4,776 research outputs found

    Continuous reservoir model updating by ensemble Kalman filter on Grid computing architectures

    Get PDF
    A reservoir engineering Grid computing toolkit, ResGrid and its extensions, were developed and applied to designed reservoir simulation studies and continuous reservoir model updating. The toolkit provides reservoir engineers with high performance computing capacity to complete their projects without requiring them to delve into Grid resource heterogeneity, security certification, or network protocols. Continuous and real-time reservoir model updating is an important component of closed-loop model-based reservoir management. The method must rapidly and continuously update reservoir models by assimilating production data, so that the performance predictions and the associated uncertainty are up-to-date for optimization. The ensemble Kalman filter (EnKF), a Bayesian approach for model updating, uses Monte Carlo statistics for fusing observation data with forecasts from simulations to estimate a range of plausible models. The ensemble of updated models can be used for uncertainty forecasting or optimization. Grid environments aggregate geographically distributed, heterogeneous resources. Their virtual architecture can handle many large parallel simulation runs, and is thus well suited to solving model-based reservoir management problems. In the study, the ResGrid workflow for Grid-based designed reservoir simulation and an adapted workflow provide tools for building prior model ensembles, task farming and execution, extracting simulator output results, implementing the EnKF, and using a web portal for invoking those scripts. The ResGrid workflow is demonstrated for a geostatistical study of 3-D displacements in heterogeneous reservoirs. A suite of 1920 simulations assesses the effects of geostatistical methods and model parameters. Multiple runs are simultaneously executed using parallel Grid computing. Flow response analyses indicate that efficient, widely-used sequential geostatistical simulation methods may overestimate flow response variability when compared to more rigorous but computationally costly direct methods. Although the EnKF has attracted great interest in reservoir engineering, some aspects of the EnKF remain poorly understood, and are explored in the dissertation. First, guidelines are offered to select data assimilation intervals. Second, an adaptive covariance inflation method is shown to be effective to stabilize the EnKF. Third, we show that simple truncation can correct negative effects of nonlinearity and non-Gaussianity as effectively as more complex and expensive reparameterization methods

    Enhancing Britain’s rivers: an interdisciplinary analysis of selected issues arising from implementation of the Water Framework Directive

    Get PDF
    N/AThe Water Framework Directive requires reduced environmental impacts from human activities and for the assessment of the non-market benefits of pollution remediation schemes. This policy shift has exacerbated the research problems surrounding the physical, social and economic consequences of the relationship between land use and water quality. This research seeks to quantify the major socio-economic and environmental benefits for people which may arise as riverine pollution is reduced. To achieve these aims this research integrates primary data analyses combining choice experiment techniques with geographical information system based analyses of secondary data concerning the spatial distributions of riverine pollution. Current knowledge on the microbial quality of river water, measured by faecal indicator organism (FIO) concentrations and assessed at catchment scale, is inadequate. This research develops generic regression models to predict base- and high-flow faecal coliform (FC) and enterococci (EN) concentrations, using land cover and population (human and livestock) variables. The resulting models are then used both to predict FIO concentrations in unmonitored watercourses and to evaluate the likely impacts of different land use scenarios, enabling insights into the optimal locations and cost-effective mix of implementation strategies. Valuation experiments frequently conflate respondents’ preferences for different aspects of water quality. This analysis uses stated preference techniques to disaggregate the values of recreation and ecological attributes of water quality, thereby allowing decision makers to better understand the consequences of adopting alternative investment strategies which favour either ecological, recreational or a mix of benefits. The results reveal heterogeneous preferences across society; specifically, latent class analysis identifies three distinct groups, holding significantly different preferences for water quality. From a methodological perspective this research greatly enhances the ongoing synthesis of geographic and economic social sciences and addresses important policy questions which are of interest to a variety of stakeholders, including government departments and the water industry.Economic and Social Research Counci

    Integrating multiple clusters for compute-intensive applications

    Get PDF
    Multicluster grids provide one promising solution to satisfying the growing computational demands of compute-intensive applications. However, it is challenging to seamlessly integrate all participating clusters in different domains into a single virtual computational platform. In order to fully utilize the capabilities of multicluster grids, computer scientists need to deal with the issue of joining together participating autonomic systems practically and efficiently to execute grid-enabled applications. Driven by several compute-intensive applications, this theses develops a multicluster grid management toolkit called Pelecanus to bridge the gap between user\u27s needs and the system\u27s heterogeneity. Application scientists will be able to conduct very large-scale execution across multiclusters with transparent QoS assurance. A novel model called DA-TC (Dynamic Assignment with Task Containers) is developed and is integrated into Pelecanus. This model uses the concept of a task container that allows one to decouple resource allocation from resource binding. It employs static load balancing for task container distribution and dynamic load balancing for task assignment. The slowest resources become useful rather than be bottlenecks in this manner. A cluster abstraction is implemented, which not only provides various cluster information for the DA-TC execution model, but also can be used as a standalone toolkit to monitor and evaluate the clusters\u27 functionality and performance. The performance of the proposed DA-TC model is evaluated both theoretically and experimentally. Results demonstrate the importance of reducing queuing time in decreasing the total turnaround time for an application. Experiments were conducted to understand the performance of various aspects of the DA-TC model. Experiments showed that our model could significantly reduce turnaround time and increase resource utilization for our targeted application scenarios. Four applications are implemented as case studies to determine the applicability of the DA-TC model. In each case the turnaround time is greatly reduced, which demonstrates that the DA-TC model is efficient for assisting application scientists in conducting their research. In addition, virtual resources were integrated into the DA-TC model for application execution. Experiments show that the execution model proposed in this thesis can work seamlessly with multiple hybrid grid/cloud resources to achieve reduced turnaround time

