
Open Issues in Semantic Query Optimization in
relational DBMS

Bryan Genet, Annika Hinze
Department of Computer Science

University of Waikato, New Zealand
{b.genet,hinze}@cs.waikato.ac.nz

Abstract

After two decades of research into Semantic Query Optimization (SQO) there
is clear agreement as to the efficacy of SQO. However, although there are some
experimental implementations there are still no commercial implementations. We
first present a thorough analysis of research into SQO. We identify three problems
which inhibit the effective use of SQO in Relational Database Management Sys-
tems (RDBMS). We then propose solutions to these problems and describe first
steps towards the implementation of an effective semantic query optimizer for re-
lational databases.

Contents

1 Introduction 2

2 Motivating Example 3

3 Related Work 4
3.1 Definition of important terms . 5
3.2 SQO and commercial RDBMS . 12

3.2.1 Identified impediments to the implementation of SQO in RDBMS 12
3.2.2 Significant changes in computer hardware 13
3.2.3 Current SQL optimizers lack a semantic reasoning engine . . 14

4 Problem statement 15
4.1 Problem 1: RDBMS schema constraints and SQO 15
4.2 Problem 2: Implementing SQO specifically for RDBMS 16

4.2.1 Schema constraints are finite 17
4.2.2 After schema constraints, what then? 17

4.3 Problem 3: Determining when SQO is worthwhile 18

5 Preliminary results of our research 20
5.1 Proposed solution to Problem 1: RDBMS schema constraints and SQO 20

5.1.1 Enforcing schema constraints at query time 21
5.1.2 SQO follows from the enforcement of schema constraints at

query time . 21
5.1.3 Summary of distinctive features of schema constraints 22

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29194633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

5.2 Proposed solution to Problem 2: Implementing SQO specifically for
RDBMS . 23
5.2.1 Assumptions . 24
5.2.2 Optimizer Design . 24
5.2.3 Constraint types utilized by our optimizer 25

5.3 Proposed solution to Problem 3: Determining when SQO is worthwhile 25

6 Conclusion 26

1 Introduction

After two decades of research into Semantic Query Optimization (SQO) there is still
no commercial implementation. Despite this, there is clear agreement in the literature
as to the worthwhileness of SQO [YHPM99, Dat95, HK94]. We make the observation
from our experience in the commercial database industry that, in the case of relational
database management systems (RDBMS), SQO is neither mainstream nor widely em-
ployed. Other writers report similar observations [CGK+99, GGXZ01] and note the
emphasis of much research has been deductive databases (DD). In this paper we specif-
ically address the role of SQO in relational databases.

We identify three problems:

1. In the context of RDBMS, previous research does not make clear the unique
role that database integrity constraints1 can play in SQO. In addition, the close
relationship between SQO and the enforcement of database integrity constraints
at query time has not been established.

2. While many writers consider SQO in the context of deductive databases (DD),
very little work specifically considers the efficacy of SQO for relational databases
(RDB) and even less describe actual implementations.

3. Previous research does not make clear under what conditions it is likely to be
worthwhile implementing SQO or what types of SQO are likely to be effective
for a given database schema.

In this paper we focus on each of the above problems in turn, first describing each
problem against the background of previous research. We then propose solutions to
the above problems. Our solutions emphasize both the increased potential of SQO in
current database environments and the importance of considering all available sources
of semantic information when implementing SQO. Our approach follows that of God-
frey et al [GGM96, GGGM98, GGXZ01] and we explore some of their results in the
specific context of RDBMS.

In this paper, the context of any examples we use is RDBMS. We introduce the
remainder of the paper with a motivating example in Section 2. The remaining sections
are organized as follows.

In Section 3 we describe related research in the field of SQO. Our description is
built around the definitions of some important terms used by other researchers. Our
goal is to clarify and to some extent simplify some of this terminology. We extend this
terminology by introducing some new terms. We define some important preliminary

1We use this term for now because it is used more generally in the literature. However, in Definition 3.9
we introduce the termschema constraint. Schema constraints subsume integrity constraints.

2

terms before defining the central termsemantic query optimization. We then consider
SQO in the context of commercial RDBMS and report some of the reasons suggested
by other researchers as to why SQO is not routinely employed. We conclude this sec-
tion by noting some important changes to hardware typically employed in the database
industry.

In Section 4 we look in more detail at the three problems identified above. We
begin by showing that it is often unjustified to assume that data actually stored in the
database conforms to known database semantics. We then describe the benefits that
accrue from enforcing schema constraints at query time. We argue that it is extremely
unlikely that utilizing database integrity constraints for SQO will result in exponen-
tially increasing numbers of candidate queries that are semantically equivalent2. In the
context of RDBMS, we question the common assumption that effective SQO requires
computationally expensive mining3 of data to discover complex semantic rules. We
note that, for a given database schema, attempting to exploit SQO without knowing
what types of queries are actually made on the database, may result in little or no query
optimization.

In Section 5 we describe some preliminary results of our research to address the
problems described in Section 4. We argue that the enforcement of schema constraints
at query time adds a data robustness that significantly enhances the validity of infor-
mation derived from the database. We then sketch how a simple but effective semantic
query optimizer can readily be constructed from schema constraints alone. We high-
light the ubiquity of rich semantic information and the relative ease with which an
effective semantic query optimizer can be constructed. In the case of RDBMS, we de-
scribe how an effective semantic query optimizer may be built from schema constraints
alone. We reiterate a key observation that there is no semantic reasoning engine built
in to SQL optimizers.

In Section 6 we summarize the main contributions of this paper.

2 Motivating Example

Refer to Figure 1 which shows a simplified fragment of a Customer Order schema.
Three tables from the transactional database are depicted:LOCATION, CUSTOMER
andORDER.

• TheLOCATIONtable is a reference table whose primary key (PK) is the unique
ID if each company Office.

• TheCUSTOMERtable contains the uniqueID of each Customer (its PK), along
with various Customer details such asNAME.

• TheORDERtable contains header information for each customer order. Its PK
is ORDERID . In addition a foreign key (FK) points back to the CustomerID in
theCUSTOMERtable.

In addition to the above transactional tables, Sales information is periodically sum-
marized in theSALES table. Columns in this table include the FKsLOCATIONand
ORDERID which point back to tablesLOCATIONandORDERrespectively.

2See Definition 3.1 for a precise definition ofsemantic equivalence.
3We use this term in the sense of data mining.

3

ID
‘Auckland’
‘Wellington’
‘Sydney’

DATE LOCATION ORDER_ID … … AMOUNT
.
.

01/06/04 ‘Auckland’ 123456 … … 124.56
01/06/04 ‘Auckland’ 234687 … … 23.98
01/06/04 ‘Sydney’ 348765 … … 48.50
02/06/04 ‘Wellington’ 231456 … … 52.50
02/06/04 234587 … … 1299.99
03/06/04 ‘Singapore’ 236789 … … 67.00

.

.

LOCATION

SALES

ORDER ORDER_ID CUST_ID DATE

CUSTOMER NAME ID

Figure 1:A simplified fragment of a Customer Order schema. Three tables from the
transactional database are depicted:LOCATION, CUSTOMERandORDER. In addition
to the above transactional tables, Sales information is periodically summarized in the
SALEStable.

An Employee prepares a simple report showing the Total Sales for the company
during the previous month. The company has offices inAuckland , Wellington
andSydney so sales figures are fetched for these three locations, as well as the total
sales. On receiving the report, the Manager points out that the total sales exceed the
sum of the sales for the three offices. Investigation reveals that the Database Admin-
istrator (DBA) has disabled the check constraint on theLOCATIONcolumn to speed
data insertion during a batch operation to populate theSALEStable. Further investiga-
tion reveals that data from the company’s new office inSingapore has already been
inserted while other sales do not have their location recorded.

