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Discrete Cosine transform (DCT) and inverse DCT (IDCT) have been widely used in many
image processing systems and real-time computation of nonlinear time series. In this paper, a
novel lineararray of DCT and IDCT is derived from the data flow of subband decompositions
representing the factorized coefficient matrices in the matrix formulation of the recursive
algorithm. For increasing the throughput as well as decreasing the hardware cost, the input and
output data are reordered. The proposed 8-point DCT/IDCT processor with four multipliers,
simple adders, and less registers and ROM storing the immediate results and coefficients,
respectively, has been implemented on FPGA (field programmable gate array) and SoC (system
on chip). The linear-array DCT/IDCT processor with the computation complexity O(5N/8) and
hardware complexity O(5N/8) is fully pipelined and scalable for variable-length DCT/IDCT
computations.

1. Introduction

With rapid growth of modern communication applications and computer technologies,
image compression and real-time computation of nonlinear time series continues to be
in great demand. Discrete Cosine transform (DCT) is one of the major operations in
various image/video compression standards [1] and nonlinear time series applications
[2–8]. Though fast Fourier transform (FFT) can be used to implement DCT, it requires
complex-valued computations; and moreover, N-point DCT by FFT contains O(log 2N + 1)
stages. The conventional DCT architectures using distributed arithmetic involve complex
hardware with a great number of registers [9–19]. Other commonly used DCT architectures
with matrix formulation and distributed memory [20–27] are however not suited for VLSI
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implementation because the hardware complex is proportional to the length of DCT, which
leads to the scalability problem of variable-length DCT computations. In this paper, we
propose the novel linear-array architecture for scalable DCT/IDCT implementation.

The remainder of this paper proceeds as follows. In Section 2, we propose the fast
DCT/IDCT computation based on subband decomposition algorithm. In Section 3, the
reconfigurable FPGA-based and programmable SoC implementations with low hardware
cost are proposed for the fast DCT/IDCT computation. The performance comparison with
conclusions can be found in Section 4.

2. Proposed Fast DCT/IDCT Computation

For an N-point signal, x[n], the discrete cosine transform (DCT) [28] is defined as

C[k] = α[k]
N−1∑

n=0

x[n] cos
[
(2n + 1)kπ

2N

]
, (2.1)

where k = 0, . . . ,N − 1, α[0] = 1/
√
N, and α[k] =

√
2/N for k > 0. Let xL[n] and xH[n]

denote the low-frequency and high-frequency subband signals of x[n], respectively, which
are defined as

xL[n] =
1
2
{x[2n] + x[2n + 1]},

xH[n] =
1
2
{x[2n] − x[2n + 1]},

(2.2)

where n = 0, 1, 2, . . . , (N/2)−1. The original signal x[n] can be obtained from xL[n] and xH[n]
as follows:

x[2n] = xL[n] + xH[n],

x[2n + 1] = xL[n] − xH[n].
(2.3)

As one can see, the DCT of x[n] can be rewritten as

C[k] =
(N/2)−1∑

n=0

α[k]x[2n] cos
(
(4n + 1)kπ

2N

)
+

(N/2)−1∑

n=0

α[k]x[2n + 1] cos
(
(4n + 3)kπ

2N

)

= 2 cos
(
πk

2N

)(N/2)−1∑

n=0

α[k]xL[n] cos
(
(2n + 1)kπ

N

)

︸ ︷︷ ︸
CL[k]

+ 2 sin
(
πk

2N

)(N/2)−1∑

n=0

α[k]xH[n] sin
(
(2n + 1)kπ

N

)

︸ ︷︷ ︸
SH[k]

,

(2.4)
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where CL[k] and SH[k] are the subband DCT and DST (discrete sine transform) of x[n],
respectively.

2.1. Fast DCT Computation Based on
Subband Decomposition Algorithm

Without loss of generality, the 8-point fast DCT based on subband decomposition algorithm is
proposed for the widely used JPEG and MPEG-1/2 standards, which can be easily extended
to variable-length DCT computations. The vector form of 8-point DCT can be written as

C8 =
[
TSB DCT,8 TSB DST,8

]
8×8 ·

[
xL

xH

]

