352 research outputs found

    Reachability analysis of linear hybrid systems via block decomposition

    Get PDF
    Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks.Comment: Accepted at EMSOFT 202

    Top-k Querying of Unknown Values under Order Constraints

    Get PDF
    Many practical scenarios make it necessary to evaluate top-k queries over data items with partially unknown values. This paper considers a setting where the values are taken from a numerical domain, and where some partial order constraints are given over known and unknown values: under these constraints, we assume that all possible worlds are equally likely. Our work is the first to propose a principled scheme to derive the value distributions and expected values of unknown items in this setting, with the goal of computing estimated top-k results by interpolating the unknown values from the known ones. We study the complexity of this general task, and show tight complexity bounds, proving that the problem is intractable, but can be tractably approximated. We then consider the case of tree-shaped partial orders, where we show a constructive PTIME solution. We also compare our problem setting to other top-k definitions on uncertain data

    Open-ended Learning in Symmetric Zero-sum Games

    Get PDF
    Zero-sum games such as chess and poker are, abstractly, functions that evaluate pairs of agents, for example labeling them `winner' and `loser'. If the game is approximately transitive, then self-play generates sequences of agents of increasing strength. However, nontransitive games, such as rock-paper-scissors, can exhibit strategic cycles, and there is no longer a clear objective -- we want agents to increase in strength, but against whom is unclear. In this paper, we introduce a geometric framework for formulating agent objectives in zero-sum games, in order to construct adaptive sequences of objectives that yield open-ended learning. The framework allows us to reason about population performance in nontransitive games, and enables the development of a new algorithm (rectified Nash response, PSRO_rN) that uses game-theoretic niching to construct diverse populations of effective agents, producing a stronger set of agents than existing algorithms. We apply PSRO_rN to two highly nontransitive resource allocation games and find that PSRO_rN consistently outperforms the existing alternatives.Comment: ICML 2019, final versio

    Quantum mechanics as a theory of probability

    Get PDF
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models for the set of axioms are lattices of subspaces of inner product spaces over a field K. (b) Another axiom due to Soler forces K to be the field of real, or complex numbers, or the quaternions. We suggest a probabilistic reading of Soler's axiom. (c) Gleason's theorem fully characterizes the probability measures on the algebra of events, so that Born's rule is derived. (d) Gleason's theorem is equivalent to the existence of a certain finite set of rays, with a particular orthogonality graph (Wondergraph). Consequently, all aspects of quantum probability can be derived from rational probability assignments to finite "quantum gambles". We apply the approach to the analysis of entanglement, Bell inequalities, and the quantum theory of macroscopic objects. We also discuss the relation of the present approach to quantum logic, realism and truth, and the measurement problem.Comment: 37 pages, 3 figures. Forthcoming in a Festschrift for Jeffrey Bub, ed. W. Demopoulos and the author, Springer (Kluwer): University of Western Ontario Series in Philosophy of Scienc

    Iterative Schedule Optimization for Parallelization in the Polyhedron Model

    Get PDF
    In high-performance computing, one primary objective is to exploit the performance that the given target hardware can deliver to the fullest. Compilers that have the ability to automatically optimize programs for a specific target hardware can be highly useful in this context. Iterative (or search-based) compilation requires little or no prior knowledge and can adapt more easily to concrete programs and target hardware than static cost models and heuristics. Thereby, iterative compilation helps in situations in which static heuristics do not reflect the combination of input program and target hardware well. Moreover, iterative compilation may enable the derivation of more accurate cost models and heuristics for optimizing compilers. In this context, the polyhedron model is of help as it provides not only a mathematical representation of programs but, more importantly, a uniform representation of complex sequences of program transformations by schedule functions. The latter facilitates the systematic exploration of the set of legal transformations of a given program. Early approaches to purely iterative schedule optimization in the polyhedron model do not limit their search to schedules that preserve program semantics and, thereby, suffer from the need to explore numbers of illegal schedules. More recent research ensures the legality of program transformations but presumes a sequential rather than a parallel execution of the transformed program. Other approaches do not perform a purely iterative optimization. We propose an approach to iterative schedule optimization for parallelization and tiling in the polyhedron model. Our approach targets loop programs that profit from data locality optimization and coarse-grained loop parallelization. The schedule search space can be explored either randomly or by means of a genetic algorithm. To determine a schedule's profitability, we rely primarily on measuring the transformed code's execution time. While benchmarking is accurate, it increases the time and resource consumption of program optimization tremendously and can even make it impractical. We address this limitation by proposing to learn surrogate models from schedules generated and evaluated in previous runs of the iterative optimization and to replace benchmarking by performance prediction to the extent possible. Our evaluation on the PolyBench 4.1 benchmark set reveals that, in a given setting, iterative schedule optimization yields significantly higher speedups in the execution of the program to be optimized. Surrogate performance models learned from training data that was generated during previous iterative optimizations can reduce the benchmarking effort without strongly impairing the optimization result. A prerequisite for this approach is a sufficient similarity between the training programs and the program to be optimized
    corecore