition 3.11. (from [61]) The inertia of a symmetric matrix W is the triple (i+, i−, i0),
where i0, i+ and i− be the number of zero, positive and negative eigenvalues of W, re-
spectively.

Theorem 3.6. (from [87]) Suppose W is defined as (3.6) with A = H, C = 0, and B = J
the Jacobian of the constraints (full rank). Then

inertia(W) = inertia(ZTHZ)+(m,m,0).

Therefore, if ZTHZ is positive definite, inertia(W) = (n,m,0) [87].

In order to ensure the existence of solution of the saddle-point problem, the matrix
W must have the correct inertia. In the next sub-section, some methods available in the
literature to correct the inertia of these systems are cited. Nevertheless, in Chapters 8 and
9 the existence of solution of the KKT systems is assumed. The Hessian is approximated
using a positive definite matrix, thus, the reduced-Hessian is also positive definite, and
the inertia is always correct.

Saddle-point systems can be solved using direct methods [87], such as Schur comple-
ment, null-space methods, and LDL factorization, or using iterative methods (see Section
4). For more details of saddle-point problems and some existing techniques available to
solve them see the review article [12].

3.2.3 Dealing with nonconvex problems

In the previous sub-section, the importance of the inertia in a saddle-point problem has
been introduced. If the inertia of the KKT system in interior point methods is not correct,
the search direction may not be a descent direction (of a merit function, for instance).
Thus, the solver could end in a local maximum or a stationary point. Algorithms dealing
with nonconvex problems, such as interior point methods, need to modify or perturb the
saddle-point system to ensure the existence of solution. In addition, the QP sub-problems
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of SQP methods should generally be convex. There are many different ways of handling
the nonconvexity of the problems.

The easiest technique consists of adding a constant diagonal matrix to the Hessian
of the Lagrangian, big enough, such that the eigenvalues of the reduced-Hessian become
positive, i.e.,

Ĥ = H+γI
with
γ = max(0,−λmin(ZTHZ)+ ε).

Here, λmin refers to the minimum eigenvalue, I the identity matrix, and 1� ε > 0. More
details of this inertia correction strategy can be found in [87].

In the mid 1950s, a new algorithm was implemented to accelerate the iteration of
Newton’s method. This quasi-Newton’s method was proven to be more reliable and
fast than the classical Newton’s method. In particular, the BFGS (Broyden-Fletcher-
Godfarb-Shanno) method is one of the most popular quasi-Newton’s algorithms [85].
This method is nowadays commonly used to approximate the Hessian when there is no
available second-order information (or is computationally expensive). Software such as
IPOPT and SNOPT, use a limited memory BFGS approach to estimate the Hessian
[117] and [55]. Equation (3.7) outlines the general iterative process for obtaining a BFGS
approximation [87].

Bk+1 = Bk−
BksksTkBk

sTkBksk
+ ykyTk
yTk sk

with
sk = xk+1−xk,
yk =∇f(xk+1)−∇f(xk).

(3.7)

Inertia controlling methods are included in some algorithms where the linear system
has an incorrect inertia. Plenty of literature can be found in this regard, for instance
[45], [54], [53], [52], and [51], where LDL factorization techniques are detailed. Addi-
tionally, some modifications and perturbations to the KKT matrix are discussed in [67]
and in the implementation of the interior point method in IPOPT [117]. Finally, some
convexification strategies to obtain convex problems are explained in [58] and [60].

Nevertheless, Chapters 8 and 9 do not include any of the techniques mentioned above.
Instead, a convex approximation of the Hessian based on its specific mathematical struc-
ture is proposed. Part of the information of the exact Hessian is lost at the expense of
reducing computational effort.
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3.2.4 Other implementation techniques

Some features are often added to improve the practical performance of the algorithms.
For instance, it is common to include a corrector step in interior point algorithms [80].
The idea is to compensate the errors made due to the linearization by including two
steps namely, predictor and corrector steps [87]. It has been proved very effective for
linear and convex quadratic problems. The adaptive barrier parameter update strategy
in Chapter 9 is based on [86]. Here, the Mehrotra’s predictor-corrector method [80] is not
implemented since [86] states that it is not robust for nonlinear programming. Thus, the
proposed algorithm does not introduce it either.

The Maratos effect [79] is the phenomenon where the algorithm fails to converge fast
because it rejects steps that make progress towards the solution. The implementation
of general nonlinear solvers also needs the incorporation of some techniques to avoid
this issue. Examples of these strategies are, the use of second-order correction, the
use of different merit functions, and the flexibility of increasing the merit function in a
fixed number of iterations (called watchdog strategy) [87]. However, since the considered
problem formulation (P cN ) contains only linear constraints, this effect does not occur in
practice, see [25].

Finally, the algorithms need to deal with infeasibility and unboundedness of problems.
Some techniques to detect infeasible or unbounded problems are explained in the com-
parison study [11]. SNOPT software, for instance, forces a feasible starting point while
the interior point algorithms in KNITRO, LOQO, and IPOPT allow infeasible iterates
and detect infeasibility through line search, filters, or feasibility restoration phases, [116]
and [117]. Nevertheless, the proposed solvers in Chapter 8 and 9 assumed feasible and
bounded problems.

Some practical implementation details are included in Chapters 8 and 9 to produce
fast convergence. For instance, in TopSQP, the KKT conditions of some problems stall
in a value close to the optimal. To promote convergence in those cases, the maximum
possible step direction is taken without the backtracking (see Chapter 8). Furthermore,
the scaling of the problem plays an extremely important role in the efficiency of the
solvers. For more details of practical implementation in optimization, the text book [57]
is recommended.
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4
Iterative methods for solving linear systems

The computational effort of some optimization solvers, such as interior point methods, re-
lies on the solution of large-scale linear systems. The different existing techniques to solve
these systems can be classified in two main groups, namely direct and iterative methods
[57]. Direct methods are characterized for their robustness, but they have difficulties in
solving large-scale linear systems due to the amount of memory and time required. On
the other side, for this type of problems, iterative methods are particularly interesting
since they have lower storage need and are easier to parallelize [73]. Structural topology
optimization problems are characterized as large-scale problems involving millions of de-
grees of freedom. Thus, the performance of optimization methods is highly dependent on
the solution of very large-scale systems. This chapter outlines different iterative methods
available in the literature. More details of these techniques can be found in [12], [95], and
[73]. This introductory chapter serves as a lead to Chapter 9, where an efficient iterative
method to solve the KKT system of an interior point solver is proposed for the minimum
compliance problem.

Let us consider the linear system Ax = b. Iterative methods produce a sequence
of {xk} that is expected to converge to x = A−1b. Depending on how this sequence
of iterate points is defined, different techniques emerge, such as stationary iterations,
Krylov sub-space, and multigrid methods [73]. These approaches can be defined for both
positive definite and indefinite linear systems.

Most of these techniques terminate when the residual r= b−Ax is sufficiently small.
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In practice, the Euclidean-norm of the relative residual error is used, i.e.,

||r||2 = ||b−Ax||2
||b||2

≤ ε,

for some tolerance 1� ε > 0.

4.1 Stationary iterative methods

The Richardson [98] or stationary iteration is one of the simplest iterative techniques in
which the linear system Ax = b is modified into a linear fixed-point iteration as

x = (I−A)x+b.

In particular, these methods solve the more general iteration

xi+1 = Mxi+c. (4.1)

A common technique to obtain the above iteration, consists of splitting the matrix as
A = A1 +A2. Here, A1 is nonsingular, and the system A1y = q is easy to solve. Then,
the iteration matrix is defined as M =−A−1

1 A2 and c = A−1
1 b. This technique is called

preconditioned Richardson iteration [73].
Two of the most common and popular matrix splitting techniques are Jacobi and

Gauss-Seidel methods [73]. The matrix A is partitioned in three parts; the diagonal part
D, the upper triangular part U, and the lower triangular part L. In the first method,
the matrices are defined as A1 =D and A2 = L+U, while in Gauss-Seidel the partition
is A1 = U+D and A2 = L. Thus, Jacobi and Gauss-Seidel iterations are defined as

xi+1 =−D−1(L+U)xi+D−1b,

and
xi+1 =−(U+D)−1Lxi+(U+D)−1b,

respectively. These stationary methods are commonly used as preconditioner of other
more efficient iterative methods, such as Krylov sub-space methods, or as smoother
functions in multigrid cycles (cf. below) [105] and [73].

The convergence rate of stationary iterative methods depends on the condition num-
ber1 of the matrix A [73]. Preconditioner matrices will help to reduce the condition
number and, therefore, decrease the number of iterations needed to converge [73].

1(from [95]) The condition number κ of a matrix A with respect to a norm is given by

κ(A) = ||A||||A−1||.
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In particular, a stationary iteration method for structural topology optimization prob-
lems has been implemented in [68] and [69]. Here, the so-called right-transforming iter-
ation (see e.g. [99] and [126]) is applied to solve Newton’s systems in a SAND form of
topology optimization problems.

4.2 Krylov sub-space methods

Unlike the stationary iteration, Krylov sub-space methods [123] do not normally have
access to the whole matrix. They obtain the sequence of iterates from the history of
the previous iterations. These methods minimize the residual error over the affine space
x0 +Kk, where x0 is the initial iterate, r0 = b−Ax0 is the initial residual, and Kk =
span(r0,Ar0, . . . ,Ak−1r0) is the Krylov sub-space. The speed of convergence of Krylov
sub-space methods improves with respect to classical stationary iterations, although it
still depends on the condition number of the matrix [95]. Details of these algorithms,
implementation, and theoretical properties can be found in [73].

Examples of this type of iterative methods are the Conjugate Gradient (CG) method
[66] and the Generalized Minimal Residual (GMRES) method [96], among others. The
conjugate gradient method was developed in 1952, and is one of the most efficient meth-
ods for linear systems when the matrix is symmetric and positive definite. The basic
algorithm is described in Algorithm 3, where the matrix P is a preconditioner.

In contrast, GMRES can also be applied to non-symmetric and indefinite systems. It
is a generalization of the minimal residual algorithm (MINRES) [89] based on the Arnoldi
process to obtain the orthonormal vectors. Algorithm 4 outlines the GMRES method.

For large-scale structural topology optimization problems, PCG (Preconditioner Con-
jugate Gradient) is commonly used to solve the equilibrium equations, see for instance
[3]. In addition, Chapter 9 uses flexible GMRES (FGMRES, [94]) in combination with
efficient preconditioners. In this article, an indefinite linear system needs to be efficiently
solved at each interior point iteration.

4.3 Multigrid methods

Multigrid methods have been developed since 1964 [44], with a huge growth in the last
decades. In contrast to other methods, the number of iterations does not depend on
the condition of the matrix. Thus, these methods are characterized for their great effi-
ciency [124]. They are considered numerically scalable since the computational cost is
linearly dependent on the number of variables [3]. Multigrid methods are successfully
used in plenty of different applications, such as shape optimization of turbine blades [40],
computational fluid dynamics [125], and optimal control [105], among others.
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Algorithm 3 Conjugate Gradient using a general preconditioner [73].
Input: A,b,x0, tolerance ω, and max iter.
1: Initialization. r = b−Ax0, k = 1.
2: Preconditioner z = P−1r.
3: p = z.
4: repeat
5: w = Ap.
6: γ = rT z.
7: α= γ

wT p .
8: x = x+αp.
9: r = r−αw.

10: z = P−1r.
11: β = rT z

γ .
12: p = z+βp.
13: k = k+1.
14: rn= ||b−Ax||2/||b||2
15: if rn < ω then
16: convergence = true
17: end if
18: until convergence or k ≥ max iter.
19: return

In this section, a basic overview of geometric multigrid methods is presented, in which
hierarchical meshes with their corresponding discretizations are required. The theoretical
properties and convergence proofs are detailed in the monographs [21], [124], and [64].
Another type of multigrid methods, namely Algebraic Multigrid (AMG) methods, are
becoming very popular since unstructured meshes can efficiently be solved. More details
of this technique can be found in [81], [62], and [118].

The multigrid strategy combines two key parts, the smoothing and the coarse-grid
correction steps. The smoothing step reduces the high frequency error. The smooth
residual is used to obtain the solution of the system in a coarse grid. This estimation
is then prolonged to a finer mesh where the low frequencies are corrected again with a
smoother. Smoothing methods in multigrid algorithms are usually some kind of station-
ary iterative methods, such as Gauss-Seidel and Jacobi [124], [105], and [133]. However,
if the matrix A at level l is indefinite, the construction of an appropriate smoother is not
obvious and very problem dependent [12].

For the coarse-grid correction, some mappings are required to go from the coarse to
the fine grids. Let us consider l hierarchy meshes with the corresponding finite element
spaces V0 ⊂ V1 ⊂ . . .⊂ Vl and mesh sizes h0 ≥ h1 ≥ . . .≥ hl, respectively. The restriction
and prolongation operators are defined as follows,
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Algorithm 4 Generalized Minimal Residual method [73].
Input: A,b,x0, tolerance ω, max restart iter and max iter.
1: Initialization r = b−Ax0, e1 = (1,0, . . . ,0), and m= 1.
2: v1 = r

||r||2 and β = ||r||2.
3: repeat
4: vm+1 = Avm.
5: j = 1
6: repeat
7: hj,m = vTm+1vj .
8: vm+1 = vm+1−hj,mvj .
9: j = j+1.

10: until j ==m

11: hm+1,m = ||vm+1||2.
12: vm+1 = vm+1

hm+1,m
.

13: minimize ||βe1−Hmy|| to obtain ym.
14: Form the approximate solution xm = x0 +Vmym
15: r = b−Axm
16: rn= ||b−Axm||2/||b||2
17: if rn < ω then
18: convergence = true
19: end if
20: m=m+1.
21: if m=max restart iter then
22: Restart: x0 = xm, and v1 = r

||r||2 .
23: end if
24: until convergence or m≥max iter
25: return

Definition 4.1. (from [105]) The coarse-to-fine operator, called prolongation is

Ill−1 : Vl−1 −→ Vl.

The fine-to-coarse operator, called restriction is

Il−1
l : Vl −→ Vl−1.

One of the simplest ways to define the prolongation operation is through a linear
interpolation. The restriction is the inverse operation. Examples of these operators
can be found in [95] and [3]. Figure 4.1 represents both operators more visually with
a hierarchical discretization in 2D. The linear system to be solved at a given level l is
defined as

Alxl = bl.

Thus, the methods requires the matrix A at each level of discretization. This can be
generated either by assembling the matrix A for all the levels, or by using the Galerkin’s
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Figure 4.1: Example of three hierarchy levels of a 2D domain with the restriction and the
prolongation operators.
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Figure 4.2: Example of two different types of cycles in a multigrid algorithm with 4 levels
of hierarchy.

method, i.e.,
Al−1 = Il−1

l AlIll−1.

Algorithm 5 outlines one cycle of the multigrid method. For a general convergent
method, several cycles must be performed [124]. Figure 4.2 shows the effect of two differ-
ent cycles. Here, the parameter mc is either 2 (W-cycle) or 1 (V-cycle). The performance
of multigrid methods are highly affected by the selection of smoother (function S), the
number of pre-smoother and post-smoother iterations (ν1 and ν2), and the type of cycle
(mc).

This technique is already used as a method, but also as preconditioner in Krylov
sub-space methods for structural topology optimization problems, such as in [126], [40],
and [3]. Additionally, the multigrid cycle is used as a key part of the iterative method
implemented in Chapter 9.
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Algorithm 5 Multigrid cycle [17].
Input: x = MC(Al,bl,xl, l, ν1, ν2, mc)
1: if l == 0 then
2: Solve the problem: x0 = A−1

0 b0.
3: return
4: end if
5: Pre-smoothing step: xl = S(Al,bl,xl, ν1).
6: Grid correction: rl = Alxl−bl.
7: Restriction step: rl−1 = Il−1

l rl.
8: Al−1 = Il−1

l AlIll−1 .
9: Initialize c= 1, xl−1 = 0.

10: repeat
11: xl−1 = MC(Al−1,rl−1, xl−1, l−1,ν1, ν2, mc).
12: c= c+1.
13: until c=mc

14: Prolongation step: xl = xl− Ill−1xl−1.
15: Post-smoothing step: xl = S(Al,bl,xl, ν2).
16: return
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5
Contributions and conclusions

This thesis thoroughly investigates some state-of-the-art nonlinear optimization algo-
rithms for structural topology optimization problems. First of all, an extensive bench-
marking study is carried out in order to establish whether general nonlinear algorithms
outperform classical structural topology optimization methods. The results presented
in Chapter 6 motivate the work of this thesis. The benchmarking study strongly rec-
ommends the use of the exact Hessian to produce designs with good objective function
values and to reduce the number of iterations. The benchmarking also reinforces the
initial belief, in which general nonlinear optimization methods can be at least as efficient
and robust as classical structural optimization solvers.

Based on these results, a Sequential Quadratic Programming method, namely Top-
SQP, is implemented for the minimum compliance problem (Chapter 8). In order to
promote fast convergence and reduce the objective function value, second-order informa-
tion is used. The Hessian of the compliance is approximated with a positive and semi-
definite matrix based on its structure. This approximation is used to properly define
the sub-problems. In addition, the mathematical structure of the Hessian is exploited to
reduce both computational time and memory usage. The proposed TopSQP is a robust
method that obtains optimized designs using few iterations. However, its main draw-
back is the computational time spent in solving the inequality quadratic sub-problem.
These sub-problems can be solved using several algorithms, for instance, interior point
methods. Interior point algorithms solve a sequence of large-scale saddle-point systems
in which they spend most of the computational effort. Chapter 9 investigates efficient
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iterative methods to solve the saddle-point problem arising in interior point methods for
the minimum compliance problem. Particularly, Krylov sub-space methods are combined
with different preconditioners such as multigrid cycles, to develop an efficient and robust
large-scale method for the KKT system. The interior point method presented in Chapter
9, namely TopIP, solves large-scale 3D minimum compliance problems.

In parallel with the implementation of state-of-the-art nonlinear optimization solvers,
a comparative study of continuation methods is performed. Continuation methods are
considered one of the best alternatives to decrease the chances of ending in a local mini-
mum. Chapter 7 assesses the effectiveness of the continuation technique. This technique
improves the final designs, but the computational time considerably increases. Thus,
a new alternative to be able to produce better designs without consuming so much it-
erations (and therefore computational time) is proposed. The automatic penalty con-
tinuation approach includes the material penalization parameter as an extra variable in
the optimization problem. This new formulation of the problem reduces not only the
objective function value, but also the number of iterations.

The remainder of the chapter elaborates in more detail the main conclusions and
contributions of the articles collected in the thesis. Furthermore, some recommendations
for future work are gathered at the end of the chapter.

5.1 Contributions and conclusions

Benchmarking optimization solvers for structural topology optimization

Methods such as MMA and OC were specially implemented to be used in optimal design.
They are extensively used in commercial software and in academic research codes. Since
topology optimization problems are defined as nonlinear problems, we strongly believe
that the use of the state-of-the-art optimization software could (and should) outperform
these classical and first-order structural optimization solvers.

The goal of this paper is to perform extensive numerical tests and compare structural
solvers such as MMA, GCMMA, and the OC method, with existing general purpose non-
linear optimization methods, such as the interior point methods in IPOPT and MAT-
LAB, and the sequential quadratic programming method in SNOPT. For the first time
in this field, general nonlinear solvers are compared with the classical structural topology
optimization solvers on a large test set of benchmark problems.

Extensive numerical results are presented using performance profiles. In the numerical
optimization field, performance profiles are used to illustratively compare optimization
methods and formulations. This tool shows the results "at-a-glance" by comparing the
relative ratio of performance for a certain criterion. The criteria considered to evalu-
ate the solvers are the number of iterations, the objective function value, the number

46



CHAPTER 5. CONTRIBUTIONS AND CONCLUSIONS

of stiffness matrix assemblies, and the computational time. With the aim of producing
representative and fair results, a large test set is defined, gathering 225 minimum com-
pliance and minimum volume problems, and 150 compliance mechanism design problem
instances.

The numerical experiments show that the interior point solver IPOPT applied to the
SAND formulation (in which the exact second-order information is used), outperforms
MMA and GCMMA both in terms of the objective function value and the number of func-
tion evaluations. In addition, SNOPT (SQP solver) in the nested formulation requires
very few iterations.

The article motivates the investigation of general nonlinear solvers such as interior
point and sequential quadratic programming methods for specific topology optimization
purposes. These results emphasize the need of using second-order information to reduce
the objective function values and improve the convergence rate.

Automatic penalty continuation in structural topology optimization

Structural topology optimization problems are commonly defined based on material in-
terpolation schemes. The design variables of the discretized problem can take any value
between zero and one. The topology optimization problem becomes nonconvex when the
intermediate densities are penalized with techniques such as SIMP and RAMP. A con-
tinuation strategy in the material penalization parameter is often used to avoid ending
in a poor local optimum. This approach solves a sequence of optimization problems with
different material penalization parameter values. The value of the parameter is gradually
increasing, and the solution of the optimization solver is used as starting point for the
next optimization problem.

The purpose of this article can be divided in two. Firstly, a benchmarking study of
representative continuation methods and the classical formulation in topology optimiza-
tion problems is performed. Based on the previous article, the results are collected using
performance profiles and the test set of 225 minimum compliance and 150 compliant
mechanism design problems. Indeed, the numerical experiments reflect better perfor-
mance of continuation methods for the objective function value. However, the number
of iterations and the computational time are remarkably large.

Based on these results, the second part of the article proposes an automatic contin-
uation method. Instead of solving a sequence of optimization problems, the automatic
continuation approach solves one problem in which the penalization parameter is consid-
ered as a new variable. Thus, the design and the penalization parameter simultaneously
change. This new formulation includes only one extra nonlinear constraint to enforce the
increase of the penalization parameter.

Since both the objective function and the number of iterations decrease compared
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to classical formulations, the automatic continuation approach is considered a very good
alternative to continuation methods.

An efficient second-order SQP method for structural topology optimiza-
tion

The use of second-order optimization solvers such as interior point and sequential quadratic
programming methods has not been commonly adopted by the structural optimization
community. Nevertheless, the results of the first article motivate the introduction of
second-order optimization methods in the field.

A special-purpose SQP method, namely TopSQP, is proposed for the minimum com-
pliance problem. It contains two phases, an inequality and an equality quadratic phase.
The inequality constrained convex quadratic sub-problem estimates the set of active con-
straints. The equality constrained quadratic sub-problem promotes fast convergence. In
both phases, the TopSQP uses second-order information.

Since the Hessian of the compliance is dense, and for some designs indefinite, an
approximate positive semi-definite Hessian is defined. It is obtained by removing the
potentially nonconvex part from the exact Hessian. Moreover, the sub-problems are
reformulated based on their specific mathematical structure, avoiding the storage of the
Hessian and consequently, significantly improving the efficiency of the method.

The performance of the proposed TopSQPmethod is compared with GCMMA, SNOPT,
and IPOPT using the same test set of 225 medium-sized topology optimization problem
instances defined in Chapter 6. Performance profiles confirm that the use of information
based on the exact Hessian is decisive to produce good optimized designs (with low KKT
error). TopSQP obtains better objective function values and uses fewer iterations than
classical first-order structural optimization solvers. On the other hand, the proposed
method demands a lot of computational time. In particular, most of the time is spent in
the solution of the inequality quadratic sub-problem. Efficient solvers must be developed
for solving this type of large-scale problems.

Solving large-scale structural topology optimization problems using a
second-order interior point method

Based on the previous studies, we conclude that the use of second-order information
reduces the number of function evaluations at the expense of increasing the computational
time. The computational effort of some of these methods is principally focused on the
solution of large-scale indefinite linear systems. Thus, the cost of second-order methods
can be reduced to the cost of solving linear systems.

This article implements and develops an efficient iterative method integrated in an
interior point method for large-scale minimum compliance problems. The proposed inte-
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rior point method, namely TopIP, is based on an adaptive strategy, in which the barrier
parameter is updated every iteration. The most expensive step in interior point meth-
ods is the computation of the search direction. The proposed iterative method solves
the KKT system by combining some of the state-of-the-art iterative strategies, such as
Krylov sub-space methods, block preconditioners, and multigrid methods. The KKT sys-
tem contains the Hessian of the compliance. The same approximation and reformulation
as in Chapter 8 is done to formulate the saddle-point problem with only sparse matrices.

Large-scale 3D minimum compliance problems are presented in the numerical experi-
ments. The results show the robustness of the proposed iterative method. The number of
iterative iterations remains constant along the optimization process. Additionally, TopIP
converges to good designs using, in general, less than 100 iterations. Problems with more
than three million degrees of freedom can now be solved using second-order methods.

General contributions and impact of the thesis

The most important contributions from our point of view, are gathered in the following
points:

• Introduction of performance profiles in the topology optimization field.

• Extensive benchmarking study of the performance of classical structural optimiza-
tion solvers and general nonlinear optimization methods in structural topology
optimization problems.

• Reliable results concluding that second-order information is decisive to produce
accurate and good designs and improve the convergence rate.

• Introduction, implementation, and benchmarking of an automatic continuation ap-
proach to reduce the chances of ending in local minima. It improves the optimized
designs and at the same time reduces the number of function evaluations.

• Definition of a positive semi-definite approximate Hessian of the compliance based
on its specific mathematical structure.

• Implementation and benchmarking of an efficient sequential quadratic program-
ming method for the minimum compliance problem.

• Reformulation of quadratic sub-problems in the TopSQP method to reduce the
computational effort based on the specific mathematical structure of the problem.

• Implementation and benchmarking of an interior point method for the minimum
compliance problem.

• Implementation and benchmarking of an efficient and robust iterative method for
solving large-scale structural topology optimization problems.
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5.2 Future work

As far as solving topology optimization problems with second-order methods concerns,
there are several challenges to deal with. In this dissemination we discuss how to approx-
imate the Hessian and how to efficiently solve QP problems and saddle-point systems.
The thesis thus provides a step towards the introduction and development of second-order
methods in the field. There is, however, plenty of room to investigate new methods and
approximations for many other problems and formulations. For instance, the methods
can be implemented to handle more and possibly nonlinear constraints, such as stress
constraints, or to efficiently solve SAND formulations, among other possibilities. This
section presents several topics for possible future research.

The discussion is limited to the minimum compliance problem in the nested formu-
lation. Future work must be done to answer the above questions for other topology
optimization problems, such as compliant mechanism design problems in which the Hes-
sian is more complicated to approximate.

The proposed formulation uses the SIMP material penalization approach and a den-
sity filter as regularization technique. In addition, the domain is discretized using a
standard finite element model, generally used for academic purposes. The final imple-
mentation of both TopSQP and TopIP must be able to handle more general meshes as
well as different regularization techniques, such as PDE filters and projection filters. For
instance, the proposed solvers could handle ABAQUS or ANSYS (finite element analysis
software) input files to solve more complex and industrial problems.

Regarding the benchmarking study, the solvers are compared using a medium-size
test set of problems. Further investigations need to be done to assess the performance
of the optimization methods in a large-scale test set in order to obtain more reliable
results for practical applications. The size of the problems may significantly affect the
performance of the solvers. In addition, this work could answer the question of which
is the best formulation of the problem (SAND or nested) for very large-scale problems.
Moreover, the methods can be tested for difficult starting points and design domains to
study their robustness and convergence rate.

It seems particularly interesting to extend the solvers to be able to handle nonlinear
constraints, and thus, to apply the proposed methods to real and practical applications.
However, infeasibility control techniques are needed since the considered problem (mini-
mum compliance in the nested form) is bounded and feasible, and neither TopSQP nor
TopIP study how to deal with infeasible and unbounded problems. Moreover, there is
plenty of room to improve the line search strategy implemented in the solvers, as well
as the choice of a merit function, the penalty parameter update method, and the barrier
parameter update scheme (for TopIP). In addition, the mentioned nonlinear methods can
be tested for structural topology optimization problems using also trust region methods
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and filter techniques.
Issues with the scaling of the problem were observed throughout the four articles.

The scaling of the problem was controlled with the Young’s modulus parameters E1 and
Ev. However, the Young’s modulus contrast (E1/Ev) established in the thesis is smaller
than the commonly observed in the literature. Further investigation should be done to
allow different Young’s moduli values.

Hopefully, the promising results presented in the thesis can stimulate further research
towards the development of more efficient and fast iterative methods that can facilitate
the solution of very large-scale problems. For instance, the investigation of inexpensive
and robust smoother functions may be interesting to develop a multigrid method for
solving the saddle-point system in interior point methods, and thus, reduce the compu-
tational time of TopIP. Moreover, the iterative method needs to be extended to handle
unstructured meshes. Therefore, the geometric multigrid cycle must be replaced by al-
gebraic multigrid methods.

Additionally, TopSQP and TopIP are written in MATLAB without the use of parallel
linear algebra libraries such as PETSc or ScaLAPACK. The code must be improved and
parallelized in order to solve very large-scale problem efficiently. Moreover, an easy
and user-friendly interface should be prepared to be able to use them for research and
commercial purposes.

In parallel with these improvements, the solvers should be extended to include the
automatic continuation approach, to reduce the objective function value even more. Ul-
timately, TopIP can be introduced in TopSQP for solving the IQP sub-problem. This
combination might help to produce good and fast 3D large-scale optimized designs.

Based on the numerical experiments in this thesis, and extending the code with the
mentioned suggestions, we are hopeful that the proposed methods can be accepted in the
structural topology optimization community.
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Abstract

The purpose of this article is to benchmark different optimization solvers when
applied to various finite element based structural topology optimization problems.
An extensive and representative library of minimum compliance, minimum volume,
and mechanism design problem instances for different sizes is developed for this
benchmarking. The problems are based on a material interpolation scheme combined
with a density filter.

Different optimization solvers including Optimality Criteria (OC), the Method
of Moving Asymptotes (MMA) and its globally convergent version GCMMA, the
interior point solvers in IPOPT and FMINCON, and the sequential quadratic
programming method in SNOPT, are benchmarked on the library using
performance profiles. Whenever possible the methods are applied to both the
nested and the Simultaneous Analysis and Design (SAND) formulations of the
problem.

The performance profiles conclude that general solvers are as efficient and
reliable as classical structural topology optimization solvers. Moreover, the use of
the exact Hessians in SAND formulations, generally produce designs with better
objective function values. However, with the benchmarked implementations,
solving SAND formulations consumes more computational time than solving the
corresponding nested formulations.
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1 Introduction

Structural topology optimization problems determine the optimal distribution of material
in a given design domain that minimizes an objective function under certain constraints.
The continuum design problem is often discretized using finite elements and a design
variable is associated with each finite element. A detailed description of this approach
for topology optimization problems can be found in e.g [6]. Since topology optimization
problems are examples of large-scale nonlinear optimization problems, it is possible to
solve them using a large variety of different numerical optimization methods.

Some first-order methods which are well-established in the topology optimization
community are the Method of Moving Asymptotes (MMA) [43] and [54], its globally
convergent version GCMMA [44], and the Convex Linearization (CONLIN) method
[22]. However, general methods such as primal-dual interior point [23] and Sequential
Quadratic Programming (SQP) [8] methods, are also applicable to these optimization
problems.

