
Reduction of Permutation Flowshop Problems to Single

Machine Problems using Machine Dominance Relations∗

Victor Fernandez-Viagas1†, Jose M. Framinan1

1 Industrial Management, School of Engineering, University of Seville,

Ave. Descubrimientos s/n, E41092 Seville, Spain, {vfernandezviagas,framinan}@us.es

July 18, 2016

Abstract

The Permutation Flowshop Scheduling Problem with Makespan objective (PFSP-M) is
known to be NP-hard for more than two machines, and literally hundreds of works in the
last decades have proposed exact and approximate algorithms to solve it. These works �of
computational/experimental nature� show that the PFSP-M is also empirically hard, in the
sense that optimal or quasi-optimal sequences statistically represent a very small fraction of
the space of feasible solutions, and that there are big di�erences among the corresponding
makespan values. In the vast majority of these works, it has been assumed that a) processing
times are not job- and/or machine-correlated, and b) all machines are initially available.
However, some works have found that the problem turns to be almost trivial (i.e. almost
every sequence yields an optimal or quasi-optimal solution) if one of these assumptions is
dropped. To the best of our knowledge, no theoretical or experimental explanation has been
proposed by this rather peculiar fact.

Our hypothesis is that, under certain conditions of machine availability, or correlated
processing times, the performance of a given sequence in a �owshop is largely determined by
only one stage, thus e�ectively transforming the �owshop layout into a single machine. Since
the single machine scheduling problem with makespan objective is a trivial problem where
all feasible sequences are optimal, it would follow that, under these conditions, the equivalent
PFSP-M is almost trivial. To address this working hypothesis from a general perspective, we
investigate some conditions that allow reducing a permutation �owshop scheduling problem
to a single machine scheduling problem, focusing on the two most common objectives in the
literature, namely makespan and �owtime. Our work is a combination of theoretical and
computational analysis, therefore several properties are derived to prove the conditions for
an exact (theoretical) equivalence, together with an extensive computational evaluation to
establish an empirical equivalence.

Keywords: Scheduling, Flowshop, processing times, PFSP, makespan, �owtime, Single Ma-

chine, dominating machine

∗Preprint submitted to Computers and Operations Research. http://dx.doi.org/10.1016/j.cor.2016.07.009
†Corresponding author. Tel.: +34-954487220.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/322844852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The Permutation Flowshop Scheduling Problem (denoted as PFSP) is one of the most studied problems in

Operations Research (see e.g. Framinan et al., 2004, Reza Hejazi and Sagha�an, 2005, Ruiz and Maroto,

2005, Framinan et al., 2005, Pan and Ruiz, 2013 and Vallada et al., 2008). This decision problem can be

de�ned as follows: n jobs have to be processed on each one of the m machines of the shop where every

job follows the same route of machines. The problem consists on determining the processing sequence

of the jobs in the shop, assuming that the same sequence is adopted for each machine. Among other

assumptions (see e.g. Dudek and Teuton, 1964 for a complete description), machines are always available

since time zero as well as sequence-dependent set-up times are insigni�cant while sequence-independent

set-up times are non-anticipatory and therefore, added to the processing times of the jobs.

Most research has focused in the minimisation of makespan and total �owtime (see e.g. the reviews

by Framinan et al., 2004, Ruiz and Maroto, 2005 and Pan and Ruiz, 2013), although other objectives

have been also considered (see e.g. Leisten and Rajendran, 2014 and Gajpal and Rajendran, 2006 for

the homogeneity of the completion times; Fernandez-Viagas and Framinan, 2015b and Vallada and Ruiz,

2010 for total tardiness; M'Hallah, 2014 and Schaller and Valente, 2013 for total tardiness and earli-

ness; or Sun et al., 2011 and Framinan and Leisten, 2006 for several objectives). Following the notation

of Graham et al. (1979), the PFSP to minimise makespan and total �owtime are Fm|prmu|Cmax and

Fm|prmu|
∑

Cj respectively.

Since Fm|prmu|Cmax was shown to be NP-hard for m > 2, and Fm|prmu|
∑

Cj strongly NP-hard

for m ≥ 2 by Rinnooy Kan (1976) and Garey et al. (1976), hundreds of heuristics and metaheuristics

have been proposed in the literature to obtain good solutions in reasonable computation times (see e.g.

Fernandez-Viagas and Framinan, 2015a, Dong et al., 2013, Rad et al., 2009 and Fernandez-Viagas and Framinan,

2014). The commonly accepted procedure in these works is to prove the e�ectiveness of the algorithms in

statistical terms by solving a collection of published instances or testbeds (see the testbeds by Taillard,

1993, Carlier, 1978, Reeves, 1995, Demirkol et al., 1998, Heller, 1960 and Vallada et al., 2015). In all these

testbeds, the processing times of each job on each machine have been generated using a uniform distribu-

tion with exactly the same distribution parameters regardless the job or the machine. In other words, in

these testbeds there is no job- and/or machine-correlation of the processing times of each instance. When

di�erent heuristics and metaheuristics are employed to solve the instances in these testbeds, it turns

out that, for most instances, good sequences �meaning sequences for which the corresponding objective

function value is not far from the optimum� in the solution space statistically represent just a very small

fraction of the total, and that there are enormous di�erences between good and bad sequences.

In a noteworthy contribution, Watson et al. (2002) dropped the lack of correlation assumption for the

2

Fm|prmu|Cmax problem, and generated di�erent correlations (i.e. job, machine and mixed correlations)

depending if the same parameters of the distribution are used across jobs, across machines or both. Results

show that most structured (correlated) Fm|prmu|Cmax problems tend to be easily solvable in the sense

that there are a lot of good sequences in the solution space and therefore, the probability to �nd a good

sequence is very high.

Another common assumption in the testbeds is that the shop �oor is empty at the time of the

scheduling decision and therefore, each machine is available at time zero. This assumption is questionable

for real-life cases, as it could be applied only if it is the �rst time that jobs are to be scheduled in the shop,

or when a long period without processing jobs has occurred. In the work by Perez-Gonzalez and Framinan

(2009), the assumption is removed, and restrictions in the initial availability of the machines are considered

in a permutation �owshop with makespan objective. The computational results show how the initial

availability assumption makes the problem easier (again in the sense of increasing the probability of

�nding a good sequence), specially if structured processing times are considered.

As a conclusion, the studies by Watson et al. (2002) and Perez-Gonzalez and Framinan (2009) show

that, while the Fm|prmu|Cmax problem is empirically hard in the testbeds usually employed in the

literature, it turns to be extremely easy under some conditions regarding the processing times and/or

machine availability. However, to the best of our knowledge, no paper further explores the ultimate reasons

why such assumptions make the instances to be `easy'. Our hypothesis is that, under certain conditions,

the permutation �owshop and the single machine scheduling problems (denoted as 1||Cmax to minimise

makespan and as 1||
∑

Cj to minimise total �owtime) can be (approximately) equivalent. Note that both

structured processing times and the initial machine availability may imbalance the machine workloads

as compared to that in the classical benchmarks. This would in turn cause that the performance of a

sequence in the whole �owshop is largely determined by its performance in the most loaded machine. If this

happens, the almost-trivial behaviour found by Watson et al. (2002) and Perez-Gonzalez and Framinan

(2009) for the makespan objective can be explained.

We are not aware of previous literature devoted to analyse the equivalence between both scheduling

problems, although some works have been carried out for the PFSP with dominant machines (see e.g.

Cepek et al., 2002, Easwaran et al., 2010 and Ho and Gupta, 1995). In this paper we analyse the e�ect of

the most loaded machine in the �owshop in order to determine the conditions that make a PFSP instance

to be reduced to a single machine scheduling instance. Several theoretical properties and an extensive

computational study is carried out for the two most common objectives in the literature, i.e.: makespan

and total �owtime. These properties extend and integrate existing literature on machine dominance

for the PFSP, so some previous results are explained as direct consequences of the equivalence between

both scheduling problems and therefore, they can be seen as corollaries of the properties and theorems

3

presented in this paper. Note that the seminal paper by Johnson (1954) already establishes conditions for

the optimality of the 2- and 3-machine �owshop, and, since our hypothesis would lead to transforming the

PFSP with makespan objective into a trivial problem (and thus optimally solvable), our research could be

related to Johnson's paper. However, from our perspective, �nding the optimal solution for the makespan

case is simply a by-product of the reduction of the PFSP to the single machine case and therefore the

relation between both papers is limited.

The remainder of the paper is organized as follows: The problems under study are formally stated

in Section 2. In Section 3, several dominance rules are established to be able to compare both problems.

Section 4 empirically analyses the relations between the problems. Finally, in Section 5, several conclusions

are discussed.

2 Problem Statement

The notation of the PFSP can be set as follows: n jobs have to be scheduled in a �owshop with m

machines. The processing time of each job j on machine i is de�ned as pij . Given a sequence of jobs

Π := (π1, . . . , πk, . . . , πn), Ciπj the completion time of job πj on machine i can be computed according to:

Ciπj = max {Ci−1,πj , Ciπj−1}+ piπj (1)

The makespan or maximum completion time �denoted as Cmax� is de�ned as the completion time of

the last job of the sequence on the last machine, i.e. Cmax = Cmπn . Similarly,
∑

Cj is de�ned as the

total �owtime of the sequence:
∑

Cj =
∑n

j=1 Cmj . Finally, let ITiπk
be the idle time immediately before

job πk on machine i. Clearly,

ITiπk
=

 Ciπk
− Ciπk−1

− piπk
, k ∈ 2 . . . n

Ciπk
− piπk

, k = 1
(2)

or analogously,

ITiπk
= max {0, Ci−1,πk

− Ciπk−1
}, ∀k,Ci0 = C0j = 0 (3)

Regarding the single machine scheduling problem, denoted as SMSP, n jobs have to be scheduled in

a shop with a unique machine. The processing times and the completion times of job j in that machine

are denoted by pj and Cj respectively.

Once the PFSP and the SMSP have been formulated, let us introduce some useful de�nitions. For a

given instance of the PFSP, the machine s with the highest sum of processing times is denoted as saturated

4

machine. More speci�cally:

s = argmax
i

n∑
j=1

pij

The remaining machines i ̸= s are denoted as non saturated machines. Note that we intentionally

avoid the term bottleneck for this machine, since this concept is usually related to the long-term busy time

of a machine, whereas in our case the saturated machine is related to a speci�c set of jobs to be scheduled

in this shop �oor. However, when applied to a short-term focus, both concepts are related.

The above de�nition allows us to de�ne two types of dominance between machines.

• Dominance type I, (see e.g. Cepek et al., 2002): a machine a dominates (type I) a machine b if

paj ≥ pbj′ , ∀j ̸= j
′
, where the machine b is consequently denoted as type-I-dominated machine.

• Dominance type II, (see e.g. Holm, 1979, Cheng et al., 2007 and Wang et al., 2006): a machine a

dominates (type II) a machine b (denoted as type-II-dominated) if min∀j paj ≥ max∀j pbj . Note that

the only di�erence between both types is that the processing time of each job on machine a must

be higher than on machine b for dominance type II. In fact, dominance type II implies dominance

type I, while the opposite is not true in general (Cepek et al., 2002).