We conclude this section by summarizing the main point of our example. Our
example illustrates how easily the assumed schema semantics can differ from the actual
semantics of the data. In particular, it is often quite unjustified to assume that database
constraints have been enforced. This is considered in detail in Section 4.1.

3 Related Work

In this section we consider the work of other researchers in the field of SQO. We first
consider this research in the context of the some important terminology which we clar-
ify and then employ to describe our own contribution. We then briefly consider SQO
in the context of commercial RDBMS.

4

3.1 Definition of important terms

We now describe related research in the field of SQO by considering the definitions of
some important terms used in the research literature. Our goal is to clarify and to some
extent simplify some of this terminology. We extend this terminology by introducing
some new terms. We will define the central termsemantic query optimizationin due
course, but in order to do so we first define some preliminary terms.

Definition 3.1 Semantic equivalence: Two database queries aresemantically equiva-
lent if they return the same answer, for a given database state.

The aim of semantic optimization is to use semantic knowledge about the database
domain to transform a query into one which is semantically equivalent but which can
be executed more efficiently4 [CGM90, GGM96, HZ80, Kin81]. Our definition of
semantic equivalence follows [SSS92].

Note that the queries in question cannot meaningfully be considered equivalent
per sebut must be semantically equivalentwith respect to some specific set of schema
semantics. So it is more correct to say thatsemantic equivalencemeans the transformed
query always produces the same answer as the original query for any database state
satisfying a given set of constraints[SSS92].

For RDBMS, semantic equivalence means, literally, that the result sets returned by
the two queries are exactly the same, although the tuples are not necessarily presented
in the same order. Since the contents of a database will typically change over time,
whenever we speak of theanswerto a query we are referring to the tuples returned at
a particular point in time for a particular database state.

Definition 3.2 Query rewrite: This is the process of recasting a database query into a
semantically equivalent query with a different syntax.

This notion is intrinsic to SQO and we use this term in the same way as other re-
searchers in the field [AF94, Kin81, HZ80].5

Definition 3.3 SQL optimizer: This is the engine that takes as its input the SQL query
text and outputs the specific execution path to be followed in order to compute the query
answer.

All SQL language interpreters require an optimizer because SQL is a declarative lan-
guage [Dat95]. A critical feature of the optimizer is that it calculates a metric6 which
is a measure of how costly the query is expected to be, without actually executing
the query. This metric is readily available in all commercial RDBMS. This makes
it straightforward toestimatethe relative computational cost of semantically equiva-
lent queries, without actually executing the queries many times and comparing average
query times.

Definition 3.4 Query cost: The costof a query is the expenditure of computing re-
sources required to answer that query.

This term is used very generally by researchers, hence the generic definition. Various
writers emphasize the amount of disk activity required to answer a query [SSS92],

4See Definition 3.5 for a precise definition ofquery efficiency.
5Note that the termsyntaxhere refers to the actual textual expression of the query statement. We do not

mean the abstract syntax of the query language e.g. SQL.
6typically dimensionless

5

the total time required to answer the query [Zhu92] and delays due to communication
costs [JK84].

In this paper, query cost specifically refers tothe average time required to answer
that query. This is the only criterion we use to judge query cost. However,relative
query cost may beestimatedby examining the cost metric returned by the SQL opti-
mizer7.

Definition 3.5 Query efficiency: This is the relative cost of two semantically equiva-
lent queries.

Intuitively, a more efficient query is one that on average requires fewer resources to
execute (e.g. fewer disk reads) and therefore is executed more quickly [GG96], given
a particular set of computer resources.

One can only meaningfully compare the efficiencies of twosemantically equivalent
queries. Consider two semantically equivalent queries Q1 and Q2. Query Q1 ismore
efficientthan query Q2 if it takes on average less time to answer.

We now consider definitions arising from the notion ofsemantic information. We
begin with a very general definition which we refine as we consider different sources
of semantic information. Refer to Figure 2 for clarification.

Discovered
Rules

• Derived from
query driven
analysis

• Derived from data
driven analysis

• Require a query
discovery phase

Schema Constraints
• Includes schema metadata
• Static
• True a priori
• Stored, enforced and

maintained by DBMS

Semantic Information

Domain
knowedge

Business
Rules

Figure 2:Semantic information can be drawn from a number of different sources in-
cluding schema constraints and discovered rules. Schema constraints originate from
human practioners, while discovered rules are found by the execution of software.

Definition 3.6 Semantic information: This is any logical statement or data which
describesor constrainsthe data currently stored in the database and the data that may
be stored in the database.

7See Definition 3.3

6

Semantic information includes schema meta-data (such as the table and view defini-
tions in a relational database), domain knowledge (such as might be held bydomain
experts) as well as various constraints defined, stored and enforced by the database
management system (DBMS). A prerequisite for query rewriting is obtainingvalid se-
mantic information i.e. semantic information which is true of the target database at this
particular point in time.

Definition 3.7 Semantic ruleA semantic rule is a sentence in first order predicate
calculus which expresses semantic information.

This notion is intrinsic to SQO. The nuance of the termrule in this context is that the
semantic information is captured by a formal logical sentence. Such logical sentences
may be utilized by a reasoning system. In contrast, the termsbusiness rulesanddomain
knowledgedo not necessarily refer to formal logical sentences and may include the
informal knowledge ofdomain experts. Such knowledge may be difficult or impossible
to express in first order predicate calculus [GGM96].

Definition 3.8 Rule relevance: A semantic rule isrelevantif it is able to be utilized by
the semantic query optimizer to increase query efficiency.

Many semantic rules may be discovered in a mechanical knowledge discovery pro-
cess which are of no practical value to the semantic query optimizer [AF94, CGK+99,
GGXZ01]. For example, no matter how ”strong” (in some sense) the rule discovered,
it will nevertheless have no impact whatsoever if the rule is never actually invoked.

Example 3.1 A knowledge discovery exercise identifies a strong correlation between
an employee’sbank, themake of their carand thegender of their manager. Such a cor-
relation might be uncovered by a mechanical analysis which carries out an exhaustive
search for such relationships. Yet this semantic knowledge, although valid, is of little
practical value. A cursory examination of the actual query profile reveals that queries
incorporating the three employee attributes:bank, make of carandgender of manager
are never actually made. So the (possibly expensive) knowledge discovery exercise is
of no value.

In this paper we specifically identify a number of important sources of semantic
rules. We classify these semantic rules firstly by observing whether or not they may be
formally encoded within the database asconstraints.

Definition 3.9 Schema constraint: A schema constraint is a rule which is stored,
maintained and enforced by the DBMS and which constrains the legal values that may
be stored in the database.

The critical role of schema constraints as a rich and stable source of semantic infor-
mation is considered by [YS89] and [GGXZ01] in the context of knowledge discovery
and deductive databases respectively. In RDBMS, schema constraints therefore con-
sist exactly of the schema meta-data plus theintegrity constraints8 plus user defined
constraints9 defined as part of the particular RDBMS schema.

Various writers have identified other sources of semantic information (which may
or may not be expressible in the language of the particular DBMS) such as special-
ized domain knowledge held by domain experts [GGXZ01] and application business

8For examplenot null, primary key, foreign key, check. We use this term in the conventional way [Dat95].
9In RDBMS, complex user defined constraints (possibly arising from the implementation of business

rules) may be defined astriggersor implemented procedurally.

7

rules [GGM96, GD98, Dat95, SHKC93, SO87]. In this paper we assume that such
semantic information is truea priori and that it is unchanging. Such an environment is
quite realistic as in the case of a data warehouse.

We add the important observation that schema constraints are intended to constrain
data only at insert or modification time and are not utilized at query time. Furthermore,
while schema constraints remain valid statements about the domain of interest, this
is no guarantee that the actual data stored in the database conforms to these rules.
This contradictory situation arises with great regularity in commercial DBMS because
constraints are often relaxed during data insert or modification. This is considered in
more detail in Section 4.

