2,640 research outputs found

    Inferring Hierarchical Orthologous Groups

    Get PDF
    The reconstruction of ancestral evolutionary histories is the cornerstone of most phylogenetic analyses. Many applications are possible once the evolutionary history is unveiled, such as identifying taxonomically restricted genes (genome barcoding), predicting the function of unknown genes based on their evolutionary related genes gene ontologies, identifying gene losses and gene gains among gene families, or pinpointing the time in evolution where particular gene families emerge (sometimes referred to as “phylostratigraphy”). Typically, the reconstruction of the evolutionary histories is limited to the inference of evolutionary relationships (homology, orthology, paralogy) and basic clustering of these orthologs. In this thesis, we adopted the concept of Hierarchical Orthology Groups (HOGs), introduced a decade ago, and proposed several improvements both to improve their inference and to use them in biological analyses such as the aforementioned applications. In addition, HOGs are a powerful framework to investigate ancestral genomes since HOGs convey information regarding gene family evolution (gene losses, gene duplications or gene gains). In this thesis, an ancestral genome at a given taxonomic level denotes the last common ancestor genome for the related taxon and its hypothetical ancestral gene composition and gene order (synteny). The ancestral genes composition and ancestral synteny for a given ancestral genome provides valuable information to study the genome evolution in terms of genomic rearrangement (duplication, translocation, deletion, inversion) or of gene family evolution (variation of the gene function, accelerate gene evolution, duplication rich clade). This thesis identifies three major open challenges that composed my three research arcs. First, inferring HOGs is complex and computationally demanding meaning that robust and scalable algorithms are mandatory to generate good quality HOGs in a reasonable time. Second, benchmarking orthology clustering without knowing the true evolutionary history is a difficult task, which requires appropriate benchmark strategies. And third, the lack of tools to handle HOGs limits their applications. In the first arc of the thesis, I proposed two new algorithm refinements to improve orthology inference in order to produce orthologs less sensitive to gene fragmentations and imbalances in the rate of evolution among paralogous copies. In addition, I introduced version 2.0 of the GETHOGs 2.0 algorithm, which infers HOGs in a bottom up fashion, and which has been shown to be both faster and more accurate. In the second arc, I proposed new strategies to benchmark the reconstruction of gene families using detailed cases studies based on evidence from multiple sequence alignments along with reconstructed gene trees, and to benchmark orthology using a simulation framework that provides full control of the evolutionary genomic setup. This work highlights the main challenges in current methods. Third, I created pyHam (python HOG analysis method), iHam (interactive HOG analysis method) and GTM (Graph - Tree - Multiple sequence alignment)—a collection of tools to process, manipulate and visualise HOGs. pyHam offers an easy way to handle and work with HOGs using simple python coding. Embedded at its heart are two visualisation tools to synthesise HOG-derived information: iHam that allow interactive browsing of HOG structure and a tree based visualisation called tree profile that pinpoints evolutionary events induced by the HOGs on a species tree. In addition, I develop GTM an interactive web based visualisation tool that combine for a given gene family (or set of genes) the related sequences, gene tree and orthology graph. In this thesis, I show that HOGs are a useful framework for phylogenetics, with considerable work done to produce robust and scalable inferences. Another important aspect is that our inferences are benchmarked using manual case studies and automated verification using simulation or reference Quest for Orthologs Benchmarks. Lastly, one of the major advances was the conception and implementation of tools to manipulate and visualise HOG. Such tools have already proven useful when investigating HOGs for developmental reasons or for downstream analysis. Ultimately, the HOG framework is amenable to integration of all aspects which can reasonably be expected to have evolved along the history of genes and ancestral genome reconstruction. -- La reconstruction de l'histoire évolutive ancestrale est la pierre angulaire de la majorité des analyses phylogénétiques. Nombreuses sont les applications possibles une fois que l'histoire évolutive est révélée, comme l'identification de gènes restreints taxonomiquement (barcoding de génome), la prédiction de fonction pour les gènes inconnus en se basant sur les ontologies des gènes relatifs evolutionnairement, l'identification de la perte ou de l'apparition de gènes au sein de familles de gènes ou encore pour dater au cours de l'évolution l'apparition de famille de gènes (phylostratigraphie). Généralement, la reconstruction de l'histoire évolutive se limite à l'inférence des relations évolutives (homologie, orthologie, paralogie) ainsi qu'à la construction de groupes d’orthologues simples. Dans cette thèse, nous adoptons le