Additionally, let us de�ne the following dominance cases for a �owshop of more than two machines:

• Case ddm: Each machine i dominates (type I) machine i+ 1, ∀i ∈ [1,m− 1].

• Case idm: Each machine i dominates (type I) machine i− 1, ∀i ∈ [2,m].

• Case idm-ddm: In this case, each machine i1 (∀i1 ∈ [2, s]) dominates (type I) machine i1 − 1 and

each machine i2 (∀i2 ∈ [s,m− 1]) dominates (type I) machine i2 + 1. Obviously, machine s is the

saturated machine.

Finally, let us de�ne the equivalence between the PFSP and the SMSP as follows: Given an instance

I of a PFSP with processing times pij , and Î an arti�cial instance of a SMSP with p̂j = psj , we say

that, for instance I, both problems are equivalent regarding objective F if, for any feasible sequence Π,

FI(Π) = FÎ(Π)+ constant. In other words, the PFSP and the SMSP are equivalent for an instance if the

objective function values of all feasible sequences applied to both problems di�er only with respect to a

constant. Obviously, for an instance where both problems are equivalent, the optimal sequences are the

same.

The notation introduced in this section is summarised in Table 1.

5

Table 1: Summary of indexes, parameters and variables

Indexes:
i: Index of machines.
j: Index of jobs.
s: Index of the saturated machine.
Parameters:
n,m: Number of jobs and machines respectively.
pij : Processing time of job j on machine i (permutation �owshop layout).
pj : Processing time of job j (single machine layout).
p̂j : Processing time of job j on the saturated machine (i.e. on machine s), p̂j = psj .
I: Instance of the PFSP.
Î: Arti�cial instance of a SMSP where pj = psj .
Variables:
ITij : Idle time of job j on machine i.
Cij : Completion time of job j on machine i (permutation �owshop layout).
Cj : Completion time of job j on a single machine (single machine layout).

3 Theoretical analysis

Equipped with the above de�nitions, several properties can be derived to state a some PFSP instance

is equivalent to SMSP for makespan and/or total �owtime minimisation under some (rather restrictive)

assumptions. Since the PFSP with 2 machines has been widely analysed in the literature as an important

particular case of the general m-machines cases, the properties presented in this paper also adopt this

division, and are formalised in two separate sections.

3.1 PFSP with 2 machines

Let �rst assume that machine s is the saturated machine in a 2-machine PFSP. In order to be able to

show that one instance of the PFSP with two machines is equivalent to the SMSP, we need to state

several properties and corollaries as well as de�ne a condition to be satis�ed for the saturated machine

(the hardest condition needed to prove the properties and corollaries is that psj ≥ pij′ , ∀j ̸= j
′
, i ̸= s).

3.1.1 First machine is saturated, s = 1

First, we study the case where the �rst machine is saturated, i.e. s = 1. Let us de�ne the following

property in order to provide further insight in the understanding of this case:

Property 3.1. Let Π := (π1, . . . , πk, . . . , πn) be a sequence of jobs with p1πk
≥ p2πk−1

, ∀k ≥ 2. Then, the

completion time of job πk on the second machine equals its completion time on the �rst machine plus its

processing time in the second, i.e. C2πk
= C1πk

+ p2πk
, ∀k.

Proof. The property can be recursively proved in view of the de�nition of the completion time of job πk

6

on the �rst machine:

C1πk
=

 C1πk−1
+ p1πk

, ∀k ≥ 2

p1πk
, k = 1

and in the second one:

C2πk
=

 max {C1πk
, C2πk−1

}+ p2πk
, ∀k ≥ 2

p1πk
+ p2πk

, ∀k = 1

Beginning with the second job of the sequence, π2: on the one hand, taken into account p1π2 ≥ p2π1 , the

completion time on the �rst machine is C1π2 = C1π1 +p1π2 = p1π1 +p1π2 ≥ p1π1 +p2π1 = C2π1 −→ C1π2 ≥

C2π1 ; on the other hand, the completion time on the second machine is C2π2 = max {C1π2 , C2π1}+p2π2 =

C1π2 + p2π2 −→ C2π2 = C1π2 + p2π2 using the expression on the �rst machine.

Following with the third job of the sequence, π3: the completion time on the �rst machine is C1π3 =

C1π2 + p1π3 ≥ C1π2 + p2π2 = C2π2 −→ C1π3 ≥ C2π2 ; on the second machine, the completion time is

C2π3 = max {C1,π3 , C2π2}+ p2π3 = C1π3 + p2π3 −→ C2π3 = C1π3 + p2π3 .

Analogously, in a recursive manner, for job in position k, πk: on the �rst machine, the completion

time is C1πk
= C1πk−1

+ p1πk
≥ C1πk−1

+ p2πk−1
= C2πk−1

−→ C1πk
≥ C2πk−1

; then the completion time

on the second machine is C2πk
= max {C1πk

, C2πk−1
}+ p2πk

= C1πk
+ p2πk

−→ C2πk
= C1πk

+ p2πk
.

This property extends the following result found by Monma and Rinnooy Kan (1983), which can be

seen now as a corollary of the above property:

Corollary 3.1. (Monma and Rinnooy Kan, 1983: First part of Theorem 3 for m = 2). Let I be an

instance of the PFSP where machine 2 is type-II-dominated by machine 1. Then, the completion time of

a job on the second machine is equal to the completion time of a job on the �rst machine plus its processing

time on the second machine.

Proof. The proof of the corollary is obvious in view of Property 3.1.

Corollary 3.2. Let Π := (π1, . . . , πk, . . . , πn) be a sequence of jobs with p1πk
> p2πk−1

, ∀k ≥ 2. Then,

the idle time IT2πk
is always greater than 0, i.e. IT2πk

> 0, ∀k.

Proof. The proof of the corollary is obvious in view of Property 3.1 and taking into account the de�nition

of idle time given in Equation (3).

The above property and corollaries establish that the completion time of each job on the second

machine depends only on its completion time on the �rst machine and that there are always idle time on

the second machine, respectively. This occurs if the processing time of each job on the �rst machine is

7

higher than its previous job on the second machine. Extending this condition to the processing time of

each other job on the second machine, the equivalence between F2|prmu|Cmax and 1||Cmax of the �rst

machine is theoretically established in Theorem 3.1 with the exception of the last job of the sequence.

Theorem 3.1. Let I be an instance of the F2|prmu|Cmax problem where p1j ≥ p2j′ , ∀j ̸= j
′
(i.e.

machine 2 is dominated type I), and Î be an instance of the 1||Cmax problem where p̂j = p1j. Let Π be a

sequence of the form Π := {σ, g} := (σ1, . . . , σk, . . . , σn−1, g) where g is the last job of the sequence and σ

is an unknown sequence of n− 1 jobs. Let Cmax be the makespan obtained by Π on instance I and Ĉmax

its makespan on instance Î. Then, for each feasible sequence, Cmax = Ĉmax + p2g.

Proof. Let us consider the PFSP with two machines to minimise makespan. In view of Property 3.1,

Cmax = C2πn = C1πn + p2πn . Then, minimising Cmax in F2|prmu|Cmax is equivalent to minimise

C1πn + p2πn . Considering that πn is job g, Cmax = C1πn + p2πn = C1πn + p2,g = Ĉmax + p2g.

Corollary 3.3. Under the conditions of Theorem 3.1, the optimal solutions for I and Î are the same.

Additionally, any sequence of the form Π := {σ, e} is an optimal sequence for both instances where e is

the job with the least processing time on the second machine, i.e. p2e = min∀j p2j.

Proof. The proof of the theorem is obvious in view of Theorem 3.1 and taking into account that each

feasible solution is an optimal sequence for the 1||Cmax problem.

Note that the result of this theorem is given in Ho and Gupta (1995) for m = 2 under more restrictive

conditions, i.e. min∀j p1j ≥ max∀j′ p2j′ , which can be seen now as a special case of the above result:

Corollary 3.4. (Ho and Gupta, 1995: Theorem 2 for m = 2). Let I be an instance of F2|prmu|Cmax

where the machine 2 is type-II-dominated by the machine 1. Then, any sequence of the form Π := {σ, e}

is optimal where σ is any sequence of n− 1 jobs and e satis�es p2e = min∀j p2j.

Proof. The proof of the theorem is obvious in view of Corollary 3.3.

On the other hand, the equivalence between F2|prmu|
∑

Cj and 1||
∑

Cj is theoretically proved by

Theorem 3.2 and Corollary 3.5.

Theorem 3.2. Let I be an instance of F2|prmu|
∑

Cj where p1j ≥ p2j′ , ∀j ̸= j
′
(i.e. machine 2 is

dominated type I), and Î be an instance of the 1||
∑

Cj problem where p̂j = p1j. Let Π be a sequence of

the form Π := (π1, . . . , πk, . . . , πn). Let S(Π) be the total �owtime obtained by Π on instance I and Ŝ(Π)

its total �owtime on instance Î. Then, for each feasible sequence, S(Π) = Ŝ(Π) +
∑n

j=1 p2j.

8

Proof. Let us consider the PFSP with two machines to minimise the total �owtime, i.e.
∑n

j=1 C2j . In

view of Property 3.1,
∑n

j=1 C2j =
∑n

j=1(C1j + p2j) =
∑n

j=1 C1j +
∑n

j=1 p2j =
∑n

j=1 C1j + C where C is

a constant.

Then, the minimisation of total �owtime on the second machine (
∑n

j=1 C2j), goal of the F2|prmu|
∑

Cj

problem, is equivalent to the minimisation of total �owtime on the �rst machine (
∑n

j=1 C1j) which is the

goal of the 1||
∑

Cj problem of the �rst machine.

Corollary 3.5. Under the conditions of Theorem 3.2, the optimal solutions for I and Î are the same

where an optimal solution is obtained by sorting the jobs according to the non-decreasing processing times

on the �rst machine.

Proof. The proof of the theorem is obvious in view of Theorem 3.2 and taking into account that the

non-decreasing sum of the processing times is an optimal sequence for the 1||
∑

Cj problem.

For m = 2 and a more restrictive condition of processing times, this result is found by Ho and Gupta

(1995):

Corollary 3.6. (Ho and Gupta, 1995: Theorem 4 for m = 2). Let I be an instance of the F2|prmu|
∑

Cj

problem where the machine 2 is type-II-dominated by the machine 1. Then, an optimal solution can be

obtained by sorting the jobs in ascending order of their processing times on the �rst machine.

Proof. The proof of the theorem is obvious in view of Corollary 3.5.

3.1.2 Second machine is saturated, s = 2

For the case where the second machine is saturated, the following property is needed to prove the equiv-

alence between the problems:

Property 3.2. Let Π := (π1, . . . , πk, . . . , πn) be a sequence of jobs with p2πk−1
≥ p1πk

, ∀k ≥ 2. Then, the

completion time of job πk on the second machine is equal to its processing time plus the completion time of

the previous job πk−1 on the second machine with the exception of the �rst job, i.e. C2πk
= C2πk−1

+p2πk
,

∀k ≥ 2, and C2π1 = p1π1 + p2π1 .