The main purpose of this article is to assess combinations of optimization methods
and formulations in topology optimization problems to see their performance and study
if they are efficient and reliable for this class of problems. The interior point methods
implemented in IPOPT [47] and MATLAB’s FMINCON [45], and the SQP method in
SNOPT [24], are compared with the commonly used topology optimization methods
Optimality Criteria (OC) [37], [53], and [2], MMA, and GCMMA.

Three classes of structural topology optimization problems, which often appear in the
literature, are taken into account. We study minimum compliance, minimum volume,
and compliant mechanism design problems as described in e.g. [6]. It is suggested in
[41] that in order to generalize the results and have reliable conclusions, an algorithm
must be tested using several problems. It is expected to obtain differences between the
formulations of the problem as well as differences in the performance of the methods for
the three classes of problems.

In order to generalize the results, several equivalent problem formulations are
evaluated. Both the nested approach in which the displacements are functions of the
design variables, and the Simultaneous Analysis and Design (SAND) approach in which
the displacements and design are independent variables, are used. SAND formulations
have the advantages that both gradients and Hessians of the objective and constraints
functions are easily computed without the need of solving the equilibrium equations
and adjoint equations. Furthermore, the Hessian of the Lagrangian is, in general, a
sparse matrix. The apparent disadvantage is the potentially significant increase in the
size of the problems, both in terms of variables and constraints. Nested formulations
have the advantage of reduced size at the expense of more complicated and more
expensive sensitivity analysis. Moreover, second-order information is, in general,
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1 INTRODUCTION

computationally and memory wise much too expensive, and can thus, disqualify fast
second-order methods. More details of the advantages and disadvantages of these two
approaches are listed in the review [3].

Between all possible alternatives to define the discretized topology optimization
problem, we formulate it using continuous design variables. The Solid Isotropic
Material with Penalization (SIMP) material interpolation scheme is chosen to penalize
intermediate densities values [5]. The RAMP (Rational Approximation of Material
Properties) interpolation scheme [42] was also considered and implemented but it was
removed in the final benchmark since the results were very similar. Finally, the density
filter technique described in e.g. [12] is used to ensure existence of solutions and to
avoid checker-board patterns in the final design.

We are aware of the limitations of this benchmark. Only one approach to parametrize
the topology and one material interpolation scheme with a density filter is used for the
material modelling and regularization. Other possibilities are the use of level sets see e.g.
[50], or other mesh-independence techniques such as perimeter control [26]. We decided
to focus on the performance of the solvers using one classic approach and deepen the
investigation in the behaviour of the solvers in a large test set, rather than study the
performance for different topology optimization formulations.

Therefore, one of the most important targets of this article, is to produce useful, clear,
and fair results. The state-of-art technique for benchmarking optimization solvers, called
performance profiles [19], is used on an illustrative and large set of topology optimization
problems. A specific benchmark library has created for this study. Moreover, in Section
4.4 this library is defined in detail. In this test set, some typical 2D test examples are
collected from the literature, gathering over different problem instances for minimum
compliance, minimum volume and for mechanism design problems. The design domains,
boundary conditions and external loads are taken from the literature such as [40] [4],
[13], [2], [14], [6], [48], [39], [18], and [38].

Performance profiles have already been extensively used in [7] for a comparative
study of different large-scale nonlinear optimization algorithms such as the interior
point algorithm LOQO [46] and KNITRO [16], and the SQP method SNOPT. The test
set used for this benchmarking came from CUTE [10] and COPS [9], two general
benchmark libraries with equality and inequality constrained nonlinear problems.
Performance profiles were also used in [19] where LANCELOT [17], MINOS [34],
SNOPT, and LOQO are compared on the COPS benchmarking library.

Finally, this article is focused on medium-size problems since our implementation is
in MATLAB and some of the solvers require, due to their particular implementations,
large amounts of memory. Several articles develop techniques for solving large-scale
topology optimization problems focused mostly on 3D design domains. The
computational bottleneck of these problems is the computation of the solution of

3



large-scale linear systems such as the equilibrium equations in the nested formulation
and the saddle-point system in the SAND formulations. Techniques capable of solving
large-scale problems are presented in e.g. [51], [21], and [11].

The paper is organized as follows. Section 2 presents the fundamentals of the
topology optimization problems and the different formulations. Section 3 reports the
implementation and methods used in the benchmarking. Section 4 introduces the test
set of topology optimization problems, explains the performance profiles as well as
describes some aspects to consider before the benchmark. Section 5 reports the
numerical results. Finally, Sections 6 and 7 conclude with the limitations of our
benchmark and collect the main results, our final recommendations, and topics for
future research.

2 Problem formulations

Structural topology design problems consist of obtaining a material distribution in a fixed
design domain with boundary conditions and external loads.

The classical formulation of the problem is minimizing the compliance of the
structure, considering a volume constraint, see e.g. [6]. However, it is also possible, and
sometimes desirable, to formulate topology optimization problems as minimizing the
structural volume (or mass) subject to a compliance constraint [13]. In addition,
compliant mechanism design problems are included in this benchmarking study. These
problems are considered in e.g. [39]. In practice, these problems are modelled by
discretizing the design domain using finite elements and coupling one design variable to
each element. This section describes the mathematical formulation for these
optimization problems.

2.1 Minimum compliance problems

Minimizing the compliance is equivalent to maximizing the global stiffness of the structure
for the given external load. The linear elastic equilibrium equation obtained by applying
the finite element method to the underlying partial differential equation must be satisfied
in the final design. The equilibrium equations are modelled as

K(t)u− f = 0, (1)

where u∈Rd is the state variable (nodal displacements) and t∈Rn is the design variable.
Throughout this article the design variables represent relative density of the material in
each finite element. Furthermore, f ∈ Rd is the design independent external load, d the
degrees of freedom, and n the number of elements. The stiffness matrix is K(t) : Rn→
Rd×d, and we assume it is positive definite for all designs satisfying the variable box
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constraints in order to avoid ill-conditioning i.e. K(t)� 0 for all t such that 0≤ t≤ 1. A
small positive value is included in the definition of the stiffness matrix to avoid singularity
for those densities equal to zero (cf. below).

There are different ways of modelling the optimization problem. In the first
approach, the compliance is minimized over the design variables (density) and the state
variables (displacements). They are considered as independent variables. In addition,
the equilibrium equations are explicitly included as equality constraints. Thus, the
formulation (P c

S) is commonly called SAND (Simultaneous Analysis and Design), see
e.g [3]. The discrete form of the problem is

minimize
t,u

fTu

subject to K(t)u− f = 0
aT t≤ V
0≤ t≤ 1.

(P c
S)

The relative volume of the elements is defined with a ∈ Rn with ai > 0. Finally,
0< V ≤ 1 is the volume fraction upper limit. The problem (P c

S) is defined with a linear
objective function, nonlinear equality constraints and a linear inequality constraint.
Topology optimization problems, such as (P c

S) are generally characterized as nonconvex
problems.

An alternative approach is to model the objective as a nonlinear function. The
external load f is defined as K(t)u, by the equilibrium equation (1). This formulation,
which is equivalent to (P c

SNL), is called SAND nonlinear (SANDNL),

minimize
t,u

uTK(t)u

subject to K(t)u− f = 0
aT t≤ V
0≤ t≤ 1.

(P c
SNL)

The name is given since the objective function is nonlinear and nonconvex, in general,
due to the definition of the stiffness matrix. In the numerical experiments we do not
include this formulation. The performance of the solvers is very similar to the SAND
formulation (see Section 5).

The number of constraints and variables can be reduced if the problem is formulated
using only the design variable. The displacement caused by the force is determined by
the equilibrium equation (1),

u(t) = K−1(t)f. (2)
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The state problem is thus solved during the objective function evaluation, and the
minimum compliance problem can equivalently be written in the nested formulation

minimize
t

uT (t)K(t)u(t) (or fTK−1(t)f)
subject to aT t≤ V

0≤ t≤ 1,
(P c

N )

The formulation (P c
N ) has only linear inequality constraints with a nonlinear, and

generally nonconvex, objective function, and it is the classic formulation in the topology
optimization field, see e.g. [6].

The main advantage of the nested approach is that the number of variables and
constraints are much smaller than in the SAND approach. However, the evaluation of
the objective, gradient, and Hessian functions, is more costly. In these functions, the
inverse of the stiffness matrix is involved which is computational expensive.

2.2 Minimum volume problems

Structural topology optimization problems can also be formulated as the minimization
of the volume of the structure with a restriction on the compliance [13]. Similar to the
minimum compliance problem (P c

S), the SAND formulation for minimum volume (Pw
S )

is
minimize

t,u
aT t

subject to K(t) u− f = 0
fTu≤ C
0≤ t≤ 1,

(Pw
S )

where C > 0 is a given upper bound of the compliance. In the nested formulation (Pw
N ),

the equilibrium equation is satisfied in the nonlinear inequality constraint (compliance
constraint)

minimize
t

aT t
subject to uT (t)K(t)u(t)≤ C

0≤ t≤ 1.
(Pw

N )

Finally, the SANDNL formulation (Pw
SNL) has nonlinear equality and inequality

constraints.
minimize

t,u
aT t

subject to K(t)u− f = 0
uTK(t)u≤ C
0≤ t≤ 1.

(Pw
SNL)

For minimum volume problems, the objective function is linear and the nonlinearity
appears in the constraints.
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2.3 Compliant mechanism design problems

Compliant mechanism design consists of building a mechanism with some flexible
elements in order to gain mobility. The goal is to maximize the displacement where the
output spring is located given an input force (fin) and input and output spring stiffness
(kin, kout). The objective function is defined by the use of a unit length vector (l) with
zeros in all the degrees of freedom except in the output degree of freedom. We assume a
linear model for the equilibrium equation as in the minimum compliance or minimum
volume even if there are several limitations with this approach [6]. The nested
formulation of the considered mechanism design problem is

maximize
t

lTu(t)
subject to aT t≤ V

0≤ t≤ 1,
(Pm

N )

where the objective function is nonlinear (and nonconvex) and has only one linear
inequality constraint. The SAND formulation is defined with a linear objective
function, linear inequality constraint and nonlinear equality constraints,

maximize
t,u

lTu

subject to K(t)u− f = 0
aT t≤ V
0≤ t≤ 1.

(Pm
S )

2.4 Topology optimization approaches

The goal of the optimization process is often to obtain a close-to solid or void design
representing both the topology and the shape of a structure. Material interpolation
models are very popular in topology optimization to convert the 0-1 problem into a
nonlinear continuous problem. These models usually use penalization schemes to find
good designs [6]. The SIMP material interpolation scheme is one of the most common
approaches. In this model, the density t is replaced by a power law, see [5] and [6] among
many others.

On the other hand, it is well-known that the continuum problem has a lack of
solutions in general [6]. Another important difficulty in topology optimization problems
is the appearance of checker-boards. The SIMP approach does not resolve these issues.
However, an efficient technique to avoid these problems is the use of filters, that ensures
regularity and existence of a solutions, see e.g. [12]. Specifically, the density filter is
considered in this article. Given one element, its density variable depends on a weighted
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average over the neighbours in a radius rmin.

t̃e = 1
∑

i∈Ne
Hei

∑

i∈Ne

Heiti

Hei = max(0, rmin−∆(e, i))
(3)

Here, t̃e is the transformed density variable of element e, Ne the set of elements for which
the distance to element i (defined by ∆(e, i)) is smaller than the filter radius rmin. In
practice, this concrete value is taken from [2], rmin = 0.04Lx, where Lx is the length of
the design domain in the x direction.

The modified stiffness matrix using density filter and SIMP penalization is

K(t) =
n∑

e=1
(Ev +(E1−Ev)t̃pe)Ke (4)

where p ≥ 1 and Ev > 0 and E1 � Ev are Young’s modulus of the "void" and solid
material, respectively. The parameter Ev is included to avoid ill-conditioning when the
density variable is equal to zero, as previously mentioned. This formulation has proven
particularly efficient in many cases [6]. More details about this interpolation is given in
[4]. In practice, SIMP typically has a penalization parameter value chosen to be p = 3,
see e.g [2] and [6]. This value is used in the numerical experiments (cf. below).

3 Implementation

This section contains all relevant information required to reproduce the numerical results.
It includes a brief description of the solvers used in the benchmarking as well as the details
of the implementation such as the finite elements, the stopping criteria, and the setting
of the parameters.

3.1 Chosen optimization methods

Structural topology optimization problems are usually solved using sequential convex
approximation methods such as the Method of Moving Asymptotes (MMA) [43] or the
Globally Convergent Method of Moving Asymptotes (GCMMA) [44]. These methods
were used for structural topology optimization in e.g. [41], [48], and [18], among many
others.

These methods generally require one evaluation of the objective and constraint
functions and their derivatives at each iteration. GCMMA includes inner iterations,
making the approximations more conservative, to force global convergence to a KKT
(Karush-Kuhn-Tucker) point. These methods are only applicable for optimization
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3 IMPLEMENTATION

problems with inequality constraints1, which means that only the nested formulations
can be solved with them.

In addition, the nested formulations can also be solved using the Optimality Criteria
(OC) method [37], [53], and [6] among others. It is valid only when the gradient of the
objective function is negative, thus it is not possible to implement it for minimum volume
problems. In particular, we use the 88-lines code from [2] and the 104-lines code from [6]
for the OC method for minimum compliance and compliant mechanism design problems,
respectively.

However, since topology optimization are nonlinear optimization problems, it is
possible to use state-of-the-art second-order solvers to solve them. Two
implementations of primal-dual interior point solvers, IPOPT [47] and FMINCON [45],
and a sequential quadratic programming solver SNOPT [24] version 7, are tested for
topology optimization problems. IPOPT is a primal-dual interior point software library
for large-scale nonlinear optimization problems that uses a line-search based on filter
methods. SNOPT is also a general large-scale optimization solver that uses a sequential
quadratic programming algorithm. Finally, FMINCON is a set of nonlinear
optimization algorithms in MATLAB. These three optimization methods all have
MATLAB interfaces, are popular, and have been extensively benchmarked in the
optimization community, see e.g. [7] and [32]. Moreover, IPOPT and SNOPT have
already used for certain topology optimization problems in e.g. [15] and [28]. These
solvers accept both equality and inequality constraints, hence it is possible to
benchmark the SAND formulation. For those solvers that can use exact Hessian
(IPOPT and FMINCON), it is much simpler and cheaper to compute it in the SAND
than in the nested approach. For the nested formulation, the default linear solver
MUMPS [1] is used in IPOPT to compute the search direction while for the SAND
formulation, MA27 is used [20]. The IPOPT version used is 3.11.1.

3.2 Finite element analysis

The design domains of the benchmark library created for this study (cf. below), are all
2D and discretized by square finite elements. It is assumed that the domain is rectangular
and each element has four nodes with two degrees of freedom per node. A 2 by 2 Gaussian
integration rule is used in the computation of the stiffness matrix. This Q4 interpolation
of displacements is identical to that implemented in [2].

1There are implementations of these methods which do allow equality constraints see e.g. [52] and
[49]. However, to the best of our knowledge there are no numerical results suggesting that these methods
can be used to solve SAND formulation of topology optimization problems.
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3.3 Stopping criteria

For a general nonlinear optimization problem

minimize
x

f(x)
subject to hi(x) = 0 i= 1, . . . ,m

gi(x)≤ 0 i= 1, . . . , t,
(5)

the Lagrangian function is

L(x,λ,µ) = f(x)+
m∑

i

λihi(x)+
t∑

i

µigi(x), (6)

where λ and µ are the Lagrangian multipliers of the equality and inequality constraints,
respectively. A primal-dual solution (x,λ,µ) of problem (5), should satisfy the Karush-
Kuhn-Tucker (KKT) optimality conditions [33].

∇L(x∗,λ∗,µ∗) = 0 (7)
hi(x∗) = 0 i= 1, . . . ,m (8)
gi(x∗)≤ 0 i= 1, . . . , t (9)

µ∗i ≥ 0 i= 1, . . . , t (10)
µ∗i gi(x∗) = 0 i= 1, . . . , t. (11)

Equation (7) is the stationary condition, (8) and (9) are the primal feasibility condition,
(10) is the dual feasibility condition, and (11) contains the complementarity condition.
In practice, we assume that the KKT conditions are numerically satisfied if the Euclidean
norm of the equations is lower than a given positive tolerance ω. In the same way, the
primal feasibility conditions are satisfied if the Euclidean norm is lower than some given
positive tolerance η. These tolerances will significantly affect the final design.

The solvers MMA, GCMMA, IPOPT, SNOPT and FMINCON have different
implementations of the optimality conditions (different scalings and norms).
Nevertheless, at the end of the optimization process the KKT error is measured for all
of them using (7)-(11) to be consistent in the future comparison of the solvers.

The solvers will try to obtain a design until the feasibility error and the optimality
conditions are lower than certain specified tolerances (ω and η, respectively). The value
of ω is, in this benchmark, set differently for the first- and second-order methods2,
respectively. IPOPT, FMINCON and SNOPT are generally able to satisfy the KKT

2MMA and GCMMA are considered as first-order methods. IPOPT, SNOPT and FMINCON are
considered as second-order methods even though for certain problem formulations, limited memory BFGS
(Broyden-Fletcher-Goldfarb-Shanno) is used to approximate the Hessian of the Lagrangian.
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3 IMPLEMENTATION

Table 1: Parameter names, description and values of the convergence criteria.

Solver Parameter Description Value

MMA, GCMMA kkt tol Euclidean norm of the KKT error 10−4

IPOPT tol Tolerance of the NLP error 10−6

SNOPT Major optimality Final accuracy of the dual variable 10−6

tolerance
FMINCON TolFun Tolerance on the function value 10−6

OC change Difference in the design variable 10−4

OC, MMA, GCMMA feas tol Euclidean norm of the feasibility error 10−8

IPOPT constr viol tol Tolerance of the constraint violation 10−8

SNOPT Major feasibility Tolerance of the nonlinear constraint violation 10−8

tolerance
FMINCON TolCon Tolerance of the constraint violation 10−8

conditions with a very small tolerance, while first-order methods such as MMA and
GCMMA generally require larger tolerances. This is highlighted in Table 1.

It is important to remark that the 88-line code OC solver is a special case because
it does not compute estimates of the Lagrangian multipliers and does not compute the
KKT error. This method stops because of the feasibility error and by the parameter
called change [2]. This parameter measures the difference between the updated and the
old design variable ||tk− tk−1||∞.

Table 1 collects the tolerance parameter for the convergence of the solvers.

3.3.1 Termination control

We have established some maximum values to avoid the situation that the solvers run
indefinitely in case they stop making progress towards a KKT point and they are
unable to obtain a design with the requested accuracy. For instance, we limited the
maximum number of iterations (number of sub-problems solved), the maximum number
of functions evaluations (FMINCON), the maximum number of stiffness matrix
assemblies (OC, MMA and GCMMA) and the maximum CPU time (IPOPT). The
values for mechanism design problems are set to three times more than for minimum
compliance and minimum volume due to their difficulty. Table 2 gathers the values of
these parameters.

3.4 Starting points

An important aspect that could affect the performance of the methods is the starting
point. For OC, MMA, GCMMA, and SNOPT the primal starting point is initialized as
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Table 2: Parameter names, description and values of the other termination criteria.

Solver Parameter Description Value

OC loop Maximum number of iterations 1,000
MMA, GCMMA max outer itn Maximum number iterations 1,000
IPOPT max iter Maximum number of iterations 1,000
SNOPT Major iterations limit Maximum number of iterations 1,000
FMINCON MaxIter Maximum number of iterations 1,000
OC, MMA, GCMMA max assemblies Maximum number of stiffness 10,000

matrix assemblies
IPOPT max cpu time Maximum CPU time 48h
FMINCON MaxFunEvals Maximum number of 10,000

function evaluations

an homogeneous design with t0 = V e where e is a vector of all ones. The displacements
are set to u0 = 0 for the minimum compliance and compliant mechanism design problems.
However, the starting points in IPOPT and FMINCON are always initialized in between
the lower and upper bounds on the density variables, i.e t0 = 0.5e and u0 = 0. Other
starting points could be a disadvantage due to the use of interior point algorithms. For
minimum volume problems the starting point is chosen as t0 = 0.5e and u0 = 0. Other
starting points for the displacements were examined but did not give better results.
For instance, our numerical experiments did not indicate any difference between the
initialization u0 = K−1(t0)f to the initialization u0 = 0.

3.5 Computation of compliance upper limit

For minimum compliance and compliant mechanism design problems, the volume
constraint is limited by an upper bound given by a scalar value between 0 and 1, to
indicate the percentage of material the user wants in the final design. For minimum
volume problems the upper limit in the compliance constraint is chosen as

C = k(fT (K−1(t0)f)), (12)

for some user defined constant k ≥ 1.

3.6 Setting of the parameters

In general, it is desirable to tune the solver parameters as little as possible. However, the
performance of the solvers for topology optimization problems can be improved if some
default parameters are modified. The automatic scaling of the problem is turned off in
both IPOPT and FMINCON solvers. Depending on the problem and the formulation
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3 IMPLEMENTATION

used, SNOPT performs better with different scaling option values. In practice, SNOPT
in the SAND formulation performs better when there is no automatic scaling. The nested
formulation works better with certain scaling and the default value is therefore used in
this situation.

Moreover, the adaptive barrier update strategy suggested in [35] is used in IPOPT
because it requires less iterations than the monotone update strategy, and the obtained
designs are more accurate. In order to improve the performance of IPOPT, some options
are activated, such as the full step size in the constraint multipliers and the use of the least
square estimation for computing the constraints multipliers. FMINCON uses an interior
point algorithm. The conjugate gradient method is chosen to determine how the iteration
step is calculated. This is usually faster than the default value (LDL factorization).

Finally, in SNOPT the super basics limit, the iteration limit, the function precision,
the line-search tolerance and the step limit are modified to be able to solve large-scale
problems. In particular, the function precision parameter is significantly increased since
too stringent values affect the built-in line-search termination criteria and significantly
increase the number of function evaluations.

When the nested approach is used, IPOPT approximates the Hessian using a limited
memory BFGS approach. The number of most recent iterations that are taken into
account for the approximation is set to 25. The main reason of using BFGS is the high
computational cost of the exact Hessian. FMINCON has an option where a matrix-vector
multiplication can be defined. Using this feature, the time spent in this computation is
much lower, and therefore, FMINCON can use the exact Hessian. The same option is
not implemented in IPOPT.

Tables 3, 4 and 5 collect all the parameters tuned in IPOPT, FMINCON and SNOPT,
respectively.

Table 3: Parameters tuned in IPOPT. The table contains the name of the parameter, the new
value, the default value and a brief description.

Parameter New value Default Description

mu strategy adaptive monotone Update strategy for barrier parameter
limited memory 25 6 Maximum size of history in BFGS
max history
nlp scaling method none gradient based Technique for scaling the problem
alpha for y full primal Method to determine the step size of

constraint multipliers (full step size 1)
recalc y yes no Tells the algorithm to recalculate

the multipliers as least square estimates
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Table 4: Parameters tuned in FMINCON. The table contains the name of the parameter, the
new value, the default value and a brief description.

Parameter New value Default Description

Algorithm interior point trust region reflective Determine the optimization algorithm
Subproblem cg ldl factorization Determines how the iteration step is calculated
Algorithm

Table 5: Parameters tuned in SNOPT. The table contains the name of the parameter, the new
value, the default value and a brief description.

Parameter New value Default Description

scale option 0(SAND) 2 Scaling of the problem
(2 LP, 0 no scale)

Iteration limit 106 104 Maximum number of minor iterations allowed
in QP su-bproblem

Major step limit 10 2 Limits the change in x during the line-search
Line search tolerance .99999 .9 Accuracy which a step length will be located

along the search direction
New superbasics limit 104 99 Early termination of QP sub-problem if the

number of free variables has increased
since the first feasibility iteration

Function precision 10−4 3.7×10−11 Relative function precision

3.7 Scaling of the problems

Regarding the Young’s modulus parameters, the benchmark library instances defined in
Section 4.4, considers rather small contrast between the solid (E1) and the void (Ev)
values. The main reason is that the final design is similar to the results for large
contrast but the time and iterations required to satisfy the stopping criteria is
significantly reduced. Since the scope of interest in this article is the comparison of the
solvers, this contrast is fixed to E1/Ev = 103 for minimum compliance and minimum
volume problems, and to E1/Ev = 102 for compliant mechanism design problems. Our
experience is that compliant mechanism design problems, in general, are more difficult
to solve.

Moreover, the choices of void and solid Young’s modulus values considerably modify
the computational performances of all solvers. In particular, the number of iterations
and the obtained accuracy are affected. Table 6 gathers the values of Ev and E1 for each
solver and class of problem.
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Table 6: Young modulus’s values for each solver and topology optimization problem.

Solver Problem E1 E0

IPOPT/SNOPT Minimum compliance 103 1
FMINCON Minimum compliance 102 10−1

IPOPT/SNOPT Minimum volume 104 10
FMINCON Minimum volume 10 10−2

MMA/GCMMA Minimum compliance/volume 10 10−2

OC Minimum compliance 1 10−3

All Mechanism design 1 10−2

Finally, the Poisson’s ratio parameter is set to ν = 0.3 as in [2]. The numerical
behaviour of the solvers (except OC) is better if the inequality constraint is scaled by
a factor of 1√

n
for minimum compliance and minimum volume problems. Additionally,

for IPOPT, FMINCON and SNOPT in the compliant mechanism design problems, it is
scaled by 1

n , while in MMA and GCMMA is by 1√
n
.

3.8 Code modifications

Some parts of the code for GCMMA and OC have been modified to obtain better
results and to improve the performance. First of all, the maximum number of inner
iterations in GCMMA is reduced from 50 to two. The main reason is to be less
restrictive with the convex approximation of the problems. This means that the
theoretical global convergence results from [44] are no longer certain to hold, but our
numerical results indicate that this is a good compromise between robustness and
efficiency.

In OC, the stopping criteria has been slightly changed to satisfy either the change
parameter and the feasibility tolerance, or the maximum number of iterations or
assemblies, with values given in Tables 1 and 2. Moreover, the inner OC loop, i.e.
estimation of the Lagrange multiplier for the volume constraint by bisection, is
modified such as that the difference of limits has to be lower than 10−6. Previous values
were 10−3 for minimum compliance problems and 10−4 for mechanism design problems.
Finally, it is important to remark that the OC method in the 88-line code from [2] has
been modified to mechanism design problems following instructions for earlier codes in
[6].
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4 Benchmarking

A method called performance profiles was proposed in [19] to compare different
optimization solvers on a set of problem instances. This tool was also used in e.g [7] to
compare large-scale nonlinear optimization algorithms.

One of the benefits of this tool of comparison is that it is possible to obtain a global
idea of how the solvers perform.

4.1 Performance profiles

Performance profiles show the general performance of all the solvers in 2D plots. The x-
axis represents the parameter τ that indicates how far a solver is from being the winner
(regarding a specific criterion such as objective function or number of iterations), i.e.
it describes the relative ratio of performance. The y-axis represents the percentage of
problems that each solver is able to obtain a solution by a factor τ to the best solver
for a concrete measure of performance. In the case where we are only interested in the
number of problems where the solver is the best, the scope of interest is τ = 1.

When τ is small, the performance profile shows the amount of problems the solver has
performed similar to the best solver at each problem. While τ increases, the percentage
of problems increases because the solver has more chances to obtain a solution. It is
desirable to observe a high increase of percentage of problems for small variations of τ .
Those solvers with fast growth are the most suitable because, in general, the performance
of this solver for the whole test set is very close to the best solver for each concrete
problem, for the specific criterion. When τ is large, it shows the chances of a solver to be
able to solve any problem. Performance profiles, as explained in [19], are based on a set
P of problem instances. The performance of a set of solvers S is evaluated and compared
using the set. A measure of performance, m, such as the number of iterations, is defined
for a given problem p and a solver s as

mp,s = iterp,s = number of iterations required to solve the problem p by a solver s.
(13)

The ratio of performance rp,s is the specific measure compared with the best
performance of all the solvers.

rp,s = mp,s

min{mp,s : s ∈ S} . (14)

Moreover, the maximum value of the ratio, rM , is defined such as rM > rp,s for all p and
s, and rM = rp,s if and only if there is a failure of the solver. Then, the performance of
the solver is defined by

ρs(τ) = 1
np

size{p ∈ P : rp,s ≤ τ} (15)
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which represents the probability that the performance ratio for solver s is at most, a factor
of τ of the best possible ratio. The term np represents the total number of problems in
the test set.

The performance of a solver can also be defined by

ρs(τ) = 1
np

size{p ∈ P : log(rp,s)≤ τ} (16)

This logarithmic scale is considered in order to observe all the performance of the solver
until τ = rM .

4.2 Performance evaluation

Before presenting the results of the benchmark, it is necessary to establish which measures
are the most suitable to compare the optimization methods. It is, for example, important
to use few function evaluations. For topology optimization problems on nested form, this
is equivalent to the assembly of the stiffness matrix. An efficient method should, thus,
assemble the matrix as few times as possible.

Moreover, the performance of a solver should be evaluated for the number of iterations
(one iteration is equivalent to the solution of one sub-problem), the CPU time, and the
obtained objective function value. The comparison of the objective function value is
focused on the behaviour for small values of τ . This first performance will be decisive for
our final recommendation, since hopefully, most the methods will achieve good designs
in a small range of τ .

4.3 Penalization of inaccurate designs

It is important to be consistent and clarify under which circumstances the final design
of a solver is not considered adequate and is penalized in the performance profiles.

It could happen that for some problems, a method is unable to obtain an accurate
design, i.e. to sufficiently accurately satisfy the optimality conditions. In those cases,
the solver fails and must be penalized in the performance profiles. We establish that the
method obtains an incorrect design when some of the following conditions occurs:

• Infeasibility. If the feasibility error, i.e the Euclidean norm of equations (8) and
(9), is greater than a threshold chosen to ηmax = 10−4.

• KKT conditions unsatisfied. If the KKT error, i.e the Euclidean norm of equations
(7)-(11), is greater than ωmax = 10−3 (cf. below).

• Incorrect sign of the objective function. If the objective function value is greater
than zero for compliant mechanism design problems and smaller than zero for
minimum compliance and minimum volume problems.
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In those cases, the ratio for this concrete solver s for the problem p must be rp,s = rM

for all the ratio criteria.
However, there are some problems that have to be removed from the test set either

for computational time or for problems with the available memory. Each solver is allowed
to run for 48 hours. If it cannot find a design, if MATLAB produces an exception or if
IPOPT and SNOPT stop with flag of memory/time problems, the problem is removed
from the final test set. If one solver is unable to solve an instance for these reasons, this
problem is not solved for any solver. When these errors happen, it is not possible to
consider that the solver is unable to obtain a good design because it is simply, it cannot
solve such a large problem. It is not a problem of the underlying method by itself, it is
an issue related to the particular choices in the implementation and the properties of the
computer.

4.4 Test set of topology optimization problems

It is important to produce a large and representative test set of topology optimization
problems in order to be able to conclude and state recommendations from the
performance profiles. The election of which problems should be selected to obtain a fair
benchmark is always a source of disagreements. The test set should be heterogeneous,
interesting and difficult to solve.