Some writers classify rules considered for semantic optimization asstatic or dy-
namic [IBG94, CGM90]. Included in static constraints are such rules that do not
change or evolve over time as the state of the database changes. Therefore schema
constraints arestatic.

Some authors specifically concentrate on rules that are derived from the database [Che96,
SSS92]. These studies use a variety of techniques to detect correlations in data which
are then used to formulate rules.

Definition 3.10 Rule discovery: Rule discovery is the search for patterns, regularities
and correlations in the target database, utilizing every available information source.

Our definition follows [GSZZ01, HK98, SSS92, SHKC93], but for clarity specifically
refers to the uncovering of semantic information which isadditional to the schema
constraints described above. [SHKC93] use the term rule discoveryphaseto emphasize
the uncovering of previously unknown information.

All the researchers in this field identify two broad rule categories: static and dy-
namic. (See for example [IBG94, CGM90]). Static rules do not change over time
i.e. we may assume their validity for the lifetime of the schema. Therefore schema
constraints arestatic. When discovered rules are static, they need only be compiled
once [CGM90].

However,dynamicrules may change as the database state changes. In particular,
dynamic rules may be rendered invalid by updates to the database. When dynamic
rules are used, the cost of checking to see if the rules are still valid after a database
update must be taken into account. We consider the question of revalidating temporary
or dynamic constraints as quite separate from the central issue of SQO.

Rule discovery is typicallyquery drivenor data driven[YS89, SSS92, SHKC93].
In query driven rule discovery, rules are inferred from the restriction clauses of queries
arriving at the database and the results they produce. In its simplest form, the method
notes when two syntactically different queries produce the same answer. The more ef-
ficient query will then be substituted whenever appropriate.10 Such processing may
incur performance penalties at run time. Another more subtle problem is that the
rules produced may only optimize queries which are the same (or similar to) previ-
ous ones received and analyzed. This leaves many potential semantic optimizations
unexplored [SHKC93].11

10A trivial example of detecting semantic equivalence is the case of three queries, identical except that
one is uppercase, another is lower case while the third is a mixture of cases. The SQL optimizer of at least
one major commercial RDBMS does no textual reformatting such as moving to upper case or white space
compression. All three queries are judged as being different from one another and each will be separately
parsed.

11It is a truism in the real world of RDBMS management that 90% of query activity is based around
10% of the tables. A more extreme real world example can be found in data warehouses where one large
aggregated table is the target of all queries. In these contexts query driven rule discovery can be effective.

8

In data driven rule discovery, we look primarily at data distribution [SHKC93].
Data is analyzed off line in order to discover patterns or correlations that may be for-
mulated into semantic rules. A trivial example is the discovery that all values of a par-
ticular table column are null. Being independent of any queries, rules may be compiled
incrementally without affecting run time performance. Examples include inference
rules derived from subsets of data which have typically been clustered or partitioned in
some way.

We note that data driven rule discovery is in many respects identical to the tradi-
tional tasks undertaken by the Database Administrator (DBA) with respect to data reor-
ganization. For example, inspection of data distribution may yield candidate columns
for indexing.

When a large rule set exists which may potentially be used to semantically op-
timize a query, the problem arises as to which ones are the best to use. The num-
ber of transformations suggested by a semantic optimizer can quickly become com-
binatorially explosive [SSS92]. Most writers suggest the use of heuristics to guide
the choice of rules and to prune the number of possible transformations to the best
ones [Kin81, SO87, SSS92, SSD92].

[GGXZ01] differentiate between rules which are assumed to be always true and
have been defined using existing DBMS mechanisms (for example RDBMScheckcon-
straints) andsoft constraints(SC) which are discovered rules assumed to be true ”most”
of the time. A SC may be anabsolute soft constraintmeaning the current state of the
database contains no data that violates the rule andstatistical soft constraintsto which
a majority of the data comply and a small exception do not. Therefore we have a
three level hierarchy defined by rule’s reliability i.e. the probability that it is valid at a
particular time:

1. Schema constraints: static, true for all data, rule applies for all time;

2. Absolute soft constraints: dynamic, true for all data, rule applies at this particular
time only;

3. Statistical soft constraints: dynamic, true for most data, rule applies at this par-
ticular time only.

SCs are therefore temporary constraints which we would classify along with other
dynamic rules.

[HK98] pursue a similar theme of the reliability of a discovered rule. They claim
that while most approaches to SQO assume that database semantics are static, in prac-
tice they are dynamic. They propose a quantitative metric calledrobustnesswhich is
the probability that a discovered rule is consistent with a database state. A rule has
high robustness if it is unlikely to become inconsistent after database updates. Robust-
ness of a rule may be estimated from readily available DBMS meta-data. Only rules
with high robustness are used for semantic optimization, thereby limiting the cost of
re-validating rules.

One intrinsic property of all schema constraints is that they are created and encoded
into the database by human practioners. It is reasonable then to assume such rules are
robust. In contrast, discovered rules are found by the execution of software and we
cannot in general assume their robustness.

We summarize three important approaches to the discovery of semantic informa-
tion in Figure 3 where we make explicit the rich contribution of schema constraints to
discovery of useful semantic information.

We can now define SQO. The next three definitions use Figure 4 for clarification.

9

Queries

Query driven
rule discovery

Data driven rule
discovery

Schema driven
rule discovery

Domain
expert

Domain
knowledge

Integrity
constraints

Database

Data
distribution

Semantic Rule
Discovery Business rules

Figure 3:Semantic Rule Discovery: Semantic information is harvested from an analy-
sis of 1. queries 2. data distribution 3. schema constraints.

Definition 3.11 Semantic query optimization: SQO is the process of uncovering se-
mantic information (from all available sources) plusquery rewrite, where the aim is
to transform the original query into one which is semantically equivalent but more
efficient.

Most researchers in the field [AF94, CGM90, GGM96, GSZZ01, YS89] use this term
to refer to query rewrite. However, we specifically include the activity associated with
uncovering semantic information such as rule discovery, in addition to actual query
rewrite. Query rewrite is therefore a necessary but not sufficient condition for SQO.
Whatever methods are employed to derive semantic information, ultimately this activ-
ity results in the actual transformation of the query into a syntactically different but
semantically equivalent query.

Definition 3.12 Data reorganization: This is the physical relocation of data plus the
creation of auxiliary data structures such as clusters, indexes or materialized views,
for the purpose of increasing query efficiency.

One undertakes data reorganization with the aim of optimizing access to data, primarily
data which is stored on disk.12 The discovery of certain semantic information provides
compelling evidence for the creation of (for example) clusters, indexes or materialized
views.

Example 3.2 A simple analysis of queries made against a particular database reveals
that the most expensive queries are joins between three tablesA, B and C. The DBA
decides to co-locateA, B andCand checks that the join column is indexed. The tables
themselves are now subject to further scrutiny with a view to discovering rules to be
utilized in SQO.

12This is a well researched topic, beyond the scope of this paper. We simply note that disk access times
are typically orders of magnitude greater than memory access times.

10

Schema
Constraints

+
Rule Discovery

Query
Rewrite

Data
Reorganization

SQO

eSQO

Figure 4:Semantic query optimization (SQO) and Extended semantic query optimiza-
tion (eSQO). Rule discovery drives both query rewrite and data reorganization.

Clearly, this is a type of query optimization and depends on semantic information for
its success. The extraction of this kind of information is traditionally associated with
normal DBA duties.

Definition 3.13 Extended semantic query optimization (eSQO): Extended semantic
query optimization is SQO plus data reorganization.

We use the new termextendedSQO because we note that the discovery of semantic
information not only leads to query rewrite but can provide compelling reasons for
data reorganization.

Definition 3.14 Query profile (QP): A query profile is a high level description of
queries actually made against the target database.