Proof. The proof of the property is obvious using the same reasoning as in Property 3.1.

This property extends the results by Ho and Gupta (1995) and Monma and Rinnooy Kan (1983), but

the opposite cannot be asserted.

9

Corollary 3.7. (Monma and Rinnooy Kan, 1983, second part of Theorem 3 form = 2; and Ho and Gupta,

1995, Lemma 1 for m = 2). Let I be an instance of the PFSP where the machine 1 is type-II-dominated

by the machine 2. Then, the completion time of each job on the second machine is equal to its processing

time plus the completion time of the previous job (on the second machine), with the exception of the �rst

job in the sequence which is equal to the sum of the processing times of this job on both machines.

Proof. The proof of the corollary is obvious in view of Property 3.2.

Corollary 3.8. Let Π := (π1, . . . , πk, . . . , πn) be a sequence of jobs with p1πk
≤ p2πk−1

, ∀k ≥ 2. Then, the

idle time IT2πk
is equal to 0, i.e. IT2πk

= 0, ∀k ∈ 2 . . . n.

Proof. The proof of the corollary is obvious in view of Property 3.2 and taking into account the de�nition

of idle time given in Equation (3).

Then, when the �rst job of the sequence is �xed, the equivalence between F2|prmu|Cmax and 1||Cmax

is established in Theorem 3.3.

Theorem 3.3. Let I be an instance of the F2|prmu|Cmax problem where machine 1 is dominated type

I, and Î be an instance of the 1||Cmax problem where p̂j = p2j. Let Π be a sequence of the form Π :=

{f, σ} := (f, σ1, . . . , σk, . . . , σn−1) where f is the �rst job of the sequence and σ is an unknown sequence

of n− 1 jobs. Let Cmax be the makespan obtained by Π on instance I and Ĉmax its makespan on instance

Î. Then, for each feasible sequence, Cmax = Ĉmax + p1f .

Proof. The proof of the theorem is obvious in view of Property 3.2 and Corollary 3.8 . Note that this the-

orem can also be proved using Theorem 3.1 together with the reversibility property of the Fm|prmu|Cmax

problem (reverse problem, see Pinedo, 2012).

Note that a consequence of this theorem is that the optimal solutions of both problems are the same

as stated in the following corollary.

Corollary 3.9. Under the conditions of Theorem 3.3, the optimal solutions for I and Î are the same.

Additionally, any sequence of the form Π := {f, σ} is an optimal sequence for both instances where f is

the job with the least processing time on the second machine, i.e. p1f = min∀j p1j.

Proof. The proof of the theorem is obvious in view of Theorem 3.3 and taking into account that each

feasible solution is an optimal sequence for the 1||Cmax problem.

A similar result is found by Ho and Gupta (1995) for both m = 2 and a more restrictive condition,

but the opposite cannot be asserted.

10

Corollary 3.10. (Ho and Gupta, 1995: Theorem 1 form = 2). Let I be an instance of the F2|prmu|Cmax

problem where the machine 1 is type-II-dominated by the machine 2. Then, any sequence of the form

Π := {f, σ} is optimal where σ is any sequence of n− 1 jobs and f satis�es p1f = min∀j p1j.

Proof. The proof of the theorem is obvious in view of Corollary 3.9.

Additionally, the equivalence between F2|prmu|
∑

Cj and 1||
∑

Cj is established in Theorem 3.4 for

the case of a �xed �rst job in the sequence.

Theorem 3.4. Let I be an instance of the F2|prmu|
∑

Cj problem where machine 1 is dominated type

I, and Î be an instance of the 1||
∑

Cj problem where p̂j = p2j. Let Π be a sequence of the form

Π := {f, σ} := (f, σ1, . . . , σk, . . . , σn−1) where f is the �rst job of the sequence and σ is an unknown

sequence of n − 1 jobs. Let S(Π) be the total �owtime obtained by Π on instance I and Ŝ(Π) its total

�owtime on instance Î. Then, for each feasible sequence, S(Π) = Ŝ(Π) + n · p1f .

Proof. The proof of the theorem is obvious in view of Property 3.2 and Corollary 3.8.

Corollary 3.11. Under the conditions of Theorem 3.4 and considering f as a �xed job on the �rst position

of the sequence, an optimal schedule is obtained by sorting the remaining jobs (sequence σ) according to

the non-decreasing processing times on the second machine.

Proof. The proof of the theorem is obvious in view of Theorem 3.4 and taking into account that each

feasible solution is an optimal sequence for the 1||
∑

Cj problem.

For a more restrictive condition, the same result is found by Ho and Gupta (1995).

Corollary 3.12. (Ho and Gupta, 1995: Theorem 3 form = 2). Let I be an instance of the F2|prmu|Cmax

problem where the machine 1 is type-II-dominated by the machine 2. Then, an optimal schedule Π :=

{f, σ}, where f is a �xed job on the �rst position of the sequence, is obtained by sorting the remaining

jobs (sequence σ) according to the non-decreasing processing times on the second machine.

Proof. The proof of the theorem is obvious in view of Corollary 3.11.

Note that the conditions to reach the equivalence between the PFSP and the SMSP to minimise

makespan and total �owtime can be reduced when the initial availabilities of machines are considered,

see Theorem 3.5. In this case, both problems are equivalent regardless the sequence of jobs when the

conditions are ful�lled.

Theorem 3.5. Let I be an instance of the PFSP where machine 1 is dominated type I, and Î be an

instance of the SMSP where p̂j = p2j. Let a2 be the initial availability of the second machine on both

11

instances. Let δj be the di�erence between the processing time of job j on the �rst and second machines

i.e. δj = p1j − p2j. If

a2 ≥
∑

∀δj>0

δj +max
j

{p1j} (4)

Then, the completion time of job πk ∀k > 1, on the second machine is equal to its processing time plus the

completion time of the previous job (i.e. C2πk
= C2πk−1

+ p2πk
= a2 +

∑k
j=1 p2πj ∀k, where C2π0 = a2)

or, analogously, the idle time before job πk is always equals to 0.

Proof. According to the de�nition of idle time, Expression (3), an idle time equals to 0 implies that

C2πk−1
≥ C1πk

, ∀k.

For k = 1 (the �rst job in the sequence), the expression is C2π0 ≥ C1π1 ↔ a2 ≥ p1π1 which is satis�ed

attending to Expression (4).

For k = 2, C1π2 = C1π1 + p1π2 = p1π1 + p1π2 and C2π1 = a2 + p2π1 if ITiπ1 = 0. Then, ITiπ2 = 0 ↔

C2π1 ≥ C1π2 ↔ a2 + p2π1 ≥ p1π1 + p1π2 ↔ a2 ≥ p1π1 + p1π2 − p2π1 ↔ a2 ≥ p1π2 + δπ1 . This condition is

ful�lled according to Expression (4).

Analogously, for a generic k = l, the condition to reach an idle time equals to zero before πl is

a2 ≥ p1πl
+
∑l

j=1 δπj . Since max∀j{p1j}+
∑

∀δj>0 δj ≥ p1πl
+
∑l

j=1 δπj and according to Expression (4),

the previous condition is always satis�ed.

3.2 PFSP with m machines

Similar results of the equivalence between the PFSP and the SMSP can be found for a �owshop with more

than two machines. In this paper, we detect four possible requirements to be ful�lled by an instance in

order to achieve the equivalence between both problems.

3.2.1 Case ddm

Let us de�ne some properties and corollaries before analysing the equivalence between the problems for

the ddm dominance case.

Property 3.3. Let Π := (π1, . . . , πk, . . . , πn) be a sequence of jobs with piπk
≥ pi+1,πk−1

, ∀k ≥ 2 and

∀i > 1. Then, the completion time of job πk on the last machine equals its completion time on the �rst

machine plus the sum of the processing times on the rest of machines, i.e.:

Cmπk
= C1πk

+

m∑
i=2

piπk
, ∀k

12

or equivalently:

Cmπk
=

k−1∑
j=1

p1πj +
m∑
i=1

piπk
, ∀k

Proof. The proof of the property is obvious applying recursively Property 3.1.

The same result is also found by e.g. Cepek et al. (2002) and Wang et al. (2006) for a more restrictive

condition of dominance:

Corollary 3.13. (Cepek et al., 2002, Corollary 3.3; and Wang et al., 2006, Observation 2). Let I be

an instance of the PFSP where each machine i + 1 is type-II-dominated by machine i, ∀i. Then, the

completion time of a job on the last machine can be de�ned as:

Cmπk
=

k−1∑
j=1

p1πj +
m∑
i=1

piπk
, ∀k

Proof. The proof of the corollary is obvious in view of Property 3.3.

Then, for this case of dominance, the equivalence between Fm|prmu|
∑

Cj and 1||
∑

Cj is de�ned in

Theorem 3.7. The equivalence between Fm|prmu|Cmax and 1||Cmax, when the last job of the sequence

is �xed, is established in Theorem 3.6.

Theorem 3.6. Let I be an instance of the Fm|prmu|Cmax problem where the machines are dominated

according to ddm, and Î be an instance of the 1||Cmax problem where p̂j = p1j. Let Π be a sequence of the

form Π := {σ, g} := (σ1, . . . , σk, . . . , σn−1, g) where g is the last job of the sequence and σ is an unknown

sequence of n− 1 jobs. Let Cmax be the makespan obtained by Π on instance I and Ĉmax be its makespan

on instance Î. Then, for each feasible sequence, Cmax = Ĉmax +
∑m

i=2 pig.

Proof. The proof of the theorem is obvious in view of Property 3.3 and Theorem 3.1.

Theorem 3.7. Let I be an instance of the Fm|prmu|
∑

Cj problem where the machines are dominated

according to ddm, and Î be an instance of the 1||
∑

Cj problem where p̂j = p1j. Let Π be a sequence of

the form Π := (π1, . . . , πk, . . . , πn). Let S(Π) be the total �owtime obtained by Π on instance I and Ŝ(Π)

be its total �owtime on instance Î. Then, for each feasible sequence, S(Π) = Ŝ(Π) +
∑n

j=1

∑m
i=2 pij.

Proof. The proof of the theorem is obvious in view of Property 3.3 and Theorem 3.2.

3.2.2 Case idm

For the idm case, the following property establishes the value of the completion time of each job on the

last machine:

13

Property 3.4. Let Π := (π1, . . . , πk, . . . , πn) be a sequence of jobs with piπk−1
≥ pi−1,πk

, ∀k ≥ 2 and

∀i > 1. Then, the completion time of job πk on the last machine is equal to its processing time plus

the completion time of the previous job πk−1 on the last machine, with the exception of the �rst job, i.e.

Cmπk
= Cmπk−1

+ pmπk
, ∀k ≥ 2, and Cmπ1 =

∑m
i=1 piπ1 . Equivalently,

Cmπk
=

m−1∑
i=1

piπ1 +

k∑
j=1

pmπj , ∀k

Proof. The proof of the property is obvious applying recursively Property 3.2.

