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Abstract

We present a general theory of Group equivariant Convolutional Neural Networks
(G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature
maps in these networks represent fields on a homogeneous base space, and layers
are equivariant maps between spaces of fields. The theory enables a systematic
classification of all existing G-CNNs in terms of their symmetry group, base
space, and field type. We also consider a fundamental question: what is the most
general kind of equivariant linear map between feature spaces (fields) of given
types? Following Mackey, we show that such maps correspond one-to-one with
convolutions using equivariant kernels, and characterize the space of such kernels.

1 Introduction

Through the use of convolution layers, Convolutional Neural Networks (CNNs) have a built-in
understanding of locality and translational symmetry that is inherent in many learning problems.
Because convolutions are translation equivariant (a shift of the input leads to a shift of the output),
convolution layers preserve the translation symmetry. This is important, because it means that further
layers of the network can also exploit the symmetry.

Motivated by the success of CNNs, many researchers have worked on generalizations, leading to a
growing body of work on Group equivariant CNNs (G-CNNs) for signals on Euclidean space and
the sphere [1–7] as well as graphs [8, 9]. With the proliferation of equivariant network layers, it has
become difficult to see the relations between the various approaches. Furthermore, when faced with
a new modality (diffusion tensor MRI, say), it may not be immediately obvious how to create an
equivariant network for it, or whether a given kind of equivariant layer is the most general one.

In this paper we present a general theory of homogeneous G-CNNs. Feature spaces are modelled
as spaces of fields on a homogeneous space. They are characterized by a group of symmetries
G, a subgroup H ≤ G that together with G determines a homogeneous space B ≃ G/H , and a
representation ρ of H that determines the type of field (vector, tensor, etc.). Related work is classified
by (G,H, ρ). The main theorems say that equivariant linear maps between fields over B can be
written as convolutions with an equivariant kernel, and that the space of equivariant kernels can be
realized in three equivalent ways. We will assume some familiarity with groups, cosets, quotients,
representations and related notions (see Appendix A).

This paper does not contain truly new mathematics (in the sense that a professional mathematician
with expertise in the relevant subjects would not be surprised by our results), but instead provides
a new formalism for the study of equivariant convolutional networks. This formalism turns out to
be a remarkably good fit for describing real-world G-CNNs. Moreover, by describing G-CNNs in a
language used throughout modern physics and mathematics (fields, fiber bundles, etc.), it becomes
possible to apply knowledge gained over many decades in those domains to machine learning.

*Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



1.1 Overview of the Theory

This paper has two main parts. First, in Sec. 2, we introduce a mathematical model for convolutional
feature spaces. The basic idea is that feature maps represent fields over a homogeneous space. As it
turns out, defining the notion of a field is quite a bit of work. So in order to motivate the introduction
of each of the required concepts, we will in this section provide an overview of the relevant concepts
and their relations, using the example of a Spherical CNN with vector field feature maps.

The second part of this paper (Section 3) is about maps between the feature spaces. We require these
to be equivariant, and focus in particular on the linear layers. The main theorems (3.1–3.4) show that
linear equivariant maps between the feature spaces are in one-to-one correspondence with equivariant
convolution kernels (i.e. convolution is all you need), and that the space of equivariant kernels can be
realized as a space of matrix-valued functions on a group, coset space, or double coset space, subject
to linear constraints.

In order to specify a convolutional feature space, we need to specify two things: a homogeneous
space B over which the field is defined, and the type of field (e.g. vector field, tensor field, etc.). A
homogeneous space for a group G is a space B where for any two x, y ∈ B there is a transformation
g ∈ G that relates them via gx = y. Here we consider the example of a vector field on the sphere
B = S2 with symmetry group G = SO(3), the group of 3D rotations. The sphere is a homogeneous
space for SO(3) because we can map any point on the sphere to any other via a rotation.

Formally, a field is defined as a section of a vector bundle associated to a principal bundle. In order
to understand what this means, we must first know what a fiber bundle is (Sec. 2.1), and understand
how the group G can be viewed as a principal bundle (Sec. 2.2). Briefly, a fiber bundle formalizes the
idea of parameterizing a set of identical spaces called fibers by another space called the base space.

Figure 1: SO(3) as
a principal SO(2)
bundle over S2.

