87 research outputs found

    Analysis of 3D Face Reconstruction

    No full text
    This thesis investigates the long standing problem of 3D reconstruction from a single 2D face image. Face reconstruction from a single 2D face image is an ill posed problem involving estimation of the intrinsic and the extrinsic camera parameters, light parameters, shape parameters and the texture parameters. The proposed approach has many potential applications in the law enforcement, surveillance, medicine, computer games and the entertainment industries. This problem is addressed using an analysis by synthesis framework by reconstructing a 3D face model from identity photographs. The identity photographs are a widely used medium for face identi cation and can be found on identity cards and passports. The novel contribution of this thesis is a new technique for creating 3D face models from a single 2D face image. The proposed method uses the improved dense 3D correspondence obtained using rigid and non-rigid registration techniques. The existing reconstruction methods use the optical ow method for establishing 3D correspondence. The resulting 3D face database is used to create a statistical shape model. The existing reconstruction algorithms recover shape by optimizing over all the parameters simultaneously. The proposed algorithm simplifies the reconstruction problem by using a step wise approach thus reducing the dimension of the parameter space and simplifying the opti- mization problem. In the alignment step, a generic 3D face is aligned with the given 2D face image by using anatomical landmarks. The texture is then warped onto the 3D model by using the spatial alignment obtained previously. The 3D shape is then recovered by optimizing over the shape parameters while matching a texture mapped model to the target image. There are a number of advantages of this approach. Firstly, it simpli es the optimization requirements and makes the optimization more robust. Second, there is no need to accurately recover the illumination parameters. Thirdly, there is no need for recovering the texture parameters by using a texture synthesis approach. Fourthly, quantitative analysis is used for improving the quality of reconstruction by improving the cost function. Previous methods use qualitative methods such as visual analysis, and face recognition rates for evaluating reconstruction accuracy. The improvement in the performance of the cost function occurs as a result of improvement in the feature space comprising the landmark and intensity features. Previously, the feature space has not been evaluated with respect to reconstruction accuracy thus leading to inaccurate assumptions about its behaviour. The proposed approach simpli es the reconstruction problem by using only identity images, rather than placing eff ort on overcoming the pose, illumination and expression (PIE) variations. This makes sense, as frontal face images under standard illumination conditions are widely available and could be utilized for accurate reconstruction. The reconstructed 3D models with texture can then be used for overcoming the PIE variations

    3D RECONSTRUCTION USING MULTI-VIEW IMAGING SYSTEM

    Get PDF
    This thesis presents a new system that reconstructs the 3D representation of dental casts. To maintain the integrity of the 3D representation, a standard model is built to cover the blind spots that the camera cannot reach. The standard model is obtained by scanning a real human mouth model with a laser scanner. Then the model is simplified by an algorithm which is based on iterative contraction of vertex pairs. The simplified standard model uses a local parametrization method to obtain the curvature information. The system uses a digital camera and a square tube mirror in front of the camera to capture multi-view images. The mirror is made of stainless steel in order to avoid double reflections. The reflected areas of the image are considered as images taken by the virtual cameras. Only one camera calibration is needed since the virtual cameras have the same intrinsic parameters as the real camera. Depth is computed by a simple and accurate geometry based method once the corresponding points are identified. Correspondences are selected using a feature point based stereo matching process, including fast normalized cross-correlation and simulated annealing

    On Martian Surface Exploration: Development of Automated 3D Reconstruction and Super-Resolution Restoration Techniques for Mars Orbital Images

