52 research outputs found

    A General Theory of Equivariant CNNs on Homogeneous Spaces

    Get PDF
    We present a general theory of Group equivariant Convolutional Neural Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature maps in these networks represent fields on a homogeneous base space, and layers are equivariant maps between spaces of fields. The theory enables a systematic classification of all existing G-CNNs in terms of their symmetry group, base space, and field type. We also consider a fundamental question: what is the most general kind of equivariant linear map between feature spaces (fields) of given types? Following Mackey, we show that such maps correspond one-to-one with convolutions using equivariant kernels, and characterize the space of such kernels

    Inability of spatial transformations of CNN feature maps to support invariant recognition

    Full text link
    A large number of deep learning architectures use spatial transformations of CNN feature maps or filters to better deal with variability in object appearance caused by natural image transformations. In this paper, we prove that spatial transformations of CNN feature maps cannot align the feature maps of a transformed image to match those of its original, for general affine transformations, unless the extracted features are themselves invariant. Our proof is based on elementary analysis for both the single- and multi-layer network case. The results imply that methods based on spatial transformations of CNN feature maps or filters cannot replace image alignment of the input and cannot enable invariant recognition for general affine transformations, specifically not for scaling transformations or shear transformations. For rotations and reflections, spatially transforming feature maps or filters can enable invariance but only for networks with learnt or hardcoded rotation- or reflection-invariant featuresComment: 22 pages, 3 figure

    Learning Irreducible Representations of Noncommutative Lie Groups

    Full text link
    Recent work has constructed neural networks that are equivariant to continuous symmetry groups such as 2D and 3D rotations. This is accomplished using explicit group representations to derive the equivariant kernels and nonlinearities. We present two contributions motivated by frontier applications of equivariance beyond rotations and translations. First, we relax the requirement for explicit Lie group representations, presenting a novel algorithm that finds irreducible representations of noncommutative Lie groups given only the structure constants of the associated Lie algebra. Second, we demonstrate that Lorentz-equivariance is a useful prior for object-tracking tasks and construct the first object-tracking model equivariant to the Poincar\'e group.Comment: 15 pages, 5 figure

    Quantum finite automata and quiver algebras

    Get PDF
    National Science FoundationPublished versio
    • …
    corecore