We use this new term to refer to a query analysis whose aim is not to identify a partic-
ular result set, but rather to identify eSQO strategies which are likely to enhance query
efficiency. For example, at its simplest level, a QP notes which objects have actually
been queried. This is valuable information; we now know what objects should be tar-
geted for optimization.13 Note that finding a QP is distinctly different from thequery
driven rule discoverydefined in Definition 3.10.

Discovery of QP is analogous to the rule discovery phase14 advocated by [SHKC93]
where it is envisaged that semantic knowledge is discovered from the database and con-
verted into semantic rules which may then be utilized by the semantic query optimizer.

13We argue later that SQO without a QP may be of limited value.
14See Definition 3.10.

11

While other writers suggest knowledge discovery might be guided by what queries are
actually made, we make the stronger claim that discovery of the query profile ought
to be a pre-requisite for rule discovery and strongly influence its focus. This is be-
cause one may infer suitable starting points orparentnodes15 in the search forrelevant
semantic information. This is equivalent to an initial heavy pruning of the space of
possible rules, making it much more likely discovered rules are relevant. We note that
the capture of a query profile is already a normal part of DBA activities and it is easy to
capture a simple QP using available software. We give a specific example of a simple
QP in Example 5.2. We focus on the critical role of QP in Section 5 where we argue
that SQO without a knowledge of QP may ultimately be futile.

3.2 SQO and commercial RDBMS

Our background in the IT industry has led to the observation that SQO is a largely
unutilized technique, despite the prevailing view that SQO is useful. We now look
at some of the reasons advanced by other researchers as to why SQO is not routinely
employed. We then note some important changes to hardware typically employed in
the database industry. We conclude the section by reiterating that current SQL opti-
mizers lack even a basic semantic reasoning engine. We employ two examples which
foreshadow some of the main points presented in Section 5.

3.2.1 Identified impediments to the implementation of SQO in RDBMS

SQO is known to be useful [YHPM99, Dat95, HK94]. For example [HK94] reported
in 1994 that SQO was achieving average speedups of 20–40%. Many writers have
claimed significant benefits from their own flavour of SQO [HK96, GD98, SL96] and
there are some experimental implementations [CGK+99, GGXZ01]16. In [Dat95], the
author comments that semantic optimization could potentially provide much greater
performance improvements than more traditional algebraic optimizers, but that few
commercial products, if any, do much in the way of semantic optimization.

In [CGK+99], the authors put forward two reasons why SQO has never caught on
in the commercial world where most databases are RDBMS:

• SQO is designed for deductive databases where the relatively high cost of ap-
plying complex rules (in comparison to much less complex rules in relational
databases) is more likely to make the extra computational effort of implement-
ing SQO worthwhile;

• CPU speeds are not high enough for the extra computational cost of SQO to be
acceptable.

In [GGXZ01], the authors consider the role of schema constraints17 in capturing
business rulesand identify four reasons for SQO techniques not being employed:

• The potential for using schema constraints to capture business rules is only now
being realized, so opportunities for SQO have until now seemed limited;

15We use the wordparentin this context to mean the root of a search tree consisting of interesting nodes.
16These papers report a restricted implementation ofjoin eliminationandpredicate introductionin the

DB2 commercial RDBMS implementation.
17These authors use the termintegrity constraintbut the meaning is the same.

12

• The expense of checking schema constraints at data insert or update time has
limited the use of schema constraints, so opportunities for SQO have until now
seemed limited;

• Many semantic rules which could potentially be used as schema constraints are
simply not discovered;

• Even if a semantic rule is discovered there may be no justification for making it
a schema constraint.

The third point point reinforces the notion of arule discovery phase. Without such a
phase, only rules that are knowna priori can be employed. The last point addresses
the notion of therelevanceof the discovered rule. A discovered rule may reflect a true
correlation between data and is therefore valid, but it may address a part of the domain
which is of no interest (for example, because the rule antecedent never appears in a
query).

3.2.2 Significant changes in computer hardware

We now make some observations concerning changes in computer hardware typically
employed in the database industry. We argue that these changes have made SQO sig-
nificantly more attractive than in the years 1980–2000 when much foundational work
in SQO was done.

• Average data volumes have increased by several orders of magnitude, driven by
the rising use of data warehouses and the falling cost of disk storage. Therefore
even small increases in query efficiency offered by SQO may now be worthwhile.

• Available RAM has increased, typically by a factor of three or four, driven by
the falling cost of RAM18. In DBMS, the impact of increasing available main
memory is seen in the increasing proportion of the database that runs in mem-
ory. Ultimately, when sufficient main memory is made available, most of the
database runs in memory most of the time and, crucially, disk activity is mini-
mized. In RDBMS, this equates to most queried table data plus most procedural
and SQL code being held in cache most of the time. In this environment, any
query optimization that reduces disk activity is likely to be significant.

• Distributed databases, where a single logical database comprises several geo-
graphically distant nodes, are now commonly deployed by businesses across
their WANs19. Distributed databases introduce delays in query answering, pri-
marily because of the cost of transporting data between physical nodes. In this
environment, data is typically partitioned across physical nodes according to
simple semantic rules. These rules may then be utilized by a simple semantic
query optimizer to minimize communication costs.

Example 3.3 We refer to the motivational example in Section 2. Suppose the database
is distributed across three physical nodes located in Auckland, Wellington and Sydney.
Each node holds data strictly for its own Sales Office. A simple semantic query opti-
mizer is constructed which determines which Sales Office is being queried and routes
the query to the correct nodes while preventing the query from being passed to the
remaining nodes.

18PC based databases are now routinely endowed with several Gb of RAM. Larger database systems are
routinely endowed with tens of Gb.

19WideAreaNetwork

13

3.2.3 Current SQL optimizers lack a semantic reasoning engine

Current SQL optimizers cannot utilize semantic information because they lack a se-
mantic reasoning engine [GGM96, HK00]:

• they are unable to detect inconsistent queries;

• they are unable to resolve schema constraints with query restrictions.

We now illustrate this with two simple examples. Our objective is to demonstrate that
although the semantic information we require is available, it cannot be utilized

Example 3.4 We refer to the motivating example in Section 2. Consider the SQL query
which is submitted in error:

select * from LOCATION where 1 = 2;

Clearly this query will return no rows, independent of tableLOCATION. Yet in gen-
eral SQL optimizers will blindly submit such a query to the database.

Example 3.5 We refer to the motivating example in Section 2. Suppose theORDER
table contains a check constraint on columnDATEto capture the domain knowledge
that the company was formed on 01 April 2004 and that Orders can never be post-
dated20:

check DATE between ’01-APR-2004’ and SYSDATE;

and we then query the database with a where clause which includes the restriction:

and DATE < ’01-APR-2004’

If the constraints defined by the database architect have any meaning at all, it follows
that we can add to the above restriction a second restriction which simply reiterates
the check constraint:

and DATE < ’01-APR-2004’ and DATE between ’01-APR-2004’ and
SYSDATE;

This query therefore returns no rows and at a stroke we might have realized an
important optimization, namely we might have prevented a null query from ever being
submitted to the database.

20SYSDATEis a function that returns the current system date.

14

4 Problem statement

In this section we consider in more detail the problems we listed in Section 1:

1. In the context of RDBMS, previous research does not make clear the unique
role that schema constraints can play in SQO. In addition, the close relationship
between SQO and the enforcement of database integrity constraints at query time
has not been established.

2. While many writers consider SQO in the context of deductive databases (DD),
very little work focusses on the efficacy of SQO for relational databases (RDB)
and even less describe actual implementations.

3. Previous research does not make clear under what conditions it is likely to be
worthwhile implementing SQO or what types of SQO are likely to be effective
for a given database schema.

We begin with Problem 1 in Section 4.1 by highlighting some important aspects of
schema constraints which are generally ignored by researchers. We then focus on Prob-
lem 2 in Section 4.2 and argue that, while acknowledging that the relational database
model is subsumed by the deductive database model, it is nevertheless highly advanta-
geous to consider SQO specifically in the context of RDBMS. We conclude this section
by focussing on Problem 3 in Section 4.3 where we describe why, for a given database
schema, attempting to exploit SQO without knowing what types of queries are actually
made on the database, may result in little or no query optimization.