8×1

, (2.5)

where C8 = [C[0] · · ·C[7]]T , xL = [xL[0] · · ·xL[3]]T , xH = [xH[0] · · ·xH[3]]T , and TSB DCT,8

and TSB DST,8 denote the 8×4 matrices of subband DCT and subband DST, respectively, which
can form orthonormal bases for the two orthogonal subspaces of R8. Notice that, due to the
orthogonality between TSB DCT,8 and TSB DST,8, xL[n] and xH[n] can be obtained from C[k]
as follows:

xL[n] =
N−1∑

n=0

α[k] cos
(
πk

2N

)
C[k] cos

(
(2n + 1)kπ

N

)
,

xH[n] =
N−1∑

n=0

α[k] sin
(
πk

2N

)
C[k] sin

(
(2n + 1)kπ

N

)
,

(2.6)

where n = 0, 1, 2, . . . ,N/2 − 1, and N = 8.
The proposed fast DCT algorithm is a subband decomposition-based multistage

algorithm. Specifically, let

xLL[n] =
1
2
{xL[2n] + xL[2n + 1]},

xLH[n] =
1
2
{xL[2n] − xL[2n + 1]},

xHL[n] =
1
2
{xH[2n] + xH[2n + 1]},

xHH[n] =
1
2
{xH[2n] − xH[2n + 1]},

(2.7)
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M8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0 0 0 0 0
0 0 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0 0
0 0 0 0 0 0 0.5 0.5

0.5 −0.5 0 0 0 0 0 0
0 0 0.5 −0.5 0 0 0 0
0 0 0 0 0.5 −0.5 0 0
0 0 0 0 0 0 0.5 −0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M4 =

⎡
⎢⎢⎣

0.5 0.5 0 0
0 0 0.5 0.5

0.5 −0.5 0 0
0 0 0.5 −0.5

⎤
⎥⎥⎦

M2 =
[

0.5 0.5
0.5 −0.5

]

CLLL2,

CLL2,

CLLH2,

CLHL2,

CLH2,

CLHH2,

+

+

SB DCT

SB DST

SB DCT

SB DST

xLLL,1

xLLH,1

xLHL,1

xLHH,1

M2

M2

xLL,2

xLH,2

M4

M4

xL,4

xH,4

M8x8

Figure 1: Data flow of computing the 2-point subband DCT: CLL,2 and subband DST: CLH,2 (for the 8-point
DCT of the input signal: x8) based on subband decomposition.

where n = 0, 1. And let

xLLL[n] =
1
2
{xLL[2n] + xLL[2n + 1]},

xLLH[n] =
1
2
{xLL[2n] − xLL[2n + 1]},

xLHL[n] =
1
2
{xLH[2n] + xLH[2n + 1]},

xLHH[n] =
1
2
{xLH[2n] − xLH[2n + 1]},

xHLL[n] =
1
2
{xHL[2n] + xHL[2n + 1]},

xHLH[n] =
1
2
{xHL[2n] − xHL[2n + 1]},

xHHL[n] =
1
2
{xHH[2n] + xHH[2n + 1]},

xHHH[n] =
1
2
{xHH[2n] − xHH[2n + 1]},

(2.8)

where n = 0. Based on subband decompositions using (2.2), (2.7), and (2.8), data flow of
computing the 2-point subband DCT: CLL,2 and subband DST: CLH,2 for the 8-point DCT is
shown in Figure 1. As one can see, data flow of computing CHL,2 and CHH,2 can be obtained
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in a similar way, and therefore is not shown in Figure 1. All of the 2-point subband DCTs and
DSTs are given by

CLL,2 =
[
TSB DCT,2 TSB DST,2

]
2×2 ·

[
xLLL

xLLH

]

2×1

= TSB DCT,2 · xLLL︸ ︷︷ ︸
ĈLLL,2

+ TSB DST,2 · xLLH︸ ︷︷ ︸
ŜLLH,2

,

CLH,2 =
[
TSB DCT,2 TSB DST,2

]
2×2 ·

[
xLHL

xLHH

]

2×1

= TSB DCT,2 · xLHL︸ ︷︷ ︸
ĈLHL,2

+ TSB DST,2 · xLHH︸ ︷︷ ︸
ŜLHH,2

,

CHL,2 =
[
TSB DCT,2 TSB DST,2

]
2×2 ·

[
xHLL

xHLH

]

2×1

= TSB DCT,2 · xHLL︸ ︷︷ ︸
ĈHLL,2

+ TSB DST,2 · xHLH︸ ︷︷ ︸
ŜHLH,2

,

CHH,2 =
[
TSB DCT,2 TSB DST,2

]
2×2 ·

[
xHHL

xHHH

]

2×1

= TSB DCT,2 · xHHL︸ ︷︷ ︸
ĈHHL,2

+ TSB DST,2 · xHHH︸ ︷︷ ︸
ŜHHH,2

.