The first way in which fiber bundles play a role in the theory is that the action
of G on B allows us to think of G as a “bundle of groups” or principal bundle.
Roughly speaking, this works as follows: if we fix an origin o ∈ B, we
can consider the stabilizer subgroup H ≤ G of transformations that leave o
unchanged: H = {g ∈ G | go = o}. For example, on the sphere the stabilizer
is SO(2), the group of rotations around the axis through o (e.g. the north pole).
As we will see in Section 2.2, this allows us to view G as a bundle with base
space B ≃ G/H and a fiber H . This is shown for the sphere in Fig. 1 (cartoon).
In this case, we can think of SO(3) as a bundle of circles (H = SO(2)) over
the sphere, which itself is the quotient S2 ≃ SO(3)/ SO(2).

Figure 2: Tangent
bundle of S2.

To define the associated bundle (Sec. 2.3) we take the principal bundle G and
replace the fiber H by a vector space V on which H acts linearly via a group
representation ρ. This yields a vector bundle with the same base space B and
a new fiber V . For example, the tangent bundle of S2 (Fig. 2) is obtained by
replacing the circular SO(2) fibers in Fig. 1 by 2D planes. Under the action
of H = SO(2), a tangent vector at the north pole is rotated (even though
the north pole itself is fixed by SO(2)), so we let ρ(h) be a 2 × 2 rotation
matrix. In a general convolutional feature space with n channels, V would be
an n-dimensional vector space. Finally, fields are defined as sections of this

bundle, i.e. an assignment to each point x of an element in the fiber over x (see Fig. 3).

Figure 3: Φ maps scalar fields to vector fields,
and is equivariant to the induced representation

πi = Ind
SO(3)
SO(2) ρi.

Having defined the feature space, we need to
specify how it transforms (e.g. say how a vector
field on S2 is rotated). The natural way to trans-
form a ρ-field is via the induced representation

π = IndGH ρ of G (Section 2.4), which combines
the action of G on the base space B and the ac-
tion of ρ on the fiber V to produce an action on
sections of the associated bundle (See Figure 3).
Finally, having defined the feature spaces and
their transformation laws, we can study equiv-
ariant linear maps between them (Section 3). In
Sec. 4–6 we cover implementation aspects, re-
lated work, and concrete examples, respectively.
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2 Convolutional Feature Spaces

2.1 Fiber Bundles

Intuitively, a fiber bundle is a parameterization of a set of isomorphic spaces (the fibers) by another
space (the base). For example, we can think of a feature space in a classical CNN as a set of vector
spaces Vx ≃ R

n (n being the number of channels), one per position x in the plane [2]. This is an
example of a trivial bundle, because it is simply the Cartesian product of the plane and R

n. General
fiber bundles are only locally trivial, meaning that they locally look like a product while having a
different global topological structure.

Figure 4: Cylinder and
Möbius strip

The simplest example of a non-trivial bundle is the Mobius strip, which
locally looks like a product of the circle (the base) with a line segment
(the fiber), but is globally distinct from a cylinder (see Fig. 4). A more
practically relevant example is given by the tangent bundle of the sphere
(Fig. 2), which has as base space S2 and fibers that look like R

2, but is
topologically distinct from S2 × R

2 as a bundle.

Formally, a bundle consists of topological spaces E (total space), B (base space), F (canonical
fiber), and a projection map p : E → B, satisfying a local triviality condition. Basically, this
condition says that locally, the bundle looks like a product U × F of a piece U ⊆ B of the base
space, and F the canonical fiber. Formally, the condition is that for every a ∈ E, there is an
open neighbourhood U ⊆ B of p(a) and a homeomorphism ϕ : p−1(U) → U × F so that the

map p−1(U)
ϕ
−→ U × F

proj1
−−−→ U agrees with p : p−1(U) → U (where proj1(u, f) = u). The

homeomorphism ϕ is said to locally trivialize the bundle above the trivializing neighbourhood U .

Considering that for any x ∈ U the preimage proj1
−1(x) is F , and ϕ is a homeomorphism, we

see that the preimage Fx = p−1(x) for x ∈ B is also homeomorphic to F . Thus, we call Fx the
fiber over x, and see that all fibers are homeomorphic. Knowing this, we can denote a bundle by its
projection map p : E → B, leaving the canonical fiber F implicit.

