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A B S T R A C T   

Auxetic lattices exhibit a negative Poisson’s ratio and excellent energy absorption capability. Here, we investi-
gate the compressive performance of auxetic cubic chiral structures. By utilising finite element analysis (FEA) 
verified by interrupted mechanical testing and x-ray computed tomography, the auxeticity and failure mecha-
nisms at the large strain deformation have been evaluated. The FEA results show that the initial elastic–plastic 
response agrees with the prediction of the classic scaling laws of bending-dominated lattices. At increasing plastic 
deformation, the energy absorption and auxeticity are dependent on relative density, i.e., the slenderness ratio, of 
the constitutive struts. In the plastic regime, the auxeticity decreases with relative density. Ductile fracture 
precedes densification in relative densities above 1.2%, thus dictating a new scaling law for the variation of the 
maximum energy absorbed with density. The numerical model predicts the scaling of mechanical properties, 
fracture strains, and energy absorption of the constitutive unit cell and finite-sized specimens in the relative 
density ranging from 0.3% to6.5%. However, to accurately model the failure mechanism, geometrical imper-
fections should be included. The scaling laws derived from this work may aid the design of next generation 
auxetic lattices with tailored mechanical properties.   

1. Introduction 

Additive manufacturing (AM) technologies produce parts with 
unparalleled levels of design flexibility and excellent mechanical prop-
erties compared to those made by traditional manufacturing methods 
[1]. Further to materials and process developments, AM research is 
shifting towards the design and manufacturing of lightweight complex 
structures. 

One such class of structures is auxetic micro-lattices, periodic ar-
chitectures that exhibit negative Poisson’s ratio (NPR), i.e., the structure 
expands under tensile load, and it contracts under compression. Ac-
cording to the classical elasticity theory, the material’s Poisson’s ratio 
plays a crucial role in determining numerous mechanical properties. 
Auxetic structures exhibit exceptional mechanical characteristics, 
including enhanced shear modulus, superior energy absorption capac-
ity, increased fracture toughness, and improved wear resistance [2]. 
They have attracted attention in various fields, including biomedical 
[3], space [4], aerospace [5], and acoustic applications [6]. 

The auxeticity is dictated by the lattice topology and is activated by 
three main deformation mechanisms: (i) rotating rigid, (ii) re-entrant 

and (iii) chiral [7]. AM technologies have enabled novel designs for 
2D and 3D auxetic topologies, e.g., triply-periodic core/shell cubic 
crystals [8], re-entrant geometries [9,10], sliding-based mechanisms 
[11,12], and chiral lattices [14,15,17]. Auxetic chiral lattices exhibit a 
negative Poisson’s ratio value up to − 1 [15]. Nevertheless, few studies 
have focused on the large plastic deformation response [16], despite its 
importance in the auxeticity evolution, energy absorption capabilities, 
and shape recovery properties [18,19]. At large strains, the mechanical 
behaviour of a lattice may undergo nonlinear deformation behaviour (e. 
g., buckling), localised deformation (e.g., shear bands), and fracture, 
therefore, the materials properties defined by classic elasticity and 
plasticity models may be not accurate. The lattice topology, e.g., stretch- 
dominated or bending-dominated, and the relative density, affect the 
failure modes and the transition from linear elastic to non-linear in-
elastic response [20]. 

There are two other crucial factors that influence the mechanical 
behaviour and must be considered to ensure the accurate numerical 
analysis of the response of auxetic lattices at large strains. Firstly, the 
size of the model geometry needs to be large enough to reproduce the 
macroscale effective response of the lattice, i.e., when the edge effects 
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stop influencing the deformation mechanisms [21]. Smaller specimens 
have lower elastic modulus due to higher stress concentrations per 
volume near sample boundaries [22]. Morrish [23] found that a mini-
mum of four-unit cells is necessary to test size-independent elastic–-
plastic mechanical properties of Ti6Al4V electron beam powder bed 
fusion (EPBF) diamond lattice structures. Due to the potential impact of 
topology on the overall mechanical performance, more mechanical 
testing may be required to validate the minimum geometric size to 
accurately mimic the effective response of the auxetic lattices. 

Secondly, the mechanical performance of lattices is influenced by the 
presence of the AM defects, e.g. porosity [24–26] and dimensional 
inaccuracies, such as surface texture or roughness due to the powder 
sintering during preheating [27] and fluctuations in printing conditions 
[28]. The powder sintering causes volume oversizing and change of strut 
cross-section from circular to ellipsoid shape [29,30], especially in 
horizontal [31] and inclined struts (i.e. staircase effect [32]) and at 
nodes [33]. Internal porosities can have a detrimental effect on tensile 
properties, inducing stress concentration and premature yield. 

The as-built lattice structure is far from a defect-free model with 
idealised geometry [33–35]. Finite element analysis (FEA) models based 
on x-ray computed tomography (XCT) analysis can help avoid erroneous 
approximation of the lattices’ mechanical performance. XCT can also be 
used to visualise and quantify the lattice defects [36] and generate a 
more accurate 3D finite element model [37]. In situ mechanical testing 
with XCT can be used to monitor damage evolution, determine the lat-
tice weak spots, and determine the influence of defects on the failure 
mechanisms [38,39]. 