Although we mayconjecturethese problems have impeded the uptake of SQO, we
are primarily concerned here with highlighting the fact that SQO provides a credible
methodology which is particularly relevant to RDBMS. However, SQO can be expen-
sive [AF94, Che96, GGMR97, GSZZ01] and we therefore argue it is unlikely to be
implemented unless there can be confidence it will be worthwhile.

For each of the problems we considered in this section, we propose a resolution in
Section 5.

4.1 Problem 1: RDBMS schema constraints and SQO

In the context of RDBMS, previous research does not make clear the unique role that
database integrity constraints can play in SQO. Our argument proceeds as follows. In
this section we show that it is often unjustified to assume that data actually stored in the
database conforms to known database semantics, as defined by the schema constraints.
We conclude this section by asserting that the search for rules to utilize for SQO is
meaningless when performed on data stored in a database schema for which schema
constraints have not been enforced. In the corresponding Section 5.1 we propose a
solution to this problem.

We note that schema constraints are applied to data at the time of insertion or mod-
ification i.e. at insert, update and delete time. At all other times, these constraints are
inactive. In particular, they play no part whatsoever in the querying of data, in the
sense that no constraint is enforced when a query is submitted. This point is touched
on by [GGGM98] in the context of deductive databases.

This would not present a problem were it always the case that constraints were en-
forced throughout the lifetime of the schema. Then we couldassumethe conformance

15

of stored data to the schema semantics. Yet in reality it is often the case that vari-
ous constraints are relaxed during the lifetime of the schema. This practice is in fact
pervasive in the industry and may occur

• for performance reasons. Active constraints in the database may be quite ex-
pensive to enforce. Database Administrators (DBAs) may disable various con-
straints during, for example, the loading of large amounts of data simply because
of the computational burden of checking that constraints are satisfied. This is
widely practiced in the industry and all commercial RDBMS allow constraints
to be selectively relaxed while retaining the constraint definition.21

• because referential integrity is enforced procedurally. A database architect may
decide to enforce various data relationships via procedures defined and stored in
the database if these relationships are complex and/or costly.

• because business rules are enforced in a layer (typically the middle of three lay-
ers) above the database. The N-tier model of data processing is very popular and
it is usual in this methodology to consider the database as simply a persistence
mechanism[].

It is easy to imagine the consequences ofassumingthe conformance of data to the
known schema semantics, as our example in Section 2 illustrates for a typical trans-
actional database. However, the consequences for a data warehouse which is being
mined for information are even more serious. Any conclusions inferred from this min-
ing can only be meaningfully interpreted with respect to the schema semantics. But if
one cannot be sure the data accurately reflects these semantics, then the robustness of
any conclusions must be questioned.22

We conclude this section by asserting that the search for rules to utilize for SQO
is meaningless when performed on data stored in a database schema for which schema
constraints have not been enforced. We propose a resolution to this problem in Sec-
tion 5.1.

4.2 Problem 2: Implementing SQO specifically for RDBMS

While many writers consider SQO in the context of deductive databases (DD), very
little work focusses on the efficacy of SQO for relational databases (RDB) and even
less describe actual implementations.

The DD model subsumes the RDB model [GGGM98]. So it is generally assumed
that what is true for DD models is also true for RDB models. Currently, commercial
RDBMS23 implement the SQL–2 specification [DD93] which (for example) describes
the standard for encoding schema constraints and does not allow recursion. However,
we note with [GGGM98] that the SQL–3 specification [DD97] does support recursion
so that any RDBMS that supports the SQL–3 standard will in fact be a DD.

21In fact a ”best practice” has emerged in the industry whereby all appropriate constraints are defined in
the database but disabled immediately. This allows the data semantics to be available to various tools while
escaping the performance penalty. For example, the database may be ”reverse engineered” to discover its
Entity-Relationship (ER) diagram. Such a tool will query the defined but unenforced constraints.

22This is in fact what drives thedata conditioningstage in a typical data warehouse design. Data is
conditioned or cleansed to ensure it conforms to the expected format and that the various data fields contain
meaningful values before it is actually loaded into the warehouse tables. The real aim of data conditioning
is to enhance the robustness of knowledge inferred from the data warehouse. This is a well researched area
and beyond the scope of this paper.

23such asDB2, Oracle, Postgres

16

One must be careful that arguing in this manner does not obscure the opportunities
for SQO in RDBMS. We now look at several assumptions commonly made about SQO,
but examine them specifically in the context of RDBMS.

4.2.1 Schema constraints are finite

It is commonly assumed that the search for relevant semantic rules to apply in SQO
leads to a combinatorial explosion of rule choice [Kin81, SO87, SSS92]. In Section 3
we made the (apparently facile) observation that schema constraints are implemented
by human practitioners. Yet this allows us to safely conclude that we only have to deal
with a finite number of semantic rules. Even if multiple constraints may be applied to
some data items, clearly we still avoid the combinatorial explosion that many writers
report may result from a mechanical analysis of data. Thus we eliminate the need for
heuristics to guide the search for relevant rules and the need to limit the analysis with
various stopping rules, as described in [SSD92].

4.2.2 After schema constraints, what then?

It is commonly assumed that any effective implementation of SQO will include a
rule discovery phaseduring which unknown semantic knowledge will be uncovered
which will then be formulated into rules to be utilized by a semantic query opti-
mizer [SHKC93].

Yet following through this assumption in the context of RDBMS leads to some
curious conclusions. Consider a RDB schema for which the application business rules
have been captured (in as much as the RDBMS system allows) and expressed as schema
constraints. Suppose that we undertake a rule discovery phase and uncover some (pre-
viously unknown) semantic information which allows us to write semantic ruleR1.
According to our own definitions (see Section 3)R1 is either relevant or irrelevant. If
it is irrelevant, we discard it. If it is relevant, it must be a valid business rule. But
this can only have occurred because the business rule has been overlooked by domain
experts.24 While it seems reasonable to suppose domain experts have missed a small
subset of business rules, conversely it seems quite unreasonable to assume a significant
number of business rules have somehow been missed.

Let us assume that one would only undertake a rule discovery phase on the assump-
tion that there was asignificant amount of relevant semantic knowledge that remained
undiscovered. A key notion here isrelevance. Recall that we consider a semantic rule
to be relevant if (and only if) it may be utilized by the semantic query optimizer to
make a query more efficient. Recall also that research into SQO typically envisages
a semantic querypre-processor where the raw query is first submitted to the semantic
query optimizer and the output then submitted to the normal (syntactic) query opti-
mizer. (See Figure 5.) So whatever query transformation is made by the SQO stage,
ultimately any advantage bestowed by that transformation must in fact be realized by
the normal syntactic query optimizer. This is equivalent to saying that the increased ef-
ficiency of the semantically optimized query must ultimately be reflected by the ability
to fetch the answer tuples more efficiently. Typically, this implies that a helpful index
exists. Indexing in RDBMS is a well studied topic, beyond the scope of this paper.

24Much AI literature reports the difficulty of capturing commonsense, background or contextual knowl-
edge. For example, suppose theEMPLOYEEtable contains a reference to maternity leave. Then a correct
schema must specifically capture the fact that only female employees can be pregnant, in addition to noting
which employees are on maternity leave.

17

Syntactic
Query

Optimizer

Semantic
Query

Optimizer

Database
SQL
text

Ad hoc
queries

Reports

Data
analysis

RDBMS

Figure 5: Most research envisages SQO taking place as a preprocessing stage. SQL
query text is first semantically optimized then passed to the conventional (syntactic)
optimizer. Any advantage bestowed by the semantic optimizer can only be manifested
by the syntactic optimizer. The syntactic optimizer will typically look to indexes to
enhance query efficiency.