(2.9)

Thus, we have

⎡
⎢⎢⎢⎢⎢⎣

CLL,2

CLH,2

CHL,2

CHH,2

⎤
⎥⎥⎥⎥⎥⎦

= R8 · x8, (2.10)

where x8 = [x[0] · · ·x[7]]T is the original signal, and

R8 =
√

2
8
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.11)
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ĈLL,4

CLL,2

CLLL,2

CLLH,2

+

4-points
SB DCT

2-points
SB DCT

2-points
SB DST

xLLL,1

xLLH,1

M2
xLL,2

2-points DCT

Figure 2: Data flow of computing ĈLL,4 and CLL,2 based on subband decomposition.

Similarly, we have the following:

CL,4 =
[
TSB DCT,4 TSB DST,4

]
4×4 ·

[
xLL,2

xLH,2

]

4×1

= TSB DCT,4 · xLL,2︸ ︷︷ ︸
ĈLL,4

+ TSB DST,4 · xLH,2︸ ︷︷ ︸
ŜLH,4

,

CH,4 =
[
TSB DCT,4 TSB DST,4

]
4×4 ·

[
xHL,2

xHH,2

]

4×1

= TSB DCT,4 · xHL,2︸ ︷︷ ︸
ĈHL,4

+ TSB DST,4 · xHH,2︸ ︷︷ ︸
ŜHH,4

.

(2.12)

Figure 2 depicts the relationship between ĈLL,4 and CLL,2, which can be obtained by the
following:

ĈLL,4 = TSB DCT,4 · xLL,2, (2.13)

CLL,2 = T2 · xLL,2, (2.14)

where T2 is the 2 × 2 transform matrix of the conventional 2-point DCT. Hence, (2.13) can be
rewritten as

ĈLL,4 = TSB DCT,4 · T−1
2 · CLL,2 =

⎡
⎢⎢⎢⎢⎢⎣

1.4142 0

0 1.3066

0 0

0 −0.5412

⎤
⎥⎥⎥⎥⎥⎦
· CLL,2. (2.15)

The relationship between ŜLH,4 and CLH,2 shown in Figure 3 is based on the following:

ŜLH,4 = TSB DST,4 · xLH,2,

CLH,2 = T2 · xLH,2.
(2.16)
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Thus, we have

ŜLH,4 = TSB DST,4 · T−1
2 · CLH,2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0

0.5412 0

0 1.4142

1.3066 0

⎤
⎥⎥⎥⎥⎥⎦
· CLH,2. (2.17)

Similarly, based on (2.5) and the following equations:

CL,4 = T4 · xL,4,

CH,4 = T4 · xH,4,
(2.18)

where T4 is the 4 × 4 transform matrix of the conventional 4-point DCTs, we have

ĈL,8 = TSB DCT,8 · xL,4

= TSB DCT,8 · T−1
4 · CL,4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.412 0 0 0

0 1.3870 0 0

0 0 1.3066 0

0 0 0 1.1759

0 0 0 0

0 0 0 −0.7857

0 0 −0.5412 0

0 −0.2759 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· CL,4,

(2.19)

ĈH,8 = TSB DST,8 · xH,4

= TSB DST,8 · T−1
4 · CH,4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0.2549 0 −0.1056 0

0 0.5 0 −0.2071

0.3007 0 0.7259 0

0 0.5412 0 1.3066

0.4500 0 1.0864 0

0 1.2071 0 −0.5

1.2815 0 −0.5308 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· CH,4.

(2.20)
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Figure 4 depicts data flow of computing CL,4 and CH,4 using 4-point subband DCT and DST.
Figure 5 depicts data flow of computing ĈL,8 and CL,4 based on subband decomposition. Data
flow of computing ŜH,8 and CH,4 based on subband decomposition is shown in Figure 6. Data
flow of computing C8 using 8-point subband DCT and DST is shown in Figure 7. In other
words, C8 can be obtained by

C8 = ĈL,8 + ŜH,8. (2.21)

Base on (2.12), (2.15), (2.17), (2.19) and (2.20), we have

C8 = F8 ·
[
CT
LL,2 CT

LH,2 CT
HL,2 CT

HH,2

]T
, (2.22)

where

F8 =
[
K3 K4

]
8×8 ·

[[
K1 K2

]
4×4 0

0
[
K1 K2

]
4×4

]