Some of the most typical test sets of problems considered in the literature for linear
and nonlinear optimization methods are CUTE [10], CUTEr [25], MIPLIB [29], COPS
[9] and Vanderbei among others (used in [7], [19] and [47]). In contrast, in the topology
optimization field, there is no publicly available big test set of problems. In general, the
numerical results in research articles are made using only three or four examples, see e.g.
[18], and [48].

In [41] it is noted that there are several test problems well-known for benchmarking
minimum compliance problems, however, there is no standardization regarding compliant
mechanism design problems. In this section we present a test set of problems in two
dimensions and with a rectangular design domain. Moreover, the static external load
is a single nonzero vector with value equal to one (fi = 1, fj = 0 ∀j 6= i). Finally, for
simplicity, the volume is identical for all the elements, i.e. ai = aj ∀i, j = 1, . . . ,n.

4.4.1 Minimum compliance and minimum volume test problems

Three different types of design domains and loads are considered (see Figure 1) for
minimum compliance and minimum volume problems. These examples are considered in
plenty of articles related to topology optimization such as [40], [4], [13], [2], [14], and [6].
For each domain we consider different length ratios. We experience that the methods
have difficulties in solving problems with large difference between lengths.
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(a) Michell problem (b) Cantilever problem

(c) MBB problem

Figure 1: Michell, Cantilever, and MBB design domains, boundary conditions and external load
definitions that are collected and used to define the benchmarking library.

Moreover, for each length, different size of discretization, Nl, are defined. Nl refers
to the number of elements in the finite element analysis defined for unit of length. We
decided to build a test set with a relatively low number of elements to be able to test all
the solvers. Since several of the implementations are general purpose codes, which are
not designed for simulation based problems, larger numbers of elements will eventually
result in problems of memory. The memory usage could be an important factor when
different solvers are compared. However, since each solver is implemented in different
languages, the interfaces between MATLAB and these programs increase memory usage
significantly. Therefore, it is not possible to produce any fair study of memory usage.

Finally, for each design domain in the minimum compliance test set, 5 different volume
fraction upper bounds are considered. The volume bound is chosen from the values 0.1,
0.2, 0.3, 0.4, and 0.5. Solving problems with small volume bounds is, in our experience,
generally more difficult and should give some issues. In general, when the amount of
material available is reduced, the solvers have more difficulties in distributing the material
so that the structure satisfies the constraints and minimizes the objective function. For
minimum volume problems, three different instances, with upper bound in the compliance
proportional to k = 1, 1.2, and 1.5 (see (12)) are generated.

A brief description of the test set is outlined in Tables 7, 9, and 8. The test set of
minimum compliance problems contains 5 different problems for each characteristic’s row
(one for each volume bound) with a total number of problems of 225, while the minimum
volume test set contains 135 problems.
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Table 7: Test set of problems for the Michell
design domain, see Figure 1a. Lx and Ly

denote the length ratio on the x and y

direction, respectively. Nl denotes the size
of the discretization per unit of length, n
the number of elements and d the number
of degrees of freedom.

Domain Lx Ly Nl n d

Michell

1 1

20 400 882
40 1600 3362
60 3600 7442
80 6400 13122
100 10000 20402

2 1

20 800 1722
40 3200 6642
60 7200 14762
80 12800 26082
100 20000 40602

3 1

20 1200 2562
40 4800 9922
60 10800 22082
80 19200 39042
100 30000 60802

Table 8: Test set of problems for the MBB
design domain, see Figure 1c.

Domain Lx Ly Nl n d

MBB

1 2

20 800 1722
40 3200 6642
60 7200 14762
80 12800 26082
100 20000 40602

1 4

20 1600 3402
40 6400 13202
60 14400 29402
80 25600 52002
100 40000 81002

2 1

20 800 1722
40 3200 6642
60 7200 14762
80 12800 26082
100 20000 40602

4 1

20 1600 3402
40 6400 13202
60 14400 29402
80 25600 52002
100 40000 81002

Table 9: Test set of problems for the
Cantilever design domain, see Figure 1b.

Domain Lx Ly Nl n d

Cantilever

2 1

20 800 1722
40 3200 6642
60 7200 14762
80 12800 26082
100 20000 40602

4 1

20 1600 3402
40 6400 13202
60 14400 29402
80 25600 52002
100 40000 81002

Table 10: Test set of 150 compliant
mechanism design problems, see Figure 2.

Domain Lx Ly Nl n d

Inverter/
Gripper/
Amplifier/
Compliant
Lever/
Crimper

1 1

20 400 882
40 1600 3362
60 3600 7442
80 6400 13122
100 10000 20402

2 1

20 800 1722
40 3200 6642
60 7200 14762
80 12800 26082
100 20000 40602
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4.4.2 Compliant mechanism design problem

The most typical problem used to test the methods in the literature is the force inverter,
shown in Figure 2a, see e.g. [41]. Furthermore, another typical compliant mechanism,
called the compliance gripper, is included in the benchmark library, see Figure 2b. Three
more examples denoted the amplifier, the compliant lever, and the crimper, shown in
Figure 2c, 2d, and 2e, respectively, complete the mechanism design test set. These
problems can be found in different publications such as [6], [48], [40], [14], [39], [18], [31],
and [38].

For each design domain, 5 different discretizations, and three different volume
fractions: 0.2, 0.3, 0.4, are considered resulting in a a final test set of 150 problems
gathered in Table 10.

5 Numerical experiments

The benchmark library is based on 225 minimum compliance problems, 135 minimum
volume problems and 150 mechanism design problems. However, the final benchmark
library is made of a subset using 121, 64 and 124 examples respectively. For the rest of
the problem instances, either IPOPT, SNOPT or FMINCON in the SAND formulation
have memory problems or the computational time required is more than the maximum
allowed (which is 48h). The need of research in efficient and fast large-scale methods to
be able to solve large saddle-points systems is evident from this fact.

Furthermore, as the objective function value of the compliant mechanism design
problems is negative, large values of ratios represent better performance than small
values of ratios. In order to observe the same scale and behaviour in the profiles for
compliant mechanism design problems, the ratio of the objective function value is
computed as the inverse of equation (14).

All computations were done on an Intel Xeon X5650 6-core CPUs, running at 2.66
GHz and with 4 GB Memory for each core.

It is important to highlight that the computation time is highly affected by the
amount of work assigned to the nodes in the cluster. The time for the same problem
using the same solver at different moments in time can vary significantly. Therefore,
we do not recommend that the performance profiles for computational time are trusted
unconditionally.

Finally, some restrictions have been made during the numerical experiments. Both
the SAND and the SANDNL formulations require a lot of memory, and, for large
problems, the solvers are unable to run. In a reduced test set of small problems, the
performance of both formulations is compared. The results are not reported here, but
both formulations obtain similar results in function objective value, number of
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(a) Force inverter example with kin = 1 and
kout = 0.001

(b) Compliant gripper example with kin = 1
and kout = 0.005

(c) Amplifier example with kin = 1 and
kout = 0.005

(d) Compliant lever example with kin = 1
and kout = 0.005

(e) Crimper example with kin = 1 and
kout = 0.05

Figure 2: Compliant mechanism design domains, with boundary conditions and external loads
definition.

iterations and also computational time. The performance of SNOPT and FMINCON
on the SAND/SANDNL formulation is not competitive. In order to save time,
represent more problems and produce clearer results we have decided to remove the
SANDNL formulation. The SAND formulation for SNOPT and FMINCON are also
excluded from the minimum volume benchmark.
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Throughout this section we denote by IPOPT-N, FMINCON-N and SNOPT-N the
solvers applied to a nested formulation and by IPOPT-S, FMINCON-S and SNOPT-S
for SAND formulations.

5.1 Numerical experiments for minimum compliance problems

Section 4.3 considers a design to be incorrect if the Euclidean-norm of the KKT conditions
is higher than a threshold set to ωmax = 10−3. Figure 3 shows the impact of this decision.
The figure contains the performance profiles for the 121 different minimum compliance
problem instances for ωmax = 10−2, 10−3, and 10−4, respectively. The performance is
measured with the objective function value. Most of the solvers are able to obtain a
design with a KKT error lower than 10−2. However, for ωmax = 10−4, it is more likely
that the solvers fail. While Figure 3a shows the performance of the solvers to obtain a
design (ωmax = 10−2), Figure 3c shows the robustness of the solvers. It is clear that solvers
such as MMA and GCMMA are highly affected by this threshold. Their performances
decrease considerably when we enforce the optimality tolerance (10−4). The performance
of GCMMA decays from 87% of success (when ωmax = 10−2) to 70% (when ωmax = 10−4).
Similarly, the performance of MMA drops from 82% to 52%. On the other hand, the
percentage of success for IPOPT and SNOPT are not affected by the parameter ωmax.
IPOPT and SNOPT can either produce a design where the optimality conditions are
satisfied or produce very poor results.

With this in mind, Figure 4a presents the performance profile for objective function
value for small values of τ , which gives the performance of the solvers when they are
close to the best design. IPOPT-S obtains the best objective function value for 50% of
the problem instances. The chances for the rest of the solvers of winning are small, lower
than 25%. However, as τ increases IPOPT-N, SNOPT-N, FMINCON-N, FMINCON-S
and OC become more competitive. If we choose, for instance, being at a factor of τ = 1.12
to the best solver, they have a probability close to 90% to obtain a design. On the other
hand, SNOPT-S, MMA, and GCMMA obtain remarkably poor results. They are only
able to produce a design with an objective function value 1.2 times the best value in less
than the 80% of the cases.

In Figure 4b3 the robustness of each method can be identified. When τ ∼ rM = 102

the percentage of problems is equivalent to the probability to obtain a design. MMA is
able to obtain a design in only the 70% of the cases, SNOPT-S in 75%, and GCMMA in
80%.

Figure 4b also shows that FMINCON-N obtains a design using the least number
of iterations, followed by SNOPT-N. Although IPOPT-S has a lower number of wins,

3A design, which is deemed incorrect by the optimality conditions, can indeed be a capable design
and visually describe the correct topology. However, we experience that tight optimality conditions lead
to better objective function values.
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(a) Penalization of problems with ωmax = 10−2
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(b) Penalization of problems with ωmax = 10−3
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(c) Penalization of problems with ωmax = 10−4

Figure 3: Performance profiles for the (reduced) test set of 121 minimum compliance problems
(P c

N ) and (P c
S). The performance is measured for objective function value. A problem is penalized

in the performance profiles if the KKT error is higher than 10−2 (3a), 10−3 (3b) or 10−4 (3c),
respectively.
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5 NUMERICAL EXPERIMENTS
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(a) Objective function value
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(b) Number of iterations
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(c) Number of stiffness matrix assemblies
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(d) Computational time

Figure 4: Performance profiles for the (reduced) test set of 121 minimum compliance problems
(P c

N ) and (P c
S) described in Tables 7, 9 and 8. The performance is measured by objective

function value (4a), number of iterations (4b), number of stiffness matrix assemblies (4c), and
computational time (4d).
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it becomes a strong rival when τ increases. FMINCON-N, SNOPT-N and IPOPT-S
perform at a factor of 10 to the best solver in around 85-100% of the instances. In
general, the rest of the solvers require substantial numbers of iterations to obtain a
design (the performance is lower than 80%).

The performance of the solvers for the number of stiffness matrix assemblies (Figure
4c) is very similar to for the number of iterations.

Finally, Figure 4d shows the performance profile for the computational time. It
suggests that SNOPT-N or OC are the best solvers for minimum compliance problems.
The rest of the solvers consume more than 102 times, even 103 times more, to achieve
similar percentage of success. It is also clear that the SAND formulation requires a lot
of time. However, this study is done using small-scale problems.

We observe that IPOPT-S (which uses an exact Hessian of the Lagrangian)
outperforms IPOPT-N (which uses a limited memory BFGS approximation of the
Hessian) with respect to the objective function value, the number of iterations, and the
number of assemblies. In contrast, it is clear that the SAND formulation consumes
more time. This could be either for the increase of the number of variables and
constraints or because of the use of exact Hessian. On the other hand, if the
computational time for FMINCON (both formulations compute the exact Hessian) or
SNOPT (both formulations use limited memory BFGS approximations) is compared,
we conclude that the increment of time is due to the increment of variables and
constraint but not the use of second order information.

5.2 Numerical experiments for minimum volume problems

Figure 5 shows the performance profiles for the 64 minimum volume problems. This test
sect is a sub-set of the problems listed in Tables 7, 9 and 8.

It is clear that IPOPT-S outperforms the rest of the solvers with respect to the
obtained objective function value, see Figure 5a. The probability for IPOPT-S of winning
is higher than 55%. In addition, it has at least 10% more chances than any other solver
to obtain a final design with an objective function value at a factor of τ = 1.2. Unlike
the minimum compliance problems, FMINCON is unable to solve more than the 70% of
the problems. MMA shows similar performance.

However, IPOPT-S also has the problem that it consumes more iterations and
assemblies of the stiffness matrix than SNOPT or FMINCON. Nevertheless, IPOPT-S
improves really fast as τ increases. If we are interested in a solver that can solve more
than the 80% of the problems with the greatest efficiency as possible (for the number of
iterations), then the election should be either IPOPT-S or SNOPT. Their performance
for this 80% is at a factor of τ = 5.6.

The performance of the solvers with respect to the number of assemblies is represented
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5 NUMERICAL EXPERIMENTS
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(c) Number of stiffness matrix assemblies
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(d) Computational time

Figure 5: Performance profiles for the (reduced) test set of 64 minimum volume problems (Pw
N )

and (Pw
S ) described in Tables 7, 9 and 8. The performance is measured by objective function value

(5a), number of iterations (5b), number of stiffness matrix assemblies (5c), and computational
time (5d).
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in Figure 5c. The robustness of IPOPT-S is again demonstrated since it can solve almost
100% of the problems. In contrast, the rest of the solvers have between 75 to 85% of
chances to solve a problem. It is remarkable that MMA and GCMMA require more
iterations and more stiffness matrix assemblies than the general nonlinear solvers.

The performance of the solvers, for computational time, is similar to the results for
minimum compliance problems as observed in Figure 5d.

5.3 Numerical experiments for compliant mechanism design problems

Figure 6 shows the performance profiles for the 124 compliant mechanism design
problems listed in Table 10. Our experience is that these problems, in general, are more
difficult to solve than minimum compliance and volume problems. This is reflected in
the performance profiles. One more time, IPOPT-S highlights from the rest of the
solvers. Although, OC has the best performance in 25% of the problems, its probability
to obtain a design with an objective function value between the best one and 1.2 times,
is not higher than 80%. The rest of the solvers have a very poor performance.

Figure 6b shows the performance of the solvers for the number of iterations. Although
SNOPT-N obtains the best percentage of winners, IPOPT-S has a 100% of chances
to obtain a design in at most 10 times more iterations than the best solver. At this
factor, only SNOPT-N is able to obtain a success in more than the 70% of the instances.
Indeed, SNOPT-S and MMA have very low performance. They solve less than 65% of the
problems. Although OC has the 100% of probability to obtain a design, the performance
for any value of τ is very poor. In general, OC stops because it reaches the maximum
number of allowed iterations and not because the change parameter is satisfied (which
is not penalized in these performance profiles).

The behaviour of the solvers for number of stiffness matrix assemblies is very similar to
the number of iterations. For mechanism design problems, GCMMA stands out compared
to FMINCON. This is unlike the situation for minimum compliance and minimum volume
problems.

5.4 Conclusions from the numerical experiments

After the detailed explanation of the performance profiles for the different type of
problems, we can generalize that IPOPT-S obtains good designs, it is very robust, and
the performance does not depend on the problem under consideration. With more than
95% of probability, IPOPT-S is able to obtain a design satisfying the required
optimality conditions. The use of second order information helps IPOPT to produce
better designs using less iterations. On the other hand, it requires a lot of
computational time.
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(a) Objective function value
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(c) Number of stiffness matrix assemblies
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(d) Computational time

Figure 6: Performance profiles for the (reduced) test set of 124 compliant mechanism design
problems (Pm

N ) and (Pm
S ) described in Table 10. The performance is measured by objective

function value (6a), number of iterations (6b), number of stiffness matrix assemblies (6c), and
computational time (6d).
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In contrast, SNOPT-N produces poor designs (bad objective function value) but using
very few number of iterations and computational time.

In general, the SAND formulation requires a lot of time. There is a need of
improvements in the computation of the saddle-point system in order to reduce this
computational time to be able to obtain a competitive solver when the SAND
formulation is used.

Finally, it is curious to observe that the structural optimization methods, MMA and
GCMMA, do not outperform the other solvers in neither objective function value nor
number of iterations. Moreover, the performance profiles reveal that GCMMA in general
obtains better designs and requires less iterations than MMA. The additional measures
implemented in GCMMA compared to MMA to ensure the theoretical global convergence
results in [44] apparently also have a positive effect on the numerical performance.

6 Limitations of the benchmark

We are aware of the many limitations of this benchmarking study. However, it is
computationally too demanding to benchmark all possible combinations of optimization
methods and problem formulations. We therefore decided to focus on a small, but
relevant, range of combinations of problem formulations and methods and develop a
representative and meticulous benchmark. Further research must be done in order to
contemplate other alternatives to the problems.

First of all, only one topology optimization approach, namely combining the SIMP
material interpolation scheme with a density filter, has been used. The RAMP material
interpolation [42] and [36] has been numerically tested, giving similar results to the SIMP
scheme. It could be interesting to observe the performance of the solvers when other
penalizations schemes or regularization approach are used, such as for example perimeter
control [26]. The problems, furthermore, only include a few mechanical requirements.
Important constraints such as displacement and stress constraints, are not modelled and
included in the benchmark problems.

Moreover, there are limitations regarding the choice of solvers used for the
benchmarking. There is room for testing several other general nonlinear optimization
solvers. This includes those implemented in the KNITRO package [16], the interior
point method in LOQO [46], the sequential augmented Lagrangian algorithms in
LANCELOT [17], or MINOS [34], the generalized augmented Lagrangian method in
PENNON [30], and the feasible direction method in FAIPA [27], among others.

The scaling of the problems as well as different parameter values such as the Young’s
modulus, the magnitude of the external loads, the penalty parameter p in the SIMP
penalization, and the filter radius rmin of the density filter have been set to only one
value. It is likely that the performance of the solvers is affected by them.
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7 CONCLUSIONS AND FUTURE RESEARCH

Finally, the test set considers only 2D problems with simple design domains, single
external loads, and the structural analysis is done using only one type of finite elements.
The sizes of the problem instances in the test are generally only medium-scale. The
performance of the solvers could be reduced significantly with increasing number of finite
elements and degrees of freedom.

7 Conclusions and future research

An extensive benchmarking of topology optimization problems in combination with
different optimization methods has been developed for the first time in the community.
The benchmark is based on a specific set of test problems and uses performance profiles
which has been proven a great approach for the comparison of solvers.

The main objective of this study is to investigate the performance of both general
nonlinear optimization solvers and special purpose methods intended for structural
topology optimization problems. The numerical experiments indicate that the use of
second-order information is helpful to obtain good designs. IPOPT, applied to the
SAND formulation, computes the exact Hessian of the Lagrangian. It outperforms all
the other solvers for minimum compliance, minimum volume, and compliant mechanism
design problems when the final objective function values are compared. This
combination is also the most reliable since it solves the largest percentage of the
problems in the test set. In contrast, the computational time required to obtain a
design is very high for IPOPT. It is important to remark that some problems have been
removed from the test set due to limitations in time and memory caused for the SAND
formulation. However, the performance profiles show that this method is the most
robust.

Most remarkable is, perhaps, that the performance profiles point out that structural
topology optimization problems can robustly be solved using general nonlinear solvers
rather than structural optimization methods. The performance of the general solvers is
comparable to MMA and GCMMA, and are as efficient and reliable as structural topology
optimization solvers. Notable is also that, in general, GCMMA produces designs with
better objective function values than MMA and it is also more reliable.

Further research should be done in order to improve the efficiency of implementations
of second-order optimization solvers applied to the SAND formulation to reduce the
computational time required for topology optimization problems. The most expensive
step in interior point methods is the solution of the saddle-point system to compute the
search direction. Therefore, advanced and efficient iterative solvers should be developed
and implemented for the resolution of these large-scale linear systems.
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Structural topology optimization problems are often modelled using material
interpolation schemes to produce almost solid-and-void designs. The problems
become nonconvex due to the use of these techniques. Several articles introduce
continuation approaches in the material penalization parameter to reduce the risks
of ending in local minima. However, the numerical performance of continuation
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optimization. This is done using performance profiles on 225 minimum compliance
and 150 compliant mechanism design problems.

The results show that continuation methods, generally, find better designs. On
the other hand, they typically require a larger number of iterations. In the second
part of the article this issue is addressed. We propose an automatic continuation
method, where the material penalization parameter is included as a new variable in
the problem and a constraint guarantees that the requested penalty is eventually
reached. The numerical results suggest that this approach is an appealing
alternative to continuation methods. Automatic continuation also generally obtains
better designs than the classical formulation using a reduced number of iterations.
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1 Introduction

Structural topology optimization distributes the material in a design domain to minimize
an objective function under certain constraints [6]. In the most common formulation, the
design variable is chosen as the density t, which is defined as a continuous variable
with values between 0 (void) and 1 (solid). The design domain is discretized using finite
elements and a design variable is associated with each element. The aim is often to obtain
a final design which is almost solid-and-void. In order to penalize intermediate values,
different interpolation schemes such as the Solid Isotropic Material with Penalization
(SIMP), see e.g. [4], [25], and [38], or the Rational Approximation of Material Properties
(RAMP) [30] are used. These approaches principally modify the stiffness matrix in the
following ways,

K(t) =





n∑

e=1
tpeKe in the SIMP scheme

n∑

e=1

te
1+(p−1)(1− te)

Ke in the RAMP scheme.

(1)

Here, Ke is the element stiffness matrix of unit density, the stiffness matrix is K(t) :
Rn → Rd×d, n is the number of elements, and d is the number of degrees of freedom.
The density variable is defined with t∈Rn and the material penalization parameter with
p≥ 1 for both the SIMP and the RAMPainterpolation schemes.

For values of the parameter p > 1, the topology optimization problem generally
becomes nonconvex. Thus, numerical optimization solvers could end in a local
minimum. However, it is common to use a continuation method to avoid local minima,
see e.g. [22]. This technique consists of obtaining a solution of the problem without
penalization (p = 1), where the optimal design generally has grey regions (intermediate
density values). Then, the value of the material penalization parameter is gradually
increased in small steps and the problem is resolved. This is continued until the desired
value is reached, which should be large enough to produce (almost) solid-and-void
designs. For each new value of the material penalization parameter, the optimization
problem is normally solved using the solution of the previous problem as starting point.

Continuation methods are introduced in e.g. [2] and [1] among others. In addition,
[6] and [11] suggest to use them as a standard procedure.

Particularly, as the review article [24] explains, one starts from a global optimum and
after some steps, the grey regions change into black-and-white regions. It is expected
that the final design does not move too far from the solution of the convex problem.

aThe material penalization parameter in the RAMP approach is commonly defined as q = p−1 in the
literature, see e.g. [30], [28], and [17].
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1 INTRODUCTION

Nevertheless, one of the major drawbacks of these methods is the increase in the number
of iterations required for convergence, see e.g. [22] and [10].

Many articles use the technique of solving a sequence of problems with increasing
value of p, such as [19], [37], [29], [22], [36], [10], and [14] among others. These articles
claim this method helps to avoid ending in a local minimum. We find in [29]: “Based on
experience, it seems that continuation methods must be applied because, by construction,
they take also "global" information into account and are thus more likely to ensure "global"
convergence (or at least convergence to better designs)". The review [24] states, "On
the basis of many years experience, one should start with p=1, use small increments of
p...". Moreover, it is mentioned in [10] that: "Using this approach we experience that
the "optimal" designs can be reproduced with a high accuracy and as the examples will
show, it makes it possible to compare the objective functions of different designs with
several digits of accuracy". In addition, the review [11] reports: "...continuation methods
are frequently used in the literature to increase the chance of obtaining a global optimal
solution." and "...they nonetheless perform very well in practical applications, especially
when used with a regularization scheme".

In contrast, [31] shows some examples where the continuation approach in the
material penalization parameter fails. The article concludes that "...although the
continuation approach combined with some penalization techniques may be a very good
heuristic in many cases, it is not possible to prove any convergence results".
Furthermore, [36] concludes that: "The global optimal solution cannot always be
obtained by continuation with respect to the penalization parameter...." However, they
assert that "... a good approximate solution is found in the numerical examples".

One of the purposes of this article is to study if existing continuation methods for
structural topology optimization problems help to obtain, in general, good designs. We
also study if these methods are more robustb than the classical approach, where no
continuation techniques are applied. Moreover, we give a new alternative to
continuation methods, namely automatic continuation. This new approach includes the
material penalization parameter as a variable in the definition of the optimization
problem. Additionally, an extra constraint is added to force the material penalization
variable towards the requested final value during the optimization process. In contrast
to other continuation methods, our proposed automatic continuation approach solves
only one optimization problem. In our numerical experiments, the final designs
obtained by automatic continuation approach, are generally better than those provided
by the classical approach. Additionally, automatic continuation uses fewer iterations
and therefore, less computational time than existing continuation approaches.

Specifically, we define the topology optimization problem with a material
bBy robustness we mean the capability to find points that satisfy first-order optimality conditions to

requested accuracy within stated iteration and time limitations.
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interpolation scheme combined with a density filter, see e.g. [29], and [8]. Both
techniques together penalize the intermediate densities, ensure the existence of a
solution, and avoid checker-boards. Two structural topology optimization problems are
considered; minimum compliance and compliant mechanism design problems. Both
classes of problems are often included in the literature to benchmark topology
optimization solvers, see e.g. [28].

Structural topology optimization problems are commonly solved using sequential
convex approximations methods such as the Method of Moving Asymptotes (MMA)
[32] and its globally convergent version GCMMA [33]. In particular, in the
benchmarking of our continuation methods we use GCMMA for solving the problems
for each value of p. The choice of GCMMA over MMA is based on our previous
experience which is reported in the extensive solver benchmarking [23]. The
benchmarking study shows that GCMMA generally produces better designs than
MMA.

The automatic continuation formulation is based on linearization of the constraints
(cf. Section 6.2). Linearization of constraints is a very common technique and it is
used in Sequential Quadratic Programming (SQP) [7], interior point methods [15], and
sequential linearly constrained Lagrangian methods [21], among others. We expect a
good performance using solvers such as the interior point algorithm in IPOPT [34] or
the sequential quadratic programming method SNOPT [16]. It is presumed that this
technique helps to obtain good designs since the material penalization variable p increases
gradually. Moreover, as automatic continuation solves only one problem instead of a
sequence of problems, we expect that the number of optimization iterations is reduced.

The continuation approaches and the automatic continuation method are compared
to the classical formulation where the material penalization parameter is kept fixed.
This comparative study is done using performance profiles as introduced in [13].
Performance profile is a state-of-the-art technique commonly chosen for comparing the
performance of numerical optimization solvers and problem formulations. A test library
of 2D examples are collected from the literature. The library consists of 225 minimum
compliance problem instances and 150 compliant mechanism design problems.

The paper is organized as follows. Section 2 formulates the considered topology
optimization problems. The implementation details of the continuation methods are
collected in Section 3. Section 4 introduces the performance profiles and describes the
test set used for this study. Section 5 reports the performance profiles of the continuation
methods and the classical formulation. The automatic continuation approach and the
details of its implementation are explained in Section 6. The numerical experiments of
this approach are included in Section 7. Finally, Section 8 gathers the main conclusions
of the numerical experiments.
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2 PROBLEM FORMULATION

2 Problem formulation

The classical formulation of structural topology optimization problems consists of
maximizing the stiffness with a constraint on the volume of the structure [6]. This
formulation is equivalent to minimizing the compliance of the structure. The topology
optimization problems are stated in nested forms where the displacements u (state
variables) depend on the density t (design variables). The linear elastic equilibrium
equations in their discretized form relate these variables through,

f = K(t)u
u(t) = K−1(t)f.

(2)

Here, f ∈ Rd is the (design independent) static external load, and u ∈ Rd the
displacements. The minimum compliance problem (P c) consists of

minimize
t∈Rn

uT (t)K(t)u(t)

subject to vT t≤ V
0≤ t≤ 1,

(P c)

where v= (v1, . . . ,vn)T ∈Rn is the relative volume of the elements with vi > 0 i= 1, . . . ,n
and 0< V ≤ 1 the maximum total volume fraction of the structure.

The considered compliant mechanism problem (Pm) consists of maximizing an output
displacement of a flexible structure under a volume restriction,

maximize
t∈Rn

lTu(t)

subject to vT t≤ V
0≤ t≤ 1.

(Pm)

Here, l ∈ Rd is a vector with zeros in all entries except the output degree of freedom
where the displacement must be maximized. More details of compliant mechanism design
problems are included in e.g. [6] and [26].

For simplicity, it is assumed that:

• In order to avoid singularity, the stiffness matrix K(t) is modified to be positive
definite (see (4)) for all design variables satisfying 0≤ t≤ 1.

• All the elements have the same volume.
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3 Continuation methods

In this section we describe a class of continuation methods which is similar to those
described and used in the literature. Three different variants are obtained by choosing
certain parameters.

Several articles suggest to apply continuation methods in the material penalization
parameter to obtain better designs. Classical continuation methods consist of increasing
the material penalization parameter p in small steps. For a fixed value of the penalty
parameter pk at continuation iteration k, an optimization problem is solved for a given
optimality tolerance ωk > 0. Our continuation method solves sequence of sub-problems
where the optimality tolerance decreases using a parameter defined with 0 < θ < 1, i.e.
ωk+1 ≈ θωk. This parameter helps to reduce the number of optimization iterations.
Problems with material penalization parameter below the requested value, are mainly
used to estimate a good starting point for the next problem. Thus, they can be solved
with lower accuracy.

The outline of the continuation method proposed in this article is explained in
Algorithm 1. The obtained design variable at continuation iteration k, tk, is chosen as
the starting point for the next sub-problem. The continuation method solves one
optimization problem at each iteration k. The parameter ∆p > 0 is the step increment
of the material penalization parameter. The initial value p0 = 1 ensures the convexity of
the problem (P c) in the first continuation iteration.

Algorithm 1 Basic continuation method.
Input: Starting point t0, optimality tolerance ω0, initial material penalization parameter p0 = 1.
1: Set 0< θ < 1 and ∆p > 0.
2: Define ωmin as the minimum optimality tolerance and pmax the maximum material penalization

parameter.
3: Initialize the continuation iteration counter k = 0
4: repeat
5: Find a KKT point of the problem (P c) or (Pm) with tk as starting point, for a given pk and ωk.

