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Preface

In an age of explosive worldwide growth of electronic data storage and communications,
effective protection of information has become a critical requirement. Especially when used
in coordination with other tools for information security, cryptography in all of its applica‐
tions, including data confidentiality, data integrity, and user authentication, is the most
powerful tool for protecting information. While the importance of cryptographic technique,
i.e., encryption, in protecting sensitive and critical information and resources cannot be
overemphasized, examination of technical evolution within several industries reveals an ap‐
proaching precipice of scientific change. The glacially paced, but inevitable convergence of
quantum mechanics, nanotechnology, computer science, and applied mathematics, will rev‐
olutionize modern technology. The implications of such changes will be far reaching, with
one of its greatest impacts, affecting information security. More specifically, that of modern
cryptography.

The theoretical numerists, responsible for cryptography’s algorithmic complexities, will be
affected by this scientific conglomeration, although numerologists should not be concerned.
The subsequent adaptation and remodeling of classical cryptography will be a fascinating,
and yet undetermined process. Of course, this would all be irrelevant if we could just stand‐
ardize the use of Arithmancy and it powers of numerical divination. Then again, we live in a
society where mysticism is left to those practicing the pseudoscience of applied mathematics.

In addition to the Intel 8080 and disco, the 1970s gave us public-key cryptography. Popular‐
ized by the RSA cryptosystems, it introduced new method for encryption that overcame the
security issues of key exchange with symmetric cryptosystems. Because generating large
prime number is much easier than factoring them, public key systems have proved to be a
mathematically strong approach. The need to evaluate the security of factor-based crypto‐
systems, has led to advancements in integer factorization algorithms. From the simplistic
use of trial division, to the more advanced techniques of Fermat or Pollard Rho factoriza‐
tion, to the sophisticated general number field sieve algorithm- improved approaches using
computer processing have left only the strongest of cryptosystems and key sizes intact.

However, the 30-year crypto-evolution of public-key cryptography has shown some remark‐
ably difficult and complex advances in computational number theory. One of the best-
known examples is well documented in the results of the RSA Factoring Challenge. Starting
in 1991, with the smallest key, RSA-100 (100 decimal digits), being cracked within the first
two weeks, approximately 50 RSA numbers of increasing length were published, in an open
factorization contest. Ending in 2007, with 12 solutions, the event resulted in the achieve‐
ment of numerous mathematical milestones for the crypto community, including the factori‐
zation of RSA-640 (192 decimal digits = 640 binary) in 2005. While this event is considered
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more successful than the “pi” eating contest held by the Association of Symmetric Security,
private key cryptography is a complementary, efficient, and secure method of encryption.
When compared to public-key systems, the processing time is reduced by an order of
102-103, not requiring the computational overhead for key correlation. Whether it’s using
block or stream ciphers, the use of single key for both encryption and decryption relies on a
high level of key integrity. In addition, its entropy, secure key transfer, or key distribution,
are fundamental to its success, ensuring only the sender and recipient have a copy, without
any risk of compromise. Even the security of the most secure scheme ever known, one-time-
pad, is powerless when improperly implemented or can be vulnerable to man-in-the-middle
attack as a two- or three-time pads.

It is important to note how PCs have evolved alongside cryptography, since this all takes
place on some level of computer hardware. In a general sense, given a strong algorithm, the
increase in computational power has necessitated the use of large key sizes. For example,
brute force attacks require a theoretical average of trying out half of all the possible key
combinations before actually making a correct hit. Therefore, increasing the key size makes
the job of brute force attackers exponentially more difficult. For each additional bit added,
the key space is doubled, thus doubling the work required to crack (this is an oversimplifi‐
cation of a complex analytic process). However, a battle of computer processing power ver‐
sus mathematical complexity has been one of the fundamental challenges of maintaining
cryptographic security. Examining the landscape of modern computing reveals both legiti‐
mate and questionable concerns. Using parallel processing and distributed computing, the
time required to break keys can be reduced. Theoretically, with n numbers of computers, the
time required to crack a key is 1/n times the time required using one computer. On the other
hand, with the possibility (or the realization) that Moore’s Law will soon be no more, it may
be that physical constraints of conventional silicon chips will be outpaced by the conceptual
constrains of mathematics.

Quantum computing is often discussed as the disruptive technology that will transform
computer science. The theoretical blueprints for quantum computers were drafted by Ri‐
chard Feynman over 30 years ago and currently several companies have prototypes designs,
with manufacturing claims. However, the optimism of this field and its potential impact is
somewhat premature. The scientific media have repeatedly voiced the concerns of quantum
computers annihilating the existing public key cryptosystems. A news release from Accen‐
ture says “A breakthrough in quantum or molecular computing could leave today’s com‐
puter-and IT security systems in the dust.” Science Daily describes the arms race that will
result from the post-apocalyptic world of post-quantum computing. Why is the technology
so threatening to cryptographic security?

Perhaps it’s the publicized predictions that quantum cryptanalysis will mark the downfall of
classical cryptography. In 1984, while in AT&T Bell Laboratories, mathematician Peter Shor
developed a quantum algorithm that can factor large numbers in polynomial time. Transi‐
tioning from classical to quantum computing, Shor’s algorithm has the potential to break all
of the existing public key schemes used today. In 1996, Lov Grover created a database
search algorithm that provided powerful quantum calculations through functional inver‐
sion. Grover’s algorithm provided quadratic improvements over brute force approach. Ap‐
plications of these mathematical attacks are proofs of concept in the absence of theoretical
hardware.

XII Preface

Furthermore, there are several cryptosystems thought to be resilient to cryptographic attack
from both traditional computers and quantum computers, such as: (i) Hash-based cryptog‐
raphy, (ii) Code-based cryptography, (iii) Lattice-based cryptography, (iv) Multivariate-
quadratic-equations cryptography, and (v) Secret-key cryptography.

Encryption may not be the most glamorous layer of security, but when properly implement‐
ed, it’s probably the most sophisticated and strongest layer. A majority of the real world
defense strategies still lack a cryptographic layer. When faced with relevant security con‐
cerns to address, IT managers should be allocating resources to the weak areas of the securi‐
ty chain. For those who’ve never spent time reading the works of Schneier: Not only is
security a process, but it should be thought of as a chain whose strength is only as strong as
its weakest link. Encryption is usually one the strongest in the link. Fix the areas that pose
the real threats: social engineering, end-user training, policy enforcement, perimeter securi‐
ty, firewall rules, secure coding, and so on.

How many automated exploit tools exist that allow script-kiddies to launch cryptanalytic
attacks? Have there been some sort of underground crypto-cons going on that have eluded
hacker on radar? Or perhaps we should fear the Quantum Hacking group?

About the book: The purpose of this book is to discuss some of the critical security challeng‐
es that are being faced by today’s computing world and mechanisms to defend against them
using classical and modern techniques of cryptography. With this goal, the book presents a
collection of research work of some of the experts in the field of cryptography and networks
security.

The book consists of five chapters that address different contemporary security issues.

In Chapter 1 entitled “Homomorphic Encryption: Theory and Applications”, Sen has dis‐
cussed a very important techniques of encryption- homomorphic encryption – a technique
that allows meaningful computations to be carried out on encrypted data to produce an out‐
put of a function so that the privacy of the inputs to the function is protected. With a formal
introduction to this sophisticated encryption technique, the chapter has provided a detailed
survey of various contemporary homomorphic encryption schemes including the most pow‐
erful fully homomorphic encryption mechanisms. A list of emerging research directions in
the field of homomorphic encryption has also been outlined which has become particularly
relevant with large-scale adoption of cloud computing technologies.

In Chapter 2: “Optical Communications with Weak Coherent Light Fields”, Fook et al. have
investigated how two orthogonal coherent light fields can be used to establish a correlation
function between two distant observers. The authors have proposed a novel optical commu‐
nication system based on weak coherent light fields to demonstrate the validity of their
proposition.