    Get PDF
    Very high spatial resolution imaging and topographic (3D) data play an important role in modern Mars science research and engineering applications. This work describes a set of image processing and machine learning methods to produce the “best possible” high-resolution and high-quality 3D and imaging products from existing Mars orbital imaging datasets. The research work is described in nine chapters of which seven are based on separate published journal papers. These include a) a hybrid photogrammetric processing chain that combines the advantages of different stereo matching algorithms to compute stereo disparity with optimal completeness, fine-scale details, and minimised matching artefacts; b) image and 3D co-registration methods that correct a target image and/or 3D data to a reference image and/or 3D data to achieve robust cross-instrument multi-resolution 3D and image co-alignment; c) a deep learning network and processing chain to estimate pixel-scale surface topography from single-view imagery that outperforms traditional photogrammetric methods in terms of product quality and processing speed; d) a deep learning-based single-image super-resolution restoration (SRR) method to enhance the quality and effective resolution of Mars orbital imagery; e) a subpixel-scale 3D processing system using a combination of photogrammetric 3D reconstruction, SRR, and photoclinometric 3D refinement; and f) an optimised subpixel-scale 3D processing system using coupled deep learning based single-view SRR and deep learning based 3D estimation to derive the best possible (in terms of visual quality, effective resolution, and accuracy) 3D products out of present epoch Mars orbital images. The resultant 3D imaging products from the above listed new developments are qualitatively and quantitatively evaluated either in comparison with products from the official NASA planetary data system (PDS) and/or ESA planetary science archive (PSA) releases, and/or in comparison with products generated with different open-source systems. Examples of the scientific application of these novel 3D imaging products are discussed

    Analysis of Retinal Image Data to Support Glaucoma Diagnosis

    Get PDF
    Fundus kamera je ĆĄiroce dostupnĂ© zobrazovacĂ­ zaƙízenĂ­, kterĂ© umoĆŸĆˆuje relativně rychlĂ© a nenĂĄkladnĂ© vyĆĄetƙenĂ­ zadnĂ­ho segmentu oka – sĂ­tnice. Z těchto dĆŻvodĆŻ se mnoho vĂœzkumnĂœch pracoviĆĄĆ„ zaměƙuje prĂĄvě na vĂœvoj automatickĂœch metod diagnostiky nemocĂ­ sĂ­tnice s vyuĆŸitĂ­m fundus fotografiĂ­. Tato dizertačnĂ­ prĂĄce analyzuje současnĂœ stav vědeckĂ©ho poznĂĄnĂ­ v oblasti diagnostiky glaukomu s vyuĆŸitĂ­m fundus kamery a navrhuje novou metodiku hodnocenĂ­ vrstvy nervovĂœch vlĂĄken (VNV) na sĂ­tnici pomocĂ­ texturnĂ­ analĂœzy. Spolu s touto metodikou je navrĆŸena metoda segmentace cĂ©vnĂ­ho ƙečiĆĄtě sĂ­tnice, jakoĆŸto dalĆĄĂ­ hodnotnĂœ pƙíspěvek k současnĂ©mu stavu ƙeĆĄenĂ© problematiky. Segmentace cĂ©vnĂ­ho ƙečiĆĄtě rovnÄ›ĆŸ slouĆŸĂ­ jako nezbytnĂœ krok pƙedchĂĄzejĂ­cĂ­ analĂœzu VNV. Vedle toho prĂĄce publikuje novou volně dostupnou databĂĄzi snĂ­mkĆŻ sĂ­tnice se zlatĂœmi standardy pro Ășčely hodnocenĂ­ automatickĂœch metod segmentace cĂ©vnĂ­ho ƙečiĆĄtě.Fundus camera is widely available imaging device enabling fast and cheap examination of the human retina. Hence, many researchers focus on development of automatic methods towards assessment of various retinal diseases via fundus images. This dissertation summarizes recent state-of-the-art in the field of glaucoma diagnosis using fundus camera and proposes a novel methodology for assessment of the retinal nerve fiber layer (RNFL) via texture analysis. Along with it, a method for the retinal blood vessel segmentation is introduced as an additional valuable contribution to the recent state-of-the-art in the field of retinal image processing. Segmentation of the blood vessels also serves as a necessary step preceding evaluation of the RNFL via the proposed methodology. In addition, a new publicly available high-resolution retinal image database with gold standard data is introduced as a novel opportunity for other researches to evaluate their segmentation algorithms.

