6 research outputs found

    Using motivation derived from computer gaming in the context of computer based instruction

    Get PDF
    This paper was originally presented at the IEEE Technically Sponsored SAI Computing Conference 2016, London, 13-15 July 2016. Abstract— this paper explores how to exploit game based motivation as a way to promote engagement in computer-based instruction, and in particular in online learning interaction. The paper explores the human psychology of gaming and how this can be applied to learning, the computer mechanics of media presentation, affordances and possibilities, and the emerging interaction of playing games and how this itself can provide a pedagogical scaffolding to learning. In doing so the paper focuses on four aspects of Game Based Motivation and how it may be used; (i) the game player’s perception; (ii) the game designers’ model of how to motivate; (iii) team aspects and social interaction as a motivating factor; (iv) psychological models of motivation. This includes the increasing social nature of computer interaction. The paper concludes with a manifesto for exploiting game based motivation in learning

    Personalized content provision for virtual learning environments via the semantic web

    Get PDF
    In this paper we discuss how we may personalize e-learning along three distinct axes, namely: teaching and learning pedagogical philosophies, personalized educational processes to taste and the coordination of these processes during execution. In doing so we are concerned with supporting users' choices of educational options in course delivery via the Web services. In the work presented here, we assess the practical needs of learners and tutors and then the main research problems are analysed from a practical and pragmatic point of view. Following on from this the design of an intelligent virtual learning environment (VLE) is described to map a set of extensive didactic paradigms, which is represented by a system model and architecture. In this system, the semantic information of learning units and processes (e.g. the relationships among units) can be described and integrated in terms of various requirements of our users. As a result instructional materials with a wide variety of executional options and conditions can be built. Furthermore, through reassembling the semantics of learning content according to users' new demands, our target audience (both student and content deliverers) can change their particular educational experience dynamically. This VLE can provide high-powered pedagogy-layered personalization - thus enabling new managed e-learning Web services and applications