In Chapter 3: “Efficient Computation for Pairing Based Cryptography: A State of the Art”, El
Mrabet has introduced the concept of pairing-based cryptography and discussed in detailed
various pairings, such as, Weil pairing, Tate pairing, Eta pairing, and Ate pairing. The au‐
thor has also presented mathematical analysis and optimizations of various types of pairing
schemes.

In Chapter 4: “A Double Cipher Scheme for Applications in Ad Hoc Networks and its VLSI
Implementations”, Fukase has proposed two cipher schemes for ad hoc networks. The first
scheme is based on random addressing and the second one uses a data sealing algorithm.
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The double cipher scheme proposed by the author uses built-in random number generators
in the microprocessors. The details of a VLSI implementation of the cipher scheme have also
been presented by the author.

In Chapter 5: “Introduction to Quantum Cryptography”, Tan has discussed various issues in
quantum cryptography particularly focusing attention of three aspects: quantum key distri‐
bution, quantum secret sharing, and post-quantum cryptography issues. In addition to dis‐
cussing various fundamental concepts of quantum cryptography, the author has also
thrown some light on post-quantum era in which the currently public key cryptography will
no longer be secure.

I am confident that the book will be very useful for researchers, engineers, graduate and
doctoral students working in the field of cryptography. It will also be very useful for faculty
members of graduate schools and universities. However, since it is not a basic tutorial on
cryptography, it does not contain any chapter dealing with any detailed introductory infor‐
mation on any fundamental concept in cryptography. The readers need to have at least
some basic knowledge on theoretical cryptography before reading the chapters in this book.
Some of the chapters present in-depth cryptography and security related theories and latest
updates in a particular research area that might be useful to advanced readers and research‐
ers in identifying their research directions and formulating problems to solve.

I express my sincere thanks to the authors of different chapters of the book without whose
invaluable contributions this project could not have been successfully completed. All the au‐
thors have been extremely cooperative on different occasions during the submission, re‐
view, and editing process of the book. I would like to express my special thanks to Ms.
Sandra Bakic of InTech Publisher for her support, encouragement, patience and cooperation
during the entire period of publication of the book. I will be failing in my duty if I do not
acknowledge the encouragement, motivation, and assistance that I received from my stu‐
dents in National Institute of Science and Technology, Odisha, India. While it will be impos‐
sible for me to mention name of each of them, the contributions of Swetashree Mishra, Swati
Choudhury, Ramesh Kumar, Isha Bharati, Prateek Nayak and Aiswarya Mohapatra have
been invaluable. Last but not the least, I would like to thank my mother Krishna Sen, my
wife Nalanda Sen and my daughter Ritabrata Sen for being the major sources of my motiva‐
tion and inspiration during the entire period of the publication of this volume.

Professor Jaydip Sen
Department of Computer Science & Engineering

National Institute of Science and Technology, Odisha
India
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Additional information is available at the end of the chapter
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1. Introduction

The demand for privacy of digital data and of algorithms for handling more complex structures
have increased exponentially over the last decade. This goes in parallel with the growth in
communication networks and their devices and their increasing capabilities. At the same time,
these devices and networks are subject to a great variety of attacks involving manipulation
and destruction of data and theft of sensitive information. For storing and accessing data
securely, current technology provides several methods of guaranteeing privacy such as data
encryption and usage of tamper-resistant hardwares. However, the critical problem arises
when there is a requirement for computing (publicly) with private data or to modify functions
or algorithms in such a way that they are still executable while their privacy is ensured. This
is where homomorphic cryptosystems can be used since these systems enable computations
with encrypted data.

In 1978 Rivest et al. (Rivest et al, 1978a) first investigated the design of a homomorphic
encryption scheme. Unfortunately, their privacy homomorphism was broken a couple of years
later by Brickell and Yacobi (Brickell & Yacobi, 1987). The question rose again in 1991 when
Feigenbaum and Merritt (Feigenbaum & Merritt, 1991) raised an important question: is there
an encryption function (E) such that both E(x + y) and E(x.y) are easy to compute from E(x) and
E(y)? Essentially, the question is intended to investigate whether there is any algebraically
homomorphic encryption scheme that can be designed. Unfortunately, there has been a very
little progress in determining whether such encryption schemes exist that are efficient and
secure until 2009 when Craig Gentry, in his seminal paper, theoretically demonstrated the
possibility of construction such an encryption system (Gentry, 2009). In this chapter, we will
discuss various aspects of homomorphic encryption schemes – their definitions, requirements,
applications, formal constructions, and the limitations of the current homomorphic encryption
schemes. We will also briefly discuss some of the emerging trends in research in this field of
computer science.

© 2013 Sen; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Sen; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The double cipher scheme proposed by the author uses built-in random number generators
in the microprocessors. The details of a VLSI implementation of the cipher scheme have also
been presented by the author.

In Chapter 5: “Introduction to Quantum Cryptography”, Tan has discussed various issues in
quantum cryptography particularly focusing attention of three aspects: quantum key distri‐
bution, quantum secret sharing, and post-quantum cryptography issues. In addition to dis‐
cussing various fundamental concepts of quantum cryptography, the author has also
thrown some light on post-quantum era in which the currently public key cryptography will
no longer be secure.

I am confident that the book will be very useful for researchers, engineers, graduate and
doctoral students working in the field of cryptography. It will also be very useful for faculty
members of graduate schools and universities. However, since it is not a basic tutorial on
cryptography, it does not contain any chapter dealing with any detailed introductory infor‐
mation on any fundamental concept in cryptography. The readers need to have at least
some basic knowledge on theoretical cryptography before reading the chapters in this book.
Some of the chapters present in-depth cryptography and security related theories and latest
updates in a particular research area that might be useful to advanced readers and research‐
ers in identifying their research directions and formulating problems to solve.

I express my sincere thanks to the authors of different chapters of the book without whose
invaluable contributions this project could not have been successfully completed. All the au‐
thors have been extremely cooperative on different occasions during the submission, re‐
view, and editing process of the book. I would like to express my special thanks to Ms.
Sandra Bakic of InTech Publisher for her support, encouragement, patience and cooperation
during the entire period of publication of the book. I will be failing in my duty if I do not
acknowledge the encouragement, motivation, and assistance that I received from my stu‐
dents in National Institute of Science and Technology, Odisha, India. While it will be impos‐
sible for me to mention name of each of them, the contributions of Swetashree Mishra, Swati
Choudhury, Ramesh Kumar, Isha Bharati, Prateek Nayak and Aiswarya Mohapatra have
been invaluable. Last but not the least, I would like to thank my mother Krishna Sen, my
wife Nalanda Sen and my daughter Ritabrata Sen for being the major sources of my motiva‐
tion and inspiration during the entire period of the publication of this volume.

Professor Jaydip Sen
Department of Computer Science & Engineering

National Institute of Science and Technology, Odisha
India

PrefaceX

Chapter 1

Homomorphic Encryption — Theory and Application

Jaydip Sen

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56687

1. Introduction

The demand for privacy of digital data and of algorithms for handling more complex structures
have increased exponentially over the last decade. This goes in parallel with the growth in
communication networks and their devices and their increasing capabilities. At the same time,
these devices and networks are subject to a great variety of attacks involving manipulation
and destruction of data and theft of sensitive information. For storing and accessing data
securely, current technology provides several methods of guaranteeing privacy such as data
encryption and usage of tamper-resistant hardwares. However, the critical problem arises
when there is a requirement for computing (publicly) with private data or to modify functions
or algorithms in such a way that they are still executable while their privacy is ensured. This
is where homomorphic cryptosystems can be used since these systems enable computations
with encrypted data.

In 1978 Rivest et al. (Rivest et al, 1978a) first investigated the design of a homomorphic
encryption scheme. Unfortunately, their privacy homomorphism was broken a couple of years
later by Brickell and Yacobi (Brickell & Yacobi, 1987). The question rose again in 1991 when
Feigenbaum and Merritt (Feigenbaum & Merritt, 1991) raised an important question: is there
an encryption function (E) such that both E(x + y) and E(x.y) are easy to compute from E(x) and
E(y)? Essentially, the question is intended to investigate whether there is any algebraically
homomorphic encryption scheme that can be designed. Unfortunately, there has been a very
little progress in determining whether such encryption schemes exist that are efficient and
secure until 2009 when Craig Gentry, in his seminal paper, theoretically demonstrated the
possibility of construction such an encryption system (Gentry, 2009). In this chapter, we will
discuss various aspects of homomorphic encryption schemes – their definitions, requirements,
applications, formal constructions, and the limitations of the current homomorphic encryption
schemes. We will also briefly discuss some of the emerging trends in research in this field of
computer science.