Various more refined notions of fiber bundle exist, each corresponding to a different kind of fiber. In
this paper we will work with principal bundles (bundles of groups) and vector bundles (bundles of
vector spaces).

A section s of a fiber bundle is an assignment to each x ∈ B of an element s(x) ∈ Fx. Formally, it is
a map s : B → E that satisfies p◦s = idB . If the bundle is trivial, a section is equivalent to a function
f : B → F , but for a non-trivial bundle we cannot continuously align all the fibers simultaneously,
and so we must keep each s(x) in its own fiber Fx. Nevertheless, on a trivializing neighbourhood
U ⊆ B, we can describe the section as a function sU : U → F , by setting ϕ(s(x)) = (x, sU (x)).

2.2 G as a Principal H-Bundle

Recall (Sec. 1.1) that with every feature space of a G-CNN is associated a homogeneous space
B (e.g. the sphere, projective space, hyperbolic space, Grassmann & Stiefel manifolds, etc.), and
recall further that such a space has a stabilizer subgroup H = {g ∈ G | go = o} (this group being
independent of origin o up to isomorphism). As discussed in Appendix A, the cosets gH of H (e.g.
the circles in Fig. 1) partition G, and the set of cosets, denoted G/H (e.g. the sphere in Fig. 1), can
be identified with B (up to a choice of origin).

It is this partitioning of G into cosets that induces a special kind of bundle structure on G. The
projection map that defines the bundle structure sends an element g ∈ G to the coset gH it belongs
to. Thus, it is a map p : G→ G/H , and we have a bundle with total space G, base space G/H and
canonical fiber H . Intuitively, this allows us to think of G as a base space G/H with a copy of H
attached at each point x ∈ G/H . The copies of H are glued together in a potentially twisted manner.

This bundle is called a principal H-bundle, because we have a transitive and fixed-point free group
action G×H → G that preserves the fibers. This action is given by right multiplication, g 7→ gh,
which preserves fibers because p(gh) = ghH = gH = p(g). That is, by right-multiplying an
element g ∈ G by h ∈ H , we get an element gh that is in general different from g but is still within
the same coset (i.e. fiber). That the action is transitive and free on cosets follows immediately from
the group axioms.
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One can think of a principal bundle as a bundle of generalized frames or gauges relative to which
geometrical quantities can be expressed numerically. Under this interpretation the fiber at x is a space
of generalized frames, and the action by H is a change of frame. For instance, each point on the
circles in Fig. 1 can be identified with a right-handed orthogonal frame, and the action of SO(2)
corresponds to a rotation of this frame. The group H may also include internal symmetries, such as
color space rotations, which do not relate in any way to the spatial dimensions of B.

In order to numerically represent a field on some neighbourhood U ⊆ G/H , we need to choose a
frame for each x ∈ U in a continuous manner. This is formalized as a section of the principal bundle.
Recall that a section of p : G→ G/H is a map s : G/H → G that satisfies p ◦ s = idG/H . Since

p projects g to its coset gH , the section chooses a representative s(gH) ∈ gH for each coset gH .
Non-trivial principal bundles do not have continuous global sections, but we can always use a local
section on U ⊆ G/H , and represent a field on overlapping local patches covering G/H .

Aside from the right action of H , which turns G into a principal H-bundle, we also have a left
action of G on itself, as well as an action of G on the base space G/H . In general, the action of
G on G/H does not agree with the action on G, in that gs(x) 6= s(gx), because the action on G
includes a twist of the fiber. This twist is described by the function h : G/H ×G→ H defined by
gs(x) = s(gx)h(x, g) (whenever both s(x) and s(gx) are defined). This function will be used in
various calculations below. We note for the interested reader that h satisfies the cocycle condition
h(x, g1g2) = h(g2x, g1)h(x, g2).

2.3 The Associated Vector Bundle

Feature spaces are defined as spaces of sections of the associated vector bundle, which we will now
define. In physics, a section of an associated bundle is simply called a field.

To define the associated vector bundle, we start with the principal H-bundle G
p
−→ G/H , and

essentially replace the fibers (cosets) by vector spaces V . The space V ≃ R
n carries a group

representation ρ of H that describes the transformation behaviour of the feature vectors in V under a
change of frame. These features could for instance transform as a scalar, a vector, a tensor, or some
other geometrical quantity [2, 6, 8]. Figure 3 shows an example of a vector field (ρ(h) being a 2× 2
rotation matrix in this case) and a scalar field (ρ(h) = 1).