However, we note that the conditions for effective indexing are well understood and
that it seems very unlikely indeed that a large number of candidate indexes are lying
undiscovered in the schema.

We conclude this section by asserting that while it may be reasonable to assume
thata small subsetof relevant schema constraints might be missed by domain experts,
conversely it is unreasonable to assume a significant number of business rules have
somehow been missed and remain to be discovered by a mechanical analysis. We
propose a solution to this problem in Section 5.1.

4.3 Problem 3: Determining when SQO is worthwhile

Previous research does not make clear under what conditions it is likely to be worth-
while implementing SQO or what types of SQO are likely to be effective for a given
database schema. In this section we show that, for a given database schema, attempt-
ing to exploit SQO without knowing what types of queries are actually made on the
database, may result in little or no query optimization. We employ two helpful Exam-
ples 4.1 and 4.2 which both refer to the motivational example in Section 2.

Example 4.1 Scenario One: Inspection of theORDERStable reveals that most orders
are made by a subset of active customers. In fact the distribution of customer orders is
approximately normal. However, various reports which interrogate theORDERStable
mechanically query over the entire range of customers.

The situation described in Example 4.1 is pictured in Figure 6 which shows the rel-
ative number of Sales made to each Customer. On the same graph we plot the the
relative number of sales queries made on each customer. This distribution is rectan-
gular because we are supposing the vast majority of queries arise from reports which
mechanically interrogate theORDERStable over the entire range of customers. All

18

Probability

Customer ID

Customer
Orders

Queries
Against
Customer

Figure 6:Scenario One: Referring to Example 4.1, the plot sketches the relative num-
ber of Orders made by each Customer, on which is superimposed the relative number
of queriesmade on each Customer. In this scenario, the distribution of customer orders
is approximately normal. However, various reports mechanically query over the entire
range of customers.

queries that ask for Customer Sales outside of the range of active customers are in fact
null queriesi.e. queries which return no rows. The prevention of null queries being
submitted to the database is seen as a major advantage by many writers because a 100%
saving is made against the potential cost of the query (neglecting the effort required to
deduce the logical contradiction) [IBG94, HK96, GG96, ZO97, GD98, YHPM99]. To
our knowledge, no commercial RDBMS implementation performs this optimization.

It is clear in Example 4.1 that it is very likely to be worthwhile constructing a
semantic query optimizer that utilizes knowledge about the distribution of Customer
Orders. Yet it is easy to imagine the opposite situation i.e. queries on customers outside
of the active subset of customers are rarely if ever made. In this case, it is equally clear
that this type of SQO is unlikely to be worthwhile.

Example 4.2 Scenario Two:The same employee infers (incorrectly) from the existence
of Sales data pertaining to the newSingapore office that many queries are asking
for Singapore data. Anxious to prevent another employee from making a mistake
with Sales totals, she suggests intercepting each query and returning null to those that
ask forSingapore data. The DBA responds that all users are aware of the location
of the company’s sales offices and it is very unlikely that anyone at all is querying this
data. Instead, the DBA proposes that the check constraint on theLOCATIONcolumn
be added to each and every query on theSALEStable.

In Example 4.2 we imagine the opposite situation to Example 4.1 i.e. SQO is unlikely
to be worthwhile. Suppose we construct a semantic optimizer that checks the value of
the Sales Office for every query that asks for sales data, returning null for any unknown
Sales Office. But this effort is futile since no queries are ever made against unknown
Sales Office data. While it may be futile to attempt SQO here, it may still be highly
advantageous to add the check constraint at query time, as described in Section 4.1.
Figure 7 depicts a more general situation where the distribution of query constraints on
a particular column variable approximately matches the distribution of column values.

19

In other words, out of range queries are seldom if ever made. Therefore, semantically
optimizing for out of range queries is unlikely to be effective in this situation.

Location ID

Probability
Location

Queries
Against
Location

Auckland Wellington Sydney

Figure 7:Scenario Two: Referring to Example 4.2, the plot sketches the relative num-
ber of queriesmade on each company Office. In this scenario, each company Location
is queried with approximately the same probability.Out of rangequeries are seldom if
ever made. Therefore, semantically optimizing for out of range queries is unlikely to
be effective.

We conclude this section by referring to the latter part of Example 4.2. The DBA
has proposed adding the check constraint on theLOCATIONcolumn toeveryquery
made on theSALES table. This proposal is driven by the intuition that any decrease
in query efficiency that might result from this will be negligible in comparison to the
execution cost of the query. [CGK+99] report that their semantic query optimizer
typically spent less than 1% of the total query time on the query rewrite phase. This
alludes to a solution we propose in Section 5.2.

5 Preliminary results of our research

In this section we describe some preliminary results of our research to address the prob-
lems described in Section 4. We argue that the enforcement of schema constraints at
query time adds a data robustness that significantly enhances the validity of information
derived from the database. We then sketch how a simple but effective semantic query
optimizer can readily be constructed from schema constraints alone. We reiterate a key
observation that there is no semantic reasoning engine built in to SQL optimizers.

5.1 Proposed solution to Problem 1: RDBMS schema constraints
and SQO

In Section 4.1 we focussed on some important characteristics of schema constraints
that are generally ignored by researchers. We now describe how we propose to utilize
schema constraints to construct an effective semantic query optimizer. Our argument
proceeds by first showing that schema constraints may be easily enforced at query time
in order to guarantee query answers actually conform to the known schema semantics.

20

We then argue that, having enforced schema constraints at query time, we are but one
step away from a simple but effective semantic query optimizer. We then summarize
the distinctive features of schema constraints and conclude that it seems axiomatic that
schema constraints are utilized early in any effective optimization methodology.

5.1.1 Enforcing schema constraints at query time

We now describe the benefits that accrue from enforcing schema constraints at query
time. We firstly reiterate that schema constraints arestatic i.e. we may assume their
validity for the lifetime of the schema. This is equivalent to saying that we may add
any relevant schema constraint to any query at any time and the meaning of the query
will not change, with respect to the known schema semantics.

Example 5.1 We refer to the motivating example in Section 2. The employee con-
cerned now corrects the erroneous report by adding an additional restriction to the
SQL query that calculates Total Sales:

and LOCATION in (’Auckland’, ’Wellington’, ’Sydney’);

The added query restriction is simply a reiteration of the check constraint and en-
sures that only sales known to have originated from the three target offices are actually
included in the total.

The above example illustrates the enforcement of a schema constraint simply by adding
it to the query concerned. When all relevant schema constraints are added to the query,
we can be sure that the answer returned will always conform to the known schema
semantics. Crucially, this is true irrespective of whether or not all data stored in the
database actually conforms to those schema semantics. This is particularly important
when information is being inferred from the database, as in the case of data mining in
data warehouses. Thus, enforcement of schema constraints at query time adds to the
robustness of any knowledge that may be inferred from the data. It effectively filters
any answers returned by the query such that only data which conforms to the known
schema semantics is actually considered. We illustrate the unique role of schema con-
straints in Figure 8.

5.1.2 SQO follows from the enforcement of schema constraints at query time

So far in Section 5.1 we have highlighted the potential role of schema constraints in
enforcing schema semantics at query time. We now illustrate how, having enforced
schema constraints at query time, we are but one step away from a simple but effective
semantic query optimizer. We refer back to examples 3.4 and 3.5.

We make the reasonable assumption that domain experts have identified all but a
small subset of the application’s business rules and that these have been captured and
enforced by schema constraints. In Example 3.5 we illustrated how a null query results
from the resolution of the check constraint with the SQL query restriction. Yet current
SQL optimizers do not perform even elementary semantic reasoning, so the (possibly
expensive) query will be blindly submitted to the database.