© 2013 Sen; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Sen; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The chapter is organized as follows. In Section 2, we provide some basic and fundamental
information on cryptography and various types of encryption schemes. Section 3 presents a
formal discussion on homomorphic encryption schemes and discusses their various features.
In Section 4, we discuss some of the most well-known and classical homomorphic encryption
schemes in the literature. Section 5 provides a brief presentation on various properties and
applications of homomorphic cryptosystems. Section 6 presents a discussion on fully homo‐
morphic encryption schemes which are the most powerful encryption schemes for providing
a framework for computing over encrypted data. Finally, Section 7 concludes the chapter while
outlining a number of research directions and emerging trends in this exciting field of
computation which has a tremendous potential of finding applications in the real-world
deployments.

2. Fundamentals of cryptography

In this Section, we will recall some important concepts on encryption schemes. For more
detailed information, the reader may refer to (Menezes et al., 1997; Van Tilborg, 2011).
Encryption schemes are designed to preserve confidentiality. The security of encryption
schemes must not rely on the obfuscation of their codes, but it should only be based on the
secrecy of the key used in the encryption process. Encryption schemes are broadly of two types:
symmetric and asymmetric encryption schemes. In the following, we present a very brief
discussion on each of these schemes.

Symmetric encryption schemes: In these schemes, the sender and the receiver agree on the
key they will use before establishing any secure communication session. Therefore, it is not
possible for two persons who never met before to use such schemes directly. This also implies
that in order to communicate with different persons, we must have a different key for each
people. Requirement of large number of keys in these schemes make their key generation and
management relatively more complex operations. However, symmetric schemes present the
advantage of being very fast and they are used in applications where speed of execution is a
paramount requirement. Among the existing symmetric encryption systems, AES (Daemen &
Rijmen, 2000; Daemen & Rijmen, 2002), One-Time Pad (Vernam, 1926) and Snow (Ekdahl &
Johansson, 2002) are very popular.

Asymmetric encryption schemes: In these schemes, every participant has a pair of keys-
private and public. While the private key of a person is known to only her, the public key of
each participant is known to everyone in the group. Such schemes are more secure than their
symmetric counterparts and they don’t need any prior agreement between the communicating
parties on a common key before establishing a session of communication. RSA (Rivest et al.,
1978b) and ElGamal (ElGamal, 1985) are two most popular asymmetric encryption systems.

Security of encryption schemes: Security of encryption schemes was first formalized by
Shannon (Shannon, 1949). In his seminal paper, Shannon first introduced the notion of perfect
secrecy/unconditional secrecy, which characterizes encryption schemes for which the knowl‐
edge of a ciphertext does not give any information about the corresponding plaintext and the
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encryption key. Shannon also proved that One-Time Pad (Vernam, 1926) encryption scheme
is perfectly secure under certain conditions. However, no other encryption scheme has been
proved to be unconditionally secure. For asymmetric schemes, we can rely on their mathe‐
matical structures to estimate their security strength in a formal way. These schemes are based
on some well-identified mathematical problems which are hard to solve in general, but easy
to solve for the one who knows the trapdoor – i.e., the owner of the keys. However, the
estimation of the security level of these schemes may not always be correct due to several
reasons. First, there may be other ways to break the system than solving the mathematical
problems on which these schemes are based (Ajtai & Dwork, 1997; Nguyen & Stern, 1999).
Second, most of the security proofs are performed in an idealized model called random oracle
model, in which involved primitives, for example, hash functions, are considered truly random.
This model has allowed the study of the security level of numerous asymmetric ciphers.
However, we are now able to perform proofs in a more realistic model called standard model
(Canetti et al., 1998; Paillier, 2007). This model eliminates some of the unrealistic assumptions
in the random oracle model and makes the security analysis of cryptographic schemes more
practical.

Usually, to evaluate the attack capacity of an adversary, we distinguish among several contexts
(Diffie & Hellman, 1976): cipher-text only attacks (where the adversary has access only to some
ciphertexts), known-plaintext attacks (where the adversary has access to some pairs of plaintext
messages and their corresponding ciphertexts), chosen-plaintext attacks (the adversary has
access to a decryption oracle that behaves like a black-box and takes a ciphertext as its input
and outputs the corresponding plaintexts). The first context is the most frequent in real-world
since it can happen when some adversary eavesdrops on a communication channel. The other
cases may seem difficult to achieve, and may arise when the adversary is in a more powerful
position; he may, for example, have stolen some plaintexts or an encryption engine. The chosen
one exists in adaptive versions, where the opponents can wait for a computation result before
choosing the next input (Fontaine & Galand, 2007).

Probabilistic encryption: Almost all the well-known cryptosystems are deterministic. This
means that for a fixed encryption key, a given plaintext will always be encrypted into the same
ciphertext under these systems. However, this may lead to some security problems. RSA
scheme is a good example for explaining this point. Let us consider the following points with
reference to the RSA cryptosystem:

• A particular plaintext may be encrypted in a too much structured way. With RSA, messages
0 and 1 are always encrypted as 0 and 1, respectively.

• It may be easy to compute some partial information about the plaintext: with RSA, the
ciphertext c leaks one bit of information about the plaintext m, namely, the so called Jacobi
symbol (Fontaine & Galand, 2007).

• When using a deterministic encryption scheme, it is easy to detect when the same message
is sent twice while being processed with the same key.

In view of the problems stated above, we prefer encryption schemes to be probabilistic. In case
of symmetric schemes, we introduce a random vector in the encryption process (e.g., in the
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pseudo-random generator for stream ciphers, or in the operating mode for block ciphers) –
generally called initial vector (IV). This vector may be public and it may be transmitted in a
clear-text form. However, the IV must be changed every time we encrypt a message. In case
of asymmetric ciphers, the security analysis is more mathematical and formal, and we want
the randomized schemes to remain analyzable in the same way as the deterministic schemes.
Researchers have proposed some models to randomize the existing deterministic schemes, as
the optimal asymmetric encryption padding (OAEP) for RSA (or any scheme that is based on a
trapdoor one-way permutation) (Bellare & Rogaway, 1995). In the literature, researchers have
also proposed some other randomized schemes (ElGamal, 1985; Goldwasser & Micali, 1982;
Blum & Goldwasser, 1985).

A simple consequence of this requirement of the encryption schemes to be preferably proba‐
bilistic appears in the phenomenon called expansion. Since, for a plaintext, we require the
existence of several possible ciphertexts, the number of ciphertexts is greater than the number
of possible plaintexts. This means that the ciphertexts cannot be as short as the plaintexts; they
have to be strictly longer. The ratio of the length of the ciphertext and the corresponding
plaintext (in bits) is called expansion. The value of this parameter is of paramount importance
in determining security and efficiency tradeoff of a probabilistic encryption scheme. In Paillier’s
scheme, an efficient probabilistic encryption mechanism has been proposed with the value of
expansion less than 2 (Paillier, 1997). We will see the significance of expansion in other
homomorphic encryption systems in the subsequent sections of this chapter.

3. Homomorphic encryption schemes

During the last few years, homomorphic encryption schemes have been studied extensively
since they have become more and more important in many different cryptographic protocols
such as, e.g., voting protocols. In this Section, we introduce homomorphic cryptosystems in
three steps: what, how and why that reflects the main aspects of this interesting encryption
technique. We start by defining homomorphic cryptosystems and algebraically homomorphic
cryptosystems. Then we develop a method to construct algebraically homomorphic schemes
given special homomorphic schemes. Finally, we describe applications of homomorphic
schemes.