For more restrictive conditions, the same result is found by e.g. Cepek et al. (2002), Ho and Gupta

(1995) and Wang et al. (2006).

Corollary 3.14. (Ho and Gupta, 1995, Lemma 1; Cepek et al., 2002, Corollary 3.1; and Wang et al.,

2006, Observation 1). Let I be an instance of the PFSP where each machine i is type-II-dominated by

machine i+ 1. Then, the completion time of a job on the last machine can be de�ned as:

Cmπk
=

m−1∑
i=1

piπ1 +
k∑

j=1

pmπj , ∀k

Proof. The proof of the corollary is obvious in view of Property 3.4.

Additionally, Property 3.4 implies that there is no idle time on the last machine after the �rst job of

the sequence:

Corollary 3.15. Let Π := (π1, . . . , πk, . . . , πn) be a sequence of jobs and I be an instance of the PFSP

where the machines are dominated according to idm. Then, the idle time ITmπk
is equal to 0, ∀k > 1.

Proof. The proof of the corollary is obvious in view of Property 3.4 and taking into account the de�nition

of idle time given in Equation (3).

The equivalence between Fm|prmu|Cmax(
∑

Cj) and 1||Cmax(
∑

Cj), when the �rst job of the se-

quence is �xed, is established in Theorem 3.8 (3.9).

Theorem 3.8. Let I be an instance of the Fm|prmu|Cmax problem where the machines are dominated

according to idm, and Î be an instance of the 1||Cmax problem where p̂j = pmj. Let Π be a sequence of the

form Π := {f, σ} := (f, σ1, . . . , σk, . . . , σn−1) where f is the �rst job of the sequence and σ is an unknown

sequence of n − 1 jobs. Let Cmax be the makespan obtained by Π on instance I and Ĉmax its makespan

on instance Î. Then, for each feasible sequence, Cmax = Ĉmax +
∑m−1

i=1 pif .

Proof. The proof of the theorem is obvious in view of Property 3.4 and Corollary 3.15.

14

Theorem 3.9. Let I be an instance of the Fm|prmu|
∑

Cj problem where the machines are dominated

according to idm, and Î be an instance of the 1||
∑

Cj problem where p̂j = pmj. Let Π be a sequence

of the form Π := {f, σ} := (f, σ1, . . . , σk, . . . , σn−1) where f is the �rst job of the sequence and σ is an

unknown sequence of n− 1 jobs. Let S(Π) be the total �owtime obtained by Π on instance I and Ŝ(Π) its

total �owtime on instance Î. Then, for each feasible sequence, S(Π) = Ŝ(Π) + n ·
∑m−1

i=1 pif .

Proof. The proof of the theorem is obvious in view of Property 3.4 and Corollary 3.15.

3.2.3 Case idm-ddm

Similar to the previous case, the completion time of each job on the last machine is de�ned by the following

property for the idm-ddm case:

Property 3.5. Let Π := (π1, . . . , πk, . . . , πn) be a sequence of jobs with pi1πk−1
≥ pi1−1,πk

, ∀k ≥ 2, s ≥

i1 > 1 and pi2πk
≥ pi2+1,πk−1

, ∀k ≥ 2, i2 ≥ s, i.e. following a dominance con�guration type idm-ddm

where the saturated machine is s. Then, the completion time of job πk on the last machine is:

Cmπk
=

s−1∑
i1=1

pi1,π1 +
k∑

j=1

psπj +
m∑

i2=s+1

pi2πk
, ∀k

Proof. The proof of the property is obvious in view of Properties 3.3 and 3.4.

For a more restrictive condition, the same result is found by Wang et al. (2006).

Corollary 3.16. (Wang et al., 2006, Observation 4). Let I be an instance of the PFSP where each

machine i1 < s is type-II-dominated by machine i1 + 1 as well as each machine s < i2 ≤ m is type-II-

dominated by machine i2 − 1. Then, the completion time of a job on the last machine can be de�ned

as:

Cmπk
=

s−1∑
i1=1

pi1π1 +

k∑
j=1

psπj +

m∑
i2=s+1

pi2πk
, ∀k

Proof. The proof of the corollary is obvious in view of Property 3.5.

Then, for this case of dominance, the equivalence between Fm|prmu|
∑

Cj and 1||
∑

Cj is de�ned in

Theorem 3.11 by �xing the �rst job of the sequence as well as the equivalence between Fm|prmu|Cmax

and 1||Cmax, when the �rst and the last job of the sequence are �xed, is established in Theorem 3.10.

Theorem 3.10. Let I be an instance of the Fm|prmu|Cmax problem where the machines are dominated

according to idm-ddm, and Î be an instance of the 1||Cmax problem where p̂j = psj.Let Π be a sequence

of the form Π := {f, σ, g} := (f, σ1, . . . , σk, . . . , σn−2, g) where f and g are respectively the �rst and last

15

job of the sequence and σ is an unknown sequence of n− 2 jobs. Let S(Π) be the total �owtime obtained

by Π on instance I and Ŝ(Π) its total �owtime on instance Î. Then, for each feasible sequence,

Cmax = Ĉmax +
s−1∑
i1=1

pi1f +
m∑

i2=s+1

pi2g

Proof. The proof of the theorem is obvious in view of Property 3.5.

Theorem 3.11. Let I be an instance of the Fm|prmu|
∑

Cj problem where the machines are dominated

according to idm-ddm, and Î be an instance of the 1||
∑

Cj problem where p̂j = psj.Let Π be a sequence

of the form Π := {f, σ} := (f, σ1, . . . , σk, . . . , σn−1) where f is respectively the �rst job of the sequence

and σ is an unknown sequence of n− 1 jobs. Let Cmax be the makespan obtained by Π on instance I and

Ĉmax its makespan on instance Î. Then, for each feasible sequence,

S(Π) = Ŝ(Π) +
n∑

j=1

m∑
i2=s+1

pi2j + n ·
s−1∑
i1=1

pi1f

Proof. The proof of the theorem is obvious in view of Property 3.5.

3.2.4 Generic Case

The assumptions to achieve this equivalence are much harder in the generic case of a �owshop with m > 2

machines. In fact, it is necessary that the processing time of each job j on the saturated machine s is

higher than both the sum of the processing times on the machines before s of each job j
′ ̸= j, and the

sum of the processing times on the machines after s of each job j
′ ̸= j. Obviously, this behaviour is hardly

found in real-life environments. It thus represents only a su�cient but not necessary condition to state

the equivalence.

Theorem 3.12. Let I be an instance of the Fm|prmu|Cmax problem with psj ≥
∑s−1

i=1 pij′ and psj ≥∑m
i=s+1 pij′ , ∀j ̸= j

′
, and Î be an instance of the 1||Cmax problem where p̂j = psj. Let f and g be the �xed

�rst and last job of a sequence of jobs Π := (f, σ1, . . . , σk, . . . , σn−2, g) where σ is an unknown sequence

of n− 2 jobs. Then, Fm|prmu|Cmax is equivalent to 1||Cmax of machine s.

Proof. The proof is obvious using the same reasoning as Properties 3.1 and 3.2.

Theorem 3.13. Let I be an instance of the Fm|prmu|
∑

Cj problem with psj ≥
∑s−1

i=1 pij′ and psj ≥∑m
i=s+1 pij′ , ∀j ̸= j

′
, and Î be an instance of the 1||

∑
Cj problem where p̂j = psj. Let f and g be

the �xed �rst and last job of a sequence of jobs Π := (f, σ1, . . . , σk, . . . , σn−2, g) where σ is an unknown

sequence of n− 2 jobs. Then, Fm|prmu|
∑

Cj is equivalent to 1||
∑

Cj of machine s.

16

Proof. The proof is obvious using the same reasoning as Properties 3.1 and 3.2.

All the properties presented in Sections 3.1 and in this section analyse the assumptions required to

theoretically prove the equivalence between the PFSP and the SMSP of the saturated machine for the

minimisation of makespan and total �owtime. The equivalence between both problems is theoretically

proved in Theorems 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13 for di�erent conditions.

Given an instance, the ful�llment of these conditions then indicates that solving the equivalent SMSP is

analogous to solving the original PFSP. A summary of the conditions is shown in Table 2. However, this

equivalence could be approximately satis�ed under milder conditions. In the next section, we empirically

analyse them by means of extensive computational experiments.

Table 2: Summary of conditions to reduce Fm|prmu|Cmax(
∑

Cj) to 1||Cmax(
∑

Cj)

#Machines Subcase Makespan Total Flowtime

2

s=1
Machine 2 is dominated type I

Machine 2 is dominated type I
Fixed last job

s=2
Machine 1 is dominated type I Machine 1 is dominated type I

Fixed �rst job Fixed �rst job
s=1 or 2 a2 ≥

∑
∀δj>0 δj +maxj{p1j} a2 ≥

∑
∀δj>0 δj +maxj{p1j}

m

Generic
psj ≥

∑s−1
i=1 p

ij
′ and psj ≥

∑m
i=s+1 pij′ , ∀j ̸= j

′
psj ≥

∑s−1
i=1 p

ij
′ and psj ≥

∑m
i=s+1 pij′ , ∀j ̸= j

′

Fixed �rst and last job Fixed �rst and last job

Subcase 1
Case DDM

Case DDM
Fixed last job

Subcase 2
Case IDM Case IDM

Fixed �rst job Fixed �rst job

Subcase 3
Case IDM-DDM Case IDM-DDM

Fixed �rst and last job Fixed �rst job

4 Empirical Analysis

This section is organised as follows: in Section 4.1, the procedure to generate the instances is described.

The implemented heuristics are brie�y explained in Section 4.2. In Section 4.3, the indicators to measure

both the quality of the solutions and the computational e�ort are presented. Results for several values of

the parameters of the testbed are shown in Section 4.4. The boundary lines between both problems are

further analysed in Section 4.5. Finally, both problems are also compared under the set of instances by

Watson et al. (2002) in Section 4.6.

4.1 Testbed generation

Using the above formulations and de�nitions, existing testbeds for the PFSP can be analysed. As men-

tioned in Section 1, most algorithms for the PFSP have been tested on benchmarks where the processing

17

times follow a uniform distribution. However, in the experiments by Watson et al. (2002), a structured

benchmark with job-correlated, machine-correlated and mixed-correlated processing times is employed.

Regarding machine-correlation, processing times are generated using a uniform distribution considering

the following two aspects:

• For each machine, the mean of the processing times is generated from 1 to 100 depending on a

parameter.

• For each machine, the width of the uniform distribution is uniformly generated from 2 to 10.

The goal of this paper is to show that the PFSP with a saturated machine is equivalent to a SMSP. The

study of this equivalence must obviously be done without the in�uence of additional e�ects and therefore,

a speci�c benchmark is generated to test the experiments performed in Section 4, where di�erent levels for

the saturated machine are considered. Firstly, the same distribution is considered for each non-saturated

machine since it is the worst case. Additionally, the consideration of di�erent distributions in the non-

saturated machines would strongly hinder the understanding on the cause of the equivalence between the

problems. Secondly, the same width of the uniform distribution (or, equivalently, its variance) is considered

for all machines (including the most saturated one) both for clarity and to reduce the parameters of the

proposed benchmark.