6: Update the penalty parameter pk+1 = pk +∆p

7: Update the optimality tolerance ωk+1 = max(ωkθ,ωmin).
8: Update the iteration counter k = k+ 1
9: until pk+1 = pmax
10: return

Although it is not commonly used in continuation methods, the material penalization
parameter can be increased using a nonlinear updating scheme. Step 6 in Algorithm 1 can
be modified to pk+1 = pkγ with γ > 1. In this case, the step increment at the beginning
of the algorithm is small, and pk remains closer to p0. However, when pk approaches
pmax, the step increments becomes larger than the linear step increment ∆p.
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3 CONTINUATION METHODS

3.1 Implementation

The well-known structural optimization solver the Globally Convergent Method of
Moving Asymptotes (GCMMA) [33] is selected for solving the problems in Step 5 of
Algorithm 1. The problem is, for the purpose of benchmarking continuation methods,
described using the SIMP material interpolation scheme (see e.g. [4], and [5]) combined
with a density filter [8]. Thus, the density variable of one element depends on a
weighted average of the neighbours in a radius rmin. The filtered density in the eth
element is denoted by t̃e. It is defined by

t̃e = 1∑
i∈Ne

Hei

∑

i∈Ne

Heiti

Hei = max(0, rmin−dist(e, i)).
(3)

Here, the term dist refers to the Euclidean distance between the centers of elements e
and i. The set Ne contains the elements such as the distance to element i is smaller than
the filter radius rmin. In our implementation, we define rmin = 0.04Lx where Lx is the
length of the design domain in the x direction. This is identical to the filter radius used
in e.g. [3].

The SIMP scheme interpolates the density with a power law. The modified stiffness
matrix for this density filter and the SIMP penalization is

K(t) =
n∑

e=1
(Ev +(E1−Ev)t̃pe)Ke

p≥ 1.
(4)

Here, Ev > 0 and E1� Ev are the Young’s modulus of the "void" and solid materials,
respectively. The SIMP penalization attempts to force the design variables to the limits
t = 0 (void) or t = 1 (solid) producing a close to 0-1 design. GCMMA combined with
the SIMP scheme is selected for this benchmarking study since it is one of the most
popular combinations of optimization methods and material interpolation schemes in the
structural topology optimization community.

It is common to set the material penalization parameter in the SIMP interpolation to
p= 3, see e.g. [3] and [6]. This value is, in general, large enough to produce almost solid-
and-void designs. Hence, the maximum value of the material penalization parameter is
equal to pmax = 3 which is also suggested in [10]. However, other maximum values are
suggested in the literature. The value pmax = 5 is used in [22] and pmax = 10 is used in
[14]. Several articles state that the increment step ∆p should be sufficiently small, with
values between ∆p= 0.1 and ∆p= 0.5, see e.g [10], [14], and [22]. Three versions of the
continuation approach with different increments of the material penalization parameter
are implemented and benchmarked in this article. This allows us to study whether the
performance of the continuation methods are highly affected by the increment ∆p or not.
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The three variants are

• Continuation method 1. C1-GCMMA:

– Updating pk+1 = pk +∆p with ∆p= 0.1.

– Updating ωk+1 = ωkθ with θ = 0.7.

– Total number of sub-problems solved = 21.

• Continuation method 2. C2-GCMMA:

– Updating pk+1 = pkγ with γ = 1.09.

– Updating ωk+1 = ωkθ with θ = 0.7.

– Total number of sub-problems solved = 14.

• Continuation method 3. C3-GCMMA:

– Updating pk+1 = pk +∆p with ∆p= 0.3.

– Updating ωk+1 = ωkθ with θ = 0.5.

– Total number of sub-problems solved = 8.

Here, the total number of continuation iterations refers to the number of sub-problems
solved in the continuation method to reach pmax. Continuation method 3 solves only
8 problems, and thus the reduction factor θ for the optimality tolerance is higher than
for methods 1 and 2 to be able to reduce ωk from ω0 to ωmin in the correct number of
iterations. This term does, in our experience, not significantly affect the performance of
the method.

The values of the parameters set in our implementation of the continuation method
using GCMMA are collected in Table 1.

For intermediate material penalization parameter values (pk < pmax), two stopping
criteria are implemented in GCMMA for minimum compliance problems. Either the
maximum number of optimization iterations equal to max interm iter = 100 is reached
or a KKT point satisfying the optimality tolerance ωk is found. When pk = pmax, the
stopping criteria is modified to be the same as for the classical formulation (with fixed
p). In this case, the stopping criteria of GCMMA are based on the optimality tolerance
tol = ωmin = 10−4 and the optimization iteration limit max iter = 1000.

We experience that compliant mechanism design problems are more difficult to solve
than minimum compliance problems. In order to obtain accurate designs, we increase the

cHere, e refers to a vector of all ones.
dWe consider relatively small gaps between the solid and void Young’s modulus values (i.e. E1/Ev)

since we are mostly interested in the comparison of the solvers rather than the final design. Small gaps
reduce the computational time and the number of iterations (see [23] for more details.)
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4 BENCHMARKING

Table 1: Values of the parameters used in the continuation method for minimum compliance and
compliant mechanism design problems when the sub-problems are solved by GCMMA.

Parameter Description Value

t0 Density vector of the initial design V ec

p0 Initial value of the material penalization parameter 1
pmax Final value of the material penalization parameter 3
ω0 Initial optimality tolerance 10−2

ωmin Final optimality tolerance 10−4

∆p Step increment of the material penalization parameter -
θ Factor for reducing the optimality tolerance -

max interm Maximum number of opt. iterations 100
iter in the intermediate steps (P c)

max interm Maximum number of opt. iterations 300
iter in the intermediate steps (Pm)

max iter Maximum number of opt. iterations for (P c) 1000
max iter Maximum number of opt. iterations for (Pm) 3000

E1 Solid Young’s modulus (P c) 10
E1 Solid Young’s modulus (Pm) 1
Ev Void Young’s modulus (P c) and (Pm) 10−2d

ν Poisson’s ratio 0.3

maximum number of optimization iterations to 3000 and in the intermediate steps to 300
optimization iterations. The Young’s modulus gap is decreased compared to minimum
compliance problems to reduce the computational time.

The accumulated number of optimization iterations required for the continuation
methods to obtain the final design is the sum of all GCMMA iterations required to solve
the sequence of sub-problems.

Finally, the inequality constraint is scaled in both minimum compliance and compliant
mechanism design problems with a factor of 1√

n
with n the number of elements [23].

4 Benchmarking

This section contains a brief description of performance profiles and the benchmark
library. These are the tools used to evaluate and compare the performance of the
continuation methods in Algorithm 1 and the classical formulation with fixed penalty
parameter. Performance profiles ensure a fair conclusion whether continuation methods
are a good alternative to the classical approach. The test set built for the
benchmarking consists of 225 minimum compliance problems and 150 compliant
mechanism design problems extracted from the literature. The large problem library
ensures general and representative benchmarking results.
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4.1 Performance profiles

Performance profiles are an effective tool to produce fair and representative results when
comparing optimization solvers and problem formulations, see [13]. Performance profiles
evaluate the overall performance of the solvers using a ratio of the performance of the
solver s versus the best solver, for a given metric such as the objective function value.
The goal is to represent the non-decreasing function ρs(τ) that shows the percentage of
problems that the solver s performs at a factor of τ to the best solver for the specific
metric. The factor τ represents the distance between the solver and the best one. In the
mathematical formulation, the performance profiles visually represent the function

ρs(τ) = 1
N

size{p̃ ∈ P : rp̃,s ≤ τ}, (5)

where N is the total number of problems in the set P . In addition, the ratio of
performance of a solver s for a given problem p̃ is

rp̃,s = mp̃,s

min{mp̃,s̃ : s̃ ∈ S} (6)

The set S contains all the solvers of the benchmarking study. Here, the performance
is measured with a specific criterion defined by m. For these numerical experiments, the
performance of the solvers are measured with the number of iterations and the objective
function value, i.e.

mp̃,s = iterp̃,s = number of optimization iterations required to solve
the problem p̃ by solver s.

(7)

or

mp̃,s = fp̃,s = objective function value of problem p̃ obtained by solver s. (8)

Performance profiles are often represented using a logarithmic scale. This makes it
easier to observe the general performance. The function ρs(τ) is then defined by

ρs(τ) = 1
N

size{p̃ ∈ P : log10(rp̃,s)≤ τ}. (9)

Finally, since the objective function value of our compliant mechanism designs problems
is negative, the ratio of performance for this criterion is defined as the inverse of equation
(6), i.e.

rp̃,s = min{mp̃,s̃ : s̃ ∈ S}
mp̃,s

. (10)

Moreover, in our numerical experiments, we consider that a problem is not accurately
solved if the Euclidean norm of the KKT conditions [20] is higher than a maximum
tolerance defined with ωmax = 10−3. In those cases, the ratio of performance is set to a
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5 NUMERICAL EXPERIMENTS WITH CONTINUATION METHODS

value higher than the maximum possible. This way we can identify the percentage of
problems where the solver is unable to produce accurate designs. More details about the
impact of this threshold can be found in [23].

There are three main aspects to consider in performance profiles:

1. The probability of being the best solver is read at τ = 1 (or τ = 0 for logarithmic
scales).

2. The performance of any good solver must increase for ratio values close to 1. The
function ρs is expected to grow fast for these solvers.

3. When τ is large enough, performance profiles represent the percentage of problems
where the solver is able to obtain solutions. Thus, the ability of a solver to produce
designs with a KKT error lower or equal to ωmax is represented at large values of
τ . Throughout this article, this probability of success is defined as robustness.

We refer to [13] and [23] for details on performance profiles in numerical optimization
in general and structural topology optimization in particular, respectively.

4.2 Test set

Performance profiles require an illustrative and large test set of problem instances in
order to produce clear and fair results. The test set consists of 225 different instances
for minimum compliance problems and 150 for compliant mechanism design problems.
The design domains are represented in Figures 1 and 2, for minimum compliance and
compliant mechanism design problems, respectively. These design domains and load cases
are found in numerous articles related to structural optimization such as [6], [3], [9], [12],
[18], [27], [35], [27], and [26] among many others. Moreover, this test set is described in
detail in [23].

The upper volume fraction V in (P c) takes the values 0.1, 0.2, 0.3, 0.4, or 0.5,
respectively. For the mechanism design problem (Pm) these values are set to 0.2, 0.3, or
0.4, respectively. Moreover, we define 5 different mesh sizes (with 20, 40, 60, 80, and 100
elements per length ratio). Our numerical experiments thus only consider medium-size
problem instances. The largest minimum compliance problem contains 40,000 elements,
the largest mechanism design problem contains 20,000 design variables.

5 Numerical experiments with continuation methods

This section contains the performance profiles for the three different implementations of
the continuation method (denoted C1-GCMMA, C2-GCMMA, and C3-GCMMA)
together with the classical formulation of topology optimization problems solved using
GCMMA. In the numerical experiments we refer to this formulation as NC-GCMMA,
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(a) Michell problem (with 1 × 1,
2 × 1, 3 × 1 length ratios)

(b) Cantilever problem (with 2×
1, 4 × 1 length ratios)

(c) MBB problem (with 2 × 1,
4 × 1, 1 × 2, 1 × 4 length ratios)

Figure 1: Michell, Cantilever, and MBB design domains, boundary conditions and external load
definitions that are collected in the benchmark library for minimum compliance problems (from
[23]).

i.e. no continuation with the problem solved by GCMMA. The numerical experiments
were computed on an Intel Xeon 10-core CPUs running at 2.8 GHz and with 64 GB
memory.

It is expected, due to the implementation and the choices of parameters, that the
number of iterations for C1-GCMMA will be larger than for C2-GCMMA. In turn, this
will be larger than for C3-GCMMA. However, we would like to observe how they
perform in terms of objective function values since C1-GCMMA uses small increments
of the penalization parameter, C2-GCMMA uses a nonlinear updating strategy, and
C3-GCMMA uses large increment step (∆p= 0.3).

Figure 3 shows the performance profiles for the test set of 225 minimum compliance
problem instances. The three continuation implementations obtain very similar objective
function values, see Figure 3a. For instance, at a factor of τ = 1.05 there is a difference
of only 2% between them, and the percentage of success is higher than 70%. In contrast,
the NC-GCMMA curve falls below all the continuation approaches. NC-GCMMA is also
less robust. It has about a 5% less chances to obtain a design with a tolerance lower
or equal to ωmax than any of the continuation methods. Figure 3b shows that there are
large differences between the performances of the solvers with respect to the number of
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5 NUMERICAL EXPERIMENTS WITH CONTINUATION METHODS

(a) Force inverter problem with kin = 1 and
kout = 0.001.

(b) Compliant gripper problem with kin = 1
and kout = 0.005.

(c) Amplifier problem with kin = 1 and
kout = 0.005.

(d) Compliant lever problem with kin = 1
and kout = 0.005.

(e) Crimper problem with kin = 1 and kout =
0.05

Figure 2: Design domains with boundary conditions and external loads definition for the
benchmark library of compliant mechanism design problems with 1× 1 and 2× 1 length ratios
(from [23]).
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Figure 3: Performance profiles for various continuation methods combined with GCMMA and
a classical formulation of GCMMA on a test set of 225 of minimum compliance problems (P c).
The performance is measured by the objective function value (3a) and the accumulated number
of GCMMA iterations (3b).
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Figure 4: Performance profiles for the continuation methods combined with GCMMA and a
classical formulation of GCMMA on a test set of 150 compliant mechanism design problems
(Pm). The performance is measured by the objective function value (4a) and the accumulated
number of GCMMA iterations (4b). Note that Figure 4a represents a small range of the parameter
τ .
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6 A NEW APPROACH TO CONTINUATION METHODS

optimization iterations, as expected. In some cases it would be impractical to use one of
our continuation methods due to the large amount of iterations required.

Correspondingly, Figure 4 shows the performance profiles for the test set of 150
compliant mechanism design problems. Similar to the minimum compliance problems,
the three schemes of the continuation method performs better than the classical NC-
GCMMA. At τ = 1.02 the chances to find a KKT point for all the continuation approaches
are higher than 85% while for NC-GCMMA the chance is lower than 70%. Additionally,
the performance measured in the number of optimization iterations is much worse for
continuation methods than for the classical approach.

Note that since the maximum number of iterations in the compliant mechanism design
problem is set to 3000, GCMMA is able to produce more designs with KKT error lower
than or equal to ωmax than for minimum compliance problems where the maximum
number of optimization iterations is 1000.

Balancing the obtained objective function values and the required number of
iterations, C3-GCMMA (with large increments) can be considered as the winner
implementation of the three suggested continuation methods.

Finally, from the study of the performance of continuation methods for minimum
compliance and mechanism design problems, we conclude the following.

1. The use of continuation methods help to obtain a design with better objective
function value. However, it is (of course) still possible to end in local minima.

2. The suggested continuation methods require a large number of optimization
iterations and therefore, large computational time.

3. The implementation of the continuation method does not require very small
increment. The experiments reflect that ∆p = 0.3 produce similar results as
∆p= 0.1.

6 A new approach to continuation methods

The previous numerical experiments evidence that solving a sequence of problems where
the material penalization parameter is increasing from pmin to pmax helps to produce
better designs. However, the main drawback of our continuation method is the large
number of iterations required. In some situations this makes continuation intractable in
practice.

We propose an automatic continuation method where the material penalization
parameter p is considered as an additional variable of the optimization problem. Thus,
the solver simultaneously finds the design and increases the material penalization
variable from the initial value to pmax. In contrast to continuation methods, the
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automatic continuation approach only needs to solve one optimization problem. This
gives the potential of possible reductions in the total number of iterations required
while retaining some of the positive effects of continuation.

The variable p is initialized as pmin, and then an additional nonlinear constraint
g(p) = 0 ensures that the problem is feasible only when p = pmax, i.e. the constraint is
violated for any values in [pmin,pmax). Thus, we force the material penalization variable
to increase from the initial value to pmax.

6.1 Formulation of the automatic continuation problem

The new automatic continuation formulation for minimum compliance (P cac) and for
compliant mechanism design (Pmac ) problems in nested formulations are

minimize
t∈Rn,p∈R

uT (t,p)K(t,p)u(t,p)

subject to vT t≤ V
g(p) = 0
0≤ t≤ 1
pmin ≤ p≤ pmax,

(P cac)

and
maximize
t∈Rn,p∈R

lTu(t,p)

subject to vT t≤ V
g(p) = 0
0≤ t≤ 1
pmin ≤ p≤ pmax.

(Pmac )

Here, p now refers to the material penalization variable, u(t,p) = K−1(t,p)f, pmin = 1
and g(p) is the automatic penalization constraint (cf. below).

In this new formulation, the sensitivities are affected by the variable p, which is
involved in the stiffness matrix. For any material interpolation scheme, the stiffness
matrix can be defined as

K(t,p) =
n∑

e=1
E(t,p)Ke. (11)

It follows that (
∂K
∂p

)

i

=
(
∂E

∂p

)

i

Ke. (12)

More specifically,

(
∂E(t,p)
∂p

)

i

=





{
(E1−Ev)tpi ln(ti) for ti > 0
0 for ti = 0

(SIMP)

(E1−Ev)
(ti−1)ti

(1+(p−1)(1− ti))2 (RAMP).

(13)

16



6 A NEW APPROACH TO CONTINUATION METHODS

Equation (13) for the SIMP approach is defined using the L’Hôpital rule.
It is important to highlight that the automatic continuation method only introduces

one additional variable and one additional nonlinear and univariate constraint. Thus, the
computational cost of the method is not significantly increased compared to the classical
formulation. In contrast, the number of iterations and the final designs can potentially
be improved.

6.2 Obtaining an adequate automatic penalization constraint

Our proposed automatic continuation formulation contains a nonlinear equality
constraint g(p) = 0 to force the material penalization variable to increase from p0 = pmin

to pmax. The constraint must satisfy that

g(p) = 0⇐⇒ p= pmax. (14)

In addition, for any value of p < pmax the constraint must be infeasible, i.e.

g(p)> 0 ∀p < pmax.

It is preferable that the solver uses some iterations until the constraint is satisfied.
Methods such as the primal dual interior point solver [15] in IPOPT [34] or the
Sequential Quadratic Programming [7] in SNOPT [16], linearize the constraints as

g(pk)+g′(pk)(p−pk) = 0. (15)

We now assume a linearization of the constraint as in (15), and that a line-search strategy
is used in the update of the iterates. The variable p for any iteration k of the solver is
updated using the search direction ∆pk and the step length 0< αk ≤ 1 as

pk+1 = pk +αk∆pk,

with

∆pk = (p−pk) =− g(pk)
g′(pk)

> 0.

(16)

Hence, the gradient of the automatic penalization constraint must be negative, since

∀ p ∈ [pmin,pmax), g(p)> 0⇒ g′(p)< 0. (17)

Finally, the constraint should be nonlinear in order to use some iterations until p= pmax.
There are many possibilities to define a function g(p) satisfying the requirements

outlined in (14) and (17). Some of them are

• g1(p) = e−µ(p−pmax)−1

• g2(p) = eµ(p/pmax−1)2−1

17



• g3(p) = eµ(p/pmax−1)2− p
pmax

• g4(p) = eµ(p/pmax−1)2− ( p
pmax

)2

• g5(p) = ( p
pmax

)−q−1.

Here, the parameters µ≥ 1 and q ≥ 1 are given by the user. The main difference between
these possibilities is how the variable p is increased, by the solver, until p= pmax.

As an illustrative example, Figure 5 shows how the idealized iterates for the material
penalization variable behaves for different automatic penalization constraint functions.
The underlying assumptions for the figure are (i) the step length α is one for all iterates,
and (ii) the linearization of the automatic penalization constraint is the only thing that
determines the step length and the search direction. These requirements do, in practice,
normally not occur. The figure thus, shows the minimum number of iterates required to
reach the requested value of the material penalization parameter, if the constraints are
linearized. The scheme is thus, both solver dependent and problem dependent, and the
material penalization sequence is not pre-determined.

We observe that g1(p) increases p almost linearly. Moreover as µ increases, it requires
more iterations to reach pmax. The opposite behaviour is observed in g2(p). When
µ increases, fewer iterations are required. It also needs many iterations to change for
values of p close to pmax. In contrast, in g5(p) the parameter p remains closer to 1 for
many iterations and then it increases rapidly to pmax. Finally, the behaviour of g3(p) is
similar to g4(p) and is also closely related to g2(p).

The automatic penalization constraint should require some iterations to increase p
from p= pmin to p= pmax, but at the same time, it is important not to spend too many
iterations such that the performance of the solver is deteriorated. A good compromise
between these requirements could be g2(p) with µ= 2 or g5(p) with q = 10.

6.3 Implementation

The choice of the automatic penalization constraint is based on the linearization of the
constraints. In order to ensure a good behaviour, we decided to use a solver that
linearizes the constraints. GCMMA, in its current implementation, is not a good
candidate since the constraints are dealt with using convex and separable
approximations. The interior point method in IPOPT [34] is chosen for our
implementation. We experienced better performance with IPOPT than with the SQP
method in SNOPT while benchmarking solvers for structural topology optimization
problems in [23]. In the implementation, the automatic continuation constraint is
treated as an inequality constraint, i.e. g(p) ≤ 0. This inequality, together with the
bounds on p, is equivalent to the equality constraint while it gives more freedom to the
solver. In addition, both the SIMP and the RAMP material interpolation schemes are
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Figure 5: Example of an idealized behaviour of the material penalization variable for different
constraint function assuming a fix step length α= 1. The figure thus shows the minimum number
of iterations to reach the requested value.

studied. Throughout this paper we denote by AC-IPOPT the automatic continuation
formulation with the sub-problems solved by IPOPT. Similarly, as Section 5 describes,
NC-IPOPT and C3-IPOPT refer to the classical formulation and the continuation
approach solved by IPOPT, respectively.

Moreover, different constraints for the automatic continuation were numerically
tested using IPOPT to select the parameters for this specific solver. The best results
were obtained with g2(p) with µ= 5 for the SIMP interpolation scheme, and g5(p) with
q = 15 for the RAMP scheme. A small computational study suggested that IPOPT
performs better with an automatic penalization constraint that requires several
iterations to achieve p ≈ pmax. Differences between SIMP and RAMP are expected
since the range of possible values and the initial value of p are different.

Section 7 shows the comparative study of an automatic continuation approach (AC-
IPOPT), the classic formulation (NC-IPOPT), and a continuation method (C3-IPOPT).
For this numerical experiment, the topology optimization problem is formulated in the
same way as in the previous section, i.e. we use the SIMP interpolation scheme together
with a density filter. Moreover, we also include results using the RAMP scheme [30] with
pmax = 7, which visually gives similar results as the SIMP interpolation with pmax = 3,
see e.g. [17].

Although it is preferable to tune as few parameters as possible, we experienced
better performance of IPOPT with some parameters set differently from the default
values. Table 2 collects the information of these parameters tuned for the three
approaches (NC-IPOPT, AC-IPOPT and C3-IPOPT). The Hessian of the Lagrangian
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Table 2: Parameters tuned in IPOPT. The table contains the name of the parameter, the default
value, and the new value used in the numerical experiments.

Parameter Default New value

mu strategy monotone adaptive
limited memory max history 6 25
max iter 3,000 1,000/3,000
tol 10−8 10−6

constr viol tol 10−4 10−8

nlp scaling method gradient based none
obj scaling factor 1 104 (Pmac )

for the nested formulation of both the minimum compliance (P c), (P cac) and the
compliant mechanism design (Pm), (Pmac ) problems is computational expensive. Thus, a
limited memory BFGS is used to approximate the Hessian in IPOPT for all approaches.
The parameter limited memory max history determines the number of the most
recent iterations that are taken into account for the BFGS approximation. We
experience that with more history information than the default value (6), IPOPT
performs better. A reasonable number to avoid too many iterations is 25.

It is well known in the optimization community that the performance of the solvers
is highly affected by the scaling of the problems. Particularly, for topology optimization,
IPOPT performs better without scaling the problem (see e.g. [23]). Thus, the parameter
nlp scaling method is set to none. However, the performance of IPOPT for compliant
mechanism design problems improves if the objective function is scaled by a factor given
by the parameter obj scaling factor. The objective function value of these problems
is negative and close to zero, thus, a scaling of 104 helps IPOPT to produce faster and
more accurate results.

Moreover, in a preliminary study of the performance of IPOPT for different values
of parameters, we observe that IPOPT is highly affected by the election of strategy for
updating the barrier parameter (mu strategy). The adaptive strategy performs better
than the monotone strategy for topology optimization problems, see e.g. [23].

Additionally, for IPOPT, the volume constraint is scaled in both minimum compliance
and compliant mechanism design problems with a factor of 1√

n
and 1

n , respectively [23].
Finally, Table 3 gathers the values of some characteristic parameters involved in

structural topology optimization problems as well as the parameters defined for the
continuation approach. Section 5 revealed that continuation methods work well with
∆p = 0.3 and θ = 0.5 (continuation method type 3). In contrast with the
implementation of the continuation approach in Section 3.1, and as IPOPT is able to
produce designs with better accuracy (lower optimality tolerance) than GCMMA (see
[23]), both the ω0 and ωmin tolerances, are set to smaller values than before.
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7 NUMERICAL EXPERIMENTS WITH AUTOMATIC CONTINUATION

Table 3: Values of some characteristic parameters of topology optimization problems.

Parameter Description Value

t0 Starting point 0.5e
E1 Solid Young’s modulus (P c), (P cac) 103e

E1 Solid Young’s modulus (Pm), (Pmac ) 1
Ev Void Young’s modulus (P c), (P cac) 1
Ev Void Young’s modulus (Pm), (Pmac ) 10−2

ν Poisson’s ratio 0.3
p0 Initial penalization parameter value 1
pmax Final penalization parameter value 3/7
∆pk Step increment of penalization parameter 0.3
θ Factor of reducing the tolerance at each step 0.5
ω0 Initial tolerance for optimality (tol) 10−4

ωmin Final tolerance for optimality (tol) 10−6

7 Numerical experiments with automatic continuation

This section is focused on the numerical experiments with automatic continuation. The
performance of AC-IPOPT is compared to the classical formulation of the problem (NC-
IPOPT) and the continuation method C3-IPOPT.

The computational time is an important aspect when comparing different solvers.
However, our experiments are run on a multi-core processor in a cluster and the
computational time required for the solvers may vary with the load on the cluster.
Nevertheless, in structural topology optimization, one of the most expensive steps is the
assembly of the stiffness matrix. Thus, the computational time required for the solvers
should be proportional to the number of stiffness matrix assemblies. In this section, the
performance of the solvers is compared not only with the objective function value and
the number of iterations, but also with the number of stiffness matrix assemblies and
the computational time.

The section is divided into two parts with the numerical results for the SIMP and the
RAMP material interpolation schemes, respectively.

7.1 SIMP material interpolation scheme

Figure 6 shows the performance profiles for minimum compliance problems based on the
SIMP material interpolation scheme on a test set of 225 problem instances. The use of
p as a new variable helps to produce designs with better objective function values than

eThe choices of Ev and E1 have changed compared to Table 1 since the performance of the solvers is
highly affected by these values. The Young’s modulus contrast E1/Ev remains the same, but the scaling
of the problem has changed, see [23] for more details.
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Figure 6: Performance profiles for NC-IPOPT, C3-IPOPT and AC-IPOPT on a test set of 225
of minimum compliance problems using SIMP. The performance is measured by the objective
function value (6a), the (accumulated) number of IPOPT iterations (6b), the number of stiffness
matrix assemblies (6c), and the computational time (6d).
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Figure 7: Performance profiles for NC-IPOPT, C3-IPOPT and AC-IPOPT on a test set of 150
compliant mechanism design problems using SIMP. The performance is measured by the objective
function value (7a), the (accumulated) number of IPOPT iterations (7b), the number of stiffness
matrix assemblies (7c), and the computational time (7d).
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with a fixed material penalization parameter. Moreover, AC-IPOPT generally requires
fewer iterations than both NC-IPOPT and C3-IPOPT.

Figure 6a shows that even if C3-IPOPT has more chances to win over the other
solvers in terms of objective function value (with a 50% probability), AC-IPOPT reaches
the same performance at a small τ . At τ = 1.08, both AC-IPOPT and C3-IPOPT have
86% chances to produce a sufficiently accurate KKT point. In contrast, the distance of
NC-IPOPT to achieve the same percentage is larger. Furthermore, Figure 6b shows that
both NC-IPOPT and AC-IPOPT have a 40% probability to produce a KKT point using
the least number of iterations. This is in contrast to C3-IPOPT that has a 23% chance.
The performance of AC-IPOPT becomes more competitive than NC-IPOPT if we extend
our interest to larger τ .

Correspondingly, the performance profiles for compliant mechanism design problems
are collected in Figure 7. Figure 7a shows that C3-IPOPT obtains the best designs for
45% of the problems. However, AC-IPOPT makes good progress, and at τ = 1.0025 (i.e.
very close to the best design) it performs as well as C3-IPOPT, with a 62% success rate.
From that point, AC-IPOPT outperforms the rest of the approaches. Observe that the
performance of C3-IPOPT does not improve the objective function value compared to
NC-IPOPT. We can conclude that in general, IPOPT (in all of the approaches) obtains
very good designs for compliant mechanism design problems.

One of the main drawbacks of these problems is the large amount of iterations required
to obtain good designs. Figure 7b reflects that the use of C3-IPOPT becomes impractical
because of this. One more time, the performance of AC-IPOPT is better than NC-IPOPT
and C3-IPOPT measured by the number of optimization iterations.

The performance of the solvers measured by the number of stiffness matrix assemblies
(Figure 6c and 7c) is equivalent to the performance based on the number of iterations. In
addition, Figures 6d and 7d show the performance profiles for the computational time.
The general performance of the three solvers is, as expected, very similar based on the
performance profiles for the number of iterations and the number of stiffness matrix
assemblies.

For both minimum compliance and compliant mechanism design problems, the
continuation approach produces more winners (measured in objective function value)
than the classical and the automatic continuation approach. However, at a very small
distance to the best found design, AC-IPOPT outperforms NC-IPOPT. In contrast,
C3-IPOPT requires more iterations and stiffness matrix assemblies than AC-IPOPT.
From Figures 6 and 7 we can conclude that the performance of AC-IPOPT rapidly
increases and it becomes a very good competitor. For compliant mechanism design
problems, AC-IPOPT outperforms C3-IPOPT in both the number of stiffness matrix
assemblies and the objective function value. It is important to point out, that there is a
need to balance between obtaining the best designs and consuming few function
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8 CONCLUSIONS

evaluations. Thus, AC-IPOPT is a very good alternative to C3-IPOPT. Moreover, we
suggest a new way of solving topology optimization problems where the final design is
considerable better and it converges faster than with a fixed penalization parameter.

7.2 RAMP material interpolation scheme

We also briefly examine the performance of automatic continuation coupled with the
RAMP interpolation scheme for both minimum compliance and compliant mechanism
design problems. The results are shown in Figure 8 and Figure 9, respectively.

In this case, the performance of AC-IPOPT measured by the objective function value
is more prominent for minimum compliance problems (as illustrated in Figure 8a) than for
compliant mechanism design (see Figure 9a) where it performs similar to NC-IPOPT.
Nevertheless, for the latter problems, the improvements compared to NC-IPOPT and
C3-IPOPT in the number of iterations make AC-IPOPT a very good alternative. For
compliant mechanism design problems, it is more important to reduce the computational
time and the number of iterations required than producing good designs, since IPOPT
generally obtains very good designs for all approaches.

Similarly to the previous section, the performance of the methods measured in stiffness
matrix assemblies and computational time is comparable to the number of iterations.