    New concepts integration on e-learning platforms

    Get PDF
    The learning experience has evolved into the virtual world of the Internet, where learners have the possibility to shift from face-to-face learning environments to virtual learning environments supported by technologies. This concept, called e-learning, emerged in the early 1960s where a group of researchers from the Stanford University, USA began experimenting different ways to publish and assign learning content using a computer. These experiments were the beginning that led to the creation of countless learning platforms, initially constructed in standalone environments and later ported to the Internet as Webbased learning platforms. As initial objectives, these learning platforms include a collection of features to support instructors and learners in the learning process. However, some of these platforms continued to be based on an old instructor-centered learning model and created a collection of outdated technologies that, given the current need to a learner-center learning model and the existence of Web 2.0 technologies, become inadequate. As a solution to address and overcome these challenges, a friendly user interface and a correct root incorporation of Web 2.0 services a platform designed to focus the learning experience and environment personalization into the learner is needed to propose. In an operating system (OS) context the graphic user interface (GUI) is guided by a collection of approaches that details how human beings should interact with computers. These are the key ideas to customize, install, and organize virtual desktops. The combination of desktop concepts into a learning platform can be an asset to reduce the learning curve necessary to know how to use the system and also to create a group of flexible learning services. However, due to limitations in hypertext transfer protocol-hypertext markup language (HTTP-HTML) traditional solutions, to shift traditional technologies to a collection of rich Internet application (RIA) technologies and personal learning environments (PLEs) concepts is needed, in order to construct a desktop-like learning platform. RIA technologies will allow the design of powerful Web solutions containing many of the characteristics of desktop-like applications. Additionally, personal learning environments (PLEs) will help learners to manage learning contents. In this dissertation the personal learning environment box (PLEBOX) is presented. The PLEBOX platform is a customizable, desktop-like platform similar to the available operating systems, based on personal learning environments concepts and rich Internet applications technologies that provide a better learning environment for users. PLEBOX developers have a set of tools that allow the creation of learning and management modules that can be installed on the platform. These tools are management learning components and interfaces built as APIs, services, and objects of the software development kit (SDK). A group of prototype modules were build for evaluation of learning and management services, APIs, and SDKs. Furthermore, three case studies were created in order to evaluate and demonstrate the learning service usage in external environments. The PLEBOX deployment and corresponding features confirms that this platform can be seen as a very promising e-learning platform. Exhaustive experiments were driven with success and it is ready for use.A experiência de aprendizagem baseada em tecnologias evoluiu para o mundo virtual da Internet, onde os alunos têm a possibilidade de mudar uma aprendizagem presencial em sala de aula para uma aprendizagem baseada em ambientes virtuais de aprendizagem suportados por tecnologias. O conceito de e-learning surgiu nos anos sessenta (1960) quando um grupo de investigadores da Universidade de Standford, nos Estados Unidos, começaram a experimentar diferentes formas de publicar e atribuir conteúdos de aprendizagem através do computador. Estas experiências marcaram o começo que levou à criação de inúmeras plataformas de aprendizagem, inicialmente construídas em ambientes isolados e depois migradas para a Internet como plataformas de aprendizagem baseadas na Web. Como objectivos inicias, estas plataformas de aprendizagem incluem um conjunto de recursos para apoiar professores e alunos no processo de aprendizagem. No entanto, algumas destas plataformas continuam a ser baseadas em velhos modelos de aprendizagem centrados no professor, criadas com base em tecnologias ultrapassadas que, dadas as necessidades actuais de um modelo de aprendizagem centrado no aluno e da existência de tecnologias baseadas na Web 2.0, se tornaram inadequadas. Como abordagem para enfrentar e superar estes desafios propõem-se uma plataforma focada na personalização do ambiente de aprendizagem do aluno, composta por uma interface amigável e uma correcta incorporação de raiz de serviços da Web 2.0. No contexto dos sistemas operativos (SOs) o graphic user interface (GUI) é desenhado tendo em conta um conjunto de abordagens que detalha como as pessoas devem interagir com os computadores. Estas são as ideias chave para personalizar, instalar e organizar áreas de trabalho virtuais. A combinação do conceito desktop com uma plataforma de aprendizagem pode ser um trunfo para reduzir a curva de aprendizagem necessária para saber como utilizar o sistema e também para criar um grupo de serviços flexíveis de aprendizagem. No entanto, devido as limitações em soluções tradicionais hypertext transfer protocol - hypertext markup language (HTTP - HTML), é necessário migrar estas tecnologias para um grupo de tecnologias rich Internet application (RIA) e conceitos presentes em ambientes personalizados de aprendizagem (personal learning environment - PLE) para construir uma plataforma baseada em ambientes de trabalho virtuais de aprendizagem. As tecnologias RIA irão permitir a criação de soluções Web poderosas que contêm muitas das características disponíveis em aplicações desktop. Adicionalmente, o conceitos de PLE irá ajudar os alunos a gerir os seus próprios conteúdos de aprendizagem. Nesta dissertação, com base nas características apresentadas anteriormente, é apresentada a personal learning environment box (PLEBOX). A plataforma PLEBOX é uma solução de aprendizagem parametrizável com um ambiente de trabalho semelhante aos sistemas operativos actuais, baseando-se em personal learning environments e tecnologias RIA que fornecem um melhor ambiente de aprendizagem para os seus utilizadores. Os programadores da PLEBOX têm ao seu dispor um conjunto de ferramentas que permitem a criação de módulos de aprendizagem e administração que podem ser instalados na plataforma. Estas ferramentas são componentes de aprendizagem e interfaces construídos como APIs, serviços e objectos do software development kit (SDK). Foi construído um conjunto de módulos com o objectivo de avaliar e demonstrar os serviços de aprendizagem, os serviços de gestão, APIs e SDKs. Para além disso, foram criados três casos de estudo para avaliar e demonstrar a utilização dos serviços de aprendizagem em ambientes externos. O desenvolvimento efectuado até ao momento na PLEBOX e respectivos recursos confirma que esta plataforma pode ser vista com uma promissora plataforma de aprendizagem (e-learning), totalmente modular e adaptativa. Realizaram-se experiências exaustivas para testar a plataforma e estas foram realizadas com sucesso num ambiente real, estando assim a plataforma pronta para exploração real

    Flexible virtual learning environments: a schema-driven approach using sematic web concepts