We argue that if SQO is ever to be employed routinely in RDBMS, an efficient rea-
soning engine will need to be implemented which is compatible with current RDBMS
technology. We note that object oriented (OO) programming methodologies and com-
plex data types are now part of the SQL–2 and SQL–3 definitions and are available in

21

Reports

CASE tools

Ad-hoc
queries

Query

Query
Answer

Filtered
Query

Answer
Database

User sees a view of
the data which
conforms to schema
semantics.

User sees a view of
the data which may
not conform to
schema semantics.

When schema
constraints are
added to queries,
this acts as a filter.

Add
schema

constraints

Query text

Query text +

constraints

Constraints

Figure 8: The Role of Schema Constraints: When schema constraints are enforced
at query time, this effectively filters any query answer such that it reflects the correct
schema semantics. This enhances the robustness of any knowledge that may be inferred
from query answers.

all the major commercial RDBMS implementations. We expect the OO paradigm to
provide the mechanism to implement an efficient reasoning engine. This is the subject
of a forthcoming paper.

We conclude this section by reiterating that the semantic rules required for a simple
but effective semantic query optimizer are already available in RDB schemas where
all but a small subset of the relevant application business rules have been captured and
enforced by schema constraints. We argued that a key impediment to implementation
of SQO in RDBMS is the lack of an efficient reasoning engine.

5.1.3 Summary of distinctive features of schema constraints

We now summarize the distinctive features of schema constraints.

• Schema constraints are static i.e. they are valid for the lifetime of the schema.
Thus, static constraints require no re-validation when the state of the database
changes (for example, when a database table is updated).

• Schema constraints are truea priori i.e.they require no discovery. This is im-
portant because much of the computational effort required to implement SQO is

22

expended in the discovery of semantic rules [Kin81, HZ80]. Schema constraints
require no such effort to discover25.

• Schema constraints typically incorporate the application business rules and hence
are relevant26.

• Schema constraints are finite. We avoid any combinatorial explosion of relevant
semantic rules to apply during SQO.

• If relevant schema constraints are added back in to a query, just one more step is
required to perform effective SQO. This final step requires a reasoning engine.

It seems axiomatic that schema constraints are utilized early in any effective optimiza-
tion methodology. We illustrate the role of schema semantics in SQO in Figure 9.

Reports

CASE
tools

Ad-hoc
queries

Query

Query
Answer

• Filtered
• Optimized

Database User sees a view of
the data which
conforms to schema
semantics.

Semantic
optimizer
pre-
processor

Semantically optimized
query

Semantically
optimized queries
are effectively
filtered.

Constraints -
typically stored

in database

Figure 9:Utilizing Schema Constraints for SQO: If schema constraints were utilized
for SQO, queries would not only be optimized but query answers would correctly re-
flect schema semantics. Current syntactic SQL optimizers lack even an elementary
semantic reasoning engine, so are unable (for example) to detect inconsistent queries.

5.2 Proposed solution to Problem 2: Implementing SQO specifi-
cally for RDBMS

[CGK+99, GGXZ01] describe an experimental implementation of a semantic query
optimizer in the DB2 commercial RDBMS. Their optimizer is a highly restricted im-

25We neglect the effort required to gather domain knowledge and/or business rules and incorporate these
into the DBMS.

26See Definition 3.8.

23

plementation but they report ”dramatic query performance improvements”. A key fea-
ture of their implementation is that it does not rely on complex integrity constraints,
but uses only a subset of referential and check constraints. We now describe a simple
semantic query optimizer for RDBMS that incorporates a much larger set of database
constraints and subsumes the optimization described by [CGK+99].

5.2.1 Assumptions

Our proposal for a semantic query optimizer makes the following assumptions:

1. All but a small subset of the application business rules have been captured by the
database constraints.

2. The optimizer is implemented as a pre-processor, taking the raw SQL query as
input and outputting one semantically equivalent query to the normal syntactic
optimizer. (See Figure 5)

3. We utilize only the integrity constraints defined within the RDBMS.

4. We have a semantic reasoning engine which is at least an order of magnitude
faster than the time required to actually retrieve query results.27

5. We do not allow foreign keys to be null. This is primarily to simplify the discus-
sion in this paper.

5.2.2 Optimizer Design

Our proposed semantic query optimizer consists of three parts:

1. A constraint compiler. The constraint compiler retrieves all constraints for each
table and formulates a single SQL string incorporating all constraint information.
Note that this need only be performed once since the constraints are static. This
operation is therefore effectively costless.

2. A concatenate procedure. This determines which tables are invoked in the SQL
query and mechanically appends the appropriate constraint string.

3. A reasoning engine. This is able to resolve query restrictions and detect null
queries.28

Note that the implementation of the first two parts above is sufficient to guarantee
that query results conform to the known schema semantics. We donot require that
constraints be enforced during data insert or modification. We point to the compelling
simplicity of the method we describe and comment that it is difficult to find reasons not
to perform this, if one’s goal is to infer semantic rules or uncover semantic knowledge.

We do not attempt, in this simple design, to find any optimal combination of con-
straints. We are content (at this stage) with the assumption that the SQO pre-processor
will not add significantly to the total query processing time. It is always possible of

27This is not an unreasonable assumption. Current syntactic optimizers are typically several orders of
magnitude faster than average query retrieval times.

28In fact we can do a lot better than that. Our optimizer also performs simplification and generalization
functions which greatly increase the chance that the query result is already cached. This is beyond the scope
of this paper but is described in a forthcoming paper.

24

course that mechanically adding the constraint string to the SQL query text willre-
ducethe query efficiency. But this is unlikely, since appending the constraint string can
never enlarge the domain under consideration beyond what is defined by the applica-
tion business rules. However, we argue that even if this is sometimes the case, it is still
negligible in comparison with the total execution cost.

5.2.3 Constraint types utilized by our optimizer

Our proposed design captures and incorporates the following types of RDBMS con-
straints:

• not null: Any columnCOL(of tableTAB) declared to be not null results in the
following restriction being added to every query onTAB:

COL is not null

• check (including implication): Check constraints allow RDBMS to capture a
powerful set of business rules, including range constraints:

e.g:check SALARY between 15000 and 150000

Most RDBMS allow any column in the data row to be referenced. This allows
quite complex constraints to be expressed:

e.g:check PURCHASEDATE > SHIP DATE

Any implicationA -> B may be expressed as(not A or B)

e.g: if LOCATION in (’Heathrow’, ’Newham’, ’Notting Hill’)
then CITY = ’London’

may be written as

check LOCATION not in (’Heathrow’, ’Newham’, ’Notting Hill’)
or CITY = ’London’

• referential: Any foreign key column must logically be at least as restricted as its
parent. So it inherits the parents’ restrictions, in addition to any restrictions of its
own.

Note that we are not concerned with the cost of enforcing the constraints at data in-
sert or modification time. This is a quite separate problem. We require only that the
constraints be defined within the RDBMS so they may be harvested by the constraint
compiler.

5.3 Proposed solution to Problem 3: Determining when SQO is
worthwhile

In Section 4.3 we showed that attempting to exploit SQO without knowing what types
of queries are actually made on the database, may result in little or no query optimiza-
tion. For example, if null queries are never made against the database then attempting

25

to detect them is of no value. On the other hand, the potential impact of a query from an
unsophisticated user on a large data warehouse might make it a high priority to detect
null queries.

Our research advocates the discovery of aquery profilefrom which we may infer
suitable starting points in the search for semantic information. This is equivalent to
an initial heavy pruning of the space of possible rules making it much more likely
discovered rules are relevant. We note that the capture of a query profile is already a
normal part of DBA activities and it is easy to capture a simple profile using available
software.

Example 5.2 We refer to the motivating example in Section 2. The DBA decides to
gather a simple query profile for the Sales database schema. She collects the follow-
ing information by running a query analysis tool supplied as a standard part of the
RDBMS.

• tables that are actually queried;

• columns that are restricted and the logical expression of that restriction;

• tables that are joined and the join column.

The DBA infers from the query profile what parts of the schema are likely to be worth
examining more closely for the purpose of query optimization.