8 Conclusions

In structural topology optimization, it is common to use continuation methods in the
penalization parameter of the material interpolation scheme to produce better designs.
These continuation methods solve sequences of problems with increasing values of the
material penalization parameter p. In this article, we presented a benchmarking study
of continuation methods using GCMMA on a test set of 225 minimum compliance and
150 compliant mechanism design problems, in order to assess the general performance of
this approach.

The numerical results clearly indicate that the continuation methods implemented in
this article generally (but not always) obtain better designs than using a fixed material
penalization parameter value. Moreover, the performance of our continuation methods
is not highly affected by the increment step selected. The latter result is preliminary and
requires additional investigations. However, the suggested continuation approaches are
computationally expensive, and for large-scale problems or for industrial applications, our
implementation of continuation methods is impractical. We present a new alternative,
called automatic continuation, where the parameter of the material interpolation scheme
is an explicit variable of the problem. In contrast to other continuation methods, the
proposed automatic continuation approach only solves one optimization problem.
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Figure 8: Performance profiles for NC-IPOPT, C3-IPOPT and AC-IPOPT on a test set of 225
of minimum compliance problems using RAMP. The performance is measured by the objective
function value (8a), the (accumulated) number of IPOPT iterations (8b), the number of stiffness
matrix assemblies (8c), and the computational time (8d).

26



8 CONCLUSIONS

τ

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

%
p
ro
b
le
m
s

0

10

20

30

40

50

60

70

80

90

100

NC IPOPT

AC IPOPT

C
3
 IPOPT

(a) Objective function value
τ (log10)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

%
p
ro
b
le
m
s

0

10

20

30

40

50

60

70

80

90

100

NC IPOPT

AC IPOPT

C
3
 IPOPT

(b) Number of iterations

τ (log10)
0 0.5 1 1.5 2 2.5 3

%
p
ro
b
le
m
s

0

10

20

30

40

50

60

70

80

90

100

NC IPOPT

AC IPOPT

C
3
 IPOPT

(c) Stiffness matrix assemblies
τ (log10)

0 0.5 1 1.5 2 2.5

%
p
ro
b
le
m
s

0

10

20

30

40

50

60

70

80

90

100

NC IPOPT

AC IPOPT

C
3
 IPOPT

(d) Computational time

Figure 9: Performance profiles for NC-IPOPT, C3-IPOPT and AC-IPOPT on a test set of
150 compliant mechanism design problems using RAMP. The performance is measured by the
objective function value (9a), the (accumulated) number of IPOPT iterations (9b), the number
of stiffness matrix assemblies (9c), and the computational time (9d).
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The automatic continuation approach is a good alternative to the outlined
continuation methods both in terms of quality of designs and the computational effort.
Even though the suggested continuation approach obtains better designs for some
problems, the computational time required is high in comparison to the automatic
continuation approach. Additionally, both the objective function value and the number
of iterations are reduced compared to the classical formulation with fixed penalty
parameter. Thus, this new formulation is a good replacement of both continuation
methods and the classical formulation.

This study opens many possibilities for further research and developments of new
implementations of continuation methods and new alternatives.
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1 Introduction

Structural topology optimization determines the design in a domain by minimizing an
objective function under certain constraints, for a given set of boundary conditions and
loads. It is common to minimize compliance or volume subject to limitations on the
displacements, volume, or stresses. Topology optimization is a mathematical approach
where the design domain is often discretized using finite elements for design
parametrization and structural analysis. More details of these problems can be found in
the monograph [5].

Several special purpose methods have been implemented to solve structural
topology optimization problems. Examples include the Method of Moving Asymptotes,
(MMA) [52], its globally convergent version, (GCMMA) [53], and the Convex
Linearization (CONLIN) method [21]. These first-order methods solve a sequence of
convex sub-problems based on separable approximations of the objective and constraint
functions. Different variations of MMA using the diagonal of the second-order
derivatives are proposed in [22] and [23], evaluating the benefits of using partial
second-order information.

Although it is not very commonly reported in the literature, general nonlinear
optimization solvers are also applicable to topology optimization problems. The
numerical experiments in [46] show that general purpose solvers, such as interior-point
and sequential quadratic programming methods, can be used for solving these type of
problems. In these numerical experiments, SNOPT (an SQP method) [27] requires very
few iterations to converge to a Karush-Kuhn-Tucker (KKT) point. In addition,
second-order information helps to produce accurate results (optimized designs with low
objective function value) as demonstrated by the interior-point method IPOPT [55].
The results of the benchmarking study in [46] have motivated the implementation of the
second-order SQP method for structural topology optimization problems (TopSQP).
Due to the use of second-order information, TopSQP is expected to converge faster than
first-order methods. In addition, the objective function values might be reduced too.

In the SQP family of methods, there are numerous variations of algorithms, but all of
them are characterized by the same idea. They find approximate solutions to a sequence
of normally convex sub-problems. A quadratic objective function models the Lagrangian
while the original constraints are linearized. For general information of SQP see e.g. [7]
and [30].

One of the main properties of SQP methods is the fast convergence when close to the
solution. However, the performance of SQP depends, in general, on the starting point.
It is quite difficult to use second-order information (see Section 2) when the problems are
nonconvex. In practice, most of the SQP algorithms use quasi-Newton approximations
of the Hessian in order to obtain a convex sub-problem, see e.g. [30].
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1 INTRODUCTION

The main differences between SQP algorithms are how the search direction is
computed, how the search direction is accepted or rejected, and how inequality
constraints are dealt with. Both line search [41] and trust region strategies [12] can be
applied in SQP solvers. Additionally, to ensure convergence, merit functions [6] or filter
methods [20] are used. Regarding how the method obtains the active inequality
constraints, SQP is classified as equality constrained quadratic programming (EQP) or
inequality constrained quadratic programming (IQP), see e.g. [33]. Finally, there are
different ways to approximate the Hessian of the Lagrangian, using either
limited-memory approximations like BFGS (Broyden - Fletcher - Goldfarb - Shanno)
[15] or some information of the Hessian. Examples of different SQP algorithms can be
found in [30], [29], [33], [40], [35], [13], and [49], among others.

There are several software in the optimization community based on SQP methods.
For instance, SNOPT [27], NLPQLP solver [48], and NPSOL [28], where a line search
is combined with different penalty functions, the trust region with a filter method in
FilterSQP [19], or the new SQP implemented in KNITRO, see e.g. [11] among others.
More details of nonlinear solvers can be found in e.g. [38]. Nevertheless, the use of SQP
methods in topology optimization is seemingly not very popular, and very few references
have been found in this regard, see e.g. [44], [17], and [18].

This article contains a detailed description of an efficient sequential quadratic
programming method for maximum stiffness structural topology optimization problems.
The SQP+ method introduced in [40] is implemented using second-order information
based on the exact Hessian. SQP+ contains two phases, the inequality quadratic phase
(IQP), where an inequality constrained convex quadratic sub-problem is solved. Then,
an equality constrained quadratic phase (EQP), where the active constraints found for
the IQP are used. The step generation is done using a line search strategy in
conjunction with a reduction in a merit function. In the special-purpose
implementation TopSQP, the IQP phase uses a convex approximation of the exact
Hessian instead of the traditional BFGS. Based on the specific structure of the problem
formulation, both phases are efficiently reformulated to reduce computational cost. The
reformulations avoid one of the most expensive steps in topology optimization
problems, which is the computation of the inverse of the stiffness matrix (involved in
the Hessian of compliance).

The performance of the proposed TopSQP is compared to the specific purpose
GCMMA and with two of the state-of-the-art software in numerical optimization;
SNOPT and IPOPT. The comparative study is done using performance profiles [16] on
a test set of 225 medium-size minimum compliance problem instances described in [46].

The paper is organized as follows. Section 2 introduces the SQP+ algorithm for a
general nonlinear problem and Section 3 briefly defines the topology optimization problem
under consideration. Then, the Hessian of the Lagrangian function and some possible
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convex approximations are proposed in Section 4. The efficient reformulations of the
IQP and EQP phases of TopSQP are gathered in Section 5 and Section 6, respectively.
Some implementation details are collected in Section 7. The comparative study of the
performance of TopSQP is reported in Section 8, followed by a list of the main limitations
this new algorithm may have for topology optimization problems, in Section 9. Finally,
Section 10 draws the main conclusions from the results and outlines recommendations
for the future work.

2 Sequential Quadratic Programming with an additional
equality constrained phase

A general sequential quadratic programming method generates approximate solutions
using a quadratic model of the Lagrangian function and a linearization of the constraints.

The general nonlinear constrained problem under consideration is

minimize
x∈Rn

f(x)

subject to gi(x)≤ 0 i= 1, . . . ,m,
li ≤ xi ≤ ui i= 1, . . . ,n,

(NLP)

where f(x) : Rn −→ R and gi(x) : Rn −→ R are assumed to be twice continuously
differentiable functions.

A conventional SQP method approximates (NLP) at a given iterate xk, and uses
the solution of the sub-problem to produce a search direction dk. The solver ensures
convergence to a KKT point by enforcing, for instance, an improvement in a merit
function. This class of methods has shown fast local convergence (see e.g. [43] and [40]),
however, the theoretical properties do not hold when the Hessian is indefinite, producing
some difficulties to the solver. Since nonconvex problems are NP-hard problems [42], a
minimizer of the sub-problem does not guarantee the convergence of the algorithm, see
e.g. [45].

The sequential quadratic programming method proposed in this article is based on
the algorithm SQP+ in [40]. SQP+ tries to improve the convergence rate by including
two phases. First, an inequality quadratic convex constrained sub-problem is solved.
Second, the set of active constraints is estimated, and with them, an EQP sub-problem
is defined and solved, ignoring the rest of the constraints. The EQP estimated solution
refines the search direction, producing fast convergence. Additionally, the IQP iterate
of the proposed TopSQP is expected to be more precise than in [40] since a positive
definite approximation of the indefinite Hessian is used instead of the BFGS approach.
The approximation is based on the exact second-order information (see Section 4).

Throughout this section, the SQP+ method, summarized in Algorithm 1, is outlined
for the general nonlinear problem (NLP).
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2 SEQUENTIAL QUADRATIC PROGRAMMING WITH AN ADDITIONAL
EQUALITY CONSTRAINED PHASE

Algorithm 1 SQP+ algorithm from [40].
Input: Define the starting point x0, the initial Lagrangian multipliers λ0, ξ0 η0 and the optimality

tolerance ω.
1: Set σ = 10−4, κ= 0.5, k = 1, π = 1.
2: repeat
3: Define an approximation of the Hessian of the Lagrangian function, Bk � 0 such as Bk ≈

∇2L(xk,λk).
4: Solve the IQP sub-problem as explained in Section 2.2 where the solution is (diqk ,λ

iq
k ,ξ

iq
k ,η

iq
k ).

5: Determine the working set of active constraints, Wk, defined in Section 2.3.
6: Solve the EQP sub-problem as explained in Section 2.3 where the solution is (deqk ,λ

eq
k ,ξ

eq
k ,η

eq
k ).

7: Compute the contraction parameter β ∈ (0,1] such as the linearized contraints of the IQP sub-
problem are feasible at the iterate point xk + diqk +βdeqk .

8: Acceptance/rejection step. Use of line search strategy:
9: if φπ(xk + diqk +βdeqk )≤ φπ(xk)−σqredπ(diqk ) then
10: dk = diqk +βdeqk .
11: else
12: Find α= {1,κ,κ2, ...} such that φπ(xk +αdiqk )≤ φπ(xk)−σαqredπ(diqk ).
13: dk = αdiqk .
14: end if
15: Update the primal iterate xk+1 = xk + dk.
16: Update the Lagrangian multiplier estimates λk+1, ξk+1, ηk+1 with the strategy explained in

Section 2.5.
17: Update the penalty parameter π.
18: Compute the ∞-norm of KKT conditions of the original problem (NLP).
19: Set k← k+ 1.
20: until convergence
21: return

2.1 Optimality conditions

The Lagrangian function of (NLP) is defined as

L(x,λ,ξ,η) = f(x)+
m∑

i=1
λigi(x)+

n∑

i=1
ξi(xi−ui)+

n∑

i=1
ηi(li−xi).

Here λ = (λ1, . . . ,λm)T , ξ = (ξ1, . . . , ξn)T , and η = (η1, . . . ,ηn)T are the Lagrangian
multipliers of the inequality, the upper bound, and the lower bound constraints,
respectively.

The first-order necessary conditions for a primal-dual point (x,λ,ξ,η) to be a local
optimal solution of the problem (NLP) are gathered in the Karush-Kuhn-Tucker (KKT)
conditions (1)-(9), see e.g. [43].
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∇L(x,λ,ξ,η) =∇f(x)+J(x)Tλ+ξ−η = 0, (1)
gi(x)≤ 0 i= 1, . . . ,m, (2)
li ≤ xi ≤ ui i= 1, . . . ,n, (3)

λi ≥ 0 i= 1, . . . ,m, (4)
ξi ≥ 0 i= 1, . . . ,n, (5)
ηi ≥ 0 i= 1, . . . ,n, (6)

gi(x)λi = 0 i= 1, . . . ,m, (7)
(xi−ui)ξi = 0 i= 1, . . . ,n, (8)
(li−xi)ηi = 0 i= 1, . . . ,n. (9)

Here, J(x) = [∇gi(x)T ]i=1,...,m : Rn 7→ Rm×n is the Jacobian of the inequality
constraints. Equation (1) refers to the stationarity condition, (2)-(3) are the primal
feasibility conditions, and (7)-(9) are the complementarity conditions. In addition, some
Constraint Qualification (CQ) must hold at x, see [43] and [39].

In practice, SQP+ considers that x is an optimal solution if the stationarity, feasibility,
and complementarity conditions are satisfied within some positive tolerance, i.e.

∥∥∥∇f(x)+J(x)Tλ+ξ−η
∥∥∥
∞
≤ ε1,

∥∥∥∥∥∥∥∥




g(x)+

gu(x)−

gl(x)−




∥∥∥∥∥∥∥∥
∞

≤ ε2,

∥∥∥∥∥∥∥∥




hg(x,λ)
hu(x,ξ)
hl(x,η)




∥∥∥∥∥∥∥∥
∞

≤ ε3,

for some given constants ε1 > 0, ε2 > 0 and ε3 > 0. Here,

g(x)+ , [max{0,gi(x)}]i=1,...,m,

gu(x)− , [max{0,−(ui−xi)}]i=1,...,n,

gl(x)− , [max{0,−(xi− li)}]i=1,...,n,

hg(x,λ) ,
[
gi(x)λi

]
i=1,...,m

,

hu(x,ξ) ,
[
(xi−ui)ξi

]
i=1,...,n

,

hl(x,η) ,
[
(li−xi)ηi

]
i=1,...,n

.

2.2 Solving the IQP sub-problem

The inequality constrained quadratic phase (IQP) approximates the problem (NLP)
with a convex quadratic model of the Lagrangian function and a linearization of the
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2 SEQUENTIAL QUADRATIC PROGRAMMING WITH AN ADDITIONAL
EQUALITY CONSTRAINED PHASE

constraints. Thus, a positive definite matrix, Bk, computed in Step 3 of Algorithm 1 is
crucial to define the IQP problem.

minimize
d∈Rn

∇f(xk)Td+ 1
2d

TBkd

subject to g(xk)+J(xk)d≤ 0,
l̃i ≤ di ≤ ũi i= 1, . . . ,n.

(IQP)

The lower and the upper bounds of di are defined with l̃i = li− (xk)i and ũi = ui− (xk)i,
i= 1, . . . ,n, respectively.

From now on, the linearization of the constraints in (IQP) is assumed to result in a
feasible problem (see Section 3). The primal-dual solution of the sub-problem (diqk , λ

iq
k ,

ξiqk , η
iq
k ), is used to estimate first, the set of active constraints and second, the search

direction.
The most important characteristic of this IQP phase is the convexity of the

optimization problem. Any local optimal solution of a convex problem is a global
solution. Furthermore, for the IQP in this work, existence of solution is ensured (see
Section 4). In addition, the problem always has a descent direction until convergence
(see e.g. [9]).

An important aspect for large-scale problems is to solve this sub-problem as fast
as possible. In this context, it is solved using fast commercial solvers for large-scale
quadratic problems, such as Gurobi [34] or CPLEX [37].

2.3 Solving EQP sub-problem

The working set Wk (Step 5 of Algorithm 1) contains all the indices of the constraints
where their linearization in the sub-problem (IQP) are active at diqk , i.e,

Wk = {Wg
k ∪Wu

k ∪W l
k},

with
Wg
k = { i | gi(xk)+∇gi(xk)Tdiqk = 0, i= 1, . . . ,m},
Wu
k = { i | (diqk )i− ũi = 0, i= 1, . . . ,n},
W l
k = { i | (diqk )i− l̃i = 0, i= 1, . . . ,n}.

For those active constraints, the following equality constrained sub-problem (EQP) is
defined. The explanation of its final formulation can be found in [10].

minimize
d∈Rn

(∇f(xk)+Hkdiqk )Td +1
2d

THkd

subject to JWg
k
(xk)d = 0,

di = 0 i ∈ {Wu
k ∪W l

k}.
(EQP)

The matrix Hk refers to the exact Hessian of the Lagrangian function i.e. Hk =
∇2L(xk,λiqk ) and JWg

k
(xk) represents the matrix whose rows are the active constraint
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gradients (i.e. the Wg
k rows of the Jacobian). Applying Newton’s method to the first-

order optimality conditions of (EQP), this optimization problem is equivalent to solve
the KKT system




Hk JWg
k
(xk)T IWu

k
−IWl

k

JWg
k
(xk) 0 0 0

ITWu
k

0 0 0
−ITWl

k
0 0 0







deqk
λeqk
ξeqk
ηeqk




=−




∇f(xk)+Hkdiqk
0
0
0




(10)

where IWu
k
∈ Rn×|Wu

k | and IWl
k
∈ Rn×|Wl

k| are pseudo-identity matrices. The Lagrangian
multipliers (λeqk ,ξ

eq
k ,η

eq
k ) refer to the active constraints. The size of the system (10) can

be easily reduced since
ITWu

k
deqk = 0,

ITWl
k
deqk = 0.

Therefore, only a system taking into account the nonzero direction ((deqk )i 6= 0) need to
be solved.


Hk,Wb

k,c
JWg

k
,Wb

k,c
(xk)T

JWg
k
,Wb

k,c
(xk) 0



[
d̃eqk
λeqk

]
=−


(∇f(xk)+Hkdiqk )Wb

k,c

0


 . (11)

Here, Wb
k,c = {1, . . . ,n} \ {Wu

k ∪W l
k} is the complementarity set of the active bounds

(upper and lower), Hk,Wb
k,c

refers to the Wb
k,c columns and rows of Hk, and JWg

k
,Wb

k,c
(xk)

refers to the Wg
k rows and Wb

k,c columns of the Jacobian. In this case, the term d̃eqk
represents the Wb

k,c rows of deqk . The Lagrangian multipliers of the active bounds are
obtained afterwards1 by

zeqk =−∇f(xk)−Hkdiqk −Hkdeqk −JWg
k
(xk)Tλeqk ,

ξeqk = zeqk,Wu
k
,

ηeqk =−zeq
k,Wl

k

.

The computation of the EQP search direction is, generally, much faster than the IQP
solution. The EQP sub-problem not only helps to produce a more accurate search
direction, but also reduces the number of IQP phases (the number of iterations is
decreased) (see Section 7). A direct consequence is a reduction of the total
computational time.

2.3.1 Existence of solutions of the equality quadratic constraint problem

The equality constrained quadratic problem (EQP) is equivalent to solving the system
of equations (11). The matrix of this system is commonly defined like

K =
[
H AT

A 0

]
,

1Note that Wu
k and Wl

k are disjoint sets by definition.
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2 SEQUENTIAL QUADRATIC PROGRAMMING WITH AN ADDITIONAL
EQUALITY CONSTRAINED PHASE

where H ∈ Rn×n is symmetric and A ∈ Rm×n is the Jacobian of the linearized active
constraints. It is assumed that A has full row rank. The matrix K is called a Karush-
Kuhn-Tucker matrix. There are conditions under which the system has solution.

Theorem 1. (from [43]) Let A have a full row rank, and assume that the reduced-Hessian
matrix ZTHZ is positive definite. Then the KKT matrix K is nonsingular, and hence
there is a unique vector that satisfied the linear system and is the unique global solution.

Where Z ∈Rn×(n−m) is a matrix whose columns are the basis of the null-space of A.

Thus, in order to obtain a solution of the EQP sub-problem, the reduced-Hessian
must be positive definite, and the matrix A must have full rank.

Definition 1. (from [32]) Suppose a matrix K. Let i0, i+ and i− be the number of
zero, positive and negative eigenvalues of K, respectively. The trial (i+, i−, i0) is called
inertia.

Theorem 2. Gould Theorem ([36]). Suppose that A has full rank m. The condition
pTHp> 0, ∀p 6= 0, such that ATp = 0 holds if and only if

inertia(K) = (n,m,0).

In addition,
inertia(K) = inertia( ZTHZ)+(m,m,0).

Therefore, if ZTHZ is positive definite, inertia(K) = (n,m,0).

An option to compute the inertia of a KKT matrix is by the LDL factorization, see
e.g. [26] and [43]. If the inertia is not correct, it is necessary to modify the KKT matrix
to ensure the existence of solution. There are many different alternatives to modify
the nonconvex sub-problem into a local convex approximation, such as using different
inertia correction based on LDL factorizations, see e.g. [26], [25], and [24], or using
other techniques such as in [36] and [55]. In addition, it is possible to apply different
convexification approaches proposed in [29] and [31].

When the computation of the reduced-Hessian is computationally cheap, the system
can be easily modified to guarantee a positive definite reduced-Hessian, see [43]. For
instance, Hz = ZTkHkZk is perturbed using its eigenvalues, so that Ĥz = Hz + γI � 0,
with γ = min(|λeig(Hz)|) + ε, where λeig refers the the eigenvalues of the matrix. This
perturbation is then used for the KKT matrix,

[
H+γI AT

A 0

]
.

The EQP sub-problem in [40] is solved only in those cases where the inertia of the
system is correct. However, TopSQP modifies the KKT matrix to guarantee a correct

9



inertia. If the same approach as in [40] is used, TopSQP would essentially be a classical
SQP with only an IQP step since the indefiniteness of the Hessian of the compliance (see
Section 3) usually produces an incorrect inertia.

2.4 Acceptance/rejection of the step

Once the IQP and EQP search directions are computed, it is necessary to verify whether
these estimates improve the iterate xk. First of all, a contraction parameter β (Step 7)
secures that the linearization of all the constraints (active and inactive) are satisfied at
the point with maximum search direction d =diqk +βdeqk . In other words, the constraints
of the IQP phase must remain feasible.

The largest value of β ∈ (0,1] is computed such that

gi(xk)+∇gi(xk)Td≤ 0 i ∈Wg
k,c,

di ≤ ũi i ∈Wu
k,c,

l̃i ≤ di i ∈W l
k,c.

Here,
Wg
k,c = {1, . . . ,m}\Wg

k ,

Wu
k,c = {1, . . . ,n}\Wu

k ,

W l
k,c = {1, . . . ,n}\W l

k,

are the complementarity working set. Once the contraction parameter is determined,
a line search estimates the step length α for the new step direction (Step 9 and 12 in
Algorithm 1). The TopSQP line search is implemented as [40], Section 5. The line
search procedure is slightly modified compared to the theoretical procedure used for the
theoretical results. The acceptance criterion is based on the merit function (12) and the
model reduction from xk to xk +d (13) of the original problem (NLP). These functions
are defined as

φπ(x) = f(x)+π(||g(x)+||1 + ||gl(x)−||1 + ||gu(x)−||1) (12)

qredπ(d) = −(∇f(xk)Td+ 1
2d

TBkd)+π(||g(xk)+||1+
||gl(xk)−||1 + ||gu(xk)−||1).

(13)

If the sufficient decrease condition (14) is satisfied, then the iterate xk+1 = xk+diqk +
βdeqk is accepted.

φπ(xk +diqk +βdeqk )≤ φπ(xk)−σqredπ(diqk ). (14)

Otherwise, α ∈ {1,κ,κ2, . . .} is found such that condition (15) is satisfied. In this case,
the new iterate is defined as xk+1 = xk +αdiqk .

φπ(xk +αdiqk )≤ φπ(xk)−σαqredπ(diqk ). (15)

10



2 SEQUENTIAL QUADRATIC PROGRAMMING WITH AN ADDITIONAL
EQUALITY CONSTRAINED PHASE

There are several techniques to update the penalty parameter π in order to improve
the convergence rate, for instance, the strategy explained in e.g. [56] and [14]. In practice,
due to the feasibility of the sub-problems (see Section 3), the term affected by π is always
close to 0. The penalty parameter π is updated very simple by just using the Lagrangian
multipliers, i.e. π = ||λ||∞. Finally, the parameters σ = 10−4 and κ= 0.5 are taken from
[40].

2.5 Updating the Lagrangian multipliers

The SQP+ algorithm in [40] updates the estimates of the Lagrangian multipliers
depending on the final step direction. The updating scheme of the SQP+ is

λk+1 =
{

max(0,λeqk ) if dk = diqk +βdeqk
(1−α)λk +αλiqk if dk = αdiqk .

Although [40] suggest that both the equality and the inequality Lagrangian multipliers
can be good candidates, the former is considered since a BFGS is used in the IQP phase.
Nevertheless, the proposed IQP, detailed in Section 5, gives also accurate Lagrangian
estimates due to the use of part of the exact Hessian (see Section 4). In addition, the
working set of active constraints is numerically approximated (see Section 7), and the
EQP might be defined with constraints that are inactive. A preliminary study was
performed to investigate how the election of the Lagrangian multipliers was affecting
the convergence. The performance was slightly better when the inequality Lagrangian
multipliers were used, i.e.,

λk+1 = αλiqk +(1−α)λk,
ξk+1 = αξiqk +(1−α)ξk,
ηk+1 = αηiqk +(1−α)ηk.

2.6 Convergence properties

In [40] the global and local convergence properties of SQP+ are explained in detail.
The IQP phase gives the global convergence while the EQP phase helps to produce
fast local convergence, when the active set is correct. For the theoretical proof, some
assumptions are established. In addition, the quadratic convergence proof relies on the
second-order sufficient conditions,2 at xk sufficiently close to the optimal point. A full
step (dk = diqk +deqk ) is also assumed at those points [40]. Even, if it is not the goal of
this article to demonstrate the convergence of the solver, it is important to point out
that some of the assumptions made in [40] are easily proven for our specific problem,

2(from [43]) For a given feasible point x, there are some Lagrangian multipliers (λ,ξ,η) such that the
KKT conditions are satisfied. Suppose that pTHp> 0, such that ATp = 0, with A the Jacobian of the
active constraints. Then, x is a strict local solution.
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such as the convexity of the feasible set, the feasibility of the IQP sub-problem and
the Lipschitz continuous property of the objective and constraint functions. On the
other hand, there are several assumptions that cannot be proven for general topology
optimization problems, such as the strict complementarity assumption. In general, these
assumptions are quite strict and they exist to prove general global and local convergence.

However, TopSQP lost the theoretical quadratic convergence property. Due to
numerical tolerances, the optimization method, at iterates close to the optimal solution,
does not take the full step, i.e. β < 1. The strict complementarity is not satisfied, and
at some of these iterations, the second-order sufficient conditions are not satisfied.
Thus, Theorem 4.3 in [40] cannot be applied. Nevertheless, the numerical experiments
in Section 8 will show that the proposed implementation has a great robustness.

3 Problem formulation

The minimum compliance problem is considered as one of the most typical structural
topology optimization problems. The classical formulation consists of maximizing the
stiffness of the structure (minimizing compliance) subject to a volume constraint, see more
details in e.g. [5]. This article considers the nested approach, where the displacements
(state variables, u) depend on the design variables (t), related with the linear elastic
equilibrium equations in their discretized form

K(t)u = f,
u(t) = K−1(t)f.

Here t ∈ Rn is the density variable, n is the number of elements, K(t) : Rn → Rd×d is
the stiffness matrix, with d the number of degrees of freedom, and f ∈ Rd the static
design-independent force vector.

In particular, the density-based approach is used to penalize intermediate densities
to produce an almost solid-and-void design. More specifically, the Solid Isotropic of
Material Penalization (SIMP) approach is chosen (see e.g. [4], [47], and [57]). For this
interpolation, the stiffness matrix is defined as

K(t) =
n∑

e=1
E(te)Ke,

with
E(te) = Ev +(E1−Ev)t̃pe,
where the SIMP penalty parameter is p≥ 1.

Here, Ev > 0 and E1�Ev are the "void" and solid Young’s modulus, respectively, andKe

the element stiffness matrix. The stiffness matrix is assumed to be positive definite for all
design vectors satisfying the bound constraints to avoid singularity. Finally, the variable
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4 APPROXIMATION OF THE HESSIAN OF THE LAGRANGIAN

t̃e refers to the design variable with a density filter [8], and [51], defined analogous to
[46].

The minimum compliance problem in its discrete version is

minimize
t∈Rn

u(t)TK(t)u(t)

subject to aT t≤ V,
0≤ t≤ 1.

(P c)

Here a= (a1, . . . ,an)T ∈Rn with ai > 0 i= 1, . . . ,n the relative element volume, and
V > 0 the total volume fraction. For simplicity, ai = aj ∀i, j.

The nonlinear optimization problem (P c) contains only one linear inequality
constraint and bound constraints. Denote the feasible set of (P c) by

Ω = {ti ∈ [0,1] i= 1, . . . ,n,
n∑

i=1
aiti ≤ V }. (16)

The set Ω (16) is convex, nonempty under natural assumptions, closed, bounded and
thus compact, [9].

Both Ω and the constraint functions are convex. However, the optimization problem
is, in general, nonconvex [9], since the Hessian of the Lagrangian function ∇2L(t,λ) =
∇2f(x) is not positive semi-definite (cf. below). The feasible set is nonempty, i.e. there
is, at least, one local solution for (NLP). Certain CQs hold at every point due to the
linearity of the constraints. The authors emphasize the importance of the CQ because,
in general, the numerical optimization theory assumes that they are satisfied (see e.g.
[43] and [39]).

4 Approximation of the Hessian of the Lagrangian

The Hessian is defined by using sensitivity analysis on the objective function,

∇2L(t,λ) = 2F(t)TK−1(t)F(t)−Q(t)

with
Q(t) = diag(uT (t)∂

2Ki(ti)
∂t2i

u(t)) : Rn −→ Rn×n

F(t) =
(
∂K1(t1)
∂t1

u(t) · · · ∂Kn(tn)
∂tn

u(t)
)

: Rn −→ Rd×n.

For p= 1 (SIMP penalization parameter), the term Q(t) is zero, and the problem is
convex with

∇2L(t,λ) = 2F(t)TK−1(t)F(t)� 0.

The problem generally becomes nonconvex for p > 1.
The IQP phase requires a positive definite approximation of the Hessian, Bk (step 3

Algorithm 1). Instead of using a BFGS approximation as in [40], the exact second-order
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information is used as much as possible. A convex (positive semi-definite) approximation
could be for instance,

Ĥ1 = 2F(t)TK−1(t) F(t). (17)

From a theoretical point of view, the approximate matrix Bk must be positive definite,
i.e. Bk = Ĥ1 + εI � 0. In practice, Bk = Ĥ1 � 0 is used, and thus, in some iterations,
some theoretical properties might be lost. In the numerical experiments, the approximate
Hessian Ĥ1 is strictly positive definite, though.