concept des groupes hiérarchiques d’orthologues (HOGs en anglais pour Hierarchical Orthology Groups), introduit il y a plus de 10 ans, et proposons plusieurs améliorations tant bien au niveau de leurs inférences que de leurs utilisations dans les analyses biologiques susmentionnées. Cette thèse a pour but d'identifier les trois problématiques majeures qui composent mes trois axes de recherches. Premièrement, l'inférence des HOGs est complexe et nécessite une puissance computationnelle importante ce qui rend obligatoire la création d'algorithmes robustes et efficients dans l'espace temps afin de maintenir une génération de résultats de qualité rigoureuse dans un temps raisonnable. Deuxièmement, le contrôle de la qualité du groupement des orthologues est une tâche difficile si on ne connaît l'histoire évolutive réelle ce qui nécessite la mise en place de stratégies de contrôle de qualité adaptées. Tertio, le manque d'outils pour manipuler les HOGs limite leur utilisation ainsi que leurs applications. Dans le premier axe de ma thèse, je propose deux nouvelles améliorations de l'algorithme pour l'inférence des orthologues afin de pallier à la sensibilité de l'inférence vis à vis de la fragmentation des gènes et de l'asymétrie du taux d'évolution au sein de paralogues. De plus, j'introduis la version 2.0 de l'algorithme GETHOGs qui utilise une nouvelle approche de type 'bottom-up' afin de produire des résultats plus rapides et plus précis. Dans le second axe, je propose de nouvelles stratégies pour contrôler la qualité de la reconstruction des familles de gènes en réalisant des études de cas manuels fondés sur des preuves apportées par des alignement multiples de séquences et des reconstructions d'arbres géniques, et aussi pour contrôler la qualité de l'orthologie en simulant l'évolution de génomes afin de pouvoir contrôler totalement le matériel génétique produit. Ce travail met en avant les principales problématiques des méthodes actuelles. Dans le dernier axe, je montre pyHam, iHam et GTM - une panoplie d'outils que j’ai créée afin de faciliter la manipulation et la visualisation des HOGs en utilisant un programmation simple en python. Deux outils de visualisation sont directement intégrés au sein de pyHam afin de pouvoir synthétiser l'information véhiculée par les HOGs: iHam permet d’interactivement naviguer dans les HOGs ainsi qu’une autre visualisation appelée “tree profile” utilisant un arbre d'espèces où sont localisés les événements révolutionnaires contenus dans les HOGs. En sus, j'ai développé GTM un outil interactif web qui combine pour une famille de gènes donnée (ou un ensemble de gènes) leurs séquences alignées, leur arbre de gène ainsi que le graphe d'orthologie en relation. Dans cette thèse, je montre que le concept des HOGs est utile à la phylogénétique et qu'un travail considérable a été réalisé dans le but d'améliorer leur inférences de façon robuste et rapide. Un autre point important est que la qualité de nos inférences soit contrôlée en réalisant des études de cas manuellement ou en utilisant le Quest for Orthologs Benchmark qui est une référence dans le contrôle de la qualité de l’orthologie. Dernièrement, une des avancée majeure proposée est la conception et l'implémentation d'outils pour visualiser et manipuler les HOGs. Ces outils s'avèrent déjà utilisés tant pour l'étude des HOGs dans un but d'amélioration de leur qualité que pour leur utilisation dans des analyses biologiques. Pour conclure, on peut noter que tous les aspects qui semblent avoir évolué en relation avec l'histoire évolutive des gènes ou des génomes ancestraux peuvent être intégrés au concept des HOGs

    On the Geroch-Traschen class of metrics

    No full text
    We compare two approaches to semi-Riemannian metrics of low regularity. The maximally 'reasonable' distributional setting of Geroch and Traschen is shown to be consistently contained in the more general setting of nonlinear distributional geometry in the sense of Colombea

    Anomalous transport in the crowded world of biological cells

    Full text link
    A ubiquitous observation in cell biology is that diffusion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarising their densely packed and heterogeneous structures. The most familiar phenomenon is a power-law increase of the MSD, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations, non-gaussian distributions of the displacements, heterogeneous diffusion, and immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarise some widely used theoretical models: gaussian models like FBM and Langevin equations for visco-elastic media, the CTRW model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Emphasis is put on the spatio-temporal properties of the transport in terms of 2-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even for identical MSDs. Then, we review the theory underlying common experimental techniques in the presence of anomalous transport: single-particle tracking, FCS, and FRAP. We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where model systems mimic physiological crowding conditions. Finally, computer simulations play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.Comment: review article, to appear in Rep. Prog. Phy

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI

    Get PDF
    The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'
    corecore