Taking into account the previous discussion, the processing times for our computational experiments

are then generated according to Expression (5) for the non-saturated machines and Expression (6) for the

saturated machine s:

pij → U [ϵ · (1− β), ϵ · (1 + β)], ∀i ̸= s, j ∈ 1, . . . , n (5)

psj → U [ϵ · (1 + γ − β), ϵ · (1 + γ + β)], j ∈ 1, . . . , n (6)

where the following parameters must be de�ned:

• ϵ: Mean of the processing times on non-saturated machines.

• β: Half length of the interval of the uniform distribution of each machine with respect to the mean

processing time ϵ, i.e. ϵβ yields the half width of the interval, and 2 · ϵ · β is the full length of the

interval of the uniform distribution of each machine (including the saturated machine).

• γ: Increase of the mean of the processing times on the saturated machine s relative to ϵ. In this

way, (1 + γ)ϵ represents the expected processing times on machine s whereas the expected value of

the processing time for the rest of the machines is ϵ.

18

Regarding the initial availability of the machines, the following parameter must be considered in the

benchmark:

• δ: Number of jobs being processed in the shop �oor to create a �ctitious initial unavailability.

More speci�cally, we generate δ jobs, which are sequenced according to certain heuristic (in this

paper, we use the NEH of Nawaz et al., 1983 and Framinan et al., 2002 for makespan and �owtime

minimisation respectively). The processing of these jobs according to such sequence creates ai, the

initial unavailability on each machine i, which can be computed as follows: ai = Ci,πn − C1,πn .

4.2 Implemented heuristics

The following simple 11 algorithms are implemented to analyse the relationship between the SMSP and

the PFSP. More speci�cally, we design the following procedures:

• PF_B(i) (i ∈ [MK,FT]) is designed to provide good �hopefully the best� solutions for the PFSP

with makespan and �owtime objective, respectively. In this paper, we use the NEH heuristic of

Nawaz et al. (1983) for makespan and total �owtime minimisation as PF_B(MK) and PF_B(FT),

respectively. Note that the NEH heuristic initially sorts the jobs according to non-increasing sum

of the processing times. Then, one by one, each job of the initial order is tested in each position

of an initially empty partial sequence. The partial sequence that minimises the makespan, for

PF_B(MK), and the total �owtime, for PF_B(FT), is chosen in each iteration.

• PF_W(i) (i ∈ [MK,FT]) is designed to obtain bad �hopefully the worst� solutions for the PFSP

with makespan and �owtime objective, i.e. we seek for makespan and �owtime maximization.

Analogously, we use the NEH heuristic for makespan and total �owtime maximisation, i.e. we use

the decreasing sum of the processing times as initial order and keep in each iteration the partial

sequence that maximises the makespan and the total �owtime respectively.

• SM_R(MK) and SM_B(FT) are designed to provide the best solutions for the equivalent SMSP if

only the saturated machine in the PFSP is considered. The idea is to compare the sequence obtained

by heuristics designed for the PFSP with heuristics designed for the SMSP on the saturated machine.

On the one hand, in SM_R(MK), jobs are simply sorted according to sequence (1, . . . , n), which

is a random solution. Since, for the SMSP with makespan objective, each solution is optimal, this

procedure would yield both the best and worst solutions for this problem. On the other hand, in

SM_B(FT), jobs are sorted in non-decreasing order of their processing times on machine s, which

corresponds to the optimal solutions of the equivalent 1||
∑

Cj problem.

19

• SM_W(FT) is designed to provide bad �hopefully the worst� solutions for the equivalent SMSP

with total �owtime objective if only the saturated machine in the PFSP is considered (note that

the corresponding procedure for makespan would be also SM_R(MK)). To do so, jobs are sorted in

non-increasing processing times on machine s, which provides the worst solution for the equivalent

1||
∑

Cj problem.

• SM_EB(i) (i ∈ [MK,FT]) is designed to provide good �hopefully the best� solutions for the

equivalent SMSP considering the saturated machine in the PFSP and the in�uence of the last and

�rst jobs in this machine. In Section 3, it was shown that, under certain conditions, the PFSP and

the SMSP are equivalent when both the �rst and the last job of the sequences are �xed. Therefore,

the idea behind these methods is to solve the equivalent SMSP taking into account the in�uence of

the �rst and the last job of the sequence on the non-saturated machines. Thereby, SM_EB(MK)

reduces the Fm|prmu|Cmax problem to the 1||Cmax problem where the processing times of the �rst

and the last job are equivalent to their original processing times plus the processing times of the

machines before and after the saturated machines, i.e. given a sequence Π of jobs, the processing

times are:

p
′

πk
=

psπk

+
∑s−1

i=1 piπk
, k = 1

psπk
, ∀k ̸= 1, n

psπk
+

∑m
i=s piπk

, k = n

To �nd a good Πf �nal sequence, as in SM_R(MK), jobs are �rst sorted randomly (let us denoted

ΠR to this sequence). Then, two simple phases are carried out as follows to �nd the �rst and the

last job:

� For δ = 0, the �rst job of the sequence is the job with minimal sum of processing times before

machine s, i.e. πf
1 is the job F satisfying that

∑s−1
i=1 piF ≤

∑s−1
i=1 pij , ∀j. For δ > 0, the �rst

job is the same as in SM_R(MK), πf
1 = πR

1 .

� The last job of the sequence is the job with minimal sum of processing times after machine s,

i.e. πf
n is the job L which satis�es that

∑m
i=s+1 piL ≤

∑m
i=s+1 pij , ∀j.

The pseudo-code of SM_EB(MK) is shown in Figure 1.

20

ΠR := (πR
1 , ...π

R
n) where πR

i = i, ∀i ∈ [1, n];

if δ = 0 then

Determine job F which satis�es
∑s−1

i=1 piF ≤
∑s−1

i=1 pij , ∀j;

else

F := null;

end

Determine job L which satis�es
∑m

i=s+1 piL ≤
∑m

i=s+1 pij , ∀j;

Πf = (F,ΠR − {F,L}, L);

Figure 1: Heuristic SM_EB(MK).

Regarding �owtime, SM_EB(FT) solves the equivalent SMSP as SM_B(FT). However, in contrast

to that heuristic, SM_EB(FT) considers the in�uence of the �rst job on the machines before the

saturated machine, i.e. i < s. Thereby, the processing time of the �rst job is the sum of the

processing times on machines i ≤ s, i.e. given a sequence Π of jobs, their processing times are:

p
′

πk
=

 psπk
+
∑s−1

i=1 piπk
, k = 1

psπk
, ∀k > 1

The procedure of the heuristic consists of two phases: in the �rst phase, jobs are sorted according

to non-decreasing processing times on machine s; in the second phase, the �rst job of the sequence

is the job with minimal sum of processing times up to machine s, i.e. πf
1 is the job F which satis�es

that
∑s

i=1 piF ≤
∑s

i=1 pij , ∀j. See pseudo-code in Figure 2.

Πi := (πi
1, ...π

i
n) Jobs ordered by non-decreasing psj (Phase I);

Determine job F which satis�es
∑s

i=1 piF ≤
∑s

i=1 pij , ∀j (Phase II);

Πf = (F,Πi − {F});

Figure 2: Heuristic SM_EB(FT).

• M_B(i) (i ∈ [MK,FT]) is designed to provide good �hopefully the best� solutions for a �reduced�

PFSP formed by machines i
′ ∈ {s,m} for makespan and �owtime objectives, respectively. These

heuristics use PF_B(i) (i ∈ [MK,FT]) to solve a instance I ′
of the �reduced� PFSP with m − s

machines (i.e. i
′ ∈ {s,m}), and processing times de�ned by p

′

i′ j
= pi′ j , ∀i′ ∈ {s,m}. The

operations of the jobs in the rest of the machines are omitted. Note that the initial availabilities ai

are calculated using the saturated machine, i.e. ai′ = Ci′πn
− Csπn , ∀i

′ ∈ {s,m}.

21

With these procedures we can check the statistical equivalence between the SMSP and the PFSP on a

set of instances, since, for the cases where the objective function values found by SM_B(FT), SM_R(MK),

SM_EB(i) and M_B(i) are close to those provided by PF_B(i), and those found by SM_W(FT) and

PF_W(i) are similar, then both problems (PFSP and SMSP) are (approximately) equivalent.

4.3 Evaluation of the solutions

Traditionally, the related literature employs the Relative Percentage Deviation (RPD) and the CPU

time to measure both the quality of the solution and the required computational e�ort of heuristic r in

an instance I ∈ V. More speci�cally, the average RPD (ARPD) and the average CPU time (ACPU)

obtained by heuristic r over a set V can be de�ned as follows:

ARPDr =

∑
I∈V RPDr(I)

|V|
(7)

ACPUr =

∑
I∈V Tr(I)
|V|

(8)

where

RPDr(I) =
OFVr(I)−Best(I)

Best(I)
· 100 (9)

OFVr(I) is the objective function value (makespan or total �owtime) obtained by heuristic r in in-

stance I. Best(I) is the best solution among the implemented heuristics for that instance, i.e. Best(I) :=

minr OFVr(I). Finally, Tr(I) is the CPU time of heuristic r for instance I.

The consideration of initial availability introduces a distortion in the evaluation of the objective

function which must be taken into account. This distortion is illustrated with the following example: Let

us assume a PFSP with two machines and two jobs. Processing times of the �rst and second jobs on the

machines are p11 = 10, p21 = 40, and p12 = 10, p22 = 50, respectively. For the two possible sequences

i.e. π1 = (1, 2) and π2 = (2, 1), the total �owtimes are
∑

Cm,π1
j
= 150 and

∑
Cm,π2

j
= 160. In terms of

RPD, RPD(
∑

Cm,π1
j
) = 0 and RPD(

∑
Cm,π2

j
) = 6.67. Let us now assume that the second machine is

not available until time 300. Then, the total �owtime of both sequences change to
∑

Cmπ1
j
= 730 and∑

Cmπ2
j
= 740 respectively, while RPD are RPD(

∑
Cmπ1

j
) = 0 and RPD(

∑
Cmπ2

j
) = 1.37. Although

in this case the initial availability of the second machine clearly does not in�uence the hardness of the

problem, its in�uence in the RPDs is very high.

To avoid this issue, we do not consider the time 0 as reference for the completion times. Instead, we

consider a reference (denoted as B) based on the �rst job that is scheduled in the �owshop. Nevertheless, in

order not to have a sequence-dependent reference, we consider as the �rst job to be scheduled an arti�cial

22

job consisting of sequencing all jobs and then average their completion times, i.e. B =
∑n

j=1 Cmπ1=j

n . Once

B is obtained, the completion time of each job on the last machine is reduced by B time units for each

heuristic.