Definition: Let the message space (M, o) be a finite (semi-)group, and let σ be the security
parameter. A homomorphic public-key encryption scheme (or homomorphic cryptosystem) on M is a
quadruple (K, E, D, A) of probabilistic, expected polynomial time algorithms, satisfying the
following functionalities:

• Key Generation: On input 1σ the algorithm K outputs an encryption/decryption key pair
(ke,  kd )=k ∈,  where  denotes the key space.

• Encryption: On inputs 1σ, ke, and an element m ∈M   the encryption algorithm E outputs a
ciphertext c ∈C ,   where C  denotes the ciphertext space.

• Decryption: The decryption algorithm D is deterministic. On inputs 1σ, k, and an element
c ∈C  it outputs an element in the message space M so that for all m ∈M  it holds :   if

Theory and Practice of Cryptography and Network Security Protocols and Technologies4

c = E (11σ, ke, m) then Prob D(1σ, k , c)≠m  is negligible, i.e., it holds that

Prob D(1σ, k , c)≠m ≤  2-σ.

• Homomorphic Property: A is an algorithm that on inputs 1σ,  ke , and elements c1,  c2 ∈C 
outputs an element c3 ∈C  so that for all m1,  m2 ∈M   it holds: if m3 =m1 o m2 and

c1 = E(1σ, ke,  m1), and c2 = E(1σ,  ke,  m2), then Prob D(A(1σ,  ke,  c1,  c2)) ≠  m3  is negligible.

Informally speaking, a homomorphic cryptosystem is a cryptosystem with the additional
property that there exists an efficient algorithm to compute an encryption of the sum or the
product, of two messages given the public key and the encryptions of the messages but not
the messages themselves.

If M is an additive (semi-)group, then the scheme is called additively homomorphic and the
algorithms A is called Add Otherwise, the scheme is called multiplicatively homomorphic and the
algorithm A is called Mult.

With respect to the aforementioned definitions, the following points are worth noticing:

• For a homomorphic encryption scheme to be efficient, it is crucial to make sure that the size
of the ciphertexts remains polynomially bounded in the security parameter σ during
repeated computations.

• The security aspects, definitions, and models of homomorphic cryptosystems are the same
as those for other cryptosystems.

If the encryption algorithm E gets as additional input a uniform random number r of a set ,
the encryption scheme is called probabilistic, otherwise, it is called deterministic. Hence, if a
cryptosystem is probabilistic, there belong several different ciphertexts to one message
depending on the random number r ∈  . But note that as before the decryption algorithm
remains deterministic, i.e., there is just one message belonging to a given ciphertext. Further‐
more, in a probabilistic, homomorphic cryptosystem the algorithm A should be probabilistic
too to hide the input ciphertext. For instance, this can be realized by applying a blinding
algorithm on a (deterministic) computation of the encryption of the product and of the sum
respectively.

Notations: In the following, we will omit the security parameter σ and the public key in the
description of the algorithms. We will write Eke

(m) or E(m) for E (1σ,  ke,  m) and Dk (c) or D(c)

for D(1σ,  k ,  c) when there is no possibility of any ambiguity. If the scheme is probabilistic,
we will also write Eke

(m) or E(m) as well as Eke
(m,  r) or E(m, r) for E (1σ,  ke,  m,  r). Further‐

more, we will write A(E (m),  E (m '))=  E (m o m ') to denote that the algorithm A (either Add or
Mult) is applied on two encryptions of the messages m,  m ' ∈ (M ,  o) and outputs an encryp‐
tion of m o m ', i.e., it holds that except with negligible probability:

D(A(1σ,  ke,  Eke
(m),  Eke

(m '))) =m o m '
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Example: In the following, we give an example of a deterministic multiplicatively homomor‐
phic scheme and an example of a probabilistic, additively homomorphic scheme.

The RSA Scheme: The classical RSA scheme (Rivest et al., 1987b) is an example of a deter‐
ministic multiplicatively homomorphic cryptosystem on M =(ℤ / Nℤ, .), where N is the
product of two large primes. As ciphertext space, we have C =(ℤ / Nℤ, .) and as key space we
have ={(ke,  kd )= ((N ,  e),  d )| N = pq,  ed ≡1 mod φ(N )}. The encryption of a message m ∈M

is defined as Eke
(m)=  m e mod N  for decryption of a ciphertext Eke

(m)=  c ∈C  we compute

Dke , kd
(c)=  c d  mod N =m mod N .  Obviously, the encryption of the product of two messages can

be efficiently computed by multiplying the corresponding ciphertexts, i.e.,

Eke
(m1.m2)= (m1.m2)emod  N =(m1

e mod  n)(m2
e mod  N )= Eke

(m1). Eke
(m2)

where m1,  m2 ∈M . Therefore, the algorithm for Mult can be easiliy realized as follows:

Mult(Eke
(m1),  Eke

(m2))=  Eke
(m1). Eke

(m2)

Usually in the RSA scheme as well as in most of the cryptosystems which are based on the
difficulty of factoring the security parameter σ is the bit length of N. For instance, σ = 1024 is
a common security parameter.

The Goldwasser-Micali Scheme: The Goldwasser-Micali scheme (Goldwasser & Micali,
1984) is an example of a probabilistic, additively homomorphic cryptosystem on
M =(ℤ / 2ℤ, + ) with the ciphtertext space C =Z =(ℤ / Nℤ)* where N = pq  is the product of two
large primes. We have.

K ={(k e,  kd )= ((N ,  a),  (p,  q))|  N = pq,   a ∈ (ℤ / Nℤ)* : ( a
p )=  ( a

q )=  - 1}
Since this scheme is probabilistic, the encryption algorithm gets as additional input a random
value r ∈.  We define Eke

(m, r)=a mr 2 mod N  and D(ke kd ) =0 if c is a square and = 1 otherwise.
The following relation therefore holds good:

Eke
(m1,  r1). Eke

(m2,  r2)=  Eke
(m1 + m2,  r1r2) 

The algorithms Add can, therefore, be efficiently implemented as follows:

Add (Eke
(m1,  r1),  Eke

(m2,  r2),  r3)=  Eke
(m1,  r1). Eke

(m2,  r2). r3
2 mod  N =  Eke(m1 +  m2,  r1r2r3)

In the above equation, r3
2 mod N  is equivalent to Eke

(0,  r3). Also, m1,  m2 ∈M  and r1,  r2,r3 ∈  Z .
Note that this algorithm should be probabilistic, since it obtains a random number r3 as an
additional input.
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A public-key homomorphic encryption scheme on a (semi-)ring (M, +,.) can be defined in a
similar manner. Such schemes consist of two algorithms: Add and Mult for the homomorphic
property instead of one algorithm for A, i.e., it is additively and multiplicatively homomorphic
at the same time. Such schemes are called algebraically homomorphic.

Definition: An additively homomorphic encryption scheme on a (semi-)ring (M, +,.) is called
scalar homomorphic if there exists a probabilistic, expected polynomial time algorithm
Mixed_Mult that on inputs 1σ,  ke,  s ∈M  and an element c ∈C  outputs an element c ' ∈C  so

that for all m ∈M   it holds that: if m ' = s.m and c = E(1σ,  ke,  m) then the probability

Prob D(Mixed _Mult(1σ,  ke,  s,  s))≠  m '   is negligible.

Thus in a scalar homomorphic scheme, it is possible to compute an encryption
E (1σ,  ke,  s.m)=  E (1σ,  ke,  m ') of a product of two messages s,  m ∈M  given the public key

ke and an encryption c = E (1σ,  ke,  m) of one message m and the other message s as a plaintext.
It is clear that any scheme that is algebraically homomorphic is scalar homomorphic as well.
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For instance, in a probabilistic, homomorphic cryptosystem on (M, o) the blinding algorithm
can be realized by applying the algorithm A on the ciphertext c and an encryption of the identity
element in M.
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algorithm is the scheme is probabilistic (Cramer et al., 2000). Hence, every additively homo‐
morphic cryptosystem on ℤ / nℤ or ℤ is also scalar homomorphic and the algorithm Mixed_Mult
can be efficiently implemented (Sander & Tschudin, 1998).