The first step in constructing the associated vector bundle is to take the product G× V . In the context
of representation learning, we can think of an element (g, v) of G× V as a feature vector v ∈ V and
an associated pose variable g ∈ G that describes how the feature detector was steered to obtain v.
For instance, in a Spherical CNN [10] one would rotate a filter bank by g ∈ SO(3) and match it with
the input to obtain v. If we apply a transformation h ∈ H to g and simultaneously apply its inverse
to v, we get an equivalent element (gh, ρ(h−1)v). In a Spherical CNN, this would correspond to a
change in orientation of the filters by h ∈ SO(2).

So in order to create the associated bundle, we take the quotient of the product G × V by this
action: A = G ×ρ V = (G × V )/H . In other words, the elements of A are orbits, defined as

[g, v] = {(gh, ρ(h−1)v) | h ∈ H}. The projection pA : A → G/H is defined as pA([g, v]) = gH .
One may check that this is well defined, i.e. independent of the orbit representative g of [g, v] =
[gh, ρ(h−1)v]. Thus, the associated bundle has base G/H and fiber V , meaning that locally it looks
like G/H × V . We note that the associated bundle construction works for any principal H-bundle,
nog just p : G→ G/H , which suggests a direction for further generalization [11].

A field (“stack of feature maps”) is a section of the associated bundle, meaning that it is a map
s : G/H → A such that πρ ◦ s = idG/H . We will refer to the space of sections of the associated
vector bundle as I. Concretely, we have two ways to encode a section: as functions f : G → V
subject to a constraint, and as local functions from U ⊆ G/H to V . We will now define both.

2.3.1 Sections as Mackey Functions

The construction of the associated bundle as a product G × V subject to an equivalence relation
suggests a way to describe sections concretely: a section can be represented by a function f : G→ V
subject to the equivariance condition

f(gh) = ρ(h−1)f(g). (1)
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Such functions are called Mackey functions. They provide a redundant encoding of a section of A,
by encoding the value of the section relative to any choice of frame / section of the principal bundle
simultaneously, with the equivariance constraint ensuring consistency.

A linear combination of Mackey functions is a Mackey function, so they form a vector space, which we
will refer to as IG. Mackey functions are easy to work with because they allow a concrete and global
description of a field, but their redundancy makes them unsuitable for computer implementation.

2.3.2 Local Sections as Functions on G/H

The associated bundle has base G/H and fiber V , so locally, we can describe a section as an
unconstrained function f : U → V where U ⊆ G/H is a trivializing neighbourhood (see Sec. 2.1).
We refer to the space of such sections as IC . Given a local section f ∈ IC , we can encode it as a
Mackey function through the following lifting isomorphism Λ : IC → IG:

[Λf ](g) = ρ(h(g)−1)f(gH),

[Λ−1f ′](x) = f ′(s(x)),
(2)

where h(g) = h(H, g) = s(gH)−1g ∈ H and s(x) ∈ G is a coset representative for x ∈ G/H .
This map is analogous to the lifting defined by [12] for scalar fields (i.e. ρ(h) = I), and can be
defined more generally for any principal / associated bundle [13].

2.4 The Induced Representation

The induced representation π = IndGH ρ describes the action of G on fields. In IG, it is defined as:

[πG(g)f ](k) = f(g−1k). (3)

In IC , we can define the induced representation πC on a local neighbourhood U as

[πC(g)f ](x) = ρ(h(g−1, x)−1)f(g−1x). (4)

Here we have assumed that h is defined at (g−1, x). If it is not, one would need to
change to a different section of G → G/H . One may verify, using the composition
law for h (Sec. 2.2), that Eq. 4 does indeed define a representation of G. Moreover,
one may verify that πG(g) ◦ Λ = Λ ◦ πC(g), i.e. they define isomorphic representations.

f(x) f(g−1x) ρ(g)f(g−1x)

Figure 5: The rotation of a planar vector
field in two steps: moving each vector to
its new position without changing its ori-
entation, and then rotating the vectors.