4.4 Computational Results

All algorithms are coded in the same language (C# under Visual Studio 2013) and under an Intel Core

i7-3770 with 3.4 GHz and 16 GB RAM. They are tested on an set of instances following the indications

of Section 4.1, which includes n ∈ {20, 50, 100, 200}, m ∈ {2, 5, 10, 20} and two values of δ ∈ {0, 100}

representing an initially empty and loaded shop respectively. Processing times are generated according to

the expression (5) and (6) with the following parameters:

• ϵ = 50.

• β ∈ {0.10, 0.20, 0.40, 0.60, 1.00}.

• γ ∈ {0.00, 0.04, 0.08, . . . , 2.96, 3.00}.

For each combination of parameters (n, m, δ, ϵ, β and γ), 10 instances are generated forming a total

of 121,600 instances.

The values of ARPD of the heuristics with initial availabilities (δ = 100) and without initial avail-

abilities (δ = 0) are shown in Table 3 for each value of n, m and β, and for some values of γ. Each row

represents the average RPD for the parameter of the �rst column, e.g. the value 7.84 (of the second row

and second column) is the average RPDSM_R(MK)(I), ∀I | γ = 0.00. Clearly, the heuristics SM_B(FT),

SM_R(MK), SM_EB(i) and M_B(i) are closer to PF_B(i) when β andm decrease, and γ and n increase.

Figures 3 and 4 show the ARPD of the heuristics for the complete set of values of γ and δ, as well as

the decreasing trend of each curve for makespan and total �owtime minimisation respectively. Several

aspects can be highlighted from the results:

23

T
a
b
le
3
:
A
R
P
D

o
f
th
e
h
eu
ri
st
ic
s

A
R
P
D

o
f
h
e
u
ri
st
ic
s
fo
r
m
a
k
e
sp
a
n
m
in
im

is
a
ti
o
n

A
R
P
D

o
f
h
e
u
ri
st
ic
s
fo
r
to
ta
l
�
o
w
ti
m
e
m
in
im

is
a
ti
o
n

S
M
_
R
(M

K
)

S
M
_
E
B
(M

K
)

P
F
_
B
(M

K
)

P
F
_
W
(M

K
)

M
_
B
(M

K
)

S
M
_
R
(F
T
)

S
M
_
E
B
(F
T
)

P
F
_
B
(F
T
)

P
F
_
W
(F
T
)

S
M
_
W
(F
T
)

M
_
B
(F
T
)

δ
=

0

γ
=

0
.0
0

7
.8
4

7
.3
2

0
.0
0

2
8
.6
4

8
.3
5

1
1
.1
0

1
0
.5
1

0
.0
4

3
5
.1
4

2
0
.1
1

8
.2
6

γ
=

0
.2
0

5
.4
8

4
.4
1

0
.0
1

2
0
.8
8

4
.2
1

7
.3
0

6
.6
5

0
.0
6

3
1
.7
9

1
9
.5
0

5
.0
4

γ
=

0
.4
0

3
.8
0

2
.6
9

0
.0
0

1
3
.9
5

2
.5
4

4
.9
9

4
.3
0

0
.1
1

2
7
.5
7

1
8
.1
9

3
.7
4

γ
=

0
.6
0

3
.0
9

1
.8
1

0
.0
0

9
.6
8

1
.8
9

3
.5
9

2
.7
9

0
.1
3

2
3
.9
7

1
6
.6
9

2
.8
1

γ
=

0
.8
0

2
.6
3

1
.2
7

0
.0
1

6
.9
3

1
.5
3

2
.5
3

1
.7
6

0
.1
6

2
1
.1
7

1
5
.2
1

1
.9
7

γ
=

1
.0
0

2
.2
0

0
.9
7

0
.0
0

5
.2
8

1
.0
9

1
.8
7

1
.1
0

0
.1
8

1
8
.9
0

1
3
.8
0

1
.5
7

γ
=

2
.0
0

1
.3
0

0
.3
2

0
.0
0

2
.6
2

0
.6
1

1
.0
0

0
.2
1

0
.2
2

1
2
.3
2

9
.3
6

1
.0
0

β
=

0
.1
0

0
.3
6

0
.0
6

0
.0
0

0
.8
0

0
.1
8

0
.3
0

0
.0
7

0
.0
8

3
.1
6

2
.3
8

0
.2
8

β
=

0
.2
0

0
.8
1

0
.2
3

0
.0
0

1
.9
3

0
.4
3

0
.7
2

0
.2
7

0
.1
5

6
.8
5

5
.0
8

0
.6
4

β
=

0
.4
0

1
.8
2

0
.7
9

0
.0
0

4
.7
7

1
.0
4

1
.7
2

0
.9
6

0
.2
3

1
4
.5
0

1
0
.4
5

1
.4
1

β
=

0
.6
0

2
.9
6

1
.5
6

0
.0
0

8
.3
3

1
.8
3

3
.0
3

2
.0
3

0
.2
5

2
2
.6
4

1
6
.0
5

2
.4
2

β
=

1
.0
0

5
.4
9

3
.5
2

0
.0
0

1
6
.9
7

3
.7
3

6
.3
0

4
.9
9

0
.2
4

3
9
.7
4

2
7
.1
9

4
.7
4

m
=

2
0
.5
3

0
.1
3

0
.0
0

2
.2
1

0
.1
6

0
.4
1

0
.4
0

0
.0
4

1
5
.2
9

1
2
.6
4

0
.2
1

m
=

5
1
.7
0

0
.6
7

0
.0
0

5
.6
1

1
.1
2

1
.9
3

1
.2
7

0
.3
0

1
6
.7
8

1
1
.8
4

1
.5
5

m
=

1
0

2
.8
4

1
.5
2

0
.0
0

8
.0
3

1
.8
9

3
.0
7

2
.0
4

0
.2
5

1
8
.0
9

1
1
.9
8

2
.4
6

m
=

2
0

4
.0
9

2
.6
1

0
.0
0

1
0
.3
8

2
.5
8

4
.2
5

2
.9
4

0
.1
7

1
9
.3
6

1
2
.4
6

3
.3
8

n
=

2
0

4
.6
3

2
.2
9

0
.0
1

1
0
.1
9

2
.5
6

4
.0
3

2
.3
4

0
.3
2

1
9
.2
3

1
4
.6
0

3
.3
4

n
=

5
0

2
.3
7

1
.3
2

0
.0
0

6
.6
1

1
.4
9

2
.4
9

1
.7
6

0
.2
0

1
7
.2
9

1
2
.2
5

1
.9
7

n
=

1
0
0

1
.3
7

0
.8
3

0
.0
0

5
.1
4

1
.0
1

1
.8
0

1
.4
2

0
.1
4

1
6
.6
6

1
1
.3
1

1
.3
4

n
=

2
0
0

0
.7
8

0
.4
9

0
.0
0

4
.3
0

0
.7
1

1
.3
3

1
.1
4

0
.1
0

1
6
.3
4

1
0
.7
5

0
.9
5

δ
=

1
0
0

γ
=

0
.0
0

3
.4
7

3
.3
2

0
.0
2

1
6
.2
1

3
.3
6

8
.3
4

8
.3
4

0
.1
1

2
7
.5
7

1
6
.7
1

2
.6
1

γ
=

0
.2
0

3
.3
0

2
.7
1

0
.0
4

1
4
.8
2

0
.6
4

4
.0
9

4
.0
9

0
.1
2

2
8
.0
9

1
7
.1
8

0
.7
4

γ
=

0
.4
0

2
.3
3

1
.6
9

0
.0
3

1
0
.0
1

0
.0
7

1
.6
9

1
.6
9

0
.0
9

2
5
.3
8

1
6
.2
7

0
.2
6

γ
=

0
.6
0

1
.7
6

1
.1
1

0
.0
1

6
.5
0

0
.0
3

0
.7
5

0
.7
5

0
.0
6

2
2
.1
0

1
4
.7
0

0
.1
4

γ
=

0
.8
0

1
.4
8

0
.7
9

0
.0
0

4
.4
5

0
.0
2

0
.4
0

0
.4
0

0
.0
6

1
9
.3
0

1
3
.0
2

0
.0
7

γ
=

1
.0
0

1
.2
5

0
.5
1

0
.0
1

3
.2
0

0
.0
1

0
.2
5

0
.2
5

0
.0
4

1
7
.1
9

1
1
.7
6

0
.0
4

γ
=

2
.0
0

0
.7
4

0
.1
4

0
.0
0

1
.4
4

0
.0
0

0
.0
5

0
.0
5

0
.0
0

1
0
.7
2

7
.5
8

0
.0
0

β
=

0
.1
0

0
.2
0

0
.0
3

0
.0
0

0
.4
7

0
.0
1

0
.0
4

0
.0
4

0
.0
0

2
.7
4

1
.9
2

0
.0
1

β
=

0
.2
0

0
.4
6

0
.1
1

0
.0
0

1
.1
6

0
.0
3

0
.1
2

0
.1
2

0
.0
1

5
.9
6

4
.1
4

0
.0
3

β
=

0
.4
0

1
.0
2

0
.4
1

0
.0
0

2
.9
6

0
.0
9

0
.4
7

0
.4
7

0
.0
2

1
2
.7
5

8
.6
7

0
.1
1

β
=

0
.6
0

1
.6
4

0
.8
4

0
.0
1

5
.2
5

0
.1
7

0
.9
8

0
.9
8

0
.0
4

1
9
.9
4

1
3
.3
9

0
.2
1

β
=

1
.0
0

3
.0
9

2
.0
0

0
.0
3

1
1
.1
2

0
.4
8

2
.5
7

2
.5
7

0
.1
1

3
5
.6
3

2
3
.4
1

0
.5
4

m
=

2
0
.4
9

0
.1
0

0
.0
0

2
.0
2

0
.1
0

0
.4
0

0
.4
0

0
.0
4

1
5
.0
9

1
2
.6
0

0
.1
3

m
=

5
0
.9
7

0
.3
8

0
.0
0

3
.5
4

0
.1
3

0
.6
7

0
.6
7

0
.0
2

1
5
.3
2

1
0
.4
6

0
.1
9

m
=

1
0

1
.4
8

0
.7
8

0
.0
1

4
.8
5

0
.1
7

0
.9
4

0
.9
4

0
.0
3

1
5
.5
1

9
.4
2

0
.1
8

m
=

2
0

2
.2
0

1
.4
5

0
.0
2

6
.3
5

0
.2
2

1
.3
3

1
.3
3

0
.0
5

1
5
.7
0

8
.7
6

0
.2
2

n
=

2
0

2
.5
9

1
.2
6

0
.0
2

6
.1
5

0
.1
5

1
.2
0

1
.2
0

0
.0
5

1
5
.2
8

1
0
.4
2

0
.1
8

n
=

5
0

1
.3
1

0
.7
1

0
.0
1

4
.2
0

0
.1
4

0
.8
5

0
.8
5

0
.0
4

1
5
.4
1

1
0
.3
3

0
.1
7

n
=

1
0
0

0
.7
8

0
.4
6

0
.0
0

3
.4
3

0
.1
5

0
.7
0

0
.7
0

0
.0
3

1
5
.4
2

1
0
.2
6

0
.1
8

n
=

2
0
0

0
.4
6

0
.2
9

0
.0
0

2
.9
8

0
.1
8

0
.6
0

0
.6
0

0
.0
2

1
5
.5
0

1
0
.2
1

0
.1
8

24

Figure 3: ARPD of the heuristics versus γ for makespan minimisation. On the left, no initial

availability is considered and on the right an initial δ = 100 is taken into account.

