42 research outputs found

    An algorithmic and architectural study on Montgomery exponentiation in RNS

    Get PDF
    The modular exponentiation on large numbers is computationally intensive. An effective way for performing this operation consists in using Montgomery exponentiation in the Residue Number System (RNS). This paper presents an algorithmic and architectural study of such exponentiation approach. From the algorithmic point of view, new and state-of-the-art opportunities that come from the reorganization of operations and precomputations are considered. From the architectural perspective, the design opportunities offered by well-known computer arithmetic techniques are studied, with the aim of developing an efficient arithmetic cell architecture. Furthermore, since the use of efficient RNS bases with a low Hamming weight are being considered with ever more interest, four additional cell architectures specifically tailored to these bases are developed and the tradeoff between benefits and drawbacks is carefully explored. An overall comparison among all the considered algorithmic approaches and cell architectures is presented, with the aim of providing the reader with an extensive overview of the Montgomery exponentiation opportunities in RNS

    Utilizing the Double-Precision Floating-Point Computing Power of GPUs for RSA Acceleration

    Get PDF
    Asymmetric cryptographic algorithm (e.g., RSA and Elliptic Curve Cryptography) implementations on Graphics Processing Units (GPUs) have been researched for over a decade. The basic idea of most previous contributions is exploiting the highly parallel GPU architecture and porting the integer-based algorithms from general-purpose CPUs to GPUs, to offer high performance. However, the great potential cryptographic computing power of GPUs, especially by the more powerful floating-point instructions, has not been comprehensively investigated in fact. In this paper, we fully exploit the floating-point computing power of GPUs, by various designs, including the floating-point-based Montgomery multiplication/exponentiation algorithm and Chinese Remainder Theorem (CRT) implementation in GPU. And for practical usage of the proposed algorithm, a new method is performed to convert the input/output between octet strings and floating-point numbers, fully utilizing GPUs and further promoting the overall performance by about 5%. The performance of RSA-2048/3072/4096 decryption on NVIDIA GeForce GTX TITAN reaches 42,211/12,151/5,790 operations per second, respectively, which achieves 13 times the performance of the previous fastest floating-point-based implementation (published in Eurocrypt 2009). The RSA-4096 decryption precedes the existing fastest integer-based result by 23%

    Low-Latency Elliptic Curve Scalar Multiplication

    Get PDF
    This paper presents a low-latency algorithm designed for parallel computer architectures to compute the scalar multiplication of elliptic curve points based on approaches from cryptographic side-channel analysis. A graphics processing unit implementation using a standardized elliptic curve over a 224-bit prime field, complying with the new 112-bit security level, computes the scalar multiplication in 1.9ms on the NVIDIA GTX 500 architecture family. The presented methods and implementation considerations can be applied to any parallel 32-bit architectur

    Fault attacks on RSA and elliptic curve cryptosystems

    Full text link
    This thesis answered how a fault attack targeting software used to program EEPROM can threaten hardware devices, for instance IoT devices. The successful fault attacks proposed in this thesis will certainly warn designers of hardware devices of the security risks their devices may face on the programming leve

    Radix-8 Booth Encoded Modulo Multiplier

    Get PDF
    Abstract To design an efficient integrated circuit in terms of area, power and speed, has become a challenging task in modern VLSI design field. The encryption and decryption of PKC algorithms are performed by repeated modulo multiplications these multiplications differ from those encountered in signal processing and general computing applications. The Residue Number System (RNS) has emerged as a promising alternative number representation for the design of faster and low power multipliers owing to its merit to distribute a long integer multiplication into several shorter and independent modulo multiplications. The multipliers are the essential elements of the digital signal processing such as filtering, convolution, transformations and Inner products. RNS has also been successfully employed to design fault tolerant digital circuits. The modulo multiplier is usually the noncritical data path among all modulo multipliers in such high-DR RNS multiplier. This timing slack can be exploited to reduce the system area and power consumption without compromising the system performance. With this precept, a family of radix-8 Booth encoded modulo multipliers, with delay adaptable to the RNS multiplier delay, is proposed. In this paper, the radix-8 Booth encoded modulo multipliers whose delay can be tuned to match the RNS delay. In the proposed multiplier, the hard multiple is implemented using small word-length ripple carry adders (RCAs) operating in parallel. The carry-out bits from the adders are not propagated but treated as partial product bits to be accumulated in the CSA tree. The delay of the modulo multiplier can be directly controlled by the word-length of the RCAs to equal the delay of the critical modulo multiplier of the RNS. By combining radix-8 Booth encoded modulo multiplier, CSA and prefix architecture of multiplier, for high speed and low-power is achieved

    Fast Modular Reduction for Large-Integer Multiplication

    Get PDF
    The work contained in this thesis is a representation of the successful attempt to speed-up the modular reduction as an independent step of modular multiplication, which is the central operation in public-key cryptosystems. Based on the properties of Mersenne and Quasi-Mersenne primes, four distinct sets of moduli have been described, which are responsible for converting the single-precision multiplication prevalent in many of today\u27s techniques into an addition operation and a few simple shift operations. A novel algorithm has been proposed for modular folding. With the backing of the special moduli sets, the proposed algorithm is shown to outperform (speed-wise) the Modified Barrett algorithm by 80% for operands of length 700 bits, the least speed-up being around 70% for smaller operands, in the range of around 100 bits

    Theory and Practice of Cryptography and Network Security Protocols and Technologies

    Get PDF
    In an age of explosive worldwide growth of electronic data storage and communications, effective protection of information has become a critical requirement. When used in coordination with other tools for ensuring information security, cryptography in all of its applications, including data confidentiality, data integrity, and user authentication, is a most powerful tool for protecting information. This book presents a collection of research work in the field of cryptography. It discusses some of the critical challenges that are being faced by the current computing world and also describes some mechanisms to defend against these challenges. It is a valuable source of knowledge for researchers, engineers, graduate and doctoral students working in the field of cryptography. It will also be useful for faculty members of graduate schools and universities
    corecore