Algebraically Homomorphic Cryptosystems: The existence of an efficient and secure
algebraically homomorphic cryptosystem has been a long standing open question. In this
Section, we first present some related work considering this problem. Thereafter, we describe
the relationship between algebraically homomorphic schemes and homomorphic schemes on
special non-abelian groups. More precisely, we prove that a homomorphic encryption scheme
on the non-ableain group (S7,.), the symmetric group on seven elements, allows to construct
an algebraically homomorphic encryption scheme on (F2, +,.). An algebraically homomorphic
encryption scheme on (F2, +,.) can also be obtained from a homomorphic encryption scheme
on the special linear group (SL(3, 2),.) over F2. Furthermore, using coding theory, an algebra‐
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ically homomorphic encryption on an arbitrary finite ring or field could be obtained given a
homomorphic encryption scheme on one of these non-abelian groups. These observations
could be a first step to solve the problem whether efficient and secure algebraically homo‐
morphic schemes exist. The research community in cryptography has spent substantial effort
on this problem. In 1996, Boneh and Lipton proved that under a reasonable assumption every
deterministic, algebraically homomorphic cryptosystem can be broken in sub-exponential
time (Boneh & Lipton, 1996). This may be perceived as a negative result concerning the
existence of an algebraically homomorphic encryption scheme, although most of the existing
cryptosystems, e.g., RSA scheme or the ElGamal scheme can be also be broken in sub-
exponential time. Furthermore, if we seek for algebraically homomorphic public-key schemes
on small fields or rings such as M = F2, obviously such a scheme has to be probabilistic in order
to be secure.

Some researchers also tried to find candidates for algebraically homomorphic schemes. In 1993,
Fellows and Koblitz presented an algebraic public-key cryptosystem called Polly Cracker
(Fellows & Koblitz, 1993). It is algebraically homomorphic and provably secure. Unfortunately,
the scheme has a number of difficulties and is not efficient concerning the ciphertext length.
Firstly, Polly Cracker is a polynomial-based system. Therefore, computing an encryption of
the product E(m1.m2) of two messages m1 and m2 by multiplying the corresponding ciphertext
polynomials E (m1) and E (m2), leads to an exponential blowup in the number of monomials.
Hence, during repeated computations, there is an exponential blow up in the ciphertext length.
Secondly, all existing instantiations of Polly Cracker suffer from further drawbacks (Koblitz,
1998). They are either insecure since they succumb to certain attacks, they are too inefficient
to be practical, or they lose the algebraically homomorphic property. Hence, it is far from clear
how such kind of schemes could be turned into efficient and secure algebraically homomorphic
encryption schemes. A detailed analysis and description of these schemes can be found in (Ly,
2002).

In 2002, J. Domingo-Ferrer developed a probabilistic, algebraically homomorphic secret-key
cryptosystem (Domingo-Ferrer, 2002). However, this scheme was not efficient since there was
an exponential blowup in the ciphertext length during repeated multiplications that were
required to be performed. Moreover, it was also broken by Wagner and Bao (Bao, 2003;
Wagner, 2003).

Thus considering homomorphic encryption schemes on groups instead of rings seems more
promising to design a possible algebraically homomorphic encryption scheme. It brings us
closer to structures that have been successfully used in cryptography. The following theorem
shows that indeed the search for algebraically homomorphic schemes can be reduced to the
search for homomorphic schemes on special non-abelian groups (Rappe, 2004).

Theorem I: The following two statements are equivalent: (1) There exists an algebraically
homomorphic encryption scheme on (F2, +,.). (2) There exists a homomorphic encryption
scheme on the symmetric group (S7,.).

Proof: 1 → 2: This direction of proof follows immediately and it holds for an arbitrary finite
group since operations of finite groups can always be implemented by Boolean circuits. Let S7
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be represented as a subset of {0, 1}l, where e.g. l = 21 can be chosen, and let C be a circuit with
addition and multiplication gates that takes as inputs the binary representations of elements
m1,  m2 ∈S7 and outputs the binary representations of m1m2. If we have an algebraically
homomorphic encryption scheme (K, E, D, Add, Mult) on (F2, +,.) then we can define a homo‐
morphic encryption scheme (K ,  ̃ E ,  ̃D,  ̃Mult̃) on S7 by defining E ̃(m)= (E (s0), ….E (sl -1))
where (s0, … …..sl -1) denotes the binary representation of m. Mult̃  is constructed by substituting
the addition gates in C by Add and the multiplication gates by Mult. K̃  and D̃ are defined in
the obvious way.

2 → 1: The proof has two steps. First, we use a construction of Ben-Or and Cleve (Ben-Or &
Cleve, 1992) to show that the field (F2, +,.) can be encoded in the special linear group (SL(3,2),.)
over F2. Then, we apply a theorem from projective geometry to show that (SL(3,2),.) is a
subgroup of S7. This proves the claim.

Homomorphic encryption schemes on groups have been extensively studied. For instance, we
have homomorphic schemes on groups (ℤ / Mℤ, + ), for M being a smooth number (Gold‐
wasser & Micali, 1984; Benaloh, 1994; Naccache & Stern, 1998) for M = p.q being an RSA
modulus (Paillier, 1999; Galbraith, 2002), and for groups ((ℤ / Nℤ) *,  .) where N is an RSA
modulus. All known efficient and secure schemes are homomorphic on abelian groups.
However, S7 and SL(3, 2) are non-abelian. Sander, Young and Yung (Sander et al., 1999)
investigated the possibility of existence of a homomorphic encryption scheme on non-abelain
groups. Although non-abelian groups had been used to construct encryption schemes (Ko et
al., 2000; Paeng et al., 2001; Wagner & Magyarik, 1985; Grigoriev & Ponomarenko, 2006), the
resulting schemes are not homomorphic in the sense that we need for computing efficiently
on encrypted data.

Grigoriev and Ponomarenko propose a novel definition of homomorphic cryptosystems on
which they base a method to construct homomorphic cryptosystems over arbitrary finite
groups including non-abelian groups (Grigoriev & Ponomarenko, 2006). Their construction
method is based on the fact that every finite group is an epimorphic image of a free product
of finite cyclic groups. It uses existing homomorphic encryption schemes on finite cyclic groups
as building blocks to obtain homomorphic encryption schemes on arbitrary finite groups. Since
the ciphertext space obtained from the encryption scheme is a free product of groups, an
exponential blowup of the ciphertext lengths during repeated computations is produced as a
result. The reason is that the length of the product of two elements x and y of a free product
is, in general, the sum of the length of x and the length of y. Hence, the technique proposed by
Grigoriev and Ponomarenko suffers from the same drawback as the earlier schemes and does
not provide an efficient cryptosystem. We note that using this construction it is possible to
construct a homomorphic encryption scheme on the symmetric group S7 and on the special
linear group SL(3, 2). If we combine this with Theorem 1, we can construct an algebraically
homomorphic cryptosystem on the finite field (F2, +,.). Unfortunately, the exponential blowup
owing to the construction method in the homomorphic encryption scheme on S7 and on SL(3,
2) respectively, would lead to an exponential blowup in F2 and hence leaves the question open
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if an efficient algebraically homomorphic cryptosystem on F2 exists. We will come back to this
issue in Section 6, where we discuss fully homomorphic encryption schemes.

Grigoriev and Ponomarenko propose another method to encrypt arbitrary finite groups
homomorphically (Grigoriev & Ponomarenko, 2004). This method is based on the difficulty of
the membership problem for groups of integer matrices, while in (Grigoriev & Ponomarenko,
2006) it is based on the difficulty of factoring. However, as before, this scheme is not efficient.
Moreover, in (Grigoriev & Ponomarenko, 2004), an algebraically homomorphic cryptosystem
over finite commutative rings is proposed. However, owing to its immense size, it is infeasible
to implement in real-world applications.