• For high values of γ (γ & 1.00), solving the equivalent SMSP or the original PFSP yields a similar

solution (i.e. the ARPD obtained by SM_B(FT), SM_R(MK), SM_EB(i) and SM_B(FT) are

very close to the ARPD by PF_B(i)).

• Additionally, for high values of γ (γ & 1.00), the worst solutions found for the Fm|prmu|
∑

Cj

problem by PF_W(FT) yield similar total �owtime to that of the solutions found for the equivalent

1||
∑

Cj problem by SM_W(FT).

• The ARPD found by SM_R(MK) for the equivalent 1||Cmax problem is always between the best

and worst ARPD found by PF_B(MK) and PF_W(MK). The distance between the three curves

sharply decreases as γ increases, which explains the trivial behaviour of the Fm|prmu|Cmax problem

for these cases.

• The initial availability δ has a strong in�uence on the ARPD as seen in Figures 3 and 4. Thereby,

e.g. the ARPD of SM_EB(i) becomes close to that of PF_B(i) from γ & 0.30 regardless the other

parameters (m, n or β).

According to the dominance rules in Section 3.1 and 3.2, the number of machines and the bounds of

the processing times play an essential role in the comparison between PFSP and SMSP. This in�uence

is also empirically shown in this section. Thereby, Figure 5 shows the evolution of the ARPD with γ

for di�erent number of machines. The ARPD curves clearly decrease with the decrease of the number

of machines in the shop. Note that, for clarity, only the SM_EB(i) heuristics are represented although

the behaviour is similar for the other heuristics. Since the ARPDs for the PF_B(i) heuristics are always

approximately zero, values closes to zero for SM_EB(i) indicate the similarities between both the PFSP

and the SMSP. Thereby, e.g. it can be seen that the ARPD of SM_EB(MK) for δ = 100 is always less

than 1, regardless the value of γ.

25

Figure 4: ARPD of the heuristics versus γ for total �owtime minimisation. On the left, no initial

availability is considered and on the right an initial δ = 100 is taken into account. Note that

the curve SM_R(FT) is exactly over the curve SM_EB(FT), since the initial availability of the

machines are considered (see de�nitions of both heuristics).

Figure 5: ARPD of SM_EB(i) for di�erent values of m

26

Figure 6: ARPD of SM_EB(i) for di�erent values of beta

Regarding β, its in�uence over the ARPD is shown in Figure 6 for the heuristics SM_EB(i). The

curves also present a sharp decrease in ARPD when β decreases. In fact, from γ & 0.08, the ARPD for

the curve β = 0.10 is always less than 1, regardless the objective or the value of δ.

4.5 Boundary Lines between the PFSP and the SMSP

In previous sections, we have proved the relationship between both scheduling problems and shown that

the ARPDs of several heuristics (designed for the original PFSP and for several SMSPs) tend to be

similar for high values of γ, δ and n, and for low values of m and β. In this section, we analyse the

conditions that have to be approximately ful�lled so that the reduced SMSP is (roughly) equivalent to the

original PFSP. First, let us assume that both problems are similar if the di�erences in the ARPDs of the

heuristics to solve both problems (i.e. PF_B(i) and SM_EB(i)) are lesser than 0.5%. The experiments

in this section are carried out for an exhaustive set of 608,000 instances (which contain some more values

of β as compared to previous testbed):

• n ∈ {20, 50, 100, 200}.

• m ∈ {2, 5, 10, 20}.

• ϵ = 50.

• β ∈ {0.04, 0.08, . . . , 0.96, 1.00}.

27

• γ ∈ {0.00, 0.04, 0.08, . . . , 2.96, 3.00}.

• δ ∈ {0, 100}.

In this set, there are 40 instances with di�erent values of n for each combination of m, β, γ and δ. Let

us denote by ARPD
′

m,β,γ,δ the average RPD of these 40 instances for each value of m, β, γ and δ as well

as by γ∗
m,β,δ, the �rst value of γ for which ARPD

′

m,β,γ,δ < 0.5 for the instances with parameters m, β

and γ. Values of γ∗
m,β,δ are graphically shown in Figure 7 and 8 for makespan and �owtime minimisation

respectively. On the left sides of both �gures, values for δ = 0 are shown while on the right sides values

for δ = 100 are shown. Additionally, for each value of m, a linear trend line is represented. Thereby,

these lines represent approximately the boundary lines of both decision problems. On the one hand,

given a number of machines m, instances with values of γ and β over the line represent the region where

both scheduling problems are similar (i.e. the di�erence of ARPD between the heuristics PF_B(i) and

SM_EB(i) is lower than 0.5%). On the other hand, values of γ and β under the line represent instances

which should be solved using heuristics speci�cally designed for the PFSP (i.e. the di�erence of ARPD

between both heuristics is higher than 0.5%). The R2 of each trend line is mostly close to 0.99. By means

of these trend lines, regions with relative similar ARPD between heuristics to solve the PFSP and the

reduced SMSP are shown in Table 4 and 5, for makespan and total �owtime minimisation respectively.

Note that these boundary lines are obviously exact over the proposed set of instances but they are

an approximation for other benchmarks or for processing times following di�erent distributions. Thereby,

they can be useful for the decision makers to give an idea of solving their manufacturing layouts, since

variables γ and β can be easily approximated by a sample of the processing times of the shop. Let µ̄1

and µ̄2 be the sample means of the processing times on the saturated machine and non-saturated machine

respectively. Additionally, let σ̄2
s be the unbiased sample variance. Then, using the de�nition of the mean

and the variance for the uniform distribution, the following expressions approximate the parameters used

in this study:

• µ̄1 ≃ ϵ −→ ϵ ≃ µ̄1

• µ̄2 ≃ ϵ · (1 + γ) −→ γ ≃ µ̄2

ϵ − 1

• σ̄2
s ≃ (2·ϵ·β+1)2−1

12 −→ β ≃
√

σ̄2
s ·12+1−1

2·ϵ

By means of these expressions, given an instance, the decision maker can compute the corresponding

values of ϵ, γ, and β, and use them to position the instance above or below the boundary line. This will

be the decision maker a guess on whether this instance should or should not be solved using speci�c PFSP

procedures.

28

Figure 7: Boundary lines between the PFSP and the SMSP for makespan minimisation. On the

left, no initial availability is considered and on the right an initial δ = 100 is taken into account.

Figure 8: Boundary lines between the PFSP and the SMSP for �owtime minimisation. On the

left, no initial availability is considered and on the right an initial δ = 100 is taken into account.

Table 4: Regions where solving the PFSP is very similar to the SMSP for makespan minimisation

m δ = 0 δ = 100
2 γ ≥ 0.48 · β − 3.08 · 10−2, (R2 = 0.962) γ ≥ 0.49 · β − 7.12 · 10−2, (R2 = 0.890)
5 γ ≥ 1.53 · β − 12.12 · 10−2, (R2 = 0.960) γ ≥ 1.22 · β − 9.88 · 10−2, (R2 = 0.972)
10 γ ≥ 2.79 · β − 14.64 · 10−2, (R2 = 0.994) γ ≥ 2.26 · β − 20.36 · 10−2, (R2 = 0.984)
20 γ ≥ 4.22 · β − 15.58 · 10−2, (R2 = 0.997) γ ≥ 3.43 · β − 20.26 · 10−2, (R2 = 0.976)

Table 5: Regions where solving the PFSP is very similar to the SMSP for �owtime minimisation

m δ = 0 δ = 100
2 γ ≥ 0.48 · β − 1.48 · 10−2, (R2 = 0.974) γ ≥ 0.49 · β − 1.56 · 10−2, (R2 = 0.989)
5 γ ≥ 1.21 · β − 3.40 · 10−2, (R2 = 0.991) γ ≥ 0.92 · β − 5.08 · 10−2, (R2 = 0.987)
10 γ ≥ 1.86 · β − 6.56 · 10−2, (R2 = 0.989) γ ≥ 1.35 · β − 10.12 · 10−2, (R2 = 0.989)
20 γ ≥ 3.01 · β − 7.92 · 10−2, (R2 = 0.984) γ ≥ 1.79 · β − 10.76 · 10−2, (R2 = 0.982)

29

Table 6: ARPD of the heuristics in structured problems

α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Avg.
SM_R(MK) 5.54 2.82 2.25 1.91 1.60 1.42 1.26 1.26 1.15 1.09 0.98 1.94
SM_EB(MK) 4.93 2.15 1.50 1.19 0.89 0.72 0.64 0.56 0.48 0.41 0.37 1.26
PF_B(MK) 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01
PF_W(MK) 15.36 7.66 5.47 4.58 3.74 3.33 2.88 2.76 2.48 2.31 2.13 4.79
M_B(MK) 4.09 2.16 1.49 1.34 0.96 0.95 0.78 0.79 0.67 0.62 0.58 1.31
SM_B(FT) 6.11 3.51 2.49 2.16 1.77 1.54 1.40 1.31 1.13 1.09 0.99 2.14
SM_EB(FT) 5.37 2.81 1.80 1.46 1.07 0.87 0.69 0.66 0.51 0.44 0.40 1.46
SM_W(FT) 9.84 6.06 5.01 4.44 3.94 3.64 3.35 3.26 3.06 2.97 2.69 4.39
PF_B(FT) 0.02 0.01 0.03 0.03 0.04 0.05 0.07 0.05 0.06 0.08 0.07 0.05
PF_W(FT) 16.43 9.44 7.45 6.48 5.77 5.20 4.75 4.52 4.21 4.03 3.66 6.54
M_B(FT) 4.46 2.59 1.92 1.79 1.40 1.28 1.13 1.10 1.00 0.91 0.91 1.68

4.6 Structured Problems. Set of instances of Watson et al. (2002)

A number of conclusions similar to those in previous sections are found when we analyse the heuristics

over the set of instances of Watson et al. (2002), which uses a parameter α to establish the correlation

of the processing times. Results in terms of ARPD for each value of α are shown in Table 6. When α

increases, heuristics designed for the SMSP are closer to the heuristics implemented for the original PFSP,

indicating that both problems are similar. Thereby, for α = 0.0 the di�erence between SM_EB(MK) and

PF_B(MK) is 4.92 while for α = 1.0 it is 0.36. Similar results are obtained for SM_EB(FT) and

PF_B(FT) as the di�erence is 5.35 for α = 0.0 and 0.33 for α = 1.0 and also with SM_W(FT) and

PF_W(FT). These results also con�rm the conclusion found by Watson et al. (2002) that the problems

tend to be very easy with the increase of α for the Fm|prmu|Cmax problem as shown by the high decrease

in the di�erence of ARPD between PF_B(MK) and PF_W(MK) (it goes from 15.35 at the beginning

to 2.12 at the end). In fact, for high values of α, the small distances between both heuristics is probably

an e�ect of the similarity between the Fm|prmu|Cmax problem and the 1||Cmax problem, where each

solution is optimal. Thereby, from α & 0.4 for makespan and α & 0.5 for total �owtime, the ARPD found

by the heuristics designed to solve the equivalent SMSP (SM_EB(MK) and SM_EB(FT)) are lower than

1.0. Graphically, ARPD values as a function of α are shown in Figure 9 for makespan and in Figure 10

for total �owtime (for clarity, M_B(i) is not shown in the �gures).