    Get PDF
    Flexible e-Iearning refers to an intelligent educational mechanism that focuses on simulating and improving traditional education as far as possible on the Web by integrating various electronic approaches, technologies, and equipment. This mechanism aims to promote the personalized development and management of e-learning Web services and applications. The main value of this method is that it provides high-powered individualization in pedagogy for students and staff.Here, the thesis mainly studied three problems in meeting the practical requirements of users in education. The first question is how a range of teaching styles (e.g. command and guided discovery) can be supported. The second one is how varieties of instructional processes can be authored. The third question is how these processes can be controlled by learners and educators in terms of their personalized needs during the execution of instruction.In this research, through investigating the existing e-Iearning approaches and technologies, the main technical problems of current virtual learning environments (VLEs) were analyzed. Next, by using the Semantic Web concepts as well as relevant standards, a schema-driven approach was created. This method can support users' individualized operations in the Web-based education. Then, a flexible e-learning system based on the approach was designed and implemented to map a range of extensive didactic paradigms. Finally, a case study was completed to evaluate the research results. The main findings of the assessment were that the flexible VLE implemented a range of teaching styles and the personalized creation and control of educational processes

    On the Potential of Emerging Learning Technology Standards and Specifications to Enhance Learning Experience

    Get PDF
    Master's thesis in Information- and communication technology IKT590 - University of Agder 2016Emerging educational technologies had a significant impact on the learning environment. Nowadays, classrooms are no longer as simple as it used to be, like using chalks and blackboards. Lots of technologies (e.g. video projectors, electronic boards) have been integrated to learning environments to better support students and teachers. eLearning is one the technologies that provided virtual classrooms environments on the Web. eLearning helped teachers and students to have a better control over courses and learning process respectively. In this thesis, I had an investigation on the potential of some eLearning standards and specifications that enhance interoperability as well as learning experience. I studied xAPI specification in more details and the use of this specification in learning environments for tracking students’ learning experience and mobile learning scenarios. I proposed a mobile learning solution that can help teachers to easily track their students’ learning activities based on xAPI specification and give their students quick feedback. For designing a mobile learning solution, first, I had a research on the existing mobile learning dashboards to find out how they are supporting teachers and students and to identify what are the existing lacks. Second, I followed the Human-centred Design activities. I specified the context of use, who are the users and how they are going to use this application. Then, I had interviews with teachers to specify their requirements for using a mobile learning dashboard. I evaluated a paper prototype and tested it with teachers. During the test, teachers gave me great comments and feedback. Finally, I designed a mobile learning dashboard prototype that met some of the teachers’ requirements. This study identified the use of eLearning technologies by teachers and how much they are engaged with these technologies and how they prefer to track their students’ learning experience. The potential of the xAPI specification in tracking learning experiences were studied and how this specification is used in mobile learning scenarios

    Ontology-based personalisation of e-learning resources for disabled students

    Get PDF
    Students with disabilities are often expected to use e-learning systems to access learning materials but most systems do not provide appropriate adaptation or personalisation to meet their needs.The difficulties related to inadaptability of current learning environments can now be resolved using semantic web technologies such as web ontologies which have been successfully used to drive e-learning personalisation. Nevertheless, e-learning personalisation for students with disabilities has mainly targeted those with single disabilities such as dyslexia or visual impairment, often neglecting those with multiple disabilities due to the difficulty of designing for a combination of disabilities.This thesis argues that it is possible to personalise learning materials for learners with disabilities, including those with multiple disabilities. This is achieved by developing a model that allows the learning environment to present the student with learning materials in suitable formats while considering their disability and learning needs through an ontology-driven and disability-aware personalised e-learning system model (ONTODAPS). A disability ontology known as the Abilities and Disabilities Ontology for Online LEarning and Services (ADOOLES) is developed and used to drive this model. To test the above hypothesis, some case studies are employed to show how the model functions for various individuals with and without disabilities and then the implemented visual interface is experimentally evaluated by eighteen students with disabilities and heuristically by ten lecturers. The results are collected and statistically analysed.The results obtained confirm the above hypothesis and suggest that ONTODAPS can be effectively employed to personalise learning and to manage learning resources. The student participants found that ONTODAPS could aid their learning experience and all agreed that they would like to use this functionality in an existing learning environment. The results also suggest that ONTODAPS provides a platform where students with disabilities can have equivalent learning experience with their peers without disabilities. For the results to be generalised, this study could be extended through further experiments with more diverse groups of students with disabilities and across multiple educational institutions
    corecore