    Modeling structural change in spatial system dynamics: A Daisyworld example

    Get PDF
    System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed

    Accuracy assessment

    Get PDF

    Dwelling in an ecological substrate: landscape based strategies for flood adaptation in the Sabana de Bogotá

    Get PDF
    La Sabana de Bogotá afronta el conflicto creciente entre el desarrollo urbano y un sistema de manejo de agua ineficiente. Ante esta contradicción, la investigación estudia cómo se pueden modificar las relaciones conflictivas entre la vivienda dirigida a sectores de bajos ingresos y el medio ambiente para crear una interacción constructiva. La necesidad incuestionable de construir vivienda social puede ser vista como un riesgo para el manejo sostenible de agua, pero también como una oportunidad única para proponer intervenciones espaciales estratégicas. El artículo presenta la investigación y diseño de dos secciones que atraviesan el Río Bogotá y están expuestas a la presión de desarrollo urbano. En cada sección, el diseño interviene el sistema hídrico para que resuelva problemas cuantitativos y cualitativos del agua y al mismo tiempo genere la estructura para nuevos tejidos de vivienda. La tesis tiene tres objetivos. Primero, presentar una aproximación crítica a las tendencias actuales de urbanización. Segundo, cuestionar los modelos de planeamiento actual basados en la distinción entre las áreas rurales y urbanas y el abandono de la conservación ambiental en el ámbito urbano. Finalmente, desarrollar nuevas tipologías urbanas que integren el manejo sostenible de agua. La hipótesis de la investigación es que, a través del diseño del sistema hídrico, las inversiones privadas y públicas se pueden dirigir para crear una estructura urbana pública, sostenible y resiliente a largo plazo.The Sabana de Bogotá is facing a continuously increasing conflict between urban development and a saturated water management system. The research investigates how current contested relations between lowincome housing and environmental stress can be converted into a constructive interplay. The unquestionable necessity of building new social housing can be seen as a major threat for sustainable water management but also as a unique opportunity to propose strategic spatial interventions. This paper present design investigations in two sections that cut across the Bogotá River and are undergoing development pressure. In each site the design proposes a water structure that solve qualitative and quantitative water issues while delivers a framework for new housing fabrics. The thesis has three objectives. First, to develop a critical approach to current development trends and to envision alternative development schemes for the region. Second, to challenge the current planning models based on the distinction of “urban” and “rural” areas and the abandonment of environmental conservation in the urban sphere. Finally, to develop new urban typologies that integrate sustainable water management. By designing the water system, public and private investment can be oriented towards a sustainable and resilience public structure in the long term

    Monitoring systems for managing natural resources: economics, indicators and environmental externalities in a Costa Rican watershed

    Get PDF
    The worsening degradation of natural resources urgently requires the adoption of more sustainable management practices. This need has led to growing interest and investment in monitoring systems for tracking the condition of natural resources. This study is concerned with the design of monitoring systems that have direct relevance for the management of natural resources. We call these Policy Relevant Monitoring Systems (PRMS). Such systems have several key characteristics. They provide: a) a decision framework for selecting resource problems to monitor that offer potentially large social payoffs relative to the costs of monitoring, b) timely, including early warning information on emerging problems, c) a means of identifying the causes of an emerging problem, d) an analytical framework for identifying options for corrective action, e) an institutional framework for achieving ownership among key stakeholders (the resource users and those affected by the resource use) and agreement about emerging problems, the corrective actions to take, and effective implementation, and f) a built-in mechanism for learning from past experience to improve the performance of the monitoring system over time. The approach is developed and illustrated through detailed examination of the Arenal-Tempisque watershed in Costa Rica. This watershed exhibits classic multiple user and externality problems: deforestation by dairy and cattle farmers in the upper watershed leads to soil erosion and siltation of the various reservoirs that feed an important hydro-electric power generation system, and agro-chemical use by irrigated farmers has adverse impacts on a highly valued wetlands park and on wildlife and fishing in the lower reaches of the watershed.Natural resources., Environmental degradation., Costa Rica, Watershed management.,

    Project Final Report: Ubiquitous Computing and Monitoring System (UCoMS) for Discovery and Management of Energy Resources

    Full text link
    The UCoMS research cluster has spearheaded three research areas since August 2004, including wireless and sensor networks, Grid computing, and petroleum applications. The primary goals of UCoMS research are three-fold: (1) creating new knowledge to push forward the technology forefronts on pertinent research on the computing and monitoring aspects of energy resource management, (2) developing and disseminating software codes and toolkits for the research community and the public, and (3) establishing system prototypes and testbeds for evaluating innovative techniques and methods. Substantial progress and diverse accomplishment have been made by research investigators in their respective areas of expertise cooperatively on such topics as sensors and sensor networks, wireless communication and systems, computational Grids, particularly relevant to petroleum applications
    corecore