2,086 research outputs found

    Usage Based Materials by Simulating Layered Imperfections

    Get PDF
    Maintaining the ability to make quick iterations is very important to any artist in Computer Graphics, which is not always easy for simulating realistic materials based on how they are used. This thesis will examine imperfections in materials and the way different imperfections interact with each other based on how they are used. A new system will be created to save artist time by simulating how imperfections are layered and positioned

    Usage Based Materials by Simulating Layered Imperfections

    Get PDF
    Maintaining the ability to make quick iterations is very important to any artist in Computer Graphics, which is not always easy for simulating realistic materials based on how they are used. This thesis will examine imperfections in materials and the way different imperfections interact with each other based on how they are used. A new system will be created to save artist time by simulating how imperfections are layered and positioned

    A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations

    Get PDF
    The dissertation develops a framework for the visualization of dynamic terrains for use in interactive real-time 3D systems. Terrain visualization techniques may be classified as either static or dynamic. Static terrain solutions simulate rigid surface types exclusively; whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a static terrain approach lack realism due to their rigid nature. Disregarding the accurate representation of terrain surface interaction is rationalized because of the inherent difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain systems are a more correct solution because they allow the terrain database to be modified at run-time for the purpose of deforming the surface. Many established techniques in terrain visualization rely on invalid assumptions and weak computational models that hinder the use of dynamic terrain. Moreover, many existing techniques do not exploit the capabilities offered by current computer hardware. In this research, we present a component framework for terrain visualization that is useful in research, entertainment, and simulation systems. In addition, we present a novel method for deforming the terrain that can be used in real-time, interactive systems. The development of a component framework unifies disparate works under a single architecture. The high-level nature of the framework makes it flexible and adaptable for developing a variety of systems, independent of the static or dynamic nature of the solution. Currently, there are only a handful of documented deformation techniques and, in particular, none make explicit use of graphics hardware. The approach developed by this research offloads extra work to the graphics processing unit; in an effort to alleviate the overhead associated with deforming the terrain. Off-road ground vehicle simulation is used as an application domain to demonstrate the practical nature of the framework and the deformation technique. In order to realistically simulate terrain surface interactivity with the vehicle, the solution balances visual fidelity and speed. Accurately depicting terrain surface interactivity in off-road ground vehicle simulations improves visual realism; thereby, increasing the significance and worth of the application. Systems in academia, government, and commercial institutes can make use of the research findings to achieve the real-time display of interactive terrain surfaces

    Modelling and Simulation of Lily flowers using PDE Surfaces

    Get PDF
    This paper presents a partial differential equation (PDE)-based surface modelling and simulation framework for lily flowers. We use a PDE-based surface modelling technique to represent shape of a lily flower and PDE-based dynamic simulation to animate blossom and decay processes of lily flowers. To this aim, we first automatically construct the geometry of lily flowers from photos to obtain feature curves. Second, we apply a PDE-based surface modelling technique to generate sweeping surfaces to obtain geometric models of the flowers. Then, we use a physics-driven and data-based method and introduce the flower shapes at the initial and final positions into our proposed dynamic deformation model to generate a realistic deformation of flower blossom and decay. The results demonstrate that our proposed technique can create realistic flower models and their movements and shape changes against time efficiently with a small data size

    Modeling And Simulation Of a Continious Folding Process Of An Origami Pattern

    Get PDF
    The engineering applications of origami has gathered tremendous attention in recent years. Various aspects of origami have different characteristics based on its application. The shape changing aspect is used in areas where size is a constraint. The structural rigidity aspect is utilized where strength is needed with a minimal increase in weight. When polymer or metal sheets are processed to have origami creases, they exhibit an improvement in mechanical properties. The sheets which create a specific local texture by means of tessellated folds patterns are called folded textured sheets[1]. These sheets are utilized to create fold cores. These light-weight sandwiched structures are heavily used in the aerospace industry, due to its ability to prevent moisture accumulation on the aeronautical structures at higher altitudes. The objective of the current research is to explore a new method for the continuous production of these folded textured sheets. The method uses a laser etching setup to mark the sheet with the origami pattern. The pattern is then formed by dies and passes through a conveyor system which is specifically arranged like a funnel to complete the final stage of the forming process. A simulation approach is utilized to evaluate the method. Results show the feasibility of the process along with its limitations. The design is made to be feasible for scaling up for large scale manufactur

    Auxetic response of additive manufactured cubic chiral lattices at large plastic strains

    Get PDF
    Auxetic lattices exhibit a negative Poisson’s ratio and excellent energy absorption capability. Here, we investigate the compressive performance of auxetic cubic chiral structures. By utilising finite element analysis (FEA) verified by interrupted mechanical testing and x-ray computed tomography, the auxeticity and failure mechanisms at the large strain deformation have been evaluated. The FEA results show that the initial elastic–plastic response agrees with the prediction of the classic scaling laws of bending-dominated lattices. At increasing plastic deformation, the energy absorption and auxeticity are dependent on relative density, i.e., the slenderness ratio, of the constitutive struts. In the plastic regime, the auxeticity decreases with relative density. Ductile fracture precedes densification in relative densities above 1.2%, thus dictating a new scaling law for the variation of the maximum energy absorbed with density. The numerical model predicts the scaling of mechanical properties, fracture strains, and energy absorption of the constitutive unit cell and finite-sized specimens in the relative density ranging from 0.3% to 6.5%. However, to accurately model the failure mechanism, geometrical imperfections should be included. The scaling laws derived from this work may aid the design of next generation auxetic lattices with tailored mechanical properties
    • …
    corecore