We can interpret Eq. 4 as follows. To transform a field,
we move the fiber at g−1x to x, and we apply a trans-
formation to the fiber itself using ρ. This is visualized
in Fig. 5 for a planar vector field. Some other exam-
ples include an RGB image (ρ(h) = I3), a field of wind
directions on earth (ρ(h) a 2×2 rotation matrix), a diffu-
sion tensor MRI image (ρ(h) a representation of SO(3)
acting on 2-tensors), a regular G-CNN on Z

3 [14, 15]
(ρ a regular representation of H).

3 Equivariant Maps and Convolutions

Each feature space in a G-CNN is defined as the space of sections of some associated vector
bundle, defined by a choice of base G/H and representation ρ of H that describes how the fibers
transform. A layer in a G-CNN is a map between these feature spaces that is equivariant to the
induced representations acting on them. In this section we will show that equivariant linear maps can
always be written as a convolution-like operation using an equivariant kernel. We will first derive this
result for the induced representation realized in the space IG of Mackey functions, and then convert
the result to local sections of the associated vector bundle in Section 3.2. We will assume that G is
locally compact and unimodular.

Consider adjacent feature spaces i = 1, 2 with a representation (ρi, Vi) of Hi ≤ G. Let πi = IndGHi
ρi

be the representation acting on IiG. A bounded linear operator I1G → I
2
G can be written as

[κ · f ](g) =

∫
G

κ(g, g′)f(g′)dg′, (5)
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using a two-argument linear operator-valued kernel κ : G×G→ Hom(V1, V2), where Hom(V1, V2)
denotes the space of linear maps V1 → V2. Choosing bases, we get a matrix-valued kernel.

We are interested in the space of equivariant linear maps between induced representations, defined
as H = HomG(I

1, I2) = {Φ ∈ Hom(I1, I2) |Φπ1(g) = π2(g)Φ, ∀g ∈ G}. In order for Eq. 5 to
define an equivariant map Φ ∈ H, the kernel κ must satisfy a constraint. By (partially) resolving this
constraint, we will show that Eq. 5 can always be written as a cross-correlation1

Theorem 3.1. (convolution is all you need) An equivariant map Φ ∈ H can always be written as a
convolution-like integral.

Proof. Since we are only interested in equivariant maps, we get a constraint on κ. For all u, g ∈ G:

[κ · [π1(u)f ]](g) = [π2(u)[κ · f ]](g)

⇔

∫
G

κ(g, g′)f(u−1g′)dg′ =

∫
G

κ(u−1g, g′)f(g′)dg′

⇔

∫
G

κ(g, ug′)f(g′)dg′ =

∫
G

κ(u−1g, g′)f(g′)dg′

⇔ κ(g, ug′) = κ(u−1g, g′)

⇔ κ(ug, ug′) = κ(g, g′)

(6)

Hence, without loss of generality, we can define the two-argument kernel κ(·, ·) in terms of a
one-argument kernel: κ(g−1g′) ≡ κ(e, g−1g′) = κ(ge, gg−1g′) = κ(g, g′).

The application of κ to f thus reduces to a cross-correlation:

[κ · f ](g) =

∫
G

κ(g, g′)f(g′)dg′ =

∫
G

κ(g−1g′)f(g′)dg′ = [κ ⋆ f ](g). (7)

3.1 The Space of Equivariant Kernels

The constraint Eq. 6 implies a constraint on the one-argument kernel κ. The space of admissible
kernels is in one-to-one correspondence with the space of equivariant maps. Here we give three
different characterizations of this space of kernels. Detailed proofs can be found in Appendix B.

Theorem 3.2. H is isomorphic to the space of bi-equivariant kernels on G, defined as:

KG = {κ : G→ Hom(V1, V2) |κ(h2gh1) = ρ2(h2)κ(g)ρ1(h1),

∀g ∈ G, h1 ∈ H1, h2 ∈ H2}.
(8)

Proof. It is easily verified (see supp. mat.) that right equivariance follows from the fact that f ∈ I1G
is a Mackey function, and left equivariance follows from the requirement that κ ⋆ f ∈ I2G should be a
Mackey function. The isomorphism is given by ΓG : KG → H defined as [ΓGκ]f = κ ⋆ f .