4. Some classical homomorphic encryption systems

In this Section, we describe some classical homomorphic encryption systems which have
created substantial interest among the researchers in the domain of cryptography. We start
with the first probabilistic systems proposed by Goldwasser and Micali in 1982 (Goldwasser
& Micali, 1982; Goldwasser & Micali, 1984) and then discuss the famous Paillier’s encryption
scheme (Paillier, 1999) and its improvements. Paillier’s scheme and its variants are well-known
for their efficiency and the high level of security that they provide for homomorphic encryp‐
tion. We do not discuss their mathematical considerations in detail, but summarize their
important parameters and properties.

Goldwasser-Micali scheme: This scheme (Goldwasser & Micali, 1982; Goldwasser & Micali,
1984) is historically very important since many of subsequent proposals on homomorphic
encryption were largely motivated by its approach. Like in RSA, in this scheme, we use
computations modulo n = p.q, a product of two large primes. The encryption process is simple
which uses a product and a square, whereas decryption is heavier and involves exponentiation.
The complexity of the decryption process is: O(k .l(p)2), where l(p) denotes the number of bits
in p. Unfortunately, this scheme has a limitation since its input consists of a single bit. First,
this implies that encrypting k bits leads to a cost of O(k .l(p)2). This is not very efficient even if
it may be considered as practical. The second concern is related to the issue of expansion – a
single bit of plaintext is encrypted in an integer modulo n, that is, l(n) bits. This leads to a huge
blow up of ciphertext causing a serious problem with this scheme.

Goldwasser-Micali (GM) scheme can be viewed from another perspective. When looked from
this angle, the basic principle of this scheme is to partition a well-chosen subset of integers
modulo n into two secret parts: M0 and M1. The encryption process selects a random element
Mb to encrypt plaintext b, and the decryption process lets the user know in which part the
randomly selected element lies. The essence of the scheme lies in the mechanism to determine
the subset, and to partition it into M0 and M1. The scheme uses group theory to achieve this
goal. The subset is the group G of invertible integers modulo n with a Jacobi symbol with
respect to n, equal to 1. The partition is generated by another group H ⊂G, consisting of the
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elements that are invertible modulo n with a Jacobi symbol, with respect to a fixed factor n,
equal to 1. With these settings of parameters, it is possible to split G into two parts – H and G
\H. The generalization schemes of GM deal with these two groups. These schemes attempt to
find two groups G and H such that G can be split into more than k = 2 parts.

Benaloh’s scheme: Benaloh (Benaloh, 1988) is a generalization of GM scheme that enables one
to manage inputs of l(k ) bits, k being a prime satisfying some specified constraints. Encryption
is similar as in GM scheme (encrypting a message m ∈ {0, …., k - 1} is tantamount to picking
an integer r ∈  Zn

* and computing c =  g mr k  mod n). However, the decryption phase is more
complex. If the input and output sizes are l(k ) and l(n) bits respectively, the expansion is equal
to l(n) / l(k ). The value of expansion obtained in this approach is less than that achieved in GM.
This makes the scheme more attractive. Moreover, the encryption is not too expensive as well.
The overhead in the decryption process is estimated to be O( k .l(k)) for pre-computation
which remains constant for each dynamic decryption step. This implies that the value of k has
to be taken very small, which in turn limits the gain obtained on the value of expansion.

Naccache-Stern scheme: This scheme (Naccache & Stern, 1998) is an improvement of Benaloh’s
scheme. Using a value of the parameter k that is greater than that used in the Benaloh’s scheme,
it achieves a smaller expansion and thereby attains a superior efficiency. The encryption step
is precisely the same as in Benaloh’s scheme. However, decryption is different. The value of
expansion is same as that in Benaloh’s scheme, i.e., l(n) / l(k ). However, the cost of decryption
is less and is given by:O(l(n)5log (l(n)). The authors claim that it is possible to choose the values
of the parameters in the system in such a way that the achieved value of expansion is 4
(Naccache & Stern, 1998).

Okamoto-Uchiyama scheme: To improve the performance of the earlier schemes on homo‐
morphic encryption, Okamoto and Uchiyama changed the base group G (Okamoto & Uchiya‐
ma, 1998). By taking n =  p 2q, p and q being two large prime numbers as usual, and the group
G =  Z p 2

* , the authors achieve k = p. The value of the expansion obtained in the scheme is 3. One
of the biggest advantages of this scheme is that its security is equivalent to the factorization of
n. However, a chosen-ciphertext attack has been proposed on this scheme that can break the
factorization problem. Hence, currently it has a limited applicability. However, this scheme
was used to design the EPOC systems (Okamoto et al., 2000) which is accepted in the IEEE
standard specifications for public-key cryptography (IEEE P1363).

Paillier scheme: One of the most well-known homomorphic encryption schemes is due to
Paillier (Paillier, 1999). It is an improvement over the earlier schemes in the sense that it is able
to decrease the value of expansion from 3 to 2. The scheme uses n = p.q with
 gcd (n,  ϕ(n))=1. As usual p and q are two large primes. However, it considered the group
G =  Zn 2

*  and a proper choice of H led to k = l(n). While the cost of encryption is not too high,

decryption needs one exponentiation modulo n 2 to the power λ(n), and a multiplication
modulo n. This makes decryption a bit heavyweight process. The author has shown how to
manage decryption efficiently using the famous Chinese Remainder Theorem. With smaller
expansion and lower cost compared with the other schemes, this scheme found great accept‐
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elements that are invertible modulo n with a Jacobi symbol, with respect to a fixed factor n,
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*  and a proper choice of H led to k = l(n). While the cost of encryption is not too high,

decryption needs one exponentiation modulo n 2 to the power λ(n), and a multiplication
modulo n. This makes decryption a bit heavyweight process. The author has shown how to
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ance. In 2002, Cramer and Shoup proposed a general approach to achieve higher security
against adaptive chosen-ciphertext attacks for certain cryptosystems with some particular
algebraic properties (Cramer & Shoup, 2002). They applied their propositions on Paillier’s
original scheme and designed a stronger variant of homomorphic encryption. Bresson et al.
proposed a slightly different version of a homomorphic encryption scheme that is more
accurate for some applications (Bresson et al., 2003).

Damgard-Jurik scheme: Damgard and Jurik propose a generalization of Paillier’s scheme to
groups of the form Zn s+1

*  for s >0 (Damgard & Jurik, 2001). In this scheme, choice of larger values
of s will achieve lower values of expansion. This scheme can be used in a number of applica‐
tions. For example, we can mention the adaptation of the size of the plaintext, the use of
threshold cryptography, electronic voting, and so on. To encrypt a message, m ∈Zn

*, one picks

at random r ∈Zn
* and computes g mr n s

∈Zn s+1. The authors show that if one can break the
scheme for a given value s =σ, then one can break it for s =σ - 1. They also show that the
semantic security of this scheme is equivalent to that of Paillier’s scheme. The value of
expansion can be computed using: 1 + 1 / s. It is clear that expansion can attain a value close to
1 if s is sufficiently large. The ratio of the cost for encryption in this scheme over Paillier’s

scheme can be estimated to be: s(s + 1)(s + 2)
6 . The same ratio for the decryption process will have

value equal to: 
(s + 1)(s + 2)

6 . Even if this scheme has a lower value of expansion as compared to
Paillier’s scheme, it is computationally more intensive. Moreover, if we want to encrypt or
decrypt k blocks of l(n) bits, running Paillier’s scheme k times is less expensive than running
Damgard-Jurik‘s scheme.

Galbraith scheme: This is an adaptation of the existing homomorphic encryption schemes in
the context of elliptic curves (Galbraith, 2002). Its expansion is equal to 3. For s =1, the ratio of
the encryption cost for this scheme over that of Paillier’s scheme can be estimated to be about
7, while the same ratio for the cost of decryption cost is about 14 for the same value of s.
However, the most important advantage of this scheme is that the cost of encryption and
decryption can be decreased using larger values of s. In addition, the security of the scheme
increases with the increase in the value of s as it is the case in Damgard-Jurik’s scheme.

Castagnos scheme: Castagnos explored the possibility of improving the performance of
homomorphic encryption schemes using quadratic fields quotations (Castagnos, 2006;
Castagnos, 2007). This scheme achieves an expansion value of 3 and the ratio of encryption/
decryption cost with s =1 over Paillier’s scheme can be estimated to be about 2.