8×8

, (2.23)

K1 =

⎡
⎢⎢⎢⎢⎢⎣

1.4142 0

0 1.3066

0 0

0 −0.5412

⎤
⎥⎥⎥⎥⎥⎦
, (2.24)

K2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0

0.5412 0

0 1.4142

1.3066 0

⎤
⎥⎥⎥⎥⎥⎦
, (2.25)

K3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.412 0 0 0

0 1.3870 0 0

0 0 1.3066 0

0 0 0 1.1759

0 0 0 0

0 0 0 −0.7857

0 0 −0.5412 0

0 −0.2759 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.26)
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K4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0.2549 0 −0.1056 0

0 0.5 0 −0.2071

0.3007 0 0.7259 0

0 0.5412 0 1.3066

0.4500 0 1.0864 0

0 1.2071 0 −0.5

1.2815 0 −0.5308 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.27)

According to (2.24)–(2.27), we have

F8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0

0 1.8123 0.7507 0 0.3605 0 0 −0.1493

0 0 0 1.8478 0 0.7654 0 0

0 −0.6364 1.5364 0 0.4252 0 0 1.0266

0 0 0 0 0 0 2 0

0 0.4252 −1.0266 0 0.6364 0 0 1.5364

0 0 0 −0.7654 0 1.8478 0 0

0 −0.3605 −0.1493 0 1.8123 0 0 −0.7507

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.28)

Finally, the proposed 8-point DCT computation based on subband decomposition is as
follows:

C8 = F̂8 · R8 · x8, (2.29)

where

F̂8 = 2 ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0.9239 0.3827 0 0 0 0

0 0 −0.3827 0.9239 0 0 0 0

0 0 0 0 0.9062 0.3754 0.1802 −0.0746

0 0 0 0 −0.1802 −0.0746 0.9062 −0.3754

0 0 0 0 −0.3182 0.7682 0.2126 0.5133

0 0 0 0 0.2126 −0.5133 0.3182 0.7682

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.30)
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Figure 8 shows block diagram of the proposed DCT computation; one of the advantages is
that R8 is orthogonal, and all of the submatrices of F̂8 are orthonormal.

2.2. Fast IDCT Computation Based on Subband Decomposition Algorithm

According to (2.29), IDCT can be obtained by

x8 = R−1
8 · F̂

−1
8 · C8, (2.31)

where

R−1
8 =

8√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F̂−1
8 =

1
2
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0.9239 −0.3827 0 0 0 0

0 0 0.3827 0.9239 0 0 0 0

0 0 0 0 0.9062 −0.1802 −0.3182 0.2126

0 0 0 0 0.3754 0.3754 0.7682 −0.5133

0 0 0 0 0.1802 0.1802 0.2126 0.3182

0 0 0 0 −0.0746 −0.0746 0.5133 0.7682

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.32)

As R8 is orthogonal and all of the submatrices of F̂8 are orthonormal, the inverse of R8 and
F̂8 can be obtained easily. In addition, it takes only twenty multiplication operations for both
DCT and IDCT.

3. VLSI Implementation of an Efficient
Linear-Array DCT/IDCT Processor

Based on the proposed approach to fast DCT computation shown in Figure 8, an efficient
architecture for implementing the fast DCT/IDCT processor is thus presented in this section.
Recall that the DCT of a signal, x8, can be efficiently obtained by C8 = F̂8 ·R8 ·x8. Let y8 = R8 ·x8,
then we have C8 = F̂8 · y8. Figure 9 shows the matrix-vector multiplication of R8 · x8, in
which six CSA(3,2)s (carry-save-adder (3,2)) and one CSA (carry-save-adder) [29, 30] are
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ŜLH,4

CLH,2

CLHH,2

CLHL,2

+

4-points
SB DST

2-points
SB DCT

2-points
SB DST

xLHL,1

xLHH,1

M2
xLH,2

2-points DCT

Figure 3: Data flow of computing CLH,2 and ŜLH,4 based on subband decomposition.

ĈLL,4

ŜLH,4

ĈHL,4

ŜHH,4

CL,4

CH,4

+

+

4-point
SB DCT

4-point
SB DST

4-point
SB DCT

4-point
SB DST

xLL,2

xLH,2

xHL,2

xHH,2

M4

M4

xL,4

xH,4

M8

x8

Figure 4: Data flow of computing CL,4 and CH,4 using 4-point subband DCT and DST.