We conclude this section by listing three compelling reasons to collect a query profile:

1. A query profile defines a set of potential targets for data reorganization.

2. A query profile defines a focus for further SQO.

3. A query profile reveals what SQO strategies are likely to be worthwhile.

6 Conclusion

In this section we first summarize the main contributions of this paper. We then briefly
describe some next steps for our research.

This paper focusses on the efficacy of SQO in the context of RDBMS. Our ultimate
goal is the construction of an effective semantic query optimizer for RDBMS.

• We present a thorough analysis of the current state of SQO. We propose defini-
tions which clarify and to some extent simplify the terminology used by other
researchers. We utilize these to form our own definiton of SQO which incorpo-
rates both the uncovering of semantic information (from all available sources)
plus query rewrite.

• We identify three open problems which we argue inhibit the effective use of
SQO in RDBMS. We focus on the unique role of schema constraints in SQO,
the efficacy of SQO in the specific context of RDBMS and the worthwhileness
of SQO for a given query profile.

• We propose solutions to these problems and describe first steps towards the im-
plementation of an effective semantic query optimizer for relational databases.
We describe how schema constraints may be enforced at query time to enforce

26

the known schema semantics. The addition of a reasoning engine completes (in
principle) the design of an effective semantic query optimizer. We propose the
capture of a query profile as a prerequisite for effective SQO and describe how
this heavily prunes the potential search space for relevant semantic information.

There is no semantic reasoning engine built in to SQL optimizers. Next steps in
our research will include the completion of the logical design of our Reasoning Engine
(RE), followed by its implementation in a standard commercial RDBMS. Our RE is
based on a generalization of anintervaldata type [GD98].

References

[AF94] K. Aberer and G. Fischer.Semantic Query Optimization for Methods in
Object-Oriented Database Systems. Gesellschaft fuer Mathematik und
Datenverarbeitung (GMD), Darmstadt, Germany, 1994.

[CGK+99] Q. Cheng, J. Gryz, F. Koo, T. Y. Leung, L. Liu, X. Qian, and K. B.
Schiefer. Implementation of two semantic query optimization techniques
in db2 universal database. InProceedings of the 25th International Con-
ference on Very Large Data Bases, pages 687–698. Morgan Kaufmann
Publishers Inc., 1999.

[CGM90] S. Chakravarthy, J. Grant, and J. Minker. Logic based approach to se-
mantic query optimization. ACM Transactions on Database Systems,
15(2):162–207, June 1990.

[Che96] I. A. Chen. Query answering using discovered rules. InProceedings of
the 12th International Conference on Data Engineering (ICDE’96), pages
402–411. IEEE, 1996.

[Dat95] C. J. Date.An introduction to database systems. Addison-Wesley, 6 edi-
tion, 1995.

[DD93] C. J. Date and Hugh Darwen.A Guide to The SQL Standard. Addison-
Wesley, 3 edition, 1993.

[DD97] C. J. Date and Hugh Darwen.A Guide to The SQL Standard. Addison-
Wesley, 4 edition, 1997.

[GD98] B. Genet and G. Dobbie. Is semantic optimisation worthwhile? InPro-
ceedings of the 21st Australasian Computer Science Conference, pages
245–256, Perth, Australia, February 1998.

[GG96] P. Godfrey and J. Gryz. A framework for intensional query optimization.
In Workshop on Deductive Databases and Logic Programming, 1996.

[GGGM98] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity constraints: Seman-
tics and applications. InLogics for Databases and Information Systems,
pages 265–306, 1998.

[GGM96] P. Godfrey, J. Gryz, and J. Minker. Semantic query optimization for
bottom-up evaluation. InProceedings of the Ninth International Sympo-
sium on Foundations of Intelligent Systems, volume 1079 ofLNAI, pages
561–571, Berlin, June 9–13 1996. Springer.

27

[GGMR97] J. Grant, J. Gryz, J. Minker, and L. Raschid. Semantic query optimization
for object databases. InICDE, pages 444–453, 1997.

[GGXZ01] P. Godfrey, J. Gryz, H. Xu, and C. Zuzarte. Exploiting constraint-like data
characterizations in query optimization. InSIGMOD Record, 2001.

[GSZZ01] J. Gryz, K. B. Schiefer, J. Zheng, and C. Zuzarte. Discovery and applica-
tion of check constraints in db2. InICDE, pages 551–556, 2001.

[HK94] C. Hsu and C. A. Knoblock. Rule induction for semantic query optimiza-
tion. In Proc. 11th International Conference on Machine Learning, pages
112–120. Morgan Kaufmann, 1994.

[HK96] C. Hsu and C. A. Knoblock. Using inductive learning to generate rules
for semantic query optimization. InAdvances in Knowledge Discovery
and Data Mining, pages 425–445. 1996.

[HK98] C. Hsu and C. A. Knoblock. Discovering robust knowledge from
databases that change.Data Mining and Knowledge Discovery, 2(1):69–
95, 1998.

[HK00] C. Hsu and C. A. Knoblock. Semantic query optimization for query plans
of heterogeneous multidatabase systems.Knowledge and Data Engineer-
ing, 12(6):959–978, 2000.

[HZ80] M. Hammer and S. B. Zdonik. Knowledge based query processing. In
Proceedings of the 6th International Conference Very Large Data Bases,
pages 137–147, February 1980.

[IBG94] A. Illarramendi, J. M. Blanco, and A. Goni. Making knowledge base
systems more efficient: a method to detect inconsistent queries.IEEE
Transactions on Knowledge and Data Engineering, 6(4), August 1994.

[JK84] Matthias Jarke and Jurgen Koch. Query optimization in database systems.
ACM Comput. Surv., 16(2):111–152, 1984.

[Kin81] J. J. King. A system for semantic query optimization in relational
databases. InProceedings of 7th VLDB Conference, pages 510–517,
1981.

[SHKC93] S. Shekhar, B. Hamidzadeh, A. Kohli, and M. Coyle. Learning transfor-
mation rules for semantic query optimization: A data-driven approach. In
Special Issue on Learning and Discovery in Knowledge-Based Databases,
number 5(6), pages 950–964. Institute of Electrical and Electronics Engi-
neers, Washington, U.S.A., 1993.

[SL96] A. Sayli and B. Lowden. The use of statistics in semantic query optimi-
sation, 1996.

[SO87] S. T. Shenoy and Z. M. Ozsoyoglu. A system for semantic query optimiza-
tion. In Association for Computing Machinery Special Interest Group on
Management of Data 1987 Annual Conference, SIGMOD Record, vol-
ume 6, pages 181–195, December 1987.

28

[SSD92] S. Shekhar, J. Srivastava, and S. Dutta. A formal model of trade-off be-
tween optimization and execution costs in semantic query optimization.
Data and Knowledge Engineering (North-Holland), 8(2):131–151, 1992.

[SSS92] M. Siegel, E. Sciore, and S. Salveter. A method for automatic rule
derivation to support semantic query optimisation.ACM Transactions
on Database Systems, 17(4):563–600, December 1992.

[YHPM99] S. Yoon, L. J. Henschen, E. K. Park, and S. Makki. Using domain knowl-
edge in knowledge discovery. InProceedings of the eighth international
conference on Information and knowledge management, pages 243–250.
ACM Press, 1999.

[YS89] C.T. Yu and W. Sun. Automatic knowledge acquisition and maintenance
for semantic query optimization.IEEE Transactions on Knowledge and
Data Engineering, 1(3), September 1989.

[Zhu92] Qiang Zhu. Query optimization in multidatabase systems. InProceedings
of the 1992 conference of the Centre for Advanced Studies on Collabora-
tive research, pages 111–127. IBM Press, 1992.

[ZO97] X. Zhang and Z. M. Ozsoyoglu. Implication and referential constraints: A
new formal reasoning.Knowledge and Data Engineering, 9(6):894–910,
1997.

29

