We present a general theory of Group equivariant Convolutional Neural
Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere.
Feature maps in these networks represent fields on a homogeneous base space,
and layers are equivariant maps between spaces of fields. The theory enables a
systematic classification of all existing G-CNNs in terms of their symmetry
group, base space, and field type. We also consider a fundamental question:
what is the most general kind of equivariant linear map between feature spaces
(fields) of given types? Following Mackey, we show that such maps correspond
one-to-one with convolutions using equivariant kernels, and characterize the
space of such kernels