Here, we investigate the compressive response of EPBF Ti-6Al-4V 
eigenmode 10 cubic chiral lattice [14] by FEA and interrupted me-
chanical compression testing with XCT. This lattice exhibits full auxetic 
behaviour and the ability to form synclastic (dome-shaped) curvatures 
under out-of-plane bending stress, making it ideal for curved parts, e.g., 
tracheal stent [3], aircraft wing panel and nose cone [40]. The high 
energy absorption capacity makes it ideal for crash and blast protection 
parts [40,41]. Despite their potential for numerous engineering appli-
cations, these lattice architectures have received limited attention. 
Based on previous linear numerical analysis, the cubic chiral lattice 
structure exhibits auxeticity in the elastic regime, with an isotropic 
Poisson’s ratio of − 0.4 [14] controllable by tuning geometrical param-
eters such as amplitude; at increasing amplitude, the auxeticity reduces 
[43]. However, it is unclear how the auxetic response evolves in the 
plastic regime, or how it scales with relative density. The experimental 
validation of the elastoplastic, auxetic, and large-strain deformation 
mechanisms is limited. 

Warmuth [44] numerically and experimentally studied the 
compressive properties of cubic chiral lattices and the influence of the 
geometrical parameters, such as strut thickness and amplitude. 
Increasing the amplitude modifies the deformation from buckling to 
bending-dominated. A Poisson’s ratio of − 0.2 is measured in the elastic 
domain, however it differs from numerical prediction due to AM inac-
curacies. Novak [43] demonstrated the excellent impact absorption 
capabilities. Although there was good agreement with the experimental 
results at low strain rates, beam elements are not ideal for simulating 
twisting and bending mechanisms at large strain failure regimes and in 
struts with lower aspect ratios [45]. Nodes are considered the weakest 
point with the larger stress concentrations [43] and manufacturing de-
fects density. This implies that making topological modifications, e.g., 
varying the strut thickness along their length and joining to improve 
bending, has the potential to enhance the energy absorption capacity of 
chiral lattices. Du Plessis [46] reported that the largest deformation 
occurs at the nodes of very thin struts. However, in other typical porous 
structures, failure tends to occur after yielding on tension-loaded hori-
zontal struts because of the high-stress concentration induced by print-
ing inaccuracies [38]. In summary, the initiation and propagation of 
failure mechanisms of this lattice at a range of relative densities and 
large strains are still not well understood [44]. 

In this study, numerical models on a representative unit cell (i.e., an 
infinite lattice), and a finite-sized geometry are performed to determine 
(i) the scaling of the elastoplastic properties and auxeticity with relative 
density, (ii) the initiation and propagation of ductile failure, and (iii) the 
evolution of auxeticity with plastic strains. The experimental results 
from in situ interrupted compression testing with XCT supported the 
quantification of the effects of manufacturing inaccuracies on defor-
mation mechanisms. This detailed information could inspire the next- 
generation design of auxetic lattice architectures with tailored me-
chanical properties. 

2. Methods 

2.1. Numerical models 

The effective compressive response of the cubic chiral lattice was 
investigated using FEA. Five lattice geometries with relative density 
ranging from 0.3% to 6.5%, have been designed by changing the strut 
thickness. From the numerical stress–strain response, the characteristic 
scaling relationships for stiffness and yield strain with density have been 
defined. The evolution of Poisson’s ratio with principal strain has been 
analysed to assess the auxetic behaviour in the elastic–plastic regime 
and its dependence on relative density. The numerical analysis has been 
conducted both on the infinite lattice geometry (i.e., examining the 
effective properties), and an exemplary finite-sized specimen geometry, 
to assess whether the mechanical performance is size-dependent. Fig. 1 
shows the geometry of these two main models: (i) a representative 
volume element (RVE) consisting of the constitutive unit cell (Fig. 1a), 
and (ii) a finite-sized geometry (Fig. 1b) that replicates the experimental 
specimen. The unit cell is a cubic quadratic geometry (eigenmode 10 
[14]) with a nodal distance n = 3 mm and an amplitudem = 0.6 mm, see 
Fig. 1a. The strut thickness, t, was in the range 0.1 ≤ t ≤ 0.5 mm, 
providing relative densities, ρ*/ρS, in the range 0.3% ≤ ρ*/ρS ≤ 6.5%, 
where ρ* and ρS denote the densities of the lattice and solid material, 
respectively. The finite-size specimen is an arrangement of 2 × 2 × 3 
units cells, with dimensions 12 × 12 × 18 mm, see Fig. 1b. 

The constitutive material was modelled with the bulk properties of 
EPBF Ti6Al4V, with Young’s modulus E = 115 GPa, isotropic Poisson’s 
ratio ν = 0.29, and isotropic hardening defined by the Johnson-Cook 
strain rate-independent plasticity model [47]: 

σ0 =
[
A + B

(
εpl)n]

(1 − θ̂
m
) (1)  

where σ0 is the plastic flow stress, εpl is the equivalent plastic strain, θ̂ is 
the non-dimensional temperature, and A,B, n, and m are the material 
properties reported in ref [48], see Table 1. 