5. Applications and properties of homomorphic encryption schemes

An inherent drawback of homomorphic cryptosystems is that attacks on these systems might
possibly exploit their additional structural information. For instance, using plain RSA (Rivest
et al., 1978b) for signing, the multiplication of two signatures yields a valid signature of the
product of the two corresponding messages. Although there are many ways to avoid such
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attacks, for instance, by application of hash functions, the use of redundancy or probabilistic
schemes, this potential weakness leads us to the question why homomorphic schemes should
be used instead of conventional cryptosystems under certain situations. The main reason for
the interest in homomorphic cryptosystems is its wide application scope. There are theoretical
as well as practical applications in different areas of cryptography. In the following, we list
some of the main applications and properties of homomorphic schemes and summarize the
idea behind them.

5.1. Some applications of homomorphic encryption schemes

Protection of mobile agents: One of the most interesting applications of homomorphic
encryption is its use in protection of mobile agents. As we have seen in Section 3, a homomor‐
phic encryption scheme on a special non-abelian group would lead to an algebraically
homomorphic cryptosystem on the finite field F2. Since all conventional computer architectures
are based on binary strings and only require multiplication and addition, such homomorphic
cryptosystems would offer the possibility to encrypt a whole program so that it is still
executable. Hence, it could be used to protect mobile agents against malicious hosts by
encrypting them (Sander & Tschudin, 1998a). The protection of mobile agents by homomor‐
phic encryption can be used in two ways: (i) computing with encrypted functions and (ii)
computing with encrypted data. Computation with encrypted functions is a special case of
protection of mobile agents. In such scenarios, a secret function is publicly evaluated in such
a way that the function remains secret. Using homomorphic cryptosystems, the encrypted
function can be evaluated which guarantees its privacy. Homomorphic schemes also work on
encrypted data to compute publicly while maintaining the privacy of the secret data. This can
be done encrypting the data in advance and then exploiting the homomorphic property to
compute with encrypted data.

Multiparty computation: In multiparty computation schemes, several parties are interested
in computing a common, public function on their inputs while keeping their individual inputs
private. This problem belongs to the area of computing with encrypted data. Usually in multiparty
computation protocols, we have a set of n ≥2 players whereas in computing with encrypted
data scenarios  n =2. Furthermore, in multi-party computation protocols, the function that
should be computed is publicly known, whereas in the area of computing with encrypted data
it is a private input of one party.

Secret sharing scheme: In secret sharing schemes, parties share a secret so that no individual
party can reconstruct the secret form the information available to it. However, if some parties
cooperate with each other, they may be able to reconstruct the secret. In this scenario, the
homomorphic property implies that the composition of the shares of the secret is equivalent
to the shares of the composition of the secrets.

Threshold schemes: Both secret sharing schemes and the multiparty computation schemes
are examples of threshold schemes. Threshold schemes can be implemented using homomor‐
phic encryption techniques.
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Zero-knowledge proofs: This is a fundamental primitive of cryptographic protocols and
serves as an example of a theoretical application of homomorphic cryptosystems. Zero-
knowledge proofs are used to prove knowledge of some private information. For instance,
consider the case where a user has to prove his identity to a host by logging in with her account
and private password. Obviously, in such a protocol the user wants her private information
(i.e., her password) to stay private and not to be leaked during the protocol operation. Zero-
knowledge proofs guarantee that the protocol communicates exactly the knowledge that was
intended, and no (zero) extra knowledge. Examples of zero-knowledge proofs using homo‐
morphic property can be found in (Cramer & Damgard, 1998).

Election schemes: In election schemes, the homomorphic property provides a tool to obtain
the tally given the encrypted votes without decrypting the individual votes.

Watermarking and fingerprinting schemes: Digital watermarking and fingerprinting
schemes embed additional information into digital data. The homomorphic property is used
to add a mark to previously encrypted data. In general, watermarks are used to identify the
owner/seller of digital goods to ensure the copyright. In fingerprinting schemes, the person
who buys the data should be identifiable by the merchant to ensure that data is not illegally
redistributed. Further properties of such schemes can be found in (Pfitzmann & Waidner,
1997; Adelsbach et al. 2002).

Oblivious transfer: It is an interesting cryptographic primitive. Usually in a two-party 1-out-
of-2 oblivious transfer protocol, the first party sends a bit to the second party in such as way
that the second party receives it with probability ½, without the first party knowing whether
or not the second party received the bit. An example of such a protocol that uses the homo‐
morphic property can be found in (Lipmaa, 2003).

Commitment schemes: Commitment schemes are some fundamental cryptographic primi‐
tives. In a commitment scheme, a player makes a commitment. She is able to choose a value
from some set and commit to her choice such that she can no longer change her mind. She does
not have to reveal her choice although she may do so at some point later. Some commitment
schemes can be efficiently implemented using homomorphic property.

Lottery protocols: Usually in a cryptographic lottery, a number pointing to the winning ticket
has to be jointly and randomly chosen by all participants. Using a homomorphic encryption
scheme this can be realized as follows: Each player chooses a random number which she
encrypts. Then using the homomorphic property the encryption of the sum of the random
values can be efficiently computed. The combination of this and a threshold decryption scheme
leads to the desired functionality. More details about homomorphic properties of lottery
schemes can be found in (Fouque et al., 2000).

Mix-nets: Mix-nets are protocols that provide anonymity for senders by collecting encrypted
messages from several users. For instance, one can consider mix-nets that collect ciphertexts
and output the corresponding plaintexts in a randomly permuted order. In such a scenario,
privacy is achieved by requiring that the permutation that matches inputs to outputs is kept
secret to anyone except the mix-net. In particular, determining a correct input/output pair, i.e.,
a ciphertext with corresponding plaintext, should not be more effective then guessing one at
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random. A desirable property to build such mix-nets is re-encryption which is achieved by
using homomorphic encryption. More information about applications of homomorphic
encryption in mix-nets can be found in (Golle et al., 2004; Damgard & Jurik, 2003).

5.2. Some properties of homomorphic encryption schemes

Homomorphic encryption schemes have some interesting mathematical properties. In the
following, we mention some of these properties.

Re-randomizable encryption/re-encryption: Re-randomizable cryptosystems (Groth, 2004)
are probabilistic cryptosystems with the additional property that given the public key ke and
an encryption Eke

(m,  r) of a message m ∈M   under the public key ke and a random number

r ∈Z  it is possible to efficiently convert Eke
(m,  r) into another encryption Eke

(m,  r ') that is
perfectly indistinguishable from a fresh encryption of m under the public key ke. This property
is also called re-encryption.

It obvious that every probabilistic homomorphic cryptosystem is re-randomizable. Without
loss of generality, we assume that the cryptosystem is additively homomorphic. Given
Eke

(m,  r) and the public key ke, we can compute Eke
(0,  r '') for a random number r’’ and hence

compute the following:

Add (Eke
(m,  r),  Eke

(0,  r '')) =  Eke
(m + 0,  r ') =  Eke

(m,  r ')

where r’ is an appropriate random number. We note that this is exactly what a blinding
algorithm does.

Random self-reducibility: Along with the possibility of re-encryption comes the property of
random self-reducibility concerning the problem of computing the plaintext from the cipher‐
text. A cryptosystem is called random self-reducible if any algorithm that can break a non-trivial
fraction of ciphertexts can also break a random instance with significant probability. This
property is discussed in detail in (Damgard et al., 2010; Sander et al., 1999).

Verifiable encryptions / fair encryptions: If an encryption is verifiable, it provides a mecha‐
nism to check the correctness of encrypted data without compromising on the secrecy of the
data. For instance, this is useful in voting schemes to convince any observer that the encrypted
name of a candidate, i.e., the encrypted vote is indeed in the list of candidates. A cryptosystem
with this property that is based on homomorphic encryption can be found in (Poupard & Stern,
2000). Verifiable encryptions are also called fair encryptions.