ĈL,8

CL,4

ĈLL,4

ŜLH,4

+

8-point
SB DCT

4-point
SB DCT

4-point
SB DST

xLL,2

xLH,2

M4
xL,4

4-point DCT

Figure 5: Data flow of computing ĈL,8 and CL,4 based on subband decomposition.
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ŜH,8

CH,4

ŜHH,4

ĈHL,4

+

8-point
SB DST

4-point
SB DCT

4-point
SB DST

xHL,2

xHH,2

M4
xH,4

4-point DCT

Figure 6: Data flow of computing ŜH,8 and CH,4 based on subband decomposition.

ŜH,8

C8
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Figure 7: Data flow of computing C8 using 8-point subband DCT and DST.

⎡
⎢⎢⎣

CLL,2
CLH,2
CHL,2
CHH,2

⎤
⎥⎥⎦

R8 =
√

2
8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F̂8 = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0.9239 0.3827 0 0 0 0
0 0 −0.3827 0.9239 0 0 0 0
0 0 0 0 0.9062 0.3754 0.1802 −0.0746
0 0 0 0 −0.1802 −0.0746 0.9062 −0.3754
0 0 0 0 −0.3182 0.7682 0.2126 0.5133
0 0 0 0 0.2126 −0.5133 0.3182 0.7682

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x8
R8 F̂8

C8

Figure 8: Block diagram of the proposed (8-point) fast DCT algorithm based on subband decomposition.
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Sum

CSA

CSA (3,2)

CSA (3,2)

CSA (3,2) CSA (3,2)

CSA (3,2) CSA (3,2)

X7 X6 X5 X4 X3 X2 X1 X0

Figure 9: Fast adder (FA) for the matrix-vector multiplication of R8 ·x8. (Note: The width of buses is 32-bit.)

Z3 Y3 Z2 Y2 Z1 Y1 Z0 Y0

K3 K2 K1 K0

Multiplier Multiplier Multiplier Multiplier

Figure 10: Multiplier array (MA) consisted of four multipliers. (Note: The width of buses is 32-bit.)

utilized, and therefore four simple-addition time and one CSA computation time is required
to compute each element of y8. Figures 10 and 11 show the Multiplier array (MA) consisted
of four multipliers and the CSA array (CA) consisted of eight CSAs, respectively, which
are used to compute the matrix-vector computation of F̂8 · y8; thus, only one multiplication
time with one CSA computation time is needed to compute each element of C8, that is, the
DCT coefficient. Table 3 depicts data flow of the proposed fast DCT processor with pipelined
linear-array architecture [31]. As a result, only five multiplication cycles with five addition
cycles are needed to compute 8-point DCT. In general, for N-point DCT, the computation time
and hardware complexity of the proposed fast DCT processor are O(5N/8) and O(N/2),
respectively.
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CSA CSA CSA CSA CSA CSA CSA CSA

Latch Latch Latch Latch Latch Latch Latch Latch

A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 A0 B0

S7 S6 S5 S4 S3 S2 S1 S0

Figure 11: CSA array (CA) consisted of eight CSAs. (Note: The width of buses is 32-bit.)

Sum

CSA

CSA (3,2)

CSA (3,2)

K3 K2 K1 K0

Figure 12: Full CSA(4,2) consisted of two CSA(3,2) and one CSA.

Table 4 shows data flow of the proposed fast IDCT algorithm [31], where C8 is the
DCT of an 8-point signal x8; z8 = F̂−1

8 · C8, and x8 = R−1
8 · z8. Figure 12 shows the so-called

full CSA(4,2) (FCSA(4,2)) consisted of two CSA(3,2) and one CSA for the computation of z8

[29, 30]. It is noted that the CSA array consisted of eight CSAs shown in Figure 11 can also be
used for the computation of x8. As shown in Table 4 , only five multiplication cycles with three
addition cycles are needed to compute 8-point IDCT. As one can see, the computation time
and hardware complexity of the proposed fast IDCT architecture are the same as that of the
proposed fast DCT architecture. In addition, only 16-word RAM/registers and 10-word ROM
are required to store the intermediate results and constants, respectively; and the latency time
is only 5-multiplication-cycle.