The fractographs showed that the failure of the AM sample was 
primarily ductile under uniaxial compression, see Supplementary Fig. 2. 
In the FE models, the ductile damage initiation was defined by the 
Johnson-Cook (JC) criterion [49]: 

εpl
D = [D1 + D2exp( − D3η)]

⎡

⎣1 + D4ln

⎛

⎝ε̇pl

ε̇0

⎞

⎠

⎤

⎦(1 − D5 θ̂) (2)  

where εpl
D is the equivalent plastic strain at the onset of damage, η is the 

stress triaxiality, ε̇pl and ε̇0 are the equivalent plastic and reference strain 
rates, respectively, and D1-D5 are damage parameters [49]. Here, we 
consider the static response without temperature dependence, thus D4 =

D5 = 0; see key parameters in Table 1. Damage propagation was spec-
ified through a linear damage evolution, with fracture energy per unit 
area obtained from the uniaxial stress–strain curve [48] as Gf =

∫
εpl

f

εpl
0

Lσ0dεpl, where L is the characteristic element length, and εpl
0 and εpl

f are 

the equivalent plastic strain at the onset of damage and complete failure, 
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respectively. 
To model the effective response of the lattice via the unit-cell RVE, 

periodic boundary conditions (PBCs) corresponding to cubic symmetry 
were imposed by coupling the corresponding nodes of parallel faces of 
the RVE [50]: 

u1
i − u3

i = 2Nε∞
i1

u2
i − u4

i = 2Nε∞
i2

u6
i − u5

i = 2Nε∞
i3

(3)  

where i = 1,2, 3 correspond to the x, y, z principal directions, respec-
tively, u1

i refers to the nodal displacement on face 1 in direction i, and ε∞
i1 

is the remote strain in the i1-direction, see Fig. 1a. The uniaxial 
compressive response in all three principal directions was investigated 
by imposing a remote displacement on the corresponding nodes, while 
the response of the finite-sized specimens was simulated by compressing 
the model through two analytical rigid surfaces. To capture the effect of 
densification at large strains, self-contact was defined between all sur-
faces, through a penalty definition with a coefficient of friction μ = 0.3. 
The contact properties between the rigid plates and the lattice were 
imposed with a coefficient of friction μ = 0.4, which is representative of 
the static friction of titanium on steel [51]. 

The models were meshed with linear tetrahedral elements with a 
minimum of 6 elements/diameter. The FEA was conducted with the 
explicit solver of the commercial package Abaqus 2017. In all analyses, 

the remote strain rate was kept between 0.08 and 0.2 s− 1, producing a 
sufficiently small kinetic/internal energy ratio of ~<10-3 to replicate the 
quasi-static compression. 

2.2. Specimen manufacturing 

The specimens were manufactured with an Arcam Q10 EPBF ma-
chine using gas atomized Ti–6Al–4V powder in the range of 45 - 105 µm. 
The EPBF system was operated within a 3 × 10-3 mbar vacuum with 
regulated helium, 50 µm layer thickness, constant voltage (U) of 60 kV, 
electron beam current (I) of 1.5 mA and scanning speed (v) of 180 mm/s, 
resulting in a line energy (E) of 0.5 J/mm (E = U • I

v). 
By analysing the reconstructed XCT data of the printed sample, the 

node distance and the amplitude were quantified to define the unit cell 
geometry for the numerical models. The volume rendering of the printed 
lattice is shown in Fig. 2a. Significant variation in the strut cross- 
sectional areas is observed and further analysed. Fig. 2b-d show the 
thickness distribution in a selected unit cell with an average strut 
thickness of 490 ± 110 µm. A low 0.12% volume of internal porosity has 
been quantified and examples of pore distribution in a vertical strut, a 
horizontal strut and at struts intersection (i.e., node), are shown in 
Fig. 2e. 

2.3. In situ compression tests with x-ray computed tomography (XCT) 

Prior to compression, tomographic scans were performed on the 
undeformed specimen. Two types of scans were performed using a 
Nikon Metris 225 XCT system using reflection anode: (i) the lattice was 
scanned at 125 kV and 150 µA, comprising of 4476 projections, with a 
354 ms exposure time per projection and a voxel size of 7.9 × 7.9 × 7.9 
µm3; (ii) a high-resolution scan of the unit cell was scanned at 110 kV 
and 81 µA, comprising of 4476 projections with a 708 ms exposure time 
per projection, and a pixel size of 2.5 × 2.5 × 2.5 µm3. We used 64 flat 
and dark images prior XCT scans acquisition. The reconstruction, data 
analysis and interpretation follow the standard practice of pore size 
quantification depicted in ref. [52,53]. 

A Deben CT5000 compression rig with a 5 kN load cell was inte-
grated into the XCT system. The sample was loaded into the rig and its 
top and bottom were sandwiched between steel plates, respectively. A 
displacement-controlled compression test was conducted at a constant 
displacement rate of 1 mm/min (strain rate 10-4 s− 1), continuing until 

Fig. 1. 3D FEA model geometries representing, (a) the cubic chiral lattice unit cell with the 6 faces for PBCs, with an enlarged view of a strut with definition of nodes 
distance (n), amplitude (m), and thickness (t), and (b) the finite-sized specimen made of 2x2x3 unit cells. 