5 Conclusions

In this paper, several properties and dominance rules have been presented to analyse the relation between

the PFSP and the SMSP for makespan and total �owtime minimisation depending on the processing times

of the jobs. Additionally, in order to empirically compare the problems, 11 algorithms (5 for makespan

30

Figure 9: ARPD of heuristics for makespan minimisation using the set of instances of

Watson et al. (2002).

Figure 10: ARPD of heuristics for total �owtime minimisation using the set of instances of

Watson et al. (2002).

31

and 6 for total �owtime) are tested on an extensive testbed with more than 600,000 instances designed

for the PFSP with machine correlated processing times. Four algorithms have been designed to solve the

instances of the PFSP. Five of them reduce each PFSP instance to an equivalent SMSP considering only

the saturated machine, whereas the other 2 algorithms solve a reduced PFSP without considering the

machines before the most saturated one. Results show that the algorithms designed for the PFSP and for

the SMSP tend to be very similar for several values of the parameters of the testbed.

The goal of this paper is to prove the intuition that, when in a PFSP there is a machine with

larger processing times, then the problem should be similar to the equivalent SMSP considering only this

machine. Thereby, this paper intends to explore the theoretical and empirical boundaries between these

two problems. On the one hand, theoretical results shown in the paper prove that both problems are

equivalent under several conditions. Although these conditions are hardly present in a real manufacturing

environment (particularly in shops with several machines), they are su�cient but not necessary conditions

and they only give an idea of the relationship between both problems. On the other hand, the empirical

comparison carried out in this paper stresses the relationship between both problems. It has been shown

that increasing γ (which is related to the dispersion of the processing times) and n, and decreasing β

(which is related to the predominance of the most loaded machine) and m makes the PFSP to be more

similar to a SMSP. In fact, for low values of β and/or m, procedures for the equivalent SMSP are able to

�nd similar or even better solutions than the heuristics to solve the original PFSP. In order to empirically

establish the frontier between both problems, an extensive set of instances with 608,000 instances has

been generated. Thus, we have obtained several boundary lines depending on the number of machines in

the shop. For a con�guration in the shop (number of machines, initial machine availabilities, objective

to be solved, length or variation of the processing times on the machines), these lines show the values of

γ causing the di�erence of ARPD between the heuristics of both problems to be less than 0.5% on the

analysed set of instances.

The relation between both scheduling problems shown in this paper highlights the importance of the

pre-processing of the processing times of the problems, as well as the importance of the right choice of

the scheduling problem to be solved, which does not necessary match the original machine environment

of the shop. Additionally, it explains the behaviour found in the papers of Watson et al. (2002) and

of Perez-Gonzalez and Framinan (2009) where the Fm|prmu|Cmax problem has been found to be easily

solvable for structured instances and for machines with initial availabilities, respectively.

Regarding future research lines, although the presented paper represents an advance in the study of

the relationship between the PFSP and the SMSP, the boundary lines between both problems are not yet

completely de�ned. Further enhancements may focus on the following issues:

32

• The variance of the processing times on the saturated machine probably plays an important role in

the relationship between both problems.

• The present study uses a uniform distribution for the processing times. Further analyses can use of

di�erent distributions, extending the boundary lines between the problems.

• The presented analysis may probably be extended to other scheduling layouts.

• The PFSP has been compared with the SMSP of the saturated machine. Further analysis may

compare the PFSP with a SMSP combining the processing times of di�erent machines.

References

Carlier, J. (1978). Ordonnancements a contraintes disjonctives. RAIRO Recherche Operationnelle,
12(4):333�350.

Cepek, O., Okada, M., and Vlach, M. (2002). Nonpreemptive �owshop scheduling with machine domi-
nance. European Journal of Operational Research, 139(2):245�261.

Cheng, M., Sun, S., and Yu, Y. (2007). A note on �ow shop scheduling problems with a learning e�ect
on no-idle dominant machines. Applied Mathematics and Computation, 184(2):945�949.

Demirkol, E., Mehta, S., and Uzsoy, R. (1998). Benchmarks for shop scheduling problems. European
Journal of Operational Research, 109(1):137�141.

Dong, X., Chen, P., Huang, H., and Nowak, M. (2013). A multi-restart iterated local search algorithm for
the permutation �ow shop problem minimizing total �ow time. Computers and Operations Research,
40(2):627�632.

Dudek, R. and Teuton, O. (1964). Development of m stage decision rule for scheduling n jobs through m
machines. Operations Research, 12:471.

Easwaran, G., Parten, L., Moras, R., and Uhlig, P. (2010). Makespan minimization in machine dominated
�owshop. Applied Mathematics and Computation, 217(1):110�116.

Fernandez-Viagas, V. and Framinan, J. (2015a). A new set of high-performing heuristics to minimise
�owtime in permutation �owshops. Computers and Operations Research, 53:68�80.

Fernandez-Viagas, V. and Framinan, J. (2015b). NEH-based heuristics for the permutation �owshop
scheduling problem to minimise total tardiness. Computers and Operations Research, 60:27�36.

Fernandez-Viagas, V. and Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics for the
permutation �owshop scheduling problem. Computers and Operations Research, 45(0):60 � 67.

Framinan, J., Gupta, J., and Leisten, R. (2004). A review and classi�cation of heuristics for permu-
tation �ow-shop scheduling with makespan objective. Journal of the Operational Research Society,
55(12):1243�1255.

Framinan, J. and Leisten, R. (2006). A heuristic for scheduling a permutation �owshop with makespan
objective subject to maximum tardiness. International Journal of Production Economics, 99(1-2):28�40.

Framinan, J., Leisten, R., and Ruiz-Usano, R. (2002). E�cient heuristics for �owshop sequencing with
the objectives of makespan and �owtime minimisation. European Journal of Operational Research,
141(3):559�569.

Framinan, J., Leisten, R., and Ruiz-Usano, R. (2005). Comparison of heuristics for �owtime minimisation
in permutation �owshops. Computers and Operations Research, 32(5):1237�1254.

Gajpal, Y. and Rajendran, C. (2006). An ant-colony optimization algorithm for minimizing the

33

completion-time variance of jobs in �owshops. International Journal of Production Economics,
101(2):259�272.

Garey, M., Johnson, D., and Sethi, R. (1976). Complexity of �owshop and jobshop scheduling. Mathe-
matics of Operations Research, 1(2):117�129.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization and
Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete Mathematics,
5:287�326.

Heller, J. (1960). Some numerical experiments for an m x j �ow shop and its decision-theoretical aspects.
Operations Research, 8(2):178�184.

Ho, J. and Gupta, J. (1995). Flowshop scheduling with dominant machines. Computers and Operations
Research, 22(2):237�246.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statis-
tics, 6:65�70.

Johnson, S. (1954). Optimal two- and three-stage production schedules with setup times included. Naval
Research Logistics Quarterly, 1(1):61�68.

Leisten, R. and Rajendran, C. (2014). Variability of completion time di�erences in permutation �ow shop
scheduling. Computers and Operations Research, 54:155�167.

M'Hallah, R. (2014). An iterated local search variable neighborhood descent hybrid heuristic for the total
earliness tardiness permutation �ow shop. International Journal of Production Research, 52(13):3802�
3819.

Monma, C. L. and Rinnooy Kan, A. H. G. (1983). A concise survey of e�ciently solvable special cases
of the permutation �ow-shop problem. RAIRO - Operations Research - Recherche Opérationnelle,
17(2):105�119.

Nawaz, M., Enscore Jr., E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job �ow-shop
sequencing problem. OMEGA, The International Journal of Management Science, 11(1):91�95.

Pan, Q.-K. and Ruiz, R. (2013). A comprehensive review and evaluation of permutation �owshop heuristics
to minimize �owtime. Computers and Operations Research, 40(1):117�128.

Perez-Gonzalez, P. and Framinan, J. (2009). Scheduling permutation �owshops with initial availability
constraint: Analysis of solutions and constructive heuristics. Computers and Operations Research,
36(10):2866�2876.

Pinedo, M. (2012). Scheduling: Theory, algorithms, and systems: Fourth edition. Springer US, New York.

Rad, S. F., Ruiz, R., and Boroojerdian, N. (2009). New high performing heuristics for minimizing
makespan in permutation �owshops. OMEGA, The International Journal of Management Science,
37(2):331�345.

Reeves, C. (1995). A genetic algorithm for �owshop sequencing. Computers and Operations Research,
22(1):5�13.

Reza Hejazi, S. and Sagha�an, S. (2005). Flowshop-scheduling problems with makespan criterion: A
review. International Journal of Production Research, 43(14):2895�2929.

Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems: Classi�cation, Complexity and Computa-
tions. Martinus Nijho�, The Hague.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation �owshop heuris-
tics. European Journal of Operational Research, 165(2):479�494.

Schaller, J. and Valente, J. (2013). A comparison of metaheuristic procedures to schedule jobs in a
permutation �ow shop to minimise total earliness and tardiness. International Journal of Production
Research, 51(3):772�779.

Sun, Y., Zhang, C., Gao, L., and Wang, X. (2011). Multi-objective optimization algorithms for �ow
shop scheduling problem: A review and prospects. International Journal of Advanced Manufacturing

34

Technology, 55(5-8):723�739.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278�285.

Vallada, E. and Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness
permutation �owshop problem. Omega, 38(1-2):57�67.

Vallada, E., Ruiz, R., and Framinan, J. (2015). New hard benchmark for �owshop scheduling problems
minimising makespan. European Journal of Operational Research, 240:666�677.

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total tardiness in the m-machine �owshop
problem: A review and evaluation of heuristics and metaheuristics. Computers and Operations Research,
35(4):1350�1373.

Wang, J.-B., Shan, F., Jiang, B., and Wang, L.-Y. (2006). Permutation �ow shop scheduling with
dominant machines to minimize discounted total weighted completion time. Applied Mathematics and
Computation, 182(1):947�954. cited By 9.

Watson, J., Barbulescu, L., Whitley, L., and Howe, A. (2002). Contrasting structured and random permu-
tation �ow-shop scheduling problems: Search-space topology and algorithm performance. INFORMS
Journal on Computing, 14(2):98�123.

35

View publication statsView publication stats

https://www.researchgate.net/publication/305383835

