5,065 research outputs found

    Reduction of permutation flowshop problems to single machine problems using machine dominance relations

    Get PDF
    The Permutation Flowshop Scheduling Problem with Makespan objective (PFSP-M) is known to be NP-hard for more than two machines, and literally hundreds of works in the last decades have proposed exact and approximate algorithms to solve it. These works—of computational/experimental nature—show that the PFSP-M is also empirically hard, in the sense that optimal or quasi-optimal sequences statistically represent a very small fraction of the space of feasible solutions, and that there are big differences among the corresponding makespan values. In the vast majority of these works, it has been assumed that (a) processing times are not job- and/or machine-correlated, and (b) all machines are initially available. However, some works have found that the problem turns to be almost trivial (i.e. almost every sequence yields an optimal or quasi-optimal solution) if one of these assumptions is dropped. To the best of our knowledge, no theoretical or experimental explanation has been proposed by this rather peculiar fact. Our hypothesis is that, under certain conditions of machine availability, or correlated processing times, the performance of a given sequence in a flowshop is largely determined by only one stage, thus effectively transforming the flowshop layout into a single machine. Since the single machine scheduling problem with makespan objective is a trivial problem where all feasible sequences are optimal, it would follow that, under these conditions, the equivalent PFSP-M is almost trivial. To address this working hypothesis from a general perspective, we investigate some conditions that allow reducing a permutation flowshop scheduling problem to a single machine scheduling problem, focusing on the two most common objectives in the literature, namely makespan and flowtime. Our work is a combination of theoretical and computational analysis, therefore several properties are derived to prove the conditions for an exact (theoretical) equivalence, together with an extensive computational evaluation to establish an empirical equivalence

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Order acceptance and scheduling in a single-machine environment: exact and heuristic algorithms.

    Get PDF
    In this paper, we develop exact and heuristic algorithms for the order acceptance and scheduling problem in a single-machine environment. We consider the case where a pool consisting of firm planned orders as well as potential orders is available from which an over-demanded company can select. The capacity available for processing the accepted orders is limited and orders are characterized by known processing times, delivery dates, revenues and the weight representing a penalty per unit-time delay beyond the delivery date promised to the customer. We prove the non-approximability of the problem and give two linear formulations that we solve with CPLEX. We devise two exact branch-and-bound procedures able to solve problem instances of practical dimensions. For the solution of large instances, we propose six heuristics. We provide a comparison and comments on the efficiency and quality of the results obtained using both the exact and heuristic algorithms, including the solution of the linear formulations using CPLEX.Order acceptance; Scheduling; Single machine; Branch-and-bound; Heuristics; Firm planned orders;

    Two Combinatorial Optimization Problems at the Interface of Computer Science and Operations Research

    Get PDF
    Solving large combinatorial optimization problems is a ubiquitous task across multiple disciplines. Developing efficient procedures for solving these problems has been of great interest to both researchers and practitioners. Over the last half century, vast amounts of research have been devoted to studying various methods in tackling these problems. These methods can be divided into two categories, heuristic methods and exact algorithms. Heuristic methods can often lead to near optimal solutions in a relatively time efficient manner, but provide no guarantees on optimality. Exact algorithms guarantee optimality, but are often very time consuming. This dissertation focuses on designing efficient exact algorithms that can solve larger problem instances with faster computational time. A general framework for an exact algorithm, called the Branch, Bound, and Remember algorithm, is proposed in this dissertation. Three variations of single machine scheduling problems are presented and used to evaluate the efficiency of the Branch, Bound, and Remember algorithm. The computational results show that the Branch, Bound, and Remember algorithms outperforms the best known algorithms in the literature. While the Branch, Bound, and Remember algorithm can be used for solving combinatorial optimization problems, it does not address the subject of post-optimality selection after the combinatorial optimization problem is solved. Post-optimality selection is a common problem in multi-objective combinatorial optimization problems where there exists a set of optimal solutions called Pareto optimal (non-dominated) solutions. Post-optimality selection is the process of selecting the best solutions within the Pareto optimal solution set. In many real-world applications, a Pareto solution set (either optimal or near-optimal) can be extremely large, and can be very challenging for a decision maker to evaluate and select the best solution. To address the post-optimality selection problem, this dissertation also proposes a new discrete optimization problem to help the decision-maker to obtain an optimal preferred subset of Pareto optimal solutions. This discrete optimization problem is proven to be NP-hard. To solve this problem, exact algorithms and heuristic methods are presented. Different multi-objective problems with various numbers of objectives and constraints are used to compare the performances of the proposed algorithms and heuristics

    Application of an evolutionary algorithm-based ensemble model to job-shop scheduling

    Get PDF
    In this paper, a novel evolutionary algorithm is applied to tackle job-shop scheduling tasks in manufacturing environments. Specifically, a modified micro genetic algorithm (MmGA) is used as the building block to formulate an ensemble model to undertake multi-objective optimisation problems in job-shop scheduling. The MmGA ensemble is able to approximate the optimal solution under the Pareto optimality principle. To evaluate the effectiveness of the MmGA ensemble, a case study based on real requirements is conducted. The results positively indicate the effectiveness of the MmGA ensemble in undertaking job-shop scheduling problems

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-
    corecore