The analogous result for the two argument kernel is that κ(gh2, g
′h1) should be equal to

ρ2(h
−1
2 )κ(g, g′)ρ1(h1) for g, g′ ∈ G, h1 ∈ H1, h2 ∈ H2. This has the following interesting in-

terpretation: κ is a section of a certain associated bundle. We define a right-action of H1 ×H2 on
G×G by setting (g, g′)·(h1, h2) = (gh1, g

′h2) and a representation ρ12 of H1×H2 on Hom(V1, V2)
by setting ρ12(h1, h2)Ψ = ρ2(h2)Ψρ1(h

−1
1 ) for Ψ ∈ Hom(V1, V2). Then the constraint on κ(·, ·)

can be written as κ((g, g′)·(h1, h2)) = ρ12((h1, h2)
−1)κ((g, g′)). We recognize this as the condition

of being a Mackey function (Eq. 1) for the bundle (G×G)×ρ12
Hom(V1, V2).

There is another another way to characterize the space of equivariant kernels:

Theorem 3.3. H is isomorphic to the space of left-equivariant kernels on G/H1, defined as:

KC = {←−κ : G/H1 → Hom(V1, V2) |
←−κ (h2x) = ρ2(h2)

←−κ (x)ρ1(h1(x, h2)
−1),

∀h2 ∈ H2, x ∈ G/H1}
(9)

1As in most of the CNN literature, we will not be precise about distinguishing convolution and correlation.
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Proof. using the decomposition g = s(gH1)h1(g) (see Appendix A), we can define

κ(g) = κ(s(gH1)h1(g)) = κ(s(gH1)) ρ1(h1(g)) ≡
←−κ (gH1)ρ1(h1(g)), (10)

This defines the lifting isomorphism for kernels, ΛK : KC → KG. It is easy to verify that when
defined in this way, κ satisfies right H1-equivariance.

We still have the left H2-equivariance constraint from Eq. 8, which translates to←−κ as follows (details
in supp. mat.). For g ∈ G, h2 ∈ H2 and x ∈ G/H1,

κ(h2g) = ρ2(h2)κ(g)⇔
←−κ (h2x) = ρ2(h2)

←−κ (x)ρ1(h1(x, h2)
−1). (11)

Theorem 3.4. H is isomorphic to the space of H
γ(x)H1

2 -equivariant kernels on H2\G/H1:

KD = {κ̄ : H2\G/H1 → Hom(V1, V2) | κ̄(x) = ρ2(h)κ̄(x)ρ
x
1(h)

−1,

∀x ∈ H2\G/H1, h ∈ H
γ(x)H1

2 },
(12)

Where γ : H2\G/H1 → G is a choice of double coset representatives, and ρx1 is a representation of

the stabilizer H
γ(x)H1

2 = {h ∈ H2 |hγ(x)H1 = γ(x)H1} ≤ H1, defined as

ρx1(h) = ρ1(h1(γ(x)H1, h)) = ρ1(γ(x)
−1hγ(x)), (13)

Proof. In supplementary material. For examples, see Section 6.

3.2 Local Sections on G/H

We have seen that an equivariant map between spaces of Mackey functions can always be realized as
a cross-correlation on G, and we have studied the properties of the kernel, which can be encoded as
a kernel on G or G/H1 or H2\G/H1, subject to the appropriate constraints. When implementing
a G-CNN, it would be wasteful to use a Mackey function on G, so we need to understand what it
means for fields realized by local functions f : U → V for U ⊆ G/H1. This is done by sandwiching
the cross-correlation κ⋆ : I1G → I

2
G with the lifting isomorphisms Λi : I

i
C → I

i
G.

[Λ−1
2 [κ ⋆ [Λ1f ]]](x) =

∫
G

κ(s2(x)
−1s1(y))f(y)dy

=

∫
G/H1

←−κ (s2(x)
−1y)ρ1(h1(s2(x)

−1s1(y)))f(y)dy
(14)

Which we refer to as the ρ1-twisted cross-correlation on G/H1. We note that for semidirect product
groups, the ρ1 factor disappears and we are left with a standard cross-correlation on G/H1 with
an equivariant kernel ←−κ ∈ KC . We note the similarity of this expression to gauge equivariant
convolution as defined in [11].

