158 research outputs found

    Overview of compressed sensing: Sensing model, reconstruction algorithm, and its applications

    Get PDF
    With the development of intelligent networks such as the Internet of Things, network scales are becoming increasingly larger, and network environments increasingly complex, which brings a great challenge to network communication. The issues of energy-saving, transmission efficiency, and security were gradually highlighted. Compressed sensing (CS) helps to simultaneously solve those three problems in the communication of intelligent networks. In CS, fewer samples are required to reconstruct sparse or compressible signals, which breaks the restrict condition of a traditional Nyquist-Shannon sampling theorem. Here, we give an overview of recent CS studies, along the issues of sensing models, reconstruction algorithms, and their applications. First, we introduce several common sensing methods for CS, like sparse dictionary sensing, block-compressed sensing, and chaotic compressed sensing. We also present several state-of-the-art reconstruction algorithms of CS, including the convex optimization, greedy, and Bayesian algorithms. Lastly, we offer recommendation for broad CS applications, such as data compression, image processing, cryptography, and the reconstruction of complex networks. We discuss works related to CS technology and some CS essentials. © 2020 by the authors

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    MFPA: Mixed-Signal Field Programmable Array for Energy-Aware Compressive Signal Processing

    Get PDF
    Compressive Sensing (CS) is a signal processing technique which reduces the number of samples taken per frame to decrease energy, storage, and data transmission overheads, as well as reducing time taken for data acquisition in time-critical applications. The tradeoff in such an approach is increased complexity of signal reconstruction. While several algorithms have been developed for CS signal reconstruction, hardware implementation of these algorithms is still an area of active research. Prior work has sought to utilize parallelism available in reconstruction algorithms to minimize hardware overheads; however, such approaches are limited by the underlying limitations in CMOS technology. Herein, the MFPA (Mixed-signal Field Programmable Array) approach is presented as a hybrid spin-CMOS reconfigurable fabric specifically designed for implementation of CS data sampling and signal reconstruction. The resulting fabric consists of 1) slice-organized analog blocks providing amplifiers, transistors, capacitors, and Magnetic Tunnel Junctions (MTJs) which are configurable to achieving square/square root operations required for calculating vector norms, 2) digital functional blocks which feature 6-input clockless lookup tables for computation of matrix inverse, and 3) an MRAM-based nonvolatile crossbar array for carrying out low-energy matrix-vector multiplication operations. The various functional blocks are connected via a global interconnect and spin-based analog-to-digital converters. Simulation results demonstrate significant energy and area benefits compared to equivalent CMOS digital implementations for each of the functional blocks used: this includes an 80% reduction in energy and 97% reduction in transistor count for the nonvolatile crossbar array, 80% standby power reduction and 25% reduced area footprint for the clockless lookup tables, and roughly 97% reduction in transistor count for a multiplier built using components from the analog blocks. Moreover, the proposed fabric yields 77% energy reduction compared to CMOS when used to implement CS reconstruction, in addition to latency improvements

    An Efficient VLSI Linear Array for DCT/IDCT Using Subband Decomposition Algorithm

    Get PDF
    Discrete Cosine transform (DCT) and inverse DCT (IDCT) have been widely used in many image processing systems and real-time computation of nonlinear time series. In this paper, a novel lineararray of DCT and IDCT is derived from the data flow of subband decompositions representing the factorized coefficient matrices in the matrix formulation of the recursive algorithm. For increasing the throughput as well as decreasing the hardware cost, the input and output data are reordered. The proposed 8-point DCT/IDCT processor with four multipliers, simple adders, and less registers and ROM storing the immediate results and coefficients, respectively, has been implemented on FPGA (field programmable gate array) and SoC (system on chip). The linear-array DCT/IDCT processor with the computation complexity O(5N/8) and hardware complexity O(5N/8) is fully pipelined and scalable for variable-length DCT/IDCT computations

    Leveraging Signal Transfer Characteristics and Parasitics of Spintronic Circuits for Area and Energy-Optimized Hybrid Digital and Analog Arithmetic

    Get PDF
    While Internet of Things (IoT) sensors offer numerous benefits in diverse applications, they are limited by stringent constraints in energy, processing area and memory. These constraints are especially challenging within applications such as Compressive Sensing (CS) and Machine Learning (ML) via Deep Neural Networks (DNNs), which require dot product computations on large data sets. A solution to these challenges has been offered by the development of crossbar array architectures, enabled by recent advances in spintronic devices such as Magnetic Tunnel Junctions (MTJs). Crossbar arrays offer a compact, low-energy and in-memory approach to dot product computation in the analog domain by leveraging intrinsic signal-transfer characteristics of the embedded MTJ devices. The first phase of this dissertation research seeks to build on these benefits by optimizing resource allocation within spintronic crossbar arrays. A hardware approach to non-uniform CS is developed, which dynamically configures sampling rates by deriving necessary control signals using circuit parasitics. Next, an alternate approach to non-uniform CS based on adaptive quantization is developed, which reduces circuit area in addition to energy consumption. Adaptive quantization is then applied to DNNs by developing an architecture allowing for layer-wise quantization based on relative robustness levels. The second phase of this research focuses on extension of the analog computation paradigm by development of an operational amplifier-based arithmetic unit for generalized scalar operations. This approach allows for 95% area reduction in scalar multiplications, compared to the state-of-the-art digital alternative. Moreover, analog computation of enhanced activation functions allows for significant improvement in DNN accuracy, which can be harnessed through triple modular redundancy to yield 81.2% reduction in power at the cost of only 4% accuracy loss, compared to a larger network. Together these results substantiate promising approaches to several challenges facing the design of future IoT sensors within the targeted applications of CS and ML
    corecore