Table 1 
Material properties of Ti6Al4V [48].  

Property Value Unit 

Elastic modulus 115,000 MPa 
Poisson’s ratio 0.29 – 
JC hardening model A = 429.0 

B = 1428.0 
n = 0.34 

MPa 
MPa 

JC damage model D1 = -0.09 
D2 = 0.25 
D3 = 0.5 

- 
- 
- 

Fracture Energy 0.208 mJ/mm2 

Mass density 4.4 g/cm3 

Coefficient of friction (self) 0.3 – 
Coefficient of friction (plates) 0.4 –  
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complete structural failure. The loading direction was parallel to the 
sample’s build direction (z axis in Fig. 2a). For every 0.1 strain incre-
ment, the compression test was interrupted, and the strain was held 
constant while the XCT scan was performed. 

The data was reconstructed using the embedded cone beam filtered 
back projection algorithms in CT Pro Nikon. The image analysis was 
performed using Avizo 9.3 (ThermoFisher). We visualised and quanti-
fied internal defects and deformation mechanisms throughout 
compression, see quantification details in ref [27]. The local strut 
thickness analysis was performed using the Fiji plugin BoneJ [54], see 
Supplementary Fig. 1. 

3. Results 

3.1. Compressive response of the chiral lattice RVE 

The uniaxial compressive response of the cubic chiral lattice RVE in 
the density range 0.3% ≤ ρ*/ρS ≤ 6.5% is shown in Fig. 3a. The 
response indicates that the unit cell exhibits bending-dominated 

deformation, demonstrating a linear regime, followed by plateau stress, 
and densification. The equivalent stress distribution during these 
deformation regimes is reported in Fig. 3b-d for the RVE with a relative 
density of ρ*/ρS = 6.5%. 

In the linear regime, the equivalent stress is primarily in the elastic 
range, with an incipient zone of plastic stress located in the tensile and 
compressive surfaces of the struts, see Fig. 3b. Then, a plastic hinge 
develops at the mid-length of the strut aligned with the loading direction 
and expands throughout the length resulting in the plateau region of the 
stress–strain curve, see Fig. 3c and inset. Finally, the densification occurs 
as struts contact each other, see Fig. 3d and inset. The densification 
strain increases at low relative densities, e.g., 0.35 strain for a relative 
density ρ*/ρS = 1.2%, because the inter-struts contact occurs at larger 
strains. An identical stress–strain response was found in the other two 
compression directions indicating an isotropic response, see Supple-
mentary Fig. 2. 

The chirality of the unit cell promotes an inward nodal displacement 
during compression, giving rise to the auxetic behaviour. Poisson’s ratio 
is defined as νij = − εjj/εii, where εii is the applied strain and εjj the 

Fig. 2. X-Ray CT volume rendering of (a) the manufactured lattice sample from x − y plane view; (b) the unit cell with local thickness coloured map with highlighted 
(c) a horizontal and (d) vertical strut; (e) a vertical, horizontal strut and a node with (red) highlighted internal pores. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Numerical compressive stress–strain response of (a) the cubic chiral lattice RVE in the relative density range 0.3% ≤ ρ*/ρS ≤ 6.5%; 3D rendered von Mises 
stress distributions of the RVE with ρ*/ρS = 6.5% in (b) the elastic; (c) the plateau and; (d) the densification regimes. The corresponding insets illustrate in (c) the 
plastic hinge development and (d) densification. 

C. Iantaffi et al.                                                                                                                                                                                                                                 



Materials & Design 233 (2023) 112207

5

transverse strain. For the unit cell with a relative density ρ*/ρS = 6.5%, 
the evolution of Poisson’s ratios with principal strains is shown in Fig. 4. 

In the linear regime, the auxetic response is isotropic, with 
νij ∼ − 0.32, whereas in the plastic (plateau) regime two distinct re-
sponses are observed. The unit cell contracts preferentially in one di-
rection, developing two groups: ν31 = ν12 = ν23 and ν21 = ν32 = ν13. 
This results in a negative Poisson’s ratio of larger magnitude in the 
preferred contraction direction (ν21 = ν32 = ν13), and a larger difference 
between the two groups of νij at increasing principal strain. Densification 
occurs due to the contact between struts aligned with the axis of 
preferred contraction as illustrated by the insets in Fig. 3d. 

The effect of ductile damage on the compressive response of unit 
cells with relative densities ρ*/ρS = 6.5% and ρ*/ρS = 1.2%, is shown in 
Fig. 5a-b, respectively. In RVE with a relative density ρ*/ρS ≥ 2.4, the 
initiation and propagation of ductile damage occurs in the plateau 
regime. The distribution of the Johnson-Cook damage initiation crite-
rion (JCCRT in Abaqus) is shown in Fig. 5b. The criterion of Equation (2) 
is met when JCCRT = 1 in the plastic hinge of struts aligned with the 
loading direction. Propagation of ductile damage occurs in both inward 
and outward surfaces of the plastic hinge (inset in Fig. 3c) and is 
quantified by the stiffness degradation parameter, SDEG. Element 
removal occurs when SDEG = 1 in the integration point, shown in 
Fig. 5c. The latter leads to the softening behaviour of the unit cell. For 
struts with a higher slenderness ratio (e.g., in unit cells with 
ρ*/ρS ≤ 1.2%), the damage does not occur until after densification. The 
initiation of the damage is mainly located in the plastic hinges of struts 
aligned with the loading direction. The damage propagation occurs in 
the nodes that are closer to the periodic boundaries Fig. 5e-f. Up to the 
propagation of damage, these locations have an identical stress state to 
those located at mid-strut. 