    Multimodal retinal imaging: Improving accuracy and efficiency of image registration using Mutual Information

    Get PDF
    This thesis addresses the challenging task of multi-modal image registration. Registration is often required in a number of applications, whereby two images are aligned to give matching correspondence between the features in each image. Such techniques have become popular in many different fields, especially in medical imaging. Multi-modal registration would allow for anatomical structure to be studied concurrently in both modalities, providing the clinician with a greater insight of the patient's condition. Glaucoma is a serious condition that damages the optic nerve progressively, leading to irreversible blindness. The disease can be treated so to prevent any further infection, however it can not be reversed. Therefore it is paramount that the disease is detected in the early stages so to minimise the affect of the condition. The work in this thesis focuses on two particular imaging modalities: colour fundus photographs and scanning laser ophthalmoscope images. Both images are captured from the human eye and show the appearance and reflectivity of the retina respectively. Registration of these two modalities would significantly improve demarcation and monitoring of the optic nerve head, a crucial stage for glaucoma diagnosis. In recent years, Mutual Information has become a popular technique used to perform multi-modal registration. This thesis provides a comprehensive overview of the algorithm. Firstly, an investigation is performed that shows how probability estimation can improve the algorithm performance. Secondly, the weaknesses of the current technique are revealed and so a novel solution is proposed that overcomes these problems. Finally, the proposed solution is incorporated in a non-rigid registration scheme that provides excellent registration accuracy for our intended application

    Two- and three-phase flow functions for numerical simulation of EOR processes

    Get PDF
    The understanding of governing mechanisms of multi-phase (oil, water, and gas) flow in porous media is of keen interest in petroleum and environmental engineering. In the petroleum engineering context, three-phase flow occurs in several important processes including in enhanced oil recovery (EOR). Recovery of a significant amount of the residual oil in reservoirs after primary recovery and secondary recovery (waterflooding) is important in order to tackle the increasing demand for the energy. EOR methods mainly involve two and three-phase flow in the reservoir. Relative permeability (kr) and capillary pressure (Pc) are two important parameters in multiphase flow which describe the interaction of each fluid in porous media. The importance of these flow functions will be even more significant for three-phase flow systems. This thesis attempts to address three key issues. (i) Improved determination of multi-phase flow functions (kr and Pc). (ii) The impact of parameters affecting flow functions. (iii) Prediction of multi-phase flow functions. Relative permeability (kr) can be measured in the laboratory using steady-state and unsteady-state methods, or estimated by mathematical correlations and pore-network models. As multi-phase flow experiments and in particular steady-state measurements are very time consuming and expensive, more often the unsteady-state method is used for multi-phase kr measurements. In this thesis, a methodology has been devised for calculating kr values and in particular three-phase kr from unsteady-state experiments. The effort was extended to simultaneously calculating Pc from the same coreflood experiment. There are different physical parameters which can affect flow functions. The effect of gas/oil interfacial tension (IFTg/o) on two and three-phase kr and also on residual saturation during alternative water and gas injections has also been studied. Finally, two-phase kr have been estimated for rock and fluid conditions where there is no previous data. This has been achieved by taking data from different conditions under which measurements were made

    A PDE approach to Shape from Shading via Photometric Stereo

    Get PDF
    We present a new analytic and numerical approach to the shape from shading using photometric stereo technique. That is, we solve the problem to find the 3D surface of an object starting from its several 2D pictures taken from the same point of view, but changing, for every image, the direction of the light source

    NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1989

    Get PDF
    Since 1964, NASA has supported a program of summer faculty fellowships for engineering and science educators. The objectives are: to further the professional knowledge of qualified engineering and science faculty; to stimulate and exchange ideas between participants and NASA; to enrich and refresh the research and teachning activities of participants' institutions; and to contribute to the research objectives of the NASA center. College or university faculty members will be appointed as Research Fellows to spend 10 weeks in cooperative research and study at the NASA Langley Research Center. The Fellow will devote approximately 90 percent of the time to a research problem and the remaining time to a study program. The study program will consist of lecture and seminars on topics of interest or that are directly relevant to the Fellows' research topic
    • 

    corecore