3.3 Equivariant Nonlinearities

The network as a whole is equivariant if all of its layers are equivariant. So our theory would not be
complete without a discussion of equivariant nonlinearities and other kinds of layers. In a regular
G-CNN [1], ρ is the regular representation of H , which means that it can be realized by permutation
matrices. Since permutations and pointwise nonlinearities commute, any such nonlinearity can be
used. For other kinds of representations ρ, special equivariant nonlinearities must be used. Some
choices include norm nonlinearities [3] for unitary representations, tensor product nonlinearities [8],
or gated nonlinearities where a scalar field is normalized by a sigmoid and then multiplied by another
field [6]. Other constructions, such as batchnorm and ResNets, can also be made equivariant [1, 2].
A comprehensive overview and comparison over equivariant nonlinearities can be found in [7].
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4 Implementation

Several different approaches to implementing group equivariant CNNs have been proposed in the
literature. The implementation details thereby depend on the specific choice of symmetry group
G, the homogeneous space G/H , its discretization and the representation ρ. In any case, since the
equivariance constraints on convolution kernels are linear, the space of H-equivariant kernels is a
linear subspace of the unrestricted kernel space. This implies that it is sufficient to solve for a basis
of H-equivariant kernels, in terms of which any equivariant kernel can be expanded using learned
weights.

A case of high practical importance are equivariant CNNs on Euclidean spaces Rd. Implementations
mostly operate on discrete pixel grids. In this case, the steerable kernel basis is typically pre-sampled
on a small grid, linearly combined during the forward pass, and then used in a standard convolution
routine. The sampling procedure requires particular attention since it might introduce aliasing
artifacts [4, 6]. A more in depth discussion of an implementation of equivariant CNNs, operating on
Euclidean pixel grids, is provided in [7]. Alternatively to processing signals on a pixel grid, signals on
Euclidean spaces might be sampled on an irregular point cloud. In this case the steerable kernel space
is typically implemented as an analytical function, which is subsequently sampled on the cloud [5].

Implementations of spherical CNNs depend on the choice of signal representation as well. In [10],
the authors choose a spectral approach to represent the signal and kernels in Fourier space. The
equivariant convolution is performed by exploiting the Fourier theorem. Other approaches define
the convolution spatially. In these cases, some grid on the sphere is chosen on which the signal
is sampled. As in the Euclidean case, the convolution is performed by matching the signal with a
H-equivariant kernel, which is being expanded in terms of a pre-computed basis.

5 Related Work

In Appendix D, we provide a systematic classification of equivariant CNNs on homogeneous spaces,
according to the theory presented in this paper. Besides these references, several papers deserve
special mention. Most closely related is the work of [12], whose theory is analogous to ours, but only
covers scalar fields (corresponding to using a trivial representation ρ(h) = I in our theory). A proper
treatment of general fields as we do here is more difficult, as it requires the use of fiber bundles and
induced representations. The first use of induced representations and fields in CNNs is [2], and the
first CNN on a non-trivial homogeneous space (the Sphere) is [16].

A framework for (non-convolutional) networks equivariant to finite groups was presented by [17], and
equivariant set and graph networks are analyzed by [18–21]. Our use of fields (with ρ block-diagonal)
can be viewed as a formalization of convolutional capsules [22, 23]. Other related work includes
[24–31]. A preliminary version of this paper appeared as [32].

For mathematical background, we recommend [13, 33–37]. The study of induced representations and
equivariant maps between them was pioneered by Mackey [38–41], who rigorously proved results
essentially similar to the ones in this paper, though presented in a more abstract form that may not be
easy to recognize as having relevance to the theory of equivariant CNNs.

6 Concrete Examples

6.1 The rotation group SO(3) and spherical CNNs

The group of 3D rotations SO(3) is a three-dimensional manifold that can be parameterized by ZYZ
Euler angles α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π), i.e. g = Z(α)Y (β)Z(γ), (where Z and Y
denote rotations around the Z and Y axes). For this example we choose H = H1 = H2 = SO(2) =
{Z(α) |α ∈ [0, 2π)} as the group of rotations around the Z-axis, i.e. the stabilizer subgroup of the
north pole of the sphere. A left H-coset is then a subset of SO(3) of the form

gH = {Z(α)Y (β)Z(γ)Z(α′) |α′ ∈ [0, 2π)} = {Z(α)Y (β)Z(α′) |α′ ∈ [0, 2π)}.

Thus, the coset space G/H is the sphere S2, parameterized by spherical coordinates α and β. As
expected, the stabilizer Hx of a point x ∈ S2 is the set of rotations around the axis through x, which
is isomorphic to H = SO(2).