The lattice fracture strain increases with decreasing relative density, 
from ε∞

33 = 0.13 (ρ*/ρS = 6.5%) to ε∞
33 = 0.36 (ρ*/ρS = 1.2%), i.e., this 

improves the energy absorption capabilities. For ρ*/ρS = 0.3%, there is 
no ductile failure activation due to the increased slenderness ratio. This 
is further analysed in the Discussion section below. 

3.2. Compressive response of finite-sized lattices 

The numerical compressive response, with and without activated 
damage criteria, of finite-sized lattice specimens is shown in Fig. 6a. In 
the absence of ductile failure, the elastoplastic response in the initial two 
stages of compression (linear and plateau) is similar to the unit cell 

response, however at this strain range, the finite-sized specimens do not 
exhibit the rapid increase in stress associated with the densification 
regime. Fig. 6b-d report the relevant deformation mechanisms in the 3D 
rendered von Mises stress distributions. Failure predominantly initiates 
in the mid-length plastic hinge regions of vertical and horizontal struts, 
see Fig. 6b. At regimes with increasing strain deformation, a distinct 
shear band forms in the x − y plane at 45◦ to the loading direction which 
results in the plateau regime, see Fig. 6c. Localised deformation within 
this band is indicative of the surface constraints of the plate/specimen 
boundary; a similar deformation behaviour has been observed by War-
muth [44]. In the plateau regime, the localised deformation in the struts 
proceeds at the boundaries of the shear band, indicated by high stress 
concentration in the plastic hinges, see Fig. 6c-d. 

Unlike the RVE in Fig. 3, the finite-sized lattice exhibits non-uniform 
deformation and gradual stress–strain curve increase due to sliding 
contact of struts, which is enabled by the plate/specimen and the 
specimen free boundaries. The implication of this response is that the 
energy/unit volume absorption capacity of the finite-sized lattice 
(typically in the strain range of the plateau stress), may be larger than 
the corresponding RVE lattice. In practice, the absorption capacity will 
be lower than the theoretical values due to fracture. 

The compressive response of the experimental specimen is also re-
ported in Fig. 6a. The relative density quantified from the XCT scans is 
ρ*/ρS = 6.79%, with a calculated mean strut diameter of d =

490 ± 100μm. There is a relatively good agreement in the initial elas-
toplastic response between the experimental specimen and the numer-
ical model with the closest relative density, see Discussion below. 
Likewise, the deformation mechanisms, shown in Fig. 6e-g, present good 
agreement with the numerical prediction, showing the development and 
evolution of a distinctive shear band during the plateau regime. The 
elastic stiffness and yield strength are reported in detail in the discussion 
section. 

In the numerical models, ductile fracture is initiated in the vertical 
struts that are closest to the plates, which are comparatively more 
confined to lateral displacements, see failure locations in Fig. 6b. Nu-
merical instabilities are encountered after complete stiffness degrada-
tion (i.e., removal) of all elements in the thickness of vertical struts; 
therefore, the model is limited to predicting the first complete fracture. 
In the experimental specimen, the fracture evolution is gradual, occur-
ring first at horizontal struts with large geometrical imperfections and 
spreading gradually to other struts; the failure locations are shown in 
Fig. 6e-f. 

To understand whether internal defects and geometrical imperfec-
tions influence the failure mechanisms of the lattice structure, local 
struts thickness and porosity have been quantified using XCT and image 
analysis. The mean pore diameter is found to be less than 10 µm, see 
Fig. 2e. The largest concentration of porosity is at the nodes (0.16% 
volume fraction), followed by the horizonal and vertical struts (0.11% 
and 0.10%, respectively). The pore aspect ratio was also analysed to 
indicate their contribution to fracture as stress raisers. Elongated pores 
are considered the most detrimental because of stress concentrations 
induced by the sharp edges [48]. In the present specimens, the internal 
defects consist of only spherical pores (average aspect ratio of > 0.9) and 
elongated pores are absent. The distribution of porosity is relatively 
uniform among vertical and horizontal struts, and the spherical shape 
suggests that porosity is not a primary factor in dictating the location of 
first failure. Gorny [55] observed very large manufacturing induced 
pores up to 50 µm in the fracture surfaces close to nodes. In here, no 
pores have been detected in the fracture surfaces, see Supplementary 
Fig. 2. 