There are other alternatives to modify the Hessian so that it becomes positive definite,
such as equation (18) where an extra term is added, or equation (19) where the nonconvex
part is contracted by a factor γ2.

Ĥ2 = 2F(t)TK−1(t)F(t)−Q(t)+γ1I, (18)
Ĥ3 = 2F(t)TK−1(t)F(t)−γ2Q(t). (19)

There are some other alternatives to Bk, for instance, the identity matrix, or the positive
diagonal terms of the exact Hessian, as it is suggested in [22]. Nevertheless, we would
like to take advantage of the structure of the exact Hessian. The positive semi-definite
Ĥ1 (17) matrix is chosen to be the Bk of IQP step, since it is the fastest approximation
(there is no need to estimate γ1 or γ2).

In the EQP step, either the exact Hessian with an inertia correction method is used
or the KKT matrix is perturbed so that the reduced-Hessian becomes positive definite.

The minimum compliance problem (P c) has only one linear inequality constraint,
therefore, a basis (Z) of the null-space of the gradient of the active constraints is very
easy to compute. A perturbation of the KKT matrix is easily obtained by enforcing
a positive definite reduced-Hessian introduced in Section 2.3.1. However, the reduced-
Hessian, ZTHZ, becomes dense and the computation of γ will be expensive.

On the other hand, it is also possible to directly use the same positive definite
approximate Hessian as in the IQP. This positive definite approximation guarantees the
correctness of the inertia of the system without examines it. However, once the working
set of active constraints is identified, both the EQP and the IQP will theoretically be
identical [40]. In practice, the set of active constraints of the considered problem is
identified at the very end of the optimization since the density variables are constantly
moving. Moreover, the numerical errors in both, the tolerance of the IQP and EQP
steps and the selection of the active set (see Section 7), produce that the IQP and EQP
steps at points sufficiently close to the optimal are different.
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5 ALTERNATIVES TO THE PRIMAL IQP FORMULATION

5 Alternatives to the primal IQP formulation

The IQP sub-problem of (P c) is formulated using an approximate Hessian Bk defined in
(17) as

minimize
d∈Rn

f̂(d) =−(FTk uk)Td+dTFTkK−1
k Fkd

subject to aT tk−V +aTd≤ 0
−tk ≤ d≤ 1− tk.

(IQPp)

For simplicity, any function or matrix with the form A(tk) is represented by Ak.
The feasible set of (IQPp) is convex (hyperplanes), nonempty, closed, and bounded.

By construction the (IQPp) is convex. Moreover some CQs hold. Thus, this sub-problem
has an optimal solution and any local solution that satisfies the KKT condition is also a
global minimizer.

5.1 Reformulation of the primal IQP formulation

TopSQP spends most of the computational time in the IQP phase. In addition, (IQPp)
is extremely expensive since the inverse of the stiffness matrix is involved, and the matrix
Bk is dense.

However, it is possible to reformulate the inequality sub-problem such that the
computation and the storage of the approximate Hessian are no longer required. First
of all, a Cholesky factorization is used for the stiffness matrix. Then, a new variable
z̃ = (RT

k )−1Fkd ∈ Rd is included to rename some terms of the problem so that any
inverse matrix is removed from the objective function of (IQPp).

f̂(d) =−(FTk uk)Td+dTFTk (RT
kRk)−1Fkd,

f̂(d, z̃) =−(FTk uk)Td+ z̃T z̃.

The introduction of the new variable z̃ leads to an enlargement of the number of
constraints. The alternative IQP formulation is

minimize
d∈Rn,z̃∈Rd

−(FTk uk)Td+ z̃T z̃

subject to RT
k z̃−Fkd = 0,

Akd≤ bk,

(IQPp−2)

where the linear inequality constraints are condensed into a system Akd≤bk, to simplify
the notation. Here, m= 2n+1, and

Ak =




aT

I
−I


 ∈ Rm×n,

bk =




−(aT tk−V )
1− tk
tk


 ∈ Rm.
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Using this new formulation, the number of variables and linear constraints are
increased. In contrast, the computational time can, due to sparsity, significantly be
reduced.

5.2 Dual problem of the IQP formulation

Using Lagrangian duality theory (see e.g. [9]), an optimization problem can be
reformulated using the dual variables (λ,ξ,η). In some cases this new dual problem is
much easier to solve and computationally less expensive than the primal problem.
Thus, the problem (IQPp) can also be formulated in its dual problem.

A new variable z ∈ Rd is introduced to rename some terms of the objective function.
Let

z = Fkd, (20)

then, the (IQPp) problem is equivalent to

minimize
d∈Rn,z∈Rd

−(FTk uk)Td+zTK−1
k z

subject to Akd≤ bk,
z = Fkd.

(21)

The Lagrangian function of the IQP sub-problem (21) is described in terms of the
primal variables d and z, and the dual variables ν = (λ,ξ,η) ∈ Rm (for the inequality
and bound constraints) and θ ∈ Rd (for the new equality constraints).

Lp(d,z,ν,θ) = −(FTk uk)Td+zTK−1
k z+

νT (Akd−bk)+θT (z−Fkd).

The dual problem consists of maximizing

ϕ(ν,θ) = inf
d,z
Lp(d,z,ν,θ)

respect to the dual variables ν,θ [9]. The formulation of the dual problem is obtained
by satisfying the optimality conditions of (21),

∇dLp(d,z,ν,θ) =−FTk uk +AT
k ν−FTk θ = 0,

∇zLp(d,z,ν,θ) = 2K−1
k z+θ = 0.

Then, the solution of the dual problem must satisfy:

z =−1
2Kkθ, (22)

−FTk uk +AT
k ν−FTk θ = 0. (23)
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5 ALTERNATIVES TO THE PRIMAL IQP FORMULATION

Based on the above equations, the primal Lagrangian function at (d,z,ν,θ) is

Lp(d,z,ν,θ) =−(FTk uk)Td+zTK−1
k z+νT (Akd−bk)+

θ
T (z−Fkd)

= (−FTk uk +AT
k ν−FTk θ)Td−

1
4θ

TKkθ−νTbk.

(24)

Thus, the dual IQP problem is defined by merging (23) and (24) resulting in the quadratic
problem

maximize
ν∈Rm,θ∈Rd

ϕ(ν,θ) =−1
4θ

TKkθ−νTbk

subject to AT
k ν−FTk θ = FTk uk,

ν ≥ 0,
which is equivalent to

minimize
ν,θ

1
4θ

TKkθ+νTbk
subject to AT

k ν−FTk θ = FTk uk,
ν ≥ 0.

(IQPd)

The dual problem (IQPd) is defined with a quadratic convex objective function, n
linear equality constraints andm= 2n+1 bound constraints. The strong duality property
for convex problems ensures that ϕ(ν,θ) = f̂(d) see e.g. [9].

In order to recover the primal variables, the optimality conditions of the dual problem
(IQPd) are explicitly obtained. Given the dual Lagrangian function

Ld(ν,θ,χ,ζ) = 1
4θ

TKkθ+νTbk
+χT (−FTk uk +AT

k ν−FTk θ)−ζTν,

the optimality conditions are satisfied at (ν,θ,χ,ζ)

∇νLd(ν,θ,χ,ζ) = bk +Akχ−ζ = 0
∇θLd(ν,θ,χ,ζ) = 1

2Kkθ−Fkχ = 0.
(25)

Here, χ ∈ Rn and ζ ∈ Rm are the Lagrangian multipliers of the equality and the bound
constraints of (IQPd), respectively.

From Equation (25), θ = 2K−1
k Fkχ is obtained. In addition, the primal variable z is

related with the dual variable θ by equation (22). Thus, z=−Fkχ. At the same time, z
was previously defined as z=Fkd (20), then, the optimal primal variable d is equivalent
to the negative value of the optimal dual variable of (IQPd), i.e. d

iq
k =−χ.

The variable ν collects the inequality, the upper bound, and the lower bound
Lagrangian multipliers, i.e. ν = (λiqk ,ξ

iq
k ,η

iq
k ) with λiqk ∈ R, and ξiqk ,η

iq
k ∈ Rn.

The main advantage of solving the IQP sub-problem using the dual formulation is the
elimination of the inverse of the stiffness matrix. This new formulation is expected to be
faster than the alternative primal formulation since there are fewer number of variables
and constraints. Therefore, it is chosen for the implementation of TopSQP.
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6 Alternative to the EQP system

Analogous to the IQP, the KKT system for the minimum compliance problem is
impractical since to the computation of the Hessian is needed. Throughout this section,
and with the aim of simplifying the notation, the sub-indices referring to the working
set or the complementary working set are omitted, see Section 2.3 for the sake of
completeness.

The original EQP system for minimum compliance problem is
[
Ĥk a
aT 0

][
deqk
λeqk

]
=−

[
−FTk uk +Hkdiqk

0

]
(EQP0)

With Hk =∇2L(xk,λiqk ), and Ĥk an approximation of the Hessian such that the inertia
of the system (EQP0) is correct.

Let assume Ĥk = 2FTkK−1
k Fk− Q̂k for any Q̂k such that Ĥk � 0.

The first system of equations for the minimum compliance problem is

Ĥkdeqk +aλeqk =−(−FTk uk +Hkdiqk ),
⇓

2FTkK−1
k Fkdeqk −Q̂kd

eq
k +aλeqk =−(−FTk uk +Hkdiqk ).

(26)

In order to reduce the computational cost caused for the dense Hessian, the system
is expanded. A new variable vk = 2K−1

k Fkdeqk is included to split equation (26) in two,

1
2Kkvk−Fkdeqk = 0,
FTk vk− Q̂kd

eq
k +aλeqk =−(−FTk uk +Hkdiqk ).

It enables to define an expanded EQP symmetric system



−Q̂k FTk a
Fk −1/2Kk 0
aT 0 0







deqk
vk
λeqk


=−




−FTk uk +Hkdiqk
0
0


 . (EQPe)

Although the size of the system is increased from |Wb
k,c|+ |W

g
k | to d+ |Wb

k,c|+ |W
g
k |, it is

much faster to solve than (EQP0) since there are only sparse matrices.
The system can be solved using direct methods such as the null-space method [43].

The computation of a matrix Z with columns are the basis of the null-space of the
Jacobian is cheap, easy, and fast. However, as there is only one constraint, the time
reduction is negligible. In addition, the computational cost of the EQP step is not
significant for the overall algorithm due to the sparsity of the KKT matrix. Moreover,
the density variables tend fast to the bounds, and most of the bound constraints will be
active. This produces a meaningful reduction of the size of the system (EQPe), see (11).
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7 IMPLEMENTATION

Table 1: Study of the number of iterations required for TopSQP to converge using both EQP+IQP
and using only the IQP phase on a test set of 10 small-size problems. The table contains the
description of the problem (design domain, length ratios, discretization, and volume fraction) and
the number of iterations required for both approaches.

Domain Length ratio Discretization Volume TopIQP iterations TopSQP iterations

Michell 1×1 20×20 0.1 63 36
Michell 1×1 40×40 0.3 85 74
Michell 2×1 40×20 0.1 256 151
Michell 2×1 80×40 0.5 37 30
Michell 3×1 60×20 0.4 137 114
MBB 1×2 40×80 0.3 88 59
MBB 1×4 40×160 0.5 124 113
MBB 2×1 80×40 0.2 169 141
Cantilever 2×1 120×60 0.5 81 78
Cantilever 4×1 80×20 0.2 131 92

7 Implementation

The same approximate Hessian is used for both, the IQP and the EQP phase (see (17)),
since preliminary results show that the performance of Ĥ1 in the EQP was very similar
to Ĥ2 and Ĥ3. However, the computational time required for Ĥ2 and Ĥ3 is higher than
Ĥ1 due to the estimation of γ1 and γ2. In addition any inertia correction in the original
system will increase the computational time of the algorithm considerably.

The implementation of the proposed algorithm is written in MATLAB [54], and the
IQP sub-problem is solved using Gurobi optimizer software [34]. The default method in
Gurobi is used in which the QP problem is solved with a barrier algorithm. Although
the Gurobi software is very efficient, the IQP phase makes the method expensive. The
EQP is, thus, very important to reduce the number of IQP iterations.

The numerical experiments in [40] show the benefits of the EQP in terms of number
of iterations. Since the proposed IQP is defined with the same approximate Hessian as
the EQP phase, a small preliminary study was performed to study the effects of the
EQP step. Table 1 shows the number of iterations needed for TopSQP using only the
IQP (namely TopIQP) and using both phases. Although, only ten small problems are
considered, similar behaviour was observed for the whole test set of problems. The EQP
reduces the total number of iterations. In addition, the cost of the EQP phase is negligible
compared to the IQP.
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For the estimation of the working set, the linearized constraint g(x) are considered
active if:

−ε4 < g(xk)+∇g(xk)Tdiqk < ε4,

with ε4 = 10−4. In the same way, the line search is, in practice, more flexible. First of all,
a smaller reduction in the merit function than in the original SQP+ algorithm is allowed,
using the parameter ε5 = 10−6.

φπ(xk +diqk +βdeqk )≤ φπ(xk)−σqredπ(diqk )− ε5.

Secondly, in those cases where the previous condition is not satisfied (Step 9 Algorithm
1), instead of doing a line search with only diqk , up to 5 consecutive times the full IQP
step (α = 1) is allowed. In practice, the algorithm will take in most of the iterations a
step direction involving both phases: dk = diqk +βdeqk . However, in very few examples,
this descent direction does not reduce the merit function and it stalls in a local minimum
with a small KKT error but not sufficiently small for convergence. In those situations
the KKT conditions are satisfied when a full inequality step is forced.

Regarding the finite element analysis, the design domain is discretized using the same
size of plane stress elements (with 4 nodes per element), and then the element stiffness
matrix is the same for all elements. The code of the finite element analysis is based on
[2].

8 Numerical Experiments

The specific purpose TopSQP solver is compared to the first-order structural topology
optimization solver, GCMMA [53], and two general purpose solvers, SNOPT [27] and
IPOPT [55]. These last two solvers (namely SNOPT and IPOPT-N) use limited memory
BFGS approximation of the Hessian. Moreover, the best solver (in terms of objective
function value) according to [46], IPOPT-S, is under consideration. IPOPT-S3 solves
the SAND (Simultaneous Analysis and Design, see e.g. [3]) formulation using the exact
Hessian. More information about these solvers and their specific parameter settings can
be found in [46]. The parameter values set for the TopSQP and Gurobi are gathered
in Tables 2 and 3, respectively. In addition, Table 4 contains the parameter values of
the minimum compliance problem used for TopSQP. Since IPOPT and SNOPT are also
second-order methods, the optimality conditions are set as in TopSQP, i.e. feas norm
= 10−8 and kkt norm = 10−6. More details of how the KKT norm is obtained in these
solvers can be found in [55] and [27]. The stopping criterion of GCMMA is kkt norm =
10−4 and feas norm = 10−8 (first-order method). The maximum number of iterations
for all the solvers is set to max iter = 1,000. See more details in [46].

3For simplicity, the default linear algebra package MUMPS [1] is used in both nested (IPOPT-N) and
SAND (IPOPT-S) formulation.
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8 NUMERICAL EXPERIMENTS

All the computations were done on a Intel Xeon e5-2680v2 ten-core processor, running
at 2.8GHz with 64 GB RAM. Only Gurobi (IQP phase) runs in parallel using four threads.
TopSQP, IPOPT, SNOPT, and GCMMA all run in serial.

Table 2: Parameter setting for TopSQP. The table contains the name of the parameter, a brief
description and the value.

Parameter Description Value

t0 Starting point V e4

stat tol Stationarity error ε1 (see 2.1) 10−6

feas tol Feasibility error ε2 (see 2.1) 10−8

comp tol Complementarity error ε3 (see 2.1) 10−6

max iter Maximum number of iterations 1,000

Table 3: Parameter setting for Gurobi for solving the IQP sub-problem. The table contains the
name of the parameter, a brief description and the value.

Parameter Description Value

OptimalityTol Optimality tolerance 10−9

FeasibilityTol Feasibility tolerance 10−9

threads Number of OMP threads 4
presolve Presolve level 0 (off)

Table 4: Values of charateristic parameters of topology optimization problems solve by TopSQP.

Parameter Description Value

Ev Young’s modulus value for void material 10−1

E1 Young’s modulus value for solid material5 102

p SIMP penalization parameter 3
rmin radius for the density filter 0.04Lx

(Lx is the length in the x direction)

4Here, e refers to a vector of all ones.
5A small contrast of E1/Ev is considered since we are mostly interested in the behaviour of the solvers.

In addition, the values of Ev and E1 are chosen to well-scaled problems for the solvers (see [46] for more
details).
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Figure 1: Distribution of the number of instances of the test set for different number of elements
ranges.

The numerical experiments to assess the performance of TopSQP are presented using
performance profiles, see [16]. The specific minimum compliance test set consists of 225
2D medium-size instances (with 400-40,000 finite elements) as defined in [46]. Figure 1
shows how the problem instances are distributed with regards to the number of elements
(size of the problem). Since a time limit is set to 300 hours, the execution of TopSQP
(MATLAB general purpose implementation) is not finished6 for 18 problem instances.
In addition, IPOPT-S (SAND formulation) has some issues in the linear algebra7 for 12
problem instances. Nevertheless, the last intermediate design obtained in these instances
is considered as the final design in the benchmarking study.

The performance profiles show the percentage of problems (in the test set) where a
solver s obtains different relative ratios of performance (defined with the parameter τ).
In other words, for a given solver s, the function ρs defined is represented as

ρs(τ) = 1
N

size{p̃ ∈ P : rp̃,s ≤ τ},

or

ρs(τ) = 1
N

size{p̃ ∈ P : log10(rp̃,s)≤ τ}.

Here, P is the set of problems with p̃ ∈ P and N the size of P . The ratio of performance
for a solver s for each problem p̃ is defined as

rp̃,s = mp̃,s

min{mp̃,s : s ∈ S} ,

6The computational time required for the solver is highly dependent on the number of processors, the
method, as well as the number of threads used during the execution.

7IPOPT needs to reallocate memory and thus, it has difficulties to converge.
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8 NUMERICAL EXPERIMENTS
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(a) Objective function value (ωmax = 10−3).

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0

10

20

30

40

50

60

70

80

90

100

τ

%
p
ro
b
le
m
s

 

 

TopSQP
IPOPT N
IPOPT S
SNOPT
GCMMA

(b) Objective function value (ωmax� 0).

Figure 2: Performance profile for a test set of 225 minimum compliance problems. The
performance is measured by the objective function value. Figure 2a shows the performance when
designs with KKT error higher than ωmax = 10−3 are penalized. Figure 2b shows the performance
without any penalization measured, i.e., with ωmax� 0.

with m a measure of performance, such as

mp̃,s = iterp̃,s ={ number of iterations required to solve the problem p̃ by a solver s}.

In these numerical experiments, the solvers are compared using four different criteria:
the objective function value, the number of iterations (outer iterations), the number of
stiffness matrix assemblies, and the computational time.

Furthermore, at the maximum value ratio rM the performance profiles reflect the
robustness of the solvers. In these numerical experiments, a solver fails if the KKT
error is larger than ωmax = 10−3. Thus, the term robustness refers to the capability of
obtaining a design with a KKT accuracy lower than or equal to 10−3. More details about
the impact of this threshold can be found in [46].

Figure 2a shows the performance profile for the objective function value. IPOPT-S
still has the highest number of problems where the designs have the minimum objective
function value (70% of the cases). Nevertheless, when τ is relatively small, (τ = 1.05),
the performance of TopSQP is the same as IPOPT-S with a success of 81%. TopSQP
outperforms the other solvers in terms of objective function value for τ close to 1. Some
of the methods presented in the study produce feasible iterates. Although the
first-order optimality conditions are not satisfied (KKT error higher than ωmax), the
objective function values of feasible designs might still be acceptable. Figure 2b shows
the performance profile (for objective function value) when no penalization is applied.
The difference is meaningful for GCMMA. In general, its feasible iterates produce
reasonably good approximations. Although, the performance of IPOPT-S and TopSQP
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(a) Objective function value (V = 0.1)
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(b) Objective function value (V = 0.2)
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(c) Objective function value (V = 0.3)
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(d) Objective function value (V = 0.4)
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(e) Objective function value (V = 0.5)

Figure 3: Performance profiles for five different subsets of the minimum compliance problems (45
instances each). The problems are divided depending on their volume fraction. The performance
is measured by the objective function value.
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8 NUMERICAL EXPERIMENTS
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(b) Stiffness matrix assemblies
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(c) Computational time

Figure 4: Performance profiles for a test set of 225 minimum compliance problems. The
performance is measured by the objective function value (2a), the number of iterations (4a),
the number of stiffness matrix assemblies (4b) and the computational time (4c).
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is still better, in general all the solvers produce designs with similar objective function
values. In 80% of the problems, the difference of objective function values is smaller
than 12% (i.e. τ = 1.12).

In almost the 30% of the problems solved with GCMMA, the KKT error is higher
than 10−3. Before analysing the performance of the methods for different criteria, it is
important to study in detail why GCMMA has difficulties to converge. Figure 3 shows
the performance profiles (for objective function value) for smaller test sets of problems.
The original test set is partitioned into five. Each subset gathers 45 problems in which
the volume fraction is the same (V = 0.1, 0.2, 0.3, 0.4, and 0.5). It seems clear that
GCMMA has difficulties on solving problems with low volume fractions, see Figures 3a
and 3b in which the test set collects problems with V = 0.1 and V = 0.2, respectively.

Regarding the performance for the number of iterations (Figure 4a), TopSQP
produces designs using the smallest number of iterations, with a very similar
performance to SNOPT. However, the designs for the latter solver have large objective
function values (see Figure 2a). Since TopSQP has two phases, it is also important to
compare the performance using other criteria to check the cost of every major iteration.
Figure 4b shows the performance profiles when the solvers are compared with the
number of stiffness matrix assemblies, which is equivalent to the number of function
evaluations. It is outstanding the few number of stiffness matrix assembled for TopSQP.
In contrast to SNOPT or IPOPT-S, TopSQP usually evaluates the stiffness matrix once
per iteration. This is due to the definition of the line search.

A very important aspect in the comparison of solvers is the computational time
required for obtaining a solution. On the other hand, we need to be cautious since
the solvers have different interfaces, they are programmed in different languages, and
can be linked to different linear algebra packages. The computational time could be
highly affected by this. Although it is preferable to compare the computational cost
of the solvers using a more objective criterion such as the number of iterations or the
number of stiffness matrix assemblies, it is remarkable the amount of time required for
TopSQP (Figure 4c). It performs slightly worse than IPOPT-S (SAND formulation). The
major amount of time in the proposed method is spent in the IQP sub-problem. More
sophisticated and advanced convex quadratic methods must be developed to solve this
sub-problem in order to produce an efficient and fast method. Nevertheless, TopSQP
is considered a good compromise between accurate and good designs (good objective
function values) and computational time.

Finally, TopSQP, IPOPT-N, and SNOPT have excellent robustness properties, i.e.
the KKT error is lower than 10−3 in about the 96% of the test set. In contrast, the
robustness of GCMMA is highly dependent on the problems. GCMMA performs very
well with respect to the objective function value when the volume fraction is large, with
a robustness of 100% (see Figure 3e). On the other hand, the robustness of GCMMA
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9 LIMITATIONS OF TOPSQP IN STRUCTURAL TOPOLOGY OPTIMIZATION

drops drastically to 30% for a volume fraction equal to V = 0.1.
The use of efficient exact second-order methods (such as IPOPT-S and TopSQP) is

essential in topology optimization to produce accurate designs8 in few iterations. The
results confirm that they are better not only than the classical methods but also than
other (second-order) methods where the Hessian is approximated using BFGS (SNOPT
and IPOPT-N). Only IPOPT-S beats TopSQP for objective function value, although at
a small ratio of performance TopSQP is as competent as IPOPT-S in this aspect. In
contrast, TopSQP requires fewer function evaluations. In addition, TopSQP has the
benefits of solving the nested formulation, for instance it has feasible solutions at
intermediate steps, less number of variables, and less memory usage.

9 Limitations of TopSQP in structural topology
optimization

The main advantage of the IQP phase for minimum compliance problems is the ease
of finding a good positive semi-definite approximation of the Hessian, where its dual is
much faster to solve than the primal optimization problem. Moreover, the improvement
of the EQP relies on the symmetry of the approximate Hessian. However, these benefits
are not satisfied for all classes of problems. For instance, in compliant mechanism design
problems [5] and [50], the exact Hessian is

∇2L(t,A) = F(t,A)TK−1(t)F(t,u)+
F(t,u)TK−1(t)F(t,A)−Q(t,A,u)

where

Q(t,A,u) = diag(AT (t)∂
2Ki(ti)
∂t2i

u(t))

F(t,u) =
(
∂K1(t1)
∂t1

u(t) · · · ∂Kn(tn)
∂tn

u(t)
)
.

and A the adjoint variable used for the sensitivity analysis.
For this class of problems, the Hessian is more difficult to approximate. It is possible

to use simple approximations, but the convergence rate could drop significantly.
Nevertheless, the major limitation of the proposed TopSQP, even for minimum

compliance problems, is the computational time required to obtain the optimal solution
of the sub-problems. Most of this time is spent in the IQP phase, where a quadratic
convex sub-problem is solved. Efficient linear solvers, such as iterative methods are
essential to be able to use TopSQP in large-scale topology optimization problems.

8Designs with good objective function values and low KKT error
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10 Conclusions and further research

An efficient second-order sequential quadratic programming method based on SQP+ from
[40] is presented for topology optimization problems (TopSQP). More specifically, the
minimum compliance problem is solved using exact information of the Hessian in both,
the IQP and EQP phases. An efficient approximate Hessian is used in both phases,
producing very accurate estimations of the search direction. These sub-problems are
efficiently improved, since they are reformulated taking advantages of the structure of
the problem.

The numerical experiments confirm the benefits of using second-order information not
only for reducing the number of iterations but also for decreasing the objective function
values. IPOPT-S and TopSQP are the most competent methods to produce designs with
good objective function value. The comparison of the performance between IPOPT-S and
TopSQP (exact Hessian) and SNOPT and IPOPT-N (BFGS approximation), reinforces
that the use of information based on the exact Hessian is important to obtain good
designs.

Additionally, TopSQP outperforms GCMMA not only in the objective function value
but also in the number of iterations, the number of stiffness matrix assemblies, and the
overall robustness.

Although IPOPT-S outperforms the other solvers when measuring the objective
function value, all the solvers are able to produce similar results. Indeed the objective
function value of TopSQP is very close to the minimum possible. In contrast, IPOPT-S
requires more iterations and function evaluations than TopSQP. Finally, TopSQP solves
the nested formulation with all the advantages that brings with it.

Further work must be done in order to extend and generalize the proposed TopSQP
method to solve more general topology optimization problems such as compliant
mechanism design problems. Additional investigations are needed to extend the code to
be able to solve large-scale problems.
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Abstract

The article presents an efficient iterative method for the indefinite saddle-point
systems that arise in optimization methods when solving structural topology
optimization problems. In particular, the density-based minimum compliance
problem is solved with an interior point method based on an adaptive barrier
parameter scheme.

Interior point methods are one of the most powerful nonlinear solvers, but for
large-scale problems, the computational bottleneck is the solution of the saddle-
point system. The proposed interior point method TopIP reduces the computational
time by solving this system with an specific purpose iterative method that combines
Krylov sub-space methods and multigrid cycles for preconditioners.

TopIP is numerically tested on a test set of large-scale 3D topology optimization
problems. The results show good convergence and robustness properties. The
performance of TopIP is comparable to GCMMA in objective function values with
a better convergence rate. The proposed iterative method allows TopIP to solve
problems with more than three million degrees of freedom.
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1 Introduction

Structural topology optimization finds an optimal distribution of the material in a
design domain by minimizing an objective function under certain constraints. The
design domain is usually discretized using finite elements and a design variable is
associated with each element. For more details of topology optimization problems see
e.g. the text book [10].

More specifically, this study is focused on the minimum compliance problem with a
constraint on the total volume of the structure. The topology optimization problem is
solved in the nested formulation based on the Solid Isotropic Material with Penalization
(SIMP) approach (see e.g. [8], [59], and [80]) combined with a density filter for
regularization [19] and [64]. This article develops and benchmarks iterative methods for
solving the saddle-point problems arising in interior point methods for structural
topology optimization. A primal dual line search interior point method is implemented
in which an approximate positive semi-definite Hessian is used to ensure descent
directions for a merit function [56].

General purpose nonlinear optimization methods such as Sequential Quadratic
Programming (SQP) [16] and interior point methods [31], can be used to solve topology
optimization problems, see for instance the benchmarking study in [57]. Here, the SQP
method in SNOPT [32] and the interior point method in IPOPT [72] produce better
results than the classical structural topology optimization methods in terms of number
of iterations and objective function values, respectively. The numerical results obtained
by a special-purpose SQP method in [56] conclude that the use of second-order
information indeed reduces the number of optimization iterations compared to
first-order methods. The objective function value is lower but the computational time
is, in general, very large (compared to first-order methods).

Both interior point and SQP methods solve sequences of sub-problems where the
second-order information is involved. In fact, the solution of the sub-problem in interior
point methods is equivalent to the solution of saddle-point systems1. This is the main
computational bottleneck of the algorithm. Topology optimization problems typically

1Saddle-point systems are a particular type of indefinite linear systems. They are commonly
formulated as a 2×2 block linear systems like

[
A BT

1
B2 −C

][
x
y

]
=
[

f
g

]
,

where the matrices A, B1, B2, and C satisfy at least one of these conditions [13]:

• A is symmetric or 1
2 (A + AT ) is positive definite.

• B1 = B2 = B.

• C is symmetric and positive semi-definite or C = 0.
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1 INTRODUCTION

contain a large number of variables. Therefore, efficient techniques must be developed to
solve these indefinite linear systems. Theory and numerical methods to solve saddle-point
problems are reviewed in [13].

Direct and iterative methods can be used to solve linear systems. Although the
former are still preferable in optimization due to their robustness, iterative methods have
become very popular [61]. Large-scale problems provide challenges to direct methods
because of memory and time demands. In contrast, iterative methods have a lower storage
need and are parallelizable. For more details of iterative solvers, see for instance [42]
and [61]. An important development was the combination of Krylov sub-space methods
and preconditioners, providing efficient techniques comparable to direct solvers, see e.g.
[15], [61], and [68]. Classical examples of preconditioning are the incomplete Cholesky
factorization [43], sparse approximate inverse [14], and Richardson iteration type methods
such as Jacobi or Gauss-Seidel [42] and [13]. Nowadays, multigrid methods are becoming
very popular. Their theoretical convergence rate is asymptotically linearly to the number
of unknowns and does not depend on the mesh discretization (conditioning of the matrix)
[61], [76], [18], and [65].