8



Figure 6: Quotients of SO(3) and SE(3).

What about the double coset space (Appendix A.1)? The orbit of a point x(α, β) ∈ S2 under H is a
circle around the Z axis at lattitude β, so the double coset space H\G/H , which indexes these orbits,
is the segment [0, π) (see Fig. 6).

The section s : G/H → G may be defined (almost everywhere) as s(α, β) = Z(α)Y (β) ∈ SO(3),

and γ(β) = Y (β) ∈ SO(3). Then the stabilizer H
γ(β)H1

2 for β ∈ H\G/H is the set of Z-axis
rotations that leave the point γ(β)H1 = (0, β) ∈ S2 invariant. For the north and south pole (β = 0
or β = π), this stabilizer is all of H = SO(2), but for other points it is the trivial subgroup {e}.

Thus, according to Theorem 3.4, the equivariant kernels are matrix-valued functions on the segment
[0, π), that are mostly unconstrained (except at the poles). As functions on G/H1 (Theorem 3.3),
they are matrix-valued functions satisfying←−κ (rx) = ρ2(r)

←−κ (x)ρ1(h1(x, r)
−1) for r ∈ SO(2) and

x ∈ S2. This says that as a function on the sphere←−κ is determined on SO(2)-orbits {rx | r ∈ SO(2)}
(lattitudinal circles around the Z axis) by its value on one point of the orbit. Indeed, if ρ(h) = 1 is
the trivial representation, we see that←−κ is constant on these orbits, in agreement with [42] who use
isotropic filters. For ρ2 a regular representation of SO(2), we recover the non-isotropic method of
[10]. For segmentation tasks, one can use a trivial representation for ρ2 in the output layer to obtain a
scalar feature map on S2, analogous to [43]. Other choices, such as ρ the standard 2D representation
of SO(2), would make it possible to build spherical CNNs that can process vector fields, but this has
not been done yet.

6.2 The roto-translation group SE(3) and 3D Steerable CNNs

The group of rigid body motions SE(3) is a 6D manifold R
3
⋊ SO(3). We choose H = H1 = H2 =

SO(3) (rotations around the origin). A left H-coset is a set of the form gH = trH = {trr′ | r′ ∈
SO(3)} = {tr | r ∈ SO(3)} where t is the translation component of g. Thus, the coset space G/H
is R

3. The stabilizer Hx of a point x ∈ R
3 is the set of rotations around x, which is isomorphic

to SO(3). The orbit of a point x ∈ R
3 is a spherical shell of radius ‖x‖, so the double coset space

H\G/H , which indexes these orbits, is the set of radii [0,∞).

Since SE(3) is a trivial principal SO(3) bundle, we can choose a global section s : G/H → G by
taking s(x) to be the translation by x. As double coset representatives we can choose γ(‖x‖) to

be the translation by (0, 0, ‖x‖). Then the stabilizer H
γ(‖x‖)H1

2 for ‖x‖ ∈ H\G/H is the set of
rotations around Z, i.e. SO(2), except for ‖x‖ = 0, where it is SO(3).

For any representations ρ1, ρ2, the equivariant maps between sections of the associated vector bundle
are given by convolutions with matrix-valued kernels on R

3 that satisfy←−κ (rx) = ρ2(r)
←−κ (x)ρ1(r

−1)
for r ∈ SO(3) and x ∈ R

3. This follows from Theorem 3.3 with the simplification h1(x, r) = r
for all r ∈ H , because SE(3) is a semidirect product (Appendix A.2). Alternatively, we can define
←−κ in terms of κ̄, which is a kernel on H\G/H = [0,∞) satisfying κ̄(x) = ρ2(r)κ̄(x)ρ1(r) for
r ∈ SO(2) and x ∈ [0,∞). This is in agreement with the results obtained by [6].

7 Conclusion

In this paper we have developed a general theory of equivariant convolutional networks on homoge-
neous spaces using the formalism of fiber bundles and fields. Field theories are the de facto standard
formalism for modern physical theories, and this paper shows that the same formalism can elegantly
describe the de facto standard learning machine: the convolutional network and its generalizations.
By connecting this very successful class of networks to modern theories in mathematics and physics,
our theory provides many opportunities for the development of new theoretical insights about deep
learning, and the development of new equivariant network architectures.
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