Fig. 7 reports the volume rendered local thickness of the whole 
specimen prior to compression (a), of two horizontal struts, (b) and (c), 
and a vertical strut, (d); and at 0.2 remote strain in (e), (f) and (g), 
respectively. The horizontal struts were chosen at an equivalent posi-
tion, where the stress distribution is expected to be identical in a Fig. 4. Poisson’s ratios for x, y and z directions dependency with compression 

strain at a relative density of 6.5%. 
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geometrically idealised structure. Before deformation, the maximum 
cross-sectional area reductions are 20.9% and 38.5% in horizontal struts 
(b) and (c), respectively, and of 13.4% in vertical strut (d). At macro-
scopic strain of 0.2, strut (b) sustains the load without fracture, by 
contrast, in strut (c) complete fracture had occurred due to the larger 
cross-sectional area reduction. In the vertical strut (d), complete failure 
occurred in the region with a 13.4% reduction in cross-sectional area. 
Hence, fracture appears to be caused by the expected localised stress at 
the plastic hinges of vertical and horizontal struts and occurs selectively 
in locations with reduced cross-sectional area due to manufacturing 
imperfections. Sercombe [38] reported a similar failure modality and 
location; failure preferentially initiates in the struts with high localised 
stress concentrations due to poor build quality. Similarly, for regular 
octet lattices, Liu [29] reported that variation in strut thickness signif-
icantly deteriorates the compressive strength. However, by tuning the 
thickness variation during the lattice manufacturing process it is 
possible to control the failure propagation and location. A detailed to-
pological study is imperative to determine the geometrical improve-
ments, as different lattice geometry, e.g., Kagome and triangulated 
lattices [56], could have very different sensitivity to imperfections. 

In other studies, nodes are the weakest points and stress concentra-
tors for the initiation of failure. Novak [42] analysed the compressive 
properties of copper cubic chiral lattices manufactured by EPBF and 
reported initial failure at nodes. The discrepancy could be caused by the 
different quality of the printed part as a results of a different metal alloy 
powder and the higher strut diameter of 848 µm. As the defects are not 
quantified is difficult to make a more detailed comparison. 

4. Discussion 

4.1. Effective properties of chiral lattice 

The dependence of mechanical properties of cellular architectures on 
relative density are typically provided through the Gibson - Ashby 

power scaling laws [21]. In lattices that deform by plastic yielding, the 
relevant elastic–plastic properties are the effective stiffness and yield 
strength, and the scaling laws are: 

E*

ES
= C1

(
ρ*

ρS

)N1

(4)  

σ*
Y

σY,S
= C2

(
ρ*

ρS

)N2

(5)  

where E*, σ*
Y , ρ* are the elastic stiffness, yield strength, and density of the 

lattice respectively. ES, σY,S, ρS are the analogous properties of the solid 
material and C1, C2, N1, N2 are non-dimensional fitting parameters. N1 
and N2 are indicative of the deformation mechanisms (bending, 
stretching, buckling) and C1 and C2 are dependent on the topology of the 
architecture. 

Fig. 8a-b summarise the scaling of elastic stiffness and yield strength 
with relative density for the cubic chiral lattice, for the unit cell RVE, the 
finite-sized specimen, and the experimental result. As in previous 
studies, the elastic modulus and yield stress increases with the 
increasing strut thickness, i.e., relative density [25,57,58]. 

The effective stiffness of the cubic chiral unit cell scales with density 
through coefficients C1 = 0.32 and exponent N1 = 1.95. The exponent is 
in good agreement with idealised bending-dominated cellular struc-
tures, N1 = 2.0[21]. Warmuth [44] reported N1 = 2.5 from experi-
mental tests on the finite-sized specimens of cubic chiral lattices. The 
higher exponent was attributed to irregular surfaces, roughness and 
porosity in the manufactured struts, which represent a deviation from 
the geometrically uniform assumption and are particularly relevant at 
small strut thickness. Transition in stiffness scaling has also been 
attributed to the slenderness ratio of the lattice beam struts, defined as 
λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A • L/I

√
in which A is the cross sectional area, L the strut length and 

I the area moment of inertia. Meza [45] reported that in non-rigid tet-
rakaidecahedron lattices, the predicted scaling coefficient of N1 ∼ 2 is 

Fig. 5. Numerical compressive response of RVEs with relative density 6.5% (a)-(b)-(c) and 1.2% (d)-(e)-(f) with and without activated failure criteria. Solid and 
dotted lines are used to represent the response without and with the activation of the damage model, respectively. The distribution of the failure initiation criterion 
JCCRT and the stiffness degradation (SDEG) contour plots are shown for 6.5% relative density in (b) and (c) and for 1.2% in (e) and (f), respectively. 
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indeed achieved in the low-density regime, with strut slenderness ratio 
λ > 7 (ρ*/ρS≲7%); by contrast a different scaling law is attained in large 
density regimes due to the mixture of bending/stretching mechanisms in 
stockier struts, e.g., N1 ≈ 1 when the slenderness ratio is λ < 7 
(ρ*/ρS≳7%). Here, the strut slenderness ratio is sufficiently large and the 
scaling law is linear in the range of relative density 0.3 ≤ ρ*/ρS ≤ 6.5%.

The variation of yield strength with density scales with coefficient 
and exponent C2 = 0.99 and N2 = 1.75, respectively. These scaling 
values have not been reported in literature for this specific lattice ar-
chitecture; but are characteristic of bending-dominated topologies [48]. 
Theoretical analyses of such topologies, simplified by slender beam as-
sumptions, provide N2 = 1.5[60], however when shearing and torsion 
of non-slender beams is taken into account, values in the range of 
1.6 ≤ N2 ≤ 1.9 have been obtained experimentally for a range of rigid 
and non-rigid lattices [45], and re-entrant auxetic topologies [63]. 