Several articles present new alternatives to reduce the computational time in
topology optimization problems, see for instance [5], [75], [4], and [1]. In all these
articles, the topology optimization problem is solved in the nested formulation using
first-order methods such as the Optimality Criteria (OC) method (see e.g. [58] and [6])
or the Method of Moving Asymptotes (MMA) [66]. Most of them are focused on
reducing the computational time spent in the solution of the equilibrium equations
(which are implicitly used in the objective function) since this is the most expensive
step in those algorithms. Krylov sub-space methods, such as the Conjugate Gradient
(CG) method [37], the Minimal Residual (MINRES) method [55], and the Generalized
Minimal Residual (GMRES) method [62], are presented for topology optimization. In
addition, several articles discuss the use of parallel computing in combination with
domain decomposition for solving these equations, see e.g. [71], [17], [48], [29], and [2].

However, very few articles investigate the reduction of the computational time
required in the saddle-point systems arising in interior point or SQP methods in
topology optimization. . For instance, [47] and [26] present multigrid strategies to solve
the Simultaneous Analysis and Design (SAND) formulation ([7] and [54]).

The article is organized as follows. The topology optimization problem is described in
Section 2. Section 3 contains a brief description of the implemented interior point method
while Sections 4 and 5 are focused on the iterative methods developed for the saddle-
point problem. Section 6 collects all the implementation details needed to reproduce
the numerical experiments gathered in Section 7. Finally, Section 8 contains the main
conclusions and a brief description of future work.

3



Notation

Throughout this article, matrices are denoted with capital bold letter such as H and A.
Lower case bold letters represent vectors, for instance u, v, and λ. Correspondingly,
scalars are denoted with lower case letters. For convenience, matrices and vectors
sometimes depend on other vectors, for instance, J(x) and g(x). I and e denote the
identity matrix and a vector of all ones of suitable size, respectively. The expression
"A � B" ("A � B") means that A−B is positive definite (or semi-definite) matrix.
Finally, the diagonal matrix formed by placing the elements of a given vector on the
diagonal is denoted by diag(x).

2 Problem formulation

Topology optimization determines the optimal distribution of material in a prescribed
design domain given a set of loads and boundary conditions. Topology optimization
problems are generally defined as nonlinear constrained optimization problems. They
are in applications often characterized as large-scale optimization problems. A detailed
description of topology optimization problems and associated applications can be found
in [10].

The design domain is usually discretized using finite element analysis. The design
variables are related to the finite elements as thickness, densities, or material
properties. Thus, the elements describe the topology and are also used to evaluate the
objective function and the constraints. In particular, this article is focused on the
minimum compliance problem with a limitation on the total volume of the structure.
For simplicity, distribution of an isotropic material, linear elasticity, and a constant
Young’s modulus and Poisson’s ratio values in each element, are assumed.

A material interpolation approach [9] is used to penalize intermediate densities to
produce an almost solid-and-void design. The SIMP approach is chosen in combination
with a density filter to avoid numerical instabilities such as mesh-dependency and checker-
boards [64]. Thus, the stiffness matrix is defined as

K(t) =
n∑

e=1
E(te)Ke,

with
E(te) = Ev +(E1−Ev)t̃pe,

and p≥ 1 is the SIMP penalty parameter.
Here, n is the number of elements, Ev > 0, and E1�Ev represent the "void" and solid

Young’s modulus, respectively, andKe is the element stiffness matrix of unit density. The
density variable is represented with t ∈Rn and t̃e refers to the filtered density of the eth
element (see e.g. [57], [6], and [45]). The stiffness matrix K(t) : Rn 7→Rd×d is assumed to
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2 PROBLEM FORMULATION

be positive definite for all ti ≥ 0, to avoid singularity, with d being the number of degrees
of freedom.

Throughout this article, the problem is described in a nested formulation. This means,
the displacements u ∈ Rd are related to the design variable, t, through the discretized
equilibrium equations

K(t) u = f. (1)

Here, f ∈ Rd is the static and design-independent external load vector. The minimum
compliance problem is

minimize
t∈Rn

uT (t)K(t)u(t)

subject to vT t≤ V,
0≤ t≤ 1.

(P cN )

The relative volume of the elements is defined by v = (v1, . . . ,vn)T with vi > 0. For
simplicity, all elements have the same volume, i.e., vi = vj ∀i, j. Finally, 1 > V > 0 is
the volume fraction upper limit.

The minimum compliance problem can alternatively be described in a SAND
formulation. Here, u and t are treated as independent variables, and the equilibrium
equations are explicitly considered as equality constraints. The objective function in the
SAND formulation is a linear function whereas in the nested form is nonlinear and
generally (for p > 1) nonconvex. In the latter, the equilibrium equations, implicit in the
objective function, need to be solved at each function evaluation. Thus, the objective
function becomes computationally expensive for problems with many degrees of
freedom. Nevertheless, the problem is described as (P cN ) since only linear constraints
are involved. Therefore, the implementation of the proposed optimization solver does
not need to handle infeasibility and unboundedness issues. Another reason of choosing
a nested instead of a SAND formulation is due to the large demand of memory and
time the later requires [57].

The major drawback of solving the problem (P cN ) using first-order methods, such as
OC and MMA, is the solution of the equilibrium equations. Krylov sub-space methods
combined with multigrid techniques are developed to solve (1), see e.g. [5] and [75]
among others. The bottleneck of second-order solvers, such as interior point and SQP
methods, in addition to the solution of the equilibrium equations, is the solution of the
sub-problems where the Hessian (or an approximation of it) is required.

The Hessian of the compliance ([28]) is given by,

H(t) = 2F(t)TK−1(t)F(t)−Q(t)

with
Q(t) = diag(uT (t)∂

2Ki(ti)
∂t2i

u(t)) : Rn→ Rn×n,

F(t) =
(
∂K1(t1)
∂t1

u(t) · · · ∂Kn(tn)
∂tn

u(t)
)

: Rn→ Rd×n.
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The computation and storage of the Hessian are, in practice, impossible, since the
inverse of the stiffness matrix is involved and the Hessian becomes dense. In addition, the
Hessian is, in general, indefinite. This produces theoretical and numerical difficulties to
second-order optimization methods. With the aim to overcome these issues, [56] proposed
an approximate Hessian Ĥ(t), that is positive semi-definite for all 0 ≤ t ≤ 1 under the
natural assumption that K(t)� 0,

Ĥ(t) = 2F(t)TK−1(t) F(t). (2)

Although the sub-problems with H(t) are replaced by Ĥ(t) are convex, they are still
computationally very expensive since Ĥ(t) is also a dense matrix. The iterate sub-
problems can be reformulated thanks to the specific mathematical structure of Ĥ(t),
avoiding its computation and storage [56].

3 An interior point method for topology optimization

Interior point methods have become very popular for solving nonlinear constrained
optimization problems, and they are considered one of the most powerful algorithms for
large-scale problems, see for instance the comparative studies in [25] and [12]. Several
articles expose the theoretical properties of interior point methods for nonlinear and
nonconvex programming, see e.g. [31], [79], and [27] among others. Furthermore, plenty
of literature can be found regarding different primal dual interior point implementations
for nonconvex optimization problems, see for instance [72] (IPOPT), [41] (IPSOL), [11],
and [70] (LOQO).

As far as solving topology optimization problems concerns, interior point methods
can produce designs with very good objective function values, when the second-order
information is used, see for instance the great performance of IPOPT (solving the SAND
formulation) in the benchmarking study [57]. Moreover, this algorithm has already been
applied in topology optimization problems in the SAND formulation, see e.g. [40], [39],
[38], and [47]. Similar performance is expected for an efficient interior point method
applied to the nested form using the second-order information.

Throughout this section, an interior point method is introduced, in which a line search
combined with a merit function is used to guarantee convergence to a KKT (Karush-
Kuhn-Tucker) point. The implementation of the interior point solver is based on a
combination of the adaptive barrier parameter update in [70] and the line search in [74].
It also includes a monotone safeguard version to ensure robustness. The most complex
operation of interior point methods is the solution of a saddle-point system to compute
the search direction. The goal of this article is the implementation of efficient techniques
for solving large-scale indefinite linear systems rather than the discussion of a novel
interior point method.
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3 AN INTERIOR POINT METHOD FOR TOPOLOGY OPTIMIZATION

The performance of the interior point method in terms of time, number of iterations,
and accuracy is expected to be good since (i) the saddle-point system is solved fast and
with low memory requirements due to the use of iterative methods, (ii) an adaptive
barrier parameter updated scheme is implemented improving the convergence rate of the
algorithm, and (iii) second-order information of the Hessian is used.

3.1 Interior point approach

Consider the general optimization problem

minimize
x∈Rn

f(x)

subject to gi(x)≤ 0 i= 1, . . . ,m,
li ≤ xi ≤ ui i= 1, . . . ,n.

(3)

Here, the objective function f : Rn→ R and the inequality constraints gi : Rn→ R are
assumed to be smooth. The terms li > −∞ and ui < +∞ represent the lower and the
upper bounds of the variables, respectively. The formulation of the problem assumes
bound constraints on all variables to resemble the particular problem under consideration,
i.e., the minimum compliance problem (P cN ) in which the design variables are bounded.

Slack variables s ≥ 0 ∈ Rm are introduced to transform the inequality constraints
gi(x)≤ 0 to equality constraints gi(x) + si = 0. The barrier problem associated with the
problem is

minimize
x∈Rn,s∈Rm

f(x)+µφ(x,s)

subject to gi(x)+si = 0 i= 1, . . . ,m.
(4)

Here, µ > 0 is the barrier parameter, and

φ(x,s) =−
m∑

i=1
ln(si)−

n∑

i=1
ln(ui−xi)−

n∑

i=1
ln(xi− li)

the barrier function (with ln the natural logarithm).
There are (at least) three main aspects to take into account for a globally convergent

interior point method; how to treat nonconvexity, how to update the barrier parameter,
and how to ensure progress towards a KKT point. The first aspect is dealt with in
Section 5, where the solution of the saddle-point system is discussed for the minimum
compliance problem. The remaining questions are detailed throughout this section.

Algorithm 1 describes the interior point strategy based on the adaptive barrier
parameter updated scheme from [52]. Since bounded variables and feasible problems
are assumed, the algorithm does not need to include control techniques as in other
general frameworks, such as [72]. Adaptive schemes allow some flexibility in both, the
barrier parameter sequence and the reduction in the merit function. This approach
updates the barrier parameter every iteration, allowing µ to both increase and decrease.
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Algorithm 1 Adaptive interior point algorithm [52].
Input: Define starting point (x0,s0,λ0,ξ0,η0), µmin = 10−7, τ = 0.995,τa = 0.9999, ρ = 10−8,

θ = 0.5, γ = 0.2, δ = 1.5, lmax = 15, κ= 1, and the tolerances ε1, ε2 and ε3.
1: repeat
2: *Adaptive scheme*
3: Compute µk as in (15).
4: Solve the linear system (10) to compute the primal dual search direction ∆.
5: Determine the maximum step size αmax

p and αmax
d as in (11).

6: Compute ϕk+1; the Euclidean norm of the KKT conditions of the sub-problem.
7: Obtain Mk = max{ϕk−lmax , . . . ,ϕk}.
8: if ϕk+1 ≤ τaMk then
9: Accept the new iterate (xk+1,sk+1,λk+1,ξk+1,ηk+1).

10: Check convergence of the problem as in (18).
11: Include ϕk+1 in Mk+1.
12: else
13: *Monotone scheme*
14: Define starting point as (xk+1,sk+1,λk+1,ξk+1,ηk+1), and initialize i, j = 0.
15: Define µi as in (17).
16: repeat
17: repeat
18: Solve the linear system (10) to compute the primal dual search direction ∆.
19: Determine the maximum step size αmax

p and αmax
d as in (11).

20: Perform a backtracking line search to compute the final steps αp and αd as in (12).

21: Accept the new iterate (xj+1,sj+1,λj+1,ξj+1,ηj+1).
22: Compute ϕj+1; the Euclidean norm of the KKT conditions of the sub-problem.
23: Check convergence of sub-problem for εµ1 , εµ2 , and εµ3 as in (18).
24: if ϕj+1 ≤ τaMk then
25: go-to-adaptive = true.
26: end if
27: j = j+1.
28: until convergence sub-problem or go-to-adaptive
29: Decrease µi+1 as in (16).
30: i= i+1.
31: Check convergence of the problem as in (18).
32: until convergence or go-to-adaptive
33: Include ϕj+1 in Mk+1.
34: end if
35: k = k+1.
36: until convergence

8



3 AN INTERIOR POINT METHOD FOR TOPOLOGY OPTIMIZATION

They are usually more efficient than the monotone version (faster convergence rate).
The main drawback of these strategies is that they do not ensure global convergence.
On the other hand, the monotone approach solves the sub-problem (4) for a fixed µ,
and then monotonically, the barrier parameter is decreased until convergence. The
presented interior point method combines an adaptive and a monotone barrier
parameter update. Once the adaptive approach does not accept a point, the monotone
version is used to guarantee global convergence. It is similarly defined as in [52] with a
line search strategy inspired by [74].

3.2 Obtaining the search direction

The Lagrangian function associated with problem (4) is

L(x,s,λ;µ) = f(x)+µφ(x,s)+
m∑

i=1
λi(gi(x)+si).

Here, λ = (λ1, . . . ,λm)T are the Lagrangian multipliers of the constraints. The perturbed
first-order KKT conditions (5)-(9) gather the first-order necessary conditions for a primal
dual point (x, s, λ, ξ, η) to be an optimal solution of (4) for a given µ, [53] and [46].

∇xL=∇f(x)+ξ−η+J(x)Tλ = 0, (5)
∇sL= D(s)λ−µe = 0, (6)

g(x)+ s = 0, (7)
U(x)ξ−µe = 0, (8)
L(x)η−µe = 0. (9)

Here, ξ = (ξ1, . . . , ξn)T ≥ 0, η = (η1, . . . ,ηn)T ≥ 0 are the Lagrangian multipliers of the
upper and the lower bounds respectively, and g(x) = [gi(x)]i=1,...,m. The Jacobian of the
inequality constraints is denoted with J(x) = [∇gi(x)T ]i=1,...,m : Rn 7−→ Rm×n, and the
remaining of the matrices are defined as D(s) = diag(s), U(x) = diag(ũ), and L(x) =
diag(̃l), with ũi = ui− xi and l̃i = xi− li. A point satisfying the KKT conditions is
commonly called a KKT point.

The sub-problem (4) is solved by applying Newton’s method to the first-order
optimality conditions (5)-(9) for a given value of µ. The search direction ∆, at the kth
interior point iteration, is obtained by solving a KKT system2 evaluated at the iterate
(xk,sk,λk, ξk,ηk). For notational convenience, the sub-index kth has been removed.

2Saddle-point problem ∇F∆ =−F, where F represents the KKT conditions.
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The KKT system to be solved is condensed to a symmetric matrix resulting in



H(x)+Σu+Σl 0 J(x)T

0 Σs I
J(x) I 0







∆x
∆s
∆λ


=−




∇f(x)+J(x)Tλ+µU(x)−1e−µL(x)−1e
λ−µD(s)−1e

g(x)+ s


 .

(10)
Here, Σs = D(s)−1λ, Σu = U(x)−1ξ, Σl = L(x)−1η, and H(x) the Hessian of the
Lagrangian (which for this problem coincides with the Hessian of the objective
function). After solving (10), the search direction of the bound Lagrangian multipliers
are obtained,

∆ξ =−ξ+µU(x)−1e+Σu∆x,
∆η =−η+µL(x)−1e−Σl∆x.

The computational time of an interior point iteration is dominated by the solution of
the system (10). Section 4 is focused on presenting an efficient iterative method to solve
it.

3.3 Updating the iterates

Line search [51] or trust region [23] methods are generally included in nonlinear
optimization solvers to guarantee convergence to a KKT point [53]. In particular, the
proposed interior point method is based on a line search strategy combined with a
reduction in a merit function. Once the search direction ∆ is determined, the primal
and dual step lengths, αp and αd, are estimated in order to obtain the new iterate
(xk+1,sk+1, λk+1, ξk+1, ηk+1). First, the maximum step lengths are computed, αmax

p

and αmax
d , such that the new iterate remains feasible. The fraction to the boundary rule

(11) is used for estimating these values in order to prevent that the primal and dual
variables approach their bounds too quickly [53]. The step lengths are determined from

αmax
p = max{α ∈ (0,1] : z̃+α∆z̃≥ (1− τ)z̃}
αmax
d = max{α ∈ (0,1] : χ+α∆χ≥ (1− τ)χ},

(11)

with τ ∈ (0,1). The maximum operator is defined as component-wise, the dual variables
are gathered in χ = (λ,ξ,η), and z̃ denotes z̃ = (s, ũ, l̃).

Additionally, the Armijo condition (see e.g. [53] and [41]) must be satisfied for the
values αp and αd obtained within the interval

αp ∈ (0,αmax
p ] αd ∈ (0,αmax

d ].

A backtracking line search is performed to compute the αp and αd such that a merit
function ψ is reduced. The line search strategy is based on [74]. A maximum possible
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3 AN INTERIOR POINT METHOD FOR TOPOLOGY OPTIMIZATION

value of αT = {1,θ,θ2...} with θ ∈ (0,1) is selected such that the following inequality is
satisfied,

ψπ(z+αTα
max
p ∆z)≤ ψπ(z)+ραTα

max
p Dψπ(z,∆z), (12)

with z = (x,s) the primal variables. Here, ρ ∈ (0,1), and Dψπ(z,∆z) is the directional
derivative of the merit function with respect to the direction ∆z. After the backtracking,
αp = αTα

max
p and αd = αTα

max
d are defined.

A popular choice of merit function is the l1-penalty function (see e.g. [53], [74], and
[24])

ψπ(x) = f(x)+µφ(x,s)+π(
m∑

i=1
|gi(x)+si|).

The penalty parameter π > 0 is updated every iteration. There are several approaches
to update this parameter so that the convergence is accelerated, see for instance [21].
Nevertheless, the penalty parameter is updated following a simple rule described in [53]
as

π = ||λ||∞.

This rule was successfully used for minimum compliance problems in [56]. A major
drawback of this merit function is the lack of differentiability and thus, the potentially
Maratos effect [49]. This can be avoided either with a watchdog strategy or with a
second-order correction step, see for instance [53], [74], and [31]. However, since the
problem (P cN ) has only linear constraints, the Maratos effect cannot occur [20].

The adaptive interior point scheme is more flexible than the monotone version in
regards to the reduction of the merit function. The algorithm allows the merit function
to increase some iterations, i.e. the Armijo condition is not imposed. The method
forces a reduction in the optimality conditions of the sub-problem within the lmax

previous iterations [52]. Before an iterate is accepted, the interior point method verifies
the following condition

ϕk+1 ≤ τaMk, (13)

with ϕk+1 the Euclidean norm of the KKT conditions of the sub-problem, and

Mk = max{ϕk−lmax , . . . ,ϕk}.

In addition, the algorithm switches from monotone to adaptive strategy when this
condition is satisfied for a given iterate. Finally, the new primal and dual iterates are
given by

zk+1 = zk +αp∆z,
χk+1 = χk +αd∆χ.

(14)
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3.4 Updating the barrier parameter

The sequence of the barrier parameter values {µk} must converge to zero through the
optimization process. The Fiacco and McCormick strategy [30], or monotone strategy,
consists of fixing the barrier parameter to one value until the sub-problem converges
for a given tolerance εµk

(see Section 3.5). Then, the barrier parameter is decreased.
It provides global convergence. On the other hand, the adaptive strategy consists of
updating the barrier parameter at each iteration. The adaptive barrier parameter update
scheme is based on [70] and described by

µk+1 = σk
z̃Tkχk
nz

. (15)

Here, nz is the number of element in z̃ (nz = 2n+m), and σk is

σk = 0.1min
(

0.051−β
β

,2
)3
,

with

β =
min
i

((z̃k)i(χk)i)

z̃Tkχk/nz
.

State-of-the-art software such as IPOPT and LOQO, already use this adaptive updating
scheme. Finally, the barrier update strategy in the monotone scheme is inspired by [72].
The barrier parameter is decreased based on the previous value of µi and some constants,
γ ∈ (0,1) and δ ∈ (1,2),

µi+1 = min(γµi,µδi ). (16)

Here, the index i refers to the outer loop of the monotone version (see Algorithm 1).
Before the monotone strategy starts, the initial barrier parameter is estimated as in [52],
i.e.,

µ0 = 0.8 z̃
T
kχk
nz

. (17)

3.5 Stopping criteria

In practice, the KKT conditions of the sub-problem converge to the original problem
when µ is close to zero. Thus, the algorithm stops and reports to have found a KKT
point, when the following inequalities are satisfied,

||∇f(x)+ξ−η+J(x)Tλ||2 ≤ ε1,
||g(x)+ s||2 ≤ ε2,
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣




D(s)λ−µe
U(x)ξ−µe
L(x)η−µe




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

≤ ε3.
(18)
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The stationarity, feasibility, and complementarity tolerances are denoted with ε1, ε2,
and ε3, respectively. In the monotone version, the sub-problem converges when (18) is
satisfied for εµ1 = min(ε1,κµi), εµ2 = min(ε2,κµi), and εµ3 = min(ε3,κµi) ([72]).

4 An iterative approach for solving saddle-point problems

The aim of this article is to develop efficient methods for solving the large-scale KKT
systems arising in interior point methods for the minimum compliance problem (P cN ). The
proposed iterative methods are based on a combination of different existing techniques.

The saddle-point system (10) is solved with a Krylov sub-space method. In particular,
flexible GMRES (FGMRES) [60] is chosen since is able to handle indefinite systems
and it has good robustness properties. FGMRES is specially accurate and robust when
iterative and inaccurate preconditioners are used. It is well-known that the convergence
rate of this type of solvers improves with the use of preconditioners [42]. Therefore, an
incomplete block triangulation preconditioner inspired by the preconditioner matrix in
the right-transforming iteration is defined, see e.g. [63] and [44].

Remark 1. The right-transforming iteration is a Richardson iteration-type method. It
can be used both, as smoother in multigrid methods for saddle-point problems (see for
instance [63], [78], and [77]), and as an iterate method by itself [40], [39], and [38]. In
these articles, structural optimization problems are defined in the SAND formulation.
However, preliminary studies suggest that FGMRES is more robust and stable for the
minimum compliance problem (P cN ).

4.1 Block triangular preconditioner description

The proposed block triangular preconditioner requires the solution of smaller linear
systems. In the same way, these equations are efficiently solved with FGMRES. Either
block-diagonal matrices or multigrid cycles are used as preconditioners for those
systems. In the following, the proposed preconditioner is explained in detail.

Let consider a general saddle-point problem

W∆ = b, (19)

with

W =
[
A BT

B −C

]
,

and matrices A ∈ Rn×n, C ∈ Rm×m, and B ∈ Rm×n. These problems arise in e.g.
nonlinear constrained optimization solvers. The KKT system (10) in the interior point
method is a particular case of saddle-point problem, with A = H+D, H being the
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Hessian of the Lagrangian function and D a diagonal matrix. In our application, C= 0,
and B is the Jacobian of the constraints.

Theorems 1, 2, and 3 give some conditions under which existence of solution of the
system (19) can be proved.

Theorem 1. (from [13]) Assuming A nonsingular, W is nonsingular if and only if
S =−(C+BA−1B) is.

Theorem 2. (from [13]) Assume A symmetric positive definite and C symmetric positive
semi-definite. If ker{C}∩ker{BT }= {0} then the saddle-point matrix W is nonsingular.
In particular W is invertible if B has full rank.

Theorem 3. (from [53]) For simplicity, let assume C = 0, A = H. Let B = J have a
full row rank (Jacobian of the constraints), and assume that the reduced-Hessian matrix
ZTHZ is positive definite. Then the KKT matrix W is nonsingular, and hence there is
a unique vector satisfying the linear system (19).

The matrix W is partitioned in two nonsingular matrices, M and N, using right-
transformation, WR, and left-transformation, WL, matrices. Here, M is relatively easy
to invert and N' 0.

WLWWR = M−N.

The right-transformation iteration is defined when WL = I [44]. Since a good
preconditioner should approximate the matrix as much as possible, PW is defined as
follows

W = WWRW−R 'MW−R

PW 'W
P−1

W ≡ (MW−R)−1 = WRM−1.

In particular, the right-transformation matrix is

WR =
[
I −Ã−1BT

0 I

]
.

Here, Ã is assumed to be a good approximation of A. Then, from a regular splitting

M =
[
Ã 0
B S̃

]
,

with S̃=−(C+BÃ−1BT ) an approximation of the Schur complement (see [63] for more
details). Based on block triangular matrix theory, the inverse of M is

M−1 =


 Ã−1 0
−S̃−1BÃ−1 S̃−1


 . (20)
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4 AN ITERATIVE APPROACH FOR SOLVING SADDLE-POINT PROBLEMS

Then, the preconditioner matrix is

P−1
W = WRM−1 =

[
I −Ã−1BT

0 I

]
 Ã−1 0
−S̃−1BÃ−1 S̃−1




=


Ã
−1 + Ã−1BT S̃−1BÃ−1 −Ã−1BT S̃−1

−S̃−1BÃ−1 S̃−1


 .

For the rest of the article, the term b̃ refers to a general known vector. Here, b̃1 ∈ Rn

and b̃2 ∈ Rm are defined such that

b̃ =
[
b̃1

b̃2

]
.

To reduce the computational cost of the preconditioner operation, a matrix-vector
multiplication is defined as

P−1
W b̃ =


Ã
−1b̃1 + Ã−1(BT S̃−1(BÃ−1b̃1− b̃2))

−S̃−1(BÃ−1b̃1− b̃2)


 . (21)

The preconditioner operator (21) requires the solution of three linear systems where Ã
or S̃ appear.

Remark 2. PW is chosen as preconditioner matrix instead of classical block diagonal
preconditioners since, in preliminary numerical studies, it showed better robustness
properties.

Figure 1 illustrates the procedure for solving the saddle-point system (19) with the
proposed iterative method. FGMRES needs two operations; a matrix-vector
multiplication (Wb̃) and the preconditioner operator (P−1

W b̃). These functions are
represented as branches in Figure 1. The preconditioner, in turn, is detailed in five
steps.

4.2 Using a multigrid cycle as preconditioner of Krylov sub-space
methods

The solution of PWx= b̃ needs the solution of systems with the form Ãx= b̃ and S̃x= b̃.
Direct methods can be used, although for large enough systems, iterative methods, such
as Krylov sub-space methods, are recommended. In these solvers, the choice of a good
preconditioner that does not increase the computational effort is essential. In this article,
a multigrid cycle (MC) is defined as preconditioner of Krylov sub-space methods in
positive definite linear systems due to its great properties [4], [36], and [76].

Multigrid methods solve the problem on a coarse mesh. Then, the solution is
interpolated from coarse to fine meshes until the original discretization is achieved.
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Solve W∆ = b
Use FGMRES

Multiplication Wb̃

Solve PWx = b̃

Split b̃ into b̃1 and b̃2

Solve ÃxA = b̃1

Solve S̃xS = BxA− b̃2

Solve ÃxAB = BTxS

x =
[
xA+xAB
−xS

]

(1)

(2)

(3)

(4)

(5)

Figure 1: Iterative scheme for solving a saddle-point system with the form (19).

The good performance of the multigrid cycle is due to the use of smoother functions
to remove the high frequency of the errors, and the coarse-grid correction to transfer the
residuals from coarse to fine and from fine to coarse mesh [18].

The computational effort (memory and time) is significantly reduced and, unlike other
iterative methods, the convergence rate does not depend on the condition number of the
matrix [4]. Typically, the condition of the matrix increases with the discretization of the
mesh, thus, it is considered a very powerful technique due to its scalability3 properties.
For more details of multigrid techniques, the text books [76] and [35] are recommended.

Algorithm 2 outlines the general scheme of a multigrid cycle (MC) for solving a linear
system with the form Wx = b. Matrices R and P correspond to the restriction and
prolongation operators to move from the fine to the coarse mesh, and from the coarse
to the fine mesh, respectively. Depending on the number of mc cycles the multigrid
method computes V-cycles, W-cycles, or other different variations [65] and [76]. The
performance of the method is affected by the number of pre-smoothers (ν1), the type
of cycle (mc), the number of post-smoothers (ν2), but most importantly, the smoothing

3A solver is numerically scalable if the complexity of the method grows asymptotically linearly with
the size of the problem [29].
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5 ON THE SOLUTION OF A KKT SYSTEM IN STRUCTURAL TOPOLOGY
OPTIMIZATION

Algorithm 2 Multigrid cycle [18].
Input: x = MC(W,b,x, level, ν1, ν2, mc)
1: if level = coarsest-level then
2: Solve the problem: x = W−1b.
3: return
4: end if
5: Pre-smoothing step: x = S(W,b,x, ν1).
6: Grid correction: r = Wx−b.
7: Restriction step: r = Rr.
8: W = RWRT .
9: Initialize mc= 1, xmc = 0.

10: repeat
11: xmc = MC(W,r, xmc, level-1,ν1, ν2, mc).
12: mc=mc+1.
13: until mc=mc

14: Prolongation step: x = x−Pxmc.
15: Post-smoothing step: x = S(W,b,x, ν2).
16: return

method selected. This is the computationally most expensive step in the multigrid cycle.
Moreover, it is the most expensive step in terms of time and memory of the proposed
iterative method. For positive definite linear systems, methods such as Jacobi and Gauss-
Seidel are typically used as smoothers. In preliminary studies, better performance and
robustness were achieved with Gauss-Seidel than with damped Jacobi (suggested in [4]).
Multigrid methods can be also applied to indefinite systems, although the selection of a
smoother function is more complicated and problem dependent [13].

5 On the solution of a KKT system in structural topology
optimization

Throughout this section, different techniques are introduced to reproduce each step of the
iterative method presented in Section 4 (Figure 1) for the specific minimum compliance
problem. In particular, two different iterative approaches are presented. They differ in
the choice of the stiffness matrix preconditioner (see Section 5.1). The iterative method
implemented in this article solves, at each interior point iteration, the KKT system
described as



2F(t)TK−1(t) F(t)+Σu+Σl 0 v
0 Σs 1
vT 1 0







∆t
∆s

∆λ


=−




∇f(t)+λv+µU(t)−1e−µL(t)−1e
λ− µ

s

vT t−V +s


 .

(22)
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Here, the approximate positive semi-definite Hessian of the compliance (2) is used.
With this Ĥ(t), the existence of solution of (22) is ensured. Theorem 3 is satisfied for
C = 0, B = [vT 1] and

H =
[
Ĥ(t)+Σu+Σl 0

0 Σs

]
.

The reduced-Hessian ZTHZ is positive definite (Ĥ(t)� 0 and Σu+Σl � 0 and Σs � 0)
and B has full row rank, then, the KKT system has a unique solution and is a descent
direction of the merit function [56], [53], and [46]. Thus, the inertia4 of the KKT matrix
is correct in all the iterations and there is no need to perturb or modify the system as
in, for instance IPOPT [72]. Due to the symmetry of Ĥ(t), the system is expanded to
get rid of the dense Hessian [56].