Figure 13 shows system block diagram of the proposed fast DCT/IDCT architecture.
The platform for architecture development and verification has been designed as well as
implemented in order to evaluate the development cost. Figure 14 depicts block diagram
of the platform, in which the 8051 microcontroller reads data from PC via DMA channel and
writes the result back to PC by USB 2.0 bus; the Xilinx XC2V6000 FPGA chip implements the
proposed DCT processor [32]. The architecture development and verification board shown
in Figure 15 are to verify and evaluate the proposed DCT/IDCT architecture. Moreover, the
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x[n]
(DCT) FA MA X XFCSA (4, 2) CA

C[n]
(DCT)
x[n]

(IDCT)

C[n]
(IDCT)

Figure 13: System block diagram of the proposed DCT/IDCT architecture (FA: fast-adder-array, MA:
Multiplier array, FCSA(4,2): full CSA(4,2), and CA: CSA- array).
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Figure 14: Block diagram of the architecture development and verification platform for the proposed
DCT/IDCT processor.
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Figure 15: The architecture development and verification board.
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Figure 16: Cell-based design flow.

Figure 17: The layout view of the proposed 8-point DCT/IDCT processor with 32-bit operand.

reusable intellectual property (IP) DCT/IDCT core has also been implemented in Matlab for
functional simulations. The hardware code written in Verilog is running on a workstation
with the ModelSim simulation tool and Xilinx ISE smart compiler. In addition, the FPGA
platform shown in Figure 14 is to verify and evaluate the proposed DCT architecture. It is
noted that the throughput can be improved by using the proposed architecture while the
computation accuracy is the same as that obtained by using the conventional one with the
same word length.

The SoC is synthesized by the TSMC 0.18μm 1P6M CMOS cell libraries [33]. The
physical circuit is synthesized by the Astro tool. The circuit is evaluated by DRC, LVS,
and PVS [34]. Figure 16 shows the cell-based design flow. The layout view of the 8-point
DCT/IDCT processor with 32-bit operand is shown in Figure 17. The core areas are obtained
by the Synopsys design analyzer. The power consumptions are obtained by the PrimePower.
The reported core size of the implemented the proposed processor is 1520 × 1520μm2 and
the power dissipation is 102.2 mW at 1.8 V with clock rate of 1 GHz. Thus, the proposed
programmable DCT/IDCT architecture is able to improve the power consumption and
computation speed significantly. All the control signals are internally generated on-chip. The
proposed DCT/IDCT processor provides both high-throughput and low gate count.

The proposed reconfigurable DCT/IDCT processor used to compute 8/16/32/64-
point DCT/IDCT on FPGA are composed mainly of the 8-point DCT/IDCT core; the
computation complexity using a single 8-point DCT/IDCT core is O(5N/8) for extending
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Table 1: Comparisons between the proposed architecture and the conventional architectures.

8-point
DCT/IDCT

The conventional architectures
The conventional
pipelined
architectures

The proposed high-
efficient architecture

The single-processor
architectures [9–11]

The parallel
architectures with
single memory-bank
[15–19]

The pipelined
architectures with
single memory-bank
[1, 9–14]

This work(Sung,
Shieh and Hsin,
2010)

Processors 1 8 5 (CORDIC) —
Real
multipliers 2 16 0 4

Real adders 3 18 18 26
RAM
(Registers) 64 64 64 16

ROM 6 6 6 10
Hardware
complexity O(1) O(N − log2N + 1) O(N − log2N) O(N/2)

Computation
complexity O(N2) O(2N) O(N) O(5N/8)

Latency 64 16 8 5
Pipelinability no no yes yes
Scalability poor poor good better
Power
consumption poor poor good better

Table 2: Comparisons of the proposed architecture and other commonly used architectures.

8-point Lee et al.
[20]

Chang and
Wang [21]

Hsiao and
Shiue [22]

Hsiao and
Tseng [23] Hou [24] Sung

[1, 9–14] This work

DCT/IDCT DCT/IDCT DCT/IDCT DCT DCT/IDCT DCT/IDCT DCT/IDCT DCT/IDCT
Real
multipliers 28 64 — — — — 4

CORDIC
processors — — — — 3 5 —

Real adders 134 88 9 10 14 18 26
Complex
multipliers — — 3 3 — —

Delay
elements
(Words)

256 114 — 171 — — —

Memory
(Words) ∼384 ∼200 ∼370 — — 70 26

Hardware
complexity O(N logN) O(N2) O(logN) O(logN) O(logN) O(N −

logN) O(N/2)

Computation
complexity O(logN) O(N) O(N logN) O(N logN) O(N logN) O(N) O(5N/8)

Pipelinability no no no no yes yes yes
Scalability poor poor good good good good better
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Table 3: Data flow of the proposed fast DCT processor with pipelined linear-array architecture (Add.-cycle:
addition-cycle and Mul.-cycle: multiplication-cycle).