In finite-sized specimens, the obtained scaling parameters are C1 =

0.33, C2 = 0.87, N1 = 1.97, N2 = 1.75. These results show good 
agreement with the scaling law of the unit cell RVE. Here, the results 

confirm that our selected finite-sized specimen could avoid edge effects, 
i.e., the initial elastic–plastic response can adequately capture the 
analogous effective properties of the infinite lattice. 

The compressive response of the EPBF AM-built specimen can be 
used to determine the influence of AM imperfections on mechanical 
properties, by comparison with the scaling laws of idealised models. The 
relative density of the experimental specimen is ρ*/ρS = 6.8%, the 
stiffness is E* = 111 MPa (finite-sized specimens scaling relationship 
prediction E* = 190 MPa), and the yield strength is σ*

Y = 3.2 MPa (finite- 
sized specimens scaling relationship prediction σ*

Y = 3.4 MPa). The 
stiffness of the experimental specimen is lower than that of the idealized 
model by a factor of 1.7 and yield stress is lower by a factor of 1.1. These 
results show that the presence of geometrical imperfections has an 
important effect on the reduction of the initial stiffness and, at larger 
compressive strains, has an influence in the determination of fracture 
location. 

Fig. 8c summarises the change of the effective Poisson’s ratios (νij) 
with the range of relative densities 0.1% ≤ ρ*/ρS ≤ 6.5%. We examine 

Fig. 6. Compressive response of (a) finite size nu-
merical models, with and without damage criterion 
and experimental specimen; evolution of von Mises 
stress distribution in (b)-(d) the numerical model with 
relative density 6.5%, and (e)-(g) volume renderings 
of the experimental specimen at similar macroscopic 
strains. Fracture sites in horizontal and vertical struts 
of the numerical model and experimental specimen 
are red and black marked, respectively. (For inter-
pretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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the response in the elastic and plastic regimes separately, defined by the 
strain range 0 ≤ ε ≤ εP(elastic) and εP ≤ ε ≤ εD (plastic), in which εP is 
the 0.2% offset plastic strain and εD is the densification strain. There is 
considerable variation of Poisson’s ratio with remote strain in the plastic 
range, see Fig. 4. To generalise our research findings, we report the mean 
and range of νij in both regimes, in which the two characteristic Pois-
son’s ratios of the lattice are represented by ν23 = ν31 = ν12 and ν21 =

ν32 = ν13. In the elastic regime, there is minimal variation, both with 
relative density and directionality. Over the range of relative densities 
considered here, the mean and span of Poisson’s ratios in this regime are 
νel

21 = − 0.327 ± 0.005 and νel
23 = − 0.319 ± 0.005, with a smaller value 

in νel
21 indicating the preferential direction of contraction developed at 

larger strains. In contrast, in the plastic regime, we observe that the 
differences between the two sets of Poisson’s ratios become larger than 

Fig. 7. Volume rendered local thickness of (a) the experimental lattice with (b)-(c), two horizontal struts highlighted with equivalent positions and (d) a vertical 
strut. The distribution of thickness and the cross-sectional areas are reported. For the same struts, (b)-(c)-(d) the distribution of thickness (e)-(f)-(g) is reported at 0.2 
compression strain respectively. 

Fig. 8. Scaling relationships of the mechanical response of the cubic lattice with relative density: stiffness (a), yield strength (b), Poisson’s ratios (d), and failure and 
densification strains (d). 
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in the elastic regime, due to the increased effect of preferential 
contraction, and both sets of Poisson’s ratios decrease with the relative 
density. The latter can be explained by the relatively higher volume 
fraction of the material enclosed in the strut intersections (nodes) at 
higher densities, e.g., from to Vf = 0.054 at ρ*/ρS = 0.3% to Vf = 0.22 at 
ρ*/ρS = 6.5%. The higher volume fraction of joints increases the rota-
tional stiffness of these areas, with the effect that at the same remote 
compressive strain, most deformation is localised in the plastic hinges, 
resulting in larger in-plane deflection and auxeticity. 

The theoretical elastic Poisson’s ratio of the ideal cubic chiral lattice 
of this geometry (mode 10 chirality) was first considered by Korner [14], 
who reported a value in the elastic regime νel = − 0.4, for a unit cell with 
amplitude m = 1.4 mm. The Poisson’s ratios dependency with density in 
the large-deformation regimes has not previously been reported for this 
lattice. However, Mauko [61] reported the experimental response of a 
similar tetra-chiral lattice and observed that the Poisson’s ratio de-
creases in magnitude at larger compressive strains; this response is also 
performed by the cubic chiral lattice in the low relative density regime 
(ρ*/ρS ≤ 4.3%). 