Σu+Σl F(t)T 0 v
F(t) −1

2K(t) 0 0
0 0 Σs 1
vT 0 1 0







∆t
∆w
∆s

∆λ




=−




∇f(t)+λv+µU(t)−1e−µL(t)−1e
0

λ− µ
s

vT t−V +s



. (23)

Here, ∆w is an auxiliary variable. Moreover, the KKT matrix in (23) is modified to
simplify the construction of PW. The matrix W is regrouped as follows

W =




−1
2K(t) 0 F(t) 0
0 Σs 0 1

F(t)T 0 Σu+Σl v
0 1 vT 0



. (24)

Identification and approximation give the block matrices

Ã =
[
−1

2K̃(t) 0
0 Σs

]
,

B =
[
F(t) 0
0 1

]
,

C =−
[
Σu+Σl v

vT 0

]
,

and the approximate Schur complement

S̃ =−(C+BÃ−1BT ) =
[
Σu+Σl+2FT (t)K̃−1(t)F(t) v

vT −Σ−1
s

]
.

4For a given matrix W, the trial (i+, i−, i0) is called inertia, where i0, i+, and i− are the number of
zeros, positive and negative eigenvalues, respectively.
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Remark 3. Based on Theorem 1, the saddle-point problem (23) is well defined and solvable
since A and S are nonsingular. For this particular matrix (24), S is a saddle-point
problem satisfying Theorem 2;

S =
[
AS BT

S
BS −CS

]
,

with AS = Σu +Σl + 2FT (t)K−1(t)F(t) � 0, CS = Σ−1
s � 0, and BS = vT is linearly

independent (full rank). Therefore, S is nonsingular.

Remark 4. Both WR and M−1 are well defined due to the nonsingularity of Ã and S̃.

Since W is regrouped, the vector b̃ (Figure 1 Step 1) and the output vector x (Step
5 in Figure 1) need to be reorganized in the same way.

Two linear systems with the form

Ãx = b̃ ∈ Rd+1 (25)

are needed for PW (Steps 2 and 4 in Figure 1). This system of equations is relatively
easy to solve because Ã is block diagonal. Nevertheless, it requires the solution of

− 1
2K̃(t)x = b̃1 ∈ Rd. (26)

Here, b̃1 is another general known vector. In this case, b̃1 is part of the b̃ in (25). In
Section 5.1, different alternatives for solving this system of equations are detailed.

On the other hand, the solution of the linear system (Step 3 in Figure 1),

S̃x = ã ∈ Rn+1 (27)

is more expensive, and the use of an iterative solver (FGMRES) is needed.
Figure 2 shows the scheme to solve (27). Another general known vector is denoted

with ã to emphasize that ã 6= b̃. In the matrix-vector multiplication operation (S̃b̃),
a system like (26) is involved. In addition, the following block diagonal preconditioner
matrix of S̃ is defined,

PS =
[
ÃS 0
0 S̃S

]
.

With
ÃS = Σu+Σl+2FT (t)K̂(t)F(t)� 0 ∈ Rn,

and
S̃S =−Σ−1

s −vT Ã
−1
S v ∈ R.

Here, the preconditioner of the stiffness matrix is just the inverse of its diagonal terms,

K̂(t) = diag
(

1
Ki,i(t)

)

i=1,...,d
.
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Solve S̃x = ã

Solve K̃(t)x = F(t)b̃1

Use FGMRES

Multiplication S̃b̃

Solve PSx = b̃

Solve ÃSx1 = b̃1

Solve S̃Sx2 = b̃2

Use FGMRES

Multiplication ÃSb̃

Multigrid cycle(ÃS, b̃,x)

Figure 2: Iterative scheme for solving the indefinite linear system (27).

This fast and cheap preconditioner of the stiffness matrix is used since K̂(t) is just part
of PS. More advanced stiffness matrix preconditioners are detailed in Section 5.1. The
preconditioner operation of S̃ consists of solving

PSx = b̃,

such that

ÃSx1 = b̃1, (28)
S̃Sx2 = b̃2, (29)

with

b̃ =
[
b̃1

b̃2

]
, x =

[
x1

x2

]
.

The system of equations (28) is still expensive (the dimension of the matrix is n). The
computational cost of the iterative solver will be highly dependent on the efficiency of
the method used to solve it5. Since the matrix ÃS is positive definite, a multigrid cycle
(MC) is chosen as preconditioner of FGMRES.

5This system is solved one time per FGMRES preconditioner iteration for solving (27). At the same
time, (27) is solved one per FGMRES preconditioner iteration for (23).
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Solve Ax = b̃

Solve K(t)x1 = b̃1
Use FGMRES

Multigrid cycle(K(t), b̃,x)

Solve Σsx2 = b̃2

Multiplication K(t)b̃

Figure 3: Iterative scheme for solving the positive definite system (25) using the first approach.

5.1 Good preconditioners for the stiffness matrix

The iterative method needs, at two different steps, the solution of the linear system (26)
in which the stiffness matrix is involved. Additionally, the equilibrium equations are
solved every optimization iteration. Plenty of literature can be found regarding iterative
methods for the equilibrium equations (1), see e.g. [75], [5], [4], and [1] among others.
Based on [4], the equilibrium equations are solved with a Krylov sub-space method and
a multigrid cycle as preconditioner. However, FGMRES is chosen since, in preliminary
studies, it seems more robust and requires less iterations than PCG.

The same technique can be used for (26) to obtain the solution of Ãx = b̃ and S̃b̃.
In this case, the exact matrix K(t) is used (and thus, A and S). For this approach, the
solution of (25) (Steps 2 and 4 in Figure 1) is illustrated in Figure 3. Another alternative
preconditioner consists of using the Separate Displacement Component (SDC) as in [34].
The stiffness matrix K(t) is reorganized and approximated using block diagonal sub-
matrices as

K̃(t) =




Kxx(t) 0 0
0 Kyy(t) 0
0 0 Kzz(t)


 . (30)

Here, Kxx(t), Kyy(t), and Kzz(t) are sub-matrices of the degrees of freedom components
in the x-direction, y-direction, and z-direction, respectively.

Remark 5. The approximation (30) ofK(t)∼ K̃(t) is well-defined and it remains positive
definite, see [34].

Remark 6. Preliminary numerical experiments have proven that preconditioners such as
the diagonal matrix and the incomplete Cholesky factorization for (26), are not good
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enough to produce a robust and convergent iterative method.

In this second approach (SDC), Ãx = b̃ and S̃b̃ are solved exactly (direct solvers)
using a simplified approximation of the stiffness matrix, K̃(t).

These two possible preconditioners are tested and compared in the numerical
experiments. In the following the first approach denotes the use of FGMRES+MC to
solve (26). The second approach refers to the use of SDC.

Both preconditioners have advantages and disadvantages. In the first case
(FGMRES+MC), the preconditioner of the KKT matrix, P−1

W , is exactly the inverse of
W. However, (21) is approximately obtained (concatenation of several iterative
methods with different tolerances). Errors arising from the iterative methods may
produce a failure. Nevertheless, in practice, this approach is robust and efficient (see
Section 7). On the other hand, the second preconditioner has all the mathematical
properties to ensure convergence (see [44] and [34]) but the computational effort and
memory storage are higher. The stiffness matrix approximation (30) requires three
Cholesky factorizations, the storage of several matrices, and the solution of three small
systems.

6 Implementation

Section 7 shows the numerical experiments on examples where the 3D design domain is
discretized using brick elements. Each rectangular solid element contains 8 nodes (24
degrees of freedom) and the scaled element stiffness matrix is assumed to be the same
for all elements in the examples. The code is written in MATLAB release 2014a [69].

Regarding the pre-processing required for the multigrid cycle, two different
restriction matrices, Rt and Ru, are built before the optimization process takes place.
The restriction matrix Rt refers to the full weight average of the elements, while Ru

refers to the nodes, i.e.,
(Rt)Hh : Rnh −→ Rnh×nH ,

(Ru)Hh : Rdh −→ Rdh×dH .

Here, h and H refer to the mesh size of the fine and the coarse mesh, respectively.
Similarly, nh and nH refer to the number of elements and dh and dH are the degrees of
freedom at each mesh. The restriction matrix Rt is used in the multigrid cycle in (28)
and Ru is applied in (1) and in (26) (first approach). The prolongation matrix is just
the transpose of the restriction matrix [4] and [76].

In particular, the restriction matrix for the density variables collects the parent-
children relationship. Given a coarse mesh with nH elements, the next level contains
nh = 23nH elements. Thus, given an element i in a coarse level, Rt contains the value
of 1/8 in those positions corresponding with its children, i.e., the elements from the
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6 IMPLEMENTATION

fine mesh that are "inside" the coarse element. The restriction matrix for the nodes is
built based on the shape functions. Each node of the fine mesh gives the corresponding
contribution to the nodes of the coarse mesh. For more details see [36].

Step 8 of Algorithm 2 is, in practice, omitted to save time. In addition, since MC
is chosen as preconditioner at several steps of the proposed iterative method, all the
matrices needed in Gauss-Seidel are stored to reduce the computational time. Although
it will lead to an increment in memory usage, it is preferable to focus on reducing the
computational time as much as possible. Every time a new stiffness matrix is assembled,
Galerkin’s method is used to store the stiffness matrices of each level,

K(t)H = (Ru)Hh K(t)h((Ru)Hh )T .

Moreover, the upper triangular (with the diagonal) and the lower triangular matrices of
each K(t)H are stored (using triu and tril MATLAB functions). Similarly, before the
iterative method starts, ÃS, the upper triangular (and diagonal), and the lower triangular
matrices for every level are stored,

(ÃS)H = (Rt)Hh (ÃS)h((Rt)Hh )T .

If the second approach (SDC) is used, the block matrices Kxx, Kyy, and Kzz are
needed. More precisely, their Cholesky factorizations and the transposes of them are
stored to reduce the computational time of the direct solver. The MATLAB function
symamd [3] is used to permute the order of the matrices and create sparser Cholesky
factorizations (using chol [22]).

Tables 1, 2, and 3 contain the name, description, and value of every parameter
involved in the interior point method for topology optimization problems. Throughout
the rest of the article, due to brevity reasons, the optimization method is cited as
TopIP. The parameters needed in the interior point method detailed in Algorithm 1 are
collected in Table 1.

Preliminary studies suggest that multigrid cycles perform very accurately with a
W-type cycle. In TopIP, depending on the linear system solved, FGMRES+MC has
different parameters. It is important to obtain an accurate solution in the equilibrium
equations (1). Thus, a W-type with ν1 = ν2 = 2 is set for the multigrid. The stopping
criteria for FGMRES are a relative residual error equal to ωe = 10−8 and a maximum
number of iterations equal to 200. In contrast, (28) and (26) (first approach) are part
of the preconditioner, and then, it is possible to be less strict. A simple V-cycle, with
ν1 = ν2 = 1 and ωs = 10−2 is used. The number of smoother iterations is chosen so that
there is a balance between accuracy of solutions and computational effort. The multigrid
cycle is built with 4 levels of discretizations.
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Table 1: Parameter setting for the interior point method. The table contains the name of the
parameter, a brief description, and the value.

Parameter Description Value

t0 Starting point 0.5e
s0 Starting slack variable max(V −vT t0,10−5)
ε1 Stationarity tolerance 10−6

ε2 Feasibility tolerance 10−8

ε3 Complementarity tolerance 10−6

κ Factor parameter for convergence of sub-problem 1
(monotone version)

max iter Maximum number of interior point iterations 1,000
τ Fraction to the boundary factor [74] 0.995
ρ Backtracking factor (monotone version) [74] 10−8

θ Backtracking reduction factor (monotone version) [74] 0.5
γ Factor parameter to update µ (monotone version) [72] 0.2
δ Power parameter to update µ (monotone version) [72] 1.5
τa Factor parameter to accept the iterate (adaptive version) [52] 0.9999
lmax Number of previous iterations to take into account 15

to accept iterate (adaptive version)
µmin Minimum barrier parameter value 10−7

Remark 7. The Krylov sub-space methods presented in this article stop when the
Euclidean norm of the relative residual error is lower than a tolerance ω, i.e.

||r||2 = ||b−W∆||2
||b||2

≤ ω.

The principal (top level) FGMRES method, which solves the KKT system (23), and
the intermediates (second and third level) FGMRES to solve (27), (28), and (26) (first
approach), are differentiated in regards to the maximum number of iterations. For the
former, it is set to 300, for the second level it is set to 100 and finally, for the last level
it is set to 30.

Nonlinear optimization methods require some practical implementation details to
improve their efficiency. In particular, the scaling of the problem will significantly affect
the performance of TopIP. Therefore, the Young’s modulus are set to Ev = 1 and E1 = 104.
Moreover, the objective function is scaled as

f̃(t) = f(t)
||∇f(t0)||2

.
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Table 2: Parameter setting for the iterative method. The table contains the name of the
parameter, a brief description, and the value.

Parameter Description Value

ω Norm of the relative residual error in FGMRES 10−6

for the top level
ωe Norm of the relative residual error in FGMRES 10−8

for the equilibrium equations
ωs Norm of the relative residual error in FGMRES 10−2

for the second and third level
max iterative iter Maximum number of iterations of FGMRES in the top level 300

max gmres1 iter Maximum number of iterations of FGMRES in the second level 100
max gmres2 iter Maximum number of iterations of FGMRES in the third level 30

max eq iter Maximum number of iterations of FGMRES 200
for the equilibrium equations

restart step Number of FGMRES restart iterations 20
mc Multigrid cycle type for the equilibrium equations 2 (W-cycle)
mc Multigrid cycle type for the iterative method 1 (V-cycle)
ν1, ν2 Number of pre-smoothing/post smoothing iterations in MC 2

for the equilibrium equations
ν1, ν2 Number of pre-smoothing/post-smoothing iterations in MC 1

for the iterative method
element coarse Number of elements (per unit of length) in the coarsest mesh 2

level Number of levels in MC 4

Table 3: Values of characteristic parameters of topology optimization problems.

Parameter Description Value

Ev Young’s modulus value for "void" material (TopIP) 10
E1 Young’s modulus value for solid material (TopIP) 104

Ev Young’s modulus value for "void" material (GCMMA) 10−2

E1 Young’s modulus value for solid material (GCMMA) 10
p SIMP penalization parameter 3
rmin Radius for the density filter 0.04Lx

(Lx is the length in the x direction od the design domain)
υ Poisson’s ratio 0.3
vi Relative volume of element 1√

n
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Finally, the relative volume of the elements is set to vi = 1√
n
. In the numerical

experiments, the performance of TopIP is compared to GCMMA. The settings of the
parameters for GCMMA are slightly different to appropiately scale the problem (see
Table 3 and [57]). In particular, Ev = 10−2, E1 = 10, and the optimality tolerance is
ω = 10−4 (first-order method). The starting point is initialized with a homogeneous
design, t0 = 0.5e (middle value) for TopIP and t0 = V e for GCMMA.

7 Numerical experiments

All the computations were done on Intel Xeon E5-2680v2 ten-core CPUs, running at
2.8GHz with 128 GB RAM.

Figure 4 contains the six different boundary conditions and external load definitions
used for the numerical experiments. The domain is either fully clamped on one side (D1,
D2, and D3) or clamped at the corners (D4, D5, and D6). Regarding the loads, three
different possibilities are collected. On the free face, the force is defined either as a point
load in the middle of an edge (D1 and D4), a point load on the center (D2 and D5), or
a distributed load on an edge (D3 and D6). Some of these design domains are optimized
in, for instance, [4], [5], [75], and [45]. The length ratios will vary as well as the mesh
size and the volume fraction.

A test set of 13 large-scale 3D problems is gathered for the numerical experiments.
Table 4 collects the description of the optimized designs, such as the length ratio, the
volume fraction, the type of domain, the discretization of the mesh, the number of
elements (n), and the number of degrees of freedom (d). It also gathers the objective
function value obtained by TopIP (f(t)), the number of optimization (outer) iterations
required to find a KKT point (Iter), and the computational time consumed by the
solver. For convenience, the problems are denoted with a number (N) from 1 to 13. The
final designs and the performance (except computational time) of TopIP are
independent of the preconditioner chosen for the stiffness matrix in the iterative
method. Thus, the table shows the results using the first approach (FGMRES+MC).
The computational time for the second approach (SDC) is presented in parenthesis.
The biggest problem in this test set contains more than one million elements (more
than three million degrees of freedom). Larger problems are not included due to time
restrictions on the cluster.

During the numerical experiments, the execution of some instances is not finished
due to problems of memory or time limitation. For the former, the time is marked with
a dash. When the problems are not finished due to the time limitation, the time is set
to infinite. The remaining of the problems in the test set are run until the Euclidean
norm of the KKT conditions is lower or equal to 10−6 or until the maximum number of
iterations is reached (max iter = 1,000).
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(a) Type D1 (b) Type D2

(c) Type D3 (d) Type D4

(e) Type D5 (f) Type D6

Figure 4: Collection of six 3D design domains with different boundary conditions and external
loads.
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Table 4: Results of the optimized design obtained with TopIP for 13 3D minimum compliance
problems. The table contains the number of the problem (N), its description (length ratio, volume
fraction, and domain type), the mesh discretization, the number of elements, and the number
of degrees of freedom. In addition, the objective function value, the number of optimization
iterations, and the computational time (first approach) obtained with TopIP are collected. The
computational time for the second approach is included in parenthesis. In some problems, the
time is marked with a dash (-) or with infinite (Inf) to indicate two possible types of error.

N Description Mesh n d f(t) Iter Time
[hh:mm:ss]

1 1×1×2, v = 0.4, D1 16×16×32 8192 28611 1.296e+02 36 00:10:04 (00:10:47)
2 2×2×2, v = 0.2, D3 32×32×32 32768 107811 2.760e+04 425 07:16:05 (65:13:37)
3 2×2×4, v = 0.4, D1 32×32×64 65536 212355 9.998e+01 78 01:54:45 (07:58:35)
4 3×3×3, v = 0.3, D2 48×48×48 110592 352947 3.233e+01 48 01:55:37 (04:58:52)
5 2×4×6, v = 0.3, D5 32×64×96 196608 624195 2.935e+02 94 12:48:47 (96:54:17)
6 3×3×6, v = 0.4, D1 48×48×96 221184 698691 9.301e+01 70 05:40:37 (44:55:48)
7 4×4×4, v = 0.2, D5 64×64×64 262144 823875 1.406e+02 78 17:29:22 (133:45:58)
8 4×5×5, v = 0.3, D4 64×80×80 409600 1279395 1.767e+02 51 30:48:47 (235:15:29)
9 5×5×5, v = 0.4, D6 80×80×80 512000 1594323 7.423e+05 37 69:15:50 (Inf)
10 4×4×8, v = 0.4, D1 64×64×128 524288 1635075 9.041e+01 64 50:39:41 (242:05:32)
11 4×6×6, v = 0.2, D2 64×96×96 589824 1834755 3.690e+01 77 33:25:49 (Inf)
12 6×6×6, v = 0.4, D1 96×96×96 884736 2738019 6.917e+01 40 76:23:04 (-)
13 4×8×8, v = 0.3, D4 64×128×128 1048576 3244995 1.845e+02 51 74:20:51 (-)
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7 NUMERICAL EXPERIMENTS

Indeed, Table 4 gives some hints to differentiate between the first and the second
approach. Since the SDC (second approach) needs three Cholesky factorization (and
their transposes), problems number 12 and 13 (problems bigger than 1,834,755 degrees
of freedom) cannot be solved. Moreover, due to time limitations, the execution of
problems number 9 and 11, for the same approach, is not finished. In these problems,
one optimization iteration requires at least 27 hours.

The modest number of iterations that TopIP needs for finding a KKT point is
remarkable. Most of the problems, in this numerical experiment, are solved using less
than 100 iterations. However, it seems that TopIP has more difficulties in finding an
optimal design on problems with design domain D3. In fact, problem 2 requires 425
iterations. For this problem, the convergence rate of TopIP has decreased because it
switches to the monotone approach. Thus, further investigations need to be done to
improve the monotone version.

The optimized designs of some problems of the test set are represented in Figure 5.
The density value of the isosurface displayed is 0.8.

The rest of the section deals with an extensive study of the performance of TopIP.
First of all, the relation between the number of TopIP iterations and the size of the
problem (number of elements) is represented in Figure 6a. It points out, more visually,
that the convergence of TopIP is not affected by the size of the problem.

Similarly, Figure 6b shows a comparative study of the computational time of TopIP
with respect to the number of elements, using the two approaches. The dotted black line
is included as a reference to the linear behaviour. The computational effort of the second
approach (SDC) is noticeably larger than the first approach (FGMRES+MC), but more
important, it increases more than linearly. In contrast, the growth of the computational
time of the first approach is very slow with respect to the number of elements.

Since the number of optimization iterations is independent of the size of the problem,
it is important to study the effort of each iteration. In other words, the number of
iterative iterations required at every TopIP iteration. Figure 7 shows the number of
FGMRES iterations (top level) at each interior point iteration for some problems. In the
first approach, the iterations remain constant between two and 7 (Figure 7a). In contrast,
the second approach needs slightly more iterations as the optimization advances (Figure
7b). In addition, the number of FGMRES goes up to 250. Ultimately, there is almost no
relation between the number of iterations and the size of the problem. This observation
is clearer in Figure 8.

The average number of iterations and computational time of FGMRES over the
TopIP iterations at different problem sizes are represented in Figures 8 and 9. Figures
8a and 8b represent the mean (and standard deviation) of the number of iterations
needed to solve one KKT system, for the first and the second approaches, respectively.
The average of FGMRES iterations is not affected by the size of the problem. In the
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(a) Domain D3, 2×2×2 mesh, with V = 0.2 (b) Domain D2, 3×3×3 mesh, with V = 0.3

(c) Domain D5, 2×4×6 mesh, with V = 0.3 (d) Domain D4, 4×5×5 mesh, with V = 0.3

(e) Domain D6, 5×5×5 mesh, with V = 0.4 (f) Domain D1, 4×4×8 mesh, with V = 0.4

Figure 5: Optimized designs examples of some problems in the test set.
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(a) Number of TopIP iterations versus the size of the
problem.
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Figure 6: Number of optimization iterations (6a) and computational time of TopIP (6b) versus
the size of the problem (number of elements). Figure 6b shows the total time of TopIP using
both, the first (blue line) and the second (red line) iterative approaches. The black line represents
a linear behaviour for reference.
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Figure 7: Number of FGMRES iterations required to solve the KKT system at each TopIP
iteration. Figures 7a and 7b show the results for the first and second iterative approach,
respectively for some of the problems in the test set.
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Figure 8: Comparative study between the FGMRES iterations required to solve one KKT system
(on average) versus the size of the problem (number of elements), for the first (Figure 8a) and
second (8b) approaches.
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(on average) versus the size of the problem (number of elements). The blue line represents the
first approach (FGMRES+MC) and the red line represents the second approach (SDC). The
figure shows the results for the subset test of problems solved using the second approach.
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7 NUMERICAL EXPERIMENTS

first approach, the iterations remain constant (average of 5-6), while the range of
iterations in the second approach is substantially large, between 25 to 150 (on average).
Additionally, the standard deviation is also greater, i.e., the number of iterations varies
a lot between optimization iterations. In other words, the second approach is more
sensitive to the optimization process. These fluctuations in the number of iterations
make this approach more unstable and less robust than the first approach. Figure 9
shows that the computational time spent in solving one KKT system (on average) using
SDC is also larger than using FGMRES+MC. This is due to the computational effort
needed in the factorization of Kxx, Kyy, and Kzz, and the solution of linear systems
with them.

Since the second approach needs more memory and time, the use of FGMRES+MC
as preconditioner of the stiffness matrix in the iterative method is highly recommended.

Finally, the performance of TopIP (first approach) is compared with the first-order
structural optimization method GCMMA (Global Convergent Method of Moving
Asymptotes) [67]. The performance of both solvers is evaluated using the objective
function values, the number of iterations, and the total computational time. This
comparative study is done using performance profiles ([25]) similar to [57] and [56]. The
test set used for this comparison is the 13 problems detailed in Table 4. Those problems
with a KKT error higher than ωmax = 10−4 are penalized since the final design is
considered incorrect (the problem is not solved). For this numerical study, only one
problem solved with GCMMA has a KKT error higher than ωmax. All details about
performance profiles in topology optimization problems can be found in [57].

Figure 10 shows that the second-order (TopIP) method clearly needs less iterations
than the first-order (GCMMA) method. Although, the computational time of TopIP is
still higher than GCMMA, the maximum difference between cpu times is τmax = 6.02.
More importantly, the 30% of TopIP winners refers to the biggest problems in the test
set. Figure 11 shows the computational time of both GCMMA and TopIP, for varying
size of the problem. The computational time of TopIP grows slower than GCMMA. Thus,
for larger problems, TopIP is expected to outperform first-order methods with respect
to time. The computational time can be reduced, even more, if the implementation is
parallelized. Ultimately, the objective function value obtained with TopIP is not as good
as it was expected for second-order solvers [57]. In fact, GCMMA produces designs with
lower objective function values than TopIP. Nevertheless, the results show the efficiency
and robustness of the proposed iterative method. TopIP will not be able to solve problems
with more than three million degrees of freedom without iterative solvers.

In general, the performance of nonlinear optimization methods is highly affected
by the selection of the parameters. The scaling of the problem may cause TopIP to
converge to local minima. Another possible reason might be the excessive flexibility of
the adaptive strategy. Moreover, the tolerance in the iterative method is quite large,
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Figure 10: Performance profiles for a test set of 13 3D minimum compliance problems. The
performance is measured by the objective function value (10a), the number of iterations (10b),
and the computational time (10c).
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Figure 11: Comparative study of the computational time required to solve the problem using
TopIP and GCMMA with respect to the number of elements.

ω = 10−6, producing some errors in the descent direction that may be significant to the
final objective function value. The stopping criterion of TopIP is measured with the
KKT conditions of the sub-problem, thus, the high value of µmin = 10−7 is the most
likely reason of these large objective function values. TopIP could stop without actually
converging. In order to obtain good results, TopIP is run again with µmin = 10−9, E0 = 10,
and Emin = 10−2, showing promising results gathered in Figure 12.

With these new parameter settings, the objective function value of TopIP has
significantly improved, outperforming GCMMA for a very small τ (τ = 1.0018). In
contrast, the computational effort and the number of iterations have slightly increased,
but not critically. For instance, TopIP still converges, generally, in about 100 iterations,
with 78% chances of winning and a maximum ratio value of τmax = 11. However, the
percentage of success with respect to computational time has decreased from 30% to
22%. In addition, the behaviour of Figure 11 is no longer observed for this parameter
selection (see Figure 13). Thus, the parallelization of the code is important to
outperform GCMMA with respect to time.

Table 5 shows the results for this new TopIP configuration. The study of the
performance of the two iterative approaches does not change. The number of iterative
iterations (and computational time) is almost identical for µmin = 10−7 and for
µmin = 10−9.

This result encourages further investigation to obtain an even better and more
accurate implementation of the interior point method. The previous results evidence
that the performance of TopIP is sensitive to the parameter selection, and thus, further
work can be done to obtain an optimal parameter setting.
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Figure 12: Performance profiles for a test set of 13 3D minimum compliance problems. The
performance is measured by the objective function value (12a), the number of iterations (12b),
and the computational time (12c) (with µmin = 10−9, E0 = 10, and Emin = 10−2).
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Figure 13: Comparative study of the computational time required to solve the problem using
TopIP and GCMMA with respect to the number of elements (with µmin = 10−9, E0 = 10, and
Emin = 10−2).

Table 5: Results of the optimized design obtained with TopIP for 13 3D minimum compliance
problems. The table contains the number of the problem (N), its description (length ratio, volume
fraction, and domain type), the mesh discretization, the number of elements, and the number
of degrees of freedom. In addition, the objective function value, the number of optimization
iterations, and the computational time obtained with TopIP (first approach) are collected, for
µmin = 10−9 (E0 = 10 and Emin = 10−2).

N Description Mesh n d f(t) Iter Time
[hh:mm:ss]

1 1×1×2, v = 0.4, D1 16×16×32 8192 28611 1.269e+02 95 00:14:32
2 2×2×2, v = 0.2, D3 32×32×32 32768 107811 2.757e+04 616 11:02:19
3 2×2×4, v = 0.4, D1 32×32×64 65536 212355 9.469e+01 91 01:46:43
4 3×3×3, v = 0.3, D2 48×48×48 110592 352947 3.057e+01 77 02:16:59
5 2×4×6, v = 0.3, D5 32×64×96 196608 624195 2.714e+02 76 09:20:20
6 3×3×6, v = 0.4, D1 48×48×96 221184 698691 8.370e+01 94 07:04:57
7 4×4×4, v = 0.2, D5 64×64×64 262144 823875 1.338e+02 70 14:24:16
8 4×5×5, v = 0.3, D4 64×80×80 409600 1279395 1.676e+02 62 43:21:48
9 5×5×5, v = 0.4, D6 80×80×80 512000 1594323 7.041e+05 47 73:09:59
10 4×4×8, v = 0.4, D1 64×64×128 524288 1635075 7.813e+01 114 43:49:55
11 4×6×6, v = 0.2, D2 64×96×96 589824 1834755 3.187e+01 132 39:36:47
12 6×6×6 v = 0.4 D1 96×96×96 884736 2738019 6.314e+01 54 96:21:04
13 4×8×8, v = 0.3, D4 64×128×128 1048576 3244995 1.686e+02 83 133:16:10
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8 Conclusion

The article presents a robust and efficient iterative method for solving the large-scale
indefinite linear systems arising in interior point methods for structural topology
optimization problems. The proposed iterative method solves the most expensive step
in interior point algorithms (the solution of a KKT system), reducing, significantly, the
amount of time and memory required to direct solvers. The saddle-point system is
solved using a combination of the state-of-the-art iterative methods, exploiting the
structure of the problem. In particular, the interior point method (TopIP) is
implemented for the minimum compliance problem based on a density-based approach
in the nested form. TopIP approximates the Hessian using part of the exact
second-order information.

Both adaptive and monotone barrier parameter updates are part of TopIP to
guarantee global convergence. The iterative method is based on flexible GMRES with
an incomplete block preconditioner matrix. This preconditioner needs the solution of
smaller systems where different techniques such as FGMRES, multigrid cycles, and
block diagonal preconditioners are used.

The numerical results show the robustness and efficiency of TopIP, where large 3D
topology optimization problems are solved. TopIP is able to optimize designs with more
than three million degrees of freedom.

The number of TopIP iterations is constant, independently on the size of the
problem. Moreover, TopIP requires fewer iterations than GCMMA, in general. The
number of iterative iterations remains also constant through the optimization process
and at different problem sizes. Finally, the computational time of TopIP (first
approach) increases slowly (lower than linearly) with respect to the size of the problem,
outperforming even GCMMA for the largest problems. All these characteristics give to
TopIP excellent properties for solving very large-scale problems.

At every preconditioner operation, several systems are solved where only the right
side vector is modified. Thus, additional investigations should be done to develop efficient
solvers to reduce the computational time even more. Future work should be also done
regarding the extension of the geometric multigrid to algebraic multigrid (AMG) [50], [33],
and [73], to be able to apply this interior point method to unstructured meshes. Finally,
further research in regards to the adaptive strategy and to the parameter selection are
recommended to speed up the convergence rate and the accuracy of TopIP.
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