Processor FA MA CA

Add.-cycle 1 y[0] — C[0]

Add.-cycle 2 y[1] — C[1]

Add.-cycle 3 y[2] — —

Mul.-cycle 1 y[3] y[2] · 0.9239, y[2] · (−0.3827) —
y[3] · 0.3827, y[3] · (0.9239)

Add.-cycle 4 y[4] — C[2], C[3]

Mul.-cycle 2 y[5] y[4] · 0.9062, y[4] · (−0.1802), y[4] · (−0.3182), y[4] · 0.2126 —

Mul.-cycle 3 y[6] y[5] · 0.3754, y[5] · (−0.0746), y[5] · 0.7682, y[5] · 0.5133 —

Mul.-cycle 4 y[7] y[6] · 0.1802, y[6] · 0.9062, y[6] · 0.2126, y[6] · 0.3182 —

Mul.-cycle 5 — y[7] · (−0.0746), y[7] · (−0.3754), y[7] · 0.5133, y[7] · 0.7682 —

Add.-cycle 5 — C[4], C[5], C[6], C[7]

Table 4: Data flow of the proposed fast IDCT processor with pipelined linear-array architecture (Add.-
cycle: addition-cycle and Mul.-cycle: multiplication-cycle).

Processor MA FCSA(4,2) CA

Mul.-cycle 1 C[2] · 0.9239, C[3] · (−0.3827)
C[2] · 0.3827, C[3] · 0.92393

z[0], z[1] —

Mul.-cycle 2 C[4] · 0.9062, C[5] · (−0.1802), C[6] · (−0.3182),
C[7] · 0.2126

z[2], z[3] C 0 + C 1 = C 01

Mul.-cycle 3 C[4] · 0.3754, C[5] · 0.3754, C[6] · 0.7682,
C[7] · (−0.5133)

z[4] C 01 + C 2 = C 02

Mul.-cycle 4 C[4] · (−0.3182), C[5] · 0.7682, C[6] · 0.2126,
C[7] · 0.5144

z[5] C 02 + C 3 = C 03

Mul.-cycle 5 C[4] · 0.2126, C[5] · (−0.5133),
C[6] · 0.3182, C[7] · 0.7682

z[6] C 03 + C 4 = C 04

Add.-cycle 1 — z[7] C 04 + C 5 = C 05

Add.-cycle 2 — — C 05 + C 6 = C 06

Add.-cycle 3 — —
C 06 + C 7 = C 07

x[0], x[1], x[2], x[3],
x[4], x[5], x[6], x[7]

N-point DCT/IDCT computation. Note that the transform matrices used for the proposed
linear array with 8-point DCT core can be extended to a variety of different sizes. Thus, the
proposed architecture is highly scalable.
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The linear-array architecture with use of hardware resources has been proposed for
trade offs of performance, chip area and power consumption. As a result, it has the advantage
of balancing the need for power saving with computation speed.

4. Conclusion

By taking advantage of subband decomposition, a high-efficiency architecture with
pipelined structures is proposed for fast DCT/IDCT computation. Specifically, the proposed
DCT/IDCT architecture not only improves throughput by more than two times that of the
conventional architectures [9–11, 15–19], but also saves memory space significantly [1, 9–
22]. Table 1 shows comparisons between the proposed architecture and the conventional
architectures [1, 9–14] (with dual memory banks), and [15–19]. Table 2 shows comparisons
with other commonly used architectures [1, 12–14, 20–24]. For 8 × 8 DCT, the algorithm
proposed by Feig requires 54 multiplications and 462 additions [27]; the proposed method
requires 25 multiplications and 100 additions. Thus, the performance of this work is superior
to that of the Feig algorithm. In addition, the proposed fast DCT/IDCT architecture is highly
regular, scalable, and flexible. The DCT/IDCT processor designed by using the portable
and reusable Verilog is a reusable IP, which can be implemented in various processes;
combined with efficient use of hardware resources for tradeoffs of performance, area and
power consumption; and therefore is much suited to the JPEG and MPEG-1/2 applications.
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