4.2. Influence of ductile failure on energy absorption 

The fracture strains of the representative unit cell, finite-sized model, 
and experimental specimen are summarised in Fig. 8d. In the RVE, the 
ductile failure precedes densification in lattices with a relative density 
ρ*/ρS ≥ 2.4%, while in finite-sized models and experimental specimen 
fracture occurs in individual struts, constrained by the compression 
plates or with pre-existing geometrical imperfections. From a design 
perspective, the most important consequence of failure in the plastic 
regime is the limitation in strain energy absorption per unit volume, 
defined as W =

∫ εf
0 σdε, where εf is the failure strain. 

Fig. 9a-b show the variation of absorbed energy with peak stress, 
conventionally normalised by the stiffness of the solid, for the unit cell 
RVE and the finite size lattice. The “shoulder” in the energy curves of the 
RVE without ductile damage criteria, corresponds to the densification 
stress σD, and it indicates the maximum useful energy that can be 
absorbed by the lattice at the given plateau stress. The dashed line 
connecting these points for all the densities provides the relationship 
between the energy absorbed and peak stress for the optimum density 
[59], and is characteristic of the lattice geometry and collapse mecha-
nism. In an idealised plastic foam, the relationship has the form: 

Wmax

ES
=

σD

ES

(

1 − C3

(
σD

ES

)N3
)

(6)  

where the coefficients C3 and N3 depend on: the ratio of the material’s 
yield strength to stiffness, the scaling of the lattice’s yield strength with 
density (see Equation (2), and the dependence of the densification strain 
on lattice relative density [58]. The current results produce C3 = 1.40 
and N3 = 0.06. In the finite-sized lattice models, densification is delayed 
further due to the strut sliding permitted by the free surfaces of the 
specimen, thus extending the plateau regime, and the energy absorbed, 
past the maximum strain of 0.4 investigated here. 

The energy absorption capacity of the finite size lattice is lowered by 
fracture, which can suddenly occur in a localised area and then propa-
gates macroscopically. In the case of larger lattices samples, fracture 
propagates more gradually at macroscopic level. When large samples are 
approximated by RVE with PBCs, fracture starts in stress concentrators 
imposed by the boundary conditions, and geometric imperfections in the 
case of the finite-sized sample considered here. The effect of failure on 
the energy absorption curves is reported in Fig. 9 with green lines. The 
constants that describe the energy absorption envelope to failure are as 
follows: C3 = 1.65 and N3 = 0.06 for the RVE and C3 = 1.6 and N3 =

0.06 for the finite-size geometry, see Fig. 9b. There is reasonably good 
agreement in the energy envelopes of the RVE and finite size specimen, 

and also, between the energy absorbed up to the first fracture of the 
experimental specimen and the energy envelope obtained by the nu-
merical model. The initiation of ductile fracture can have a significant 
effect on the energy curves, reducing the energy absorption capacity of 
the larger density RVEs by a factor of 2. However, if subsequent gradual 
fracture, as observed in the experimental specimens, is acceptable in the 
design, the structure can continue absorbing external energy via the 
deformation of the remaining intact struts and progressive failure. 

At large strains, the finite-sized cubic chiral lattice collapses through 
the localisation of deformation in a shear band at 45◦ to the loading axis. 
This has been previously observed in other compressive studies on sto-
chastic foams [62], face centered cubic [25,38] and rhombic dodeca-
hedron structures [63]. Topological modification of the lattice unit cell, 
can suppress the shear bands formation further enhancing the energy 
absorption capability [64]. 

5. Conclusions 

In this work, a combination of numerical and experimental data 
gives insights on the deformation and failure mechanisms of auxetic 
cubic chiral lattices. Scaling relations are provided for stiffness and yield 
strength of finite and infinite size samples at varying relative densities 

Fig. 9. Energy absorption diagram of the representative unit cell (a) and finite- 
sized specimen (b). The blue and green envelopes delineate the maximum 
normalised absorption energy values at densification and at failure, respec-
tively. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

C. Iantaffi et al.                                                                                                                                                                                                                                 



Materials & Design 233 (2023) 112207

10

ranging from 0.3% to 6.5%, conforming to the power-law scaling re-
lations of bending-dominated lattices. 

In the elastic regime, the auxetic response of the lattice is isotropic 
and independent of relative density, with an average Poisson’s ratio of 
− 0.3. However, in the large plastic deformation (plateau) regime, the 
effective Poisson’s ratio decreases in magnitude. Furthermore, in this 
regime, lattices with higher relative density exhibit larger in-plane 
auxeticity because the larger volume fraction at the joints increases 
their rotational stiffness. 

Ductile fracture is delayed in lattices with low relative density, and 
below 1.2%, fracture occurs after densification. Our results confirm that 
the tensile/compressive stresses in the plastic hinges of vertical struts 
dictate the initiation and propagation of ductile failure. In the experi-
mental specimens, additive manufacturing imperfections, principally 
the reduction in cross-sectional area of struts, dictate the location of 
failure. The geometrically idealised numerical model with a ductile 
failure criterion, can predict deformation and initiation of ductile failure 
with good accuracy. The presence of geometrical imperfection in-
fluences stiffness and fracture location predictions. The propagation of 
failure occurs gradually in the experimental specimens, showing good 
energy absorption capabilities up to large strain regions. At large strains, 
the finite-sized cubic chiral lattice collapses through the localisation of 
deformation in a shear band at 45◦ to the loading axis. 
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