6. Fully homomorphic encryption schemes

In 2009, Gentry described the first plausible construction of a fully homomorphic cryptosystem
that supports both addition and multiplication (Gentry, 2009). Gentry’s proposed fully
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homomorphic encryption consists of several steps: First, it constructs a somewhat homomor‐
phic scheme that supports evaluating low-degree polynomials on the encrypted data. Next, it
squashes the decryption procedure so that it can be expressed as a low-degree polynomial which
is supported by the scheme, and finally, it applies a bootstrapping transformation to obtain a fully
homomorphic scheme. The essential approach of this scheme is to derive and establish a
process that can evaluate polynomials of high-enough degree using a decryption procedure
that can be expressed as a polynomial of low-enough degree. Once the degree of polynomials
that can be evaluated by the scheme exceeds the degree of the decryption polynomial by a
factor of two, the scheme is called bootstrappable and it can then be converted into a fully
homomorphic scheme.

For designing a bootstrappable scheme, Gentry presented a somewhat homomorphic scheme
(Gentry, 2009) which is roughly a GGH (Goldreich, Goldwasser, Halevi)-type scheme
(Goldreich et al., 1997; Micciancio, 2001) over ideal lattices. Gentry later proved that with an
appropriate key-generation procedure, the security of that scheme can be reduced to the worst-
case hardness of some lattice problems in ideal lattice constructions (Gentry, 2010). Since this
somewhat homomorphic scheme is not bootstrappable, Gentry described a transformation to
squash the decryption procedure, reducing the degree of the decryption polynomial (Gentry,
2009). This is done by adding to the public key, an additional hint about the secret key in the
form of a sparse subset-sum problem (SSSP). The public key is augmented with a big set of vectors
in such a way that there exists a very sparse subset of them that adds up to the secret key. A
ciphertext of the underlying scheme can be post-processed using this additional hint and the
post-processed ciphertext can be decrypted with a low-degree polynomial, thereby achieving
a bootstrappable scheme.

Gentry’s construction is quite involved – the secret key, even in the private key version of his
scheme is a short basis of a random ideal lattice. Generating pairs of public and secret bases with
the right distributions appropriate for the worst-case to average-case reduction is technically
quite complicated. A significant research effort has been devoted to increase the efficiency of
its implementation (Gentry & Halevi, 2011; Smart & Vercauteren, 2010).

A parallel line of work that utilizes ideal lattices in cryptography dates back to the NTRU
cryptosystem (Hoffstein et al., 1998). This approach uses ideal lattices for efficient crypto‐
graphic constructions. The additional structure of ideal lattices, compared to ordinary lattices,
makes their representation more powerful and enables faster computation. Motivated by the
work of Micciancio (Micciancio, 2007), a significant number of work (Peikert & Rosen, 2006;
Lyubashevsky & Micciancio, 2006; Peikert & Rosen, 2007; Lyubashevsky et al., 2008; Lyba‐
shevsky & Micciancio, 2008) has produced efficient constructions of various cryptographic
primitives whose security can formally be reduced to the hardness of short-vector problems
in ideal lattices (Brakerski & Vaikuntanathan, 2011).

Lyubashevsky et al. (Lyubashevsky et al., 2010) present the ring learning with errors (RLWE)
assumption which is the ring counterpart of Regev’s learning with errors assumption (Regev,
2005). In a nutshell, the assumption is that given polynomially many samples over a certain
ring of the form (ai,  ais + ei), where s is a random secret ring element, ai’s are distributed
uniformly randomly in the ring, and ei are small ring elements, it will be impossible for an
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adversary to distinguish this sequence of samples from random pairs of ring elements. The
authors have shown that this simple assumption can be very efficiently reduced to the worst
case hardness of short-vector problems on ideal lattices. They have also shown how to
construct a very efficient ring counterpart to Regev’s public-key encryption scheme (Regev,
2005), as well as a counterpart to the identity-based encryption scheme presented in (Gentry
et al., 2008) by using the basis sampling techniques in (Regev, 2005). The scheme presented in
(Lyubashevsky et al., 2010) is very elegant and efficient since it is not dependent on any
complex computations over ideal lattices.

Brakerski and Vaikuntanathan raised a natural question that whether the above approaches
(i.e., ideal lattices and RLWE) can be effectively exploited so that benefits of both these
approaches can be achieved at the same time – namely the functional powerfulness on the one
hand (i.e., the ideal lattice approach) and the simplicity and efficiency of the other (i.e., RLWE).
They have shown that indeed this can be done (Brakerski & Vaikuntanathan, 2011). They have
constructed a somewhat homomorphic encryption scheme based on RLWE. The scheme
inherits the simplicity and efficiency, as well as the worst case relation to ideal lattices.
Moreover, the scheme enjoys key dependent message security (KDM security, also known as
circular security), since it can securely encrypt polynomial functions (over an appropriately
defined ring) of its own secret key. The significance of this feature of the scheme in context of
homomorphic encryption has been clearly explained by the authors. The authors argue that
all known constructions of fully homomorphic encryption employ a bootstrapping technique
that enforces the public key of the scheme to grow linearly with the maximal depth of evaluated
circuits. This is a major drawback with regard to the usability and the efficiency of the scheme.
However, the size of the public key can be made independent of the circuit depth if the
somewhat homomorphic scheme can securely encrypt its own secret key. With the design of
this scheme, the authors have solved an open problem - achieving circular secure somewhat
homomorphic encryption. They have also computed the circular security of their scheme with
respect to the representation of the secret key as a ring element, where bootstrapping requires
circular security with respect to the bitwise representation of the secret key (actually, the
bitwise representation of the squashed secret key). Since there is no prior work that studies a
possible co-existence between somewhat homomorphism with any form of circular security,
the work is a significant first step towards removing the assumption (Brakerski & Vaikunta‐
nathan, 2011). The authors have also shown how to transform the proposed scheme into a fully
homomorphic encryption scheme following Gentry’s blueprint of squashing and bootstrap‐
ping. Applying the techniques presented in (Brakerski & Vaikuntanathan, 2011a), the authors
argue that squashing can even be avoided at the cost of relying on sparse version of RLWE that
is not known to reduce to worst case scenarios. This greatly enhances the efficiency of the
proposed scheme in practical applications. The proposed scheme is also additively key-
homomorphic– a property that has found applications in achieving security against key-related
attacks (Applebaum et al., 2011).

Smart and Vercauteren (Smart & Vercauteren, 2010) present a fully homomorphic encryption
scheme that has smaller key and ciphertext sizes. The construction proposed by the authors
follows the fully homomorphic construction based on ideal lattices proposed by Gentry
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argue that squashing can even be avoided at the cost of relying on sparse version of RLWE that
is not known to reduce to worst case scenarios. This greatly enhances the efficiency of the
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homomorphic– a property that has found applications in achieving security against key-related
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(Gentry, 2009). It produces a fully homomorphic scheme from a somewhat homomorphic
scheme. For a somewhat homomorphic scheme, the public and the private keys consist of two
large integers (one of which is shared by both the public and the private key), and the ciphertext
consists of one large integer. The scheme (Smart & Vercauteren, 2010) has smaller ciphertext
blow up and reduced key size than in Gentry’s scheme based on ideal lattices. Moreover, the
scheme also allows and efficient homomorphic encryption over any field of characteristics two.
More specifically, it uses arithmetic of cyclotomic number fields. In particular, the authors have
focused on the field generated by the polynomial:  F (X )=  X 2n

+  1. However, they also noted
that the scheme could be applied with arbitrary (even non-cyclotomic) number fields as well.
In spite of having many advantages, the major problem with this scheme is that the key
generation method is very slow.

Gentry and Halevi presented a novel implementation approach for the variant of Smart and
Vercauteren proposition (Smart & Vercauteren, 2010), which had a greatly improved key
generation phase (Gentry & Halevi, 2011). In particular, the authors have noted that the key
generation (for cyclotomic fields) is essentially an application of a Discrete Fourier Transform
(DFT), followed by a small quantum of computation, and then application of the inverse
transform. The authors then further demonstrate that it is not even required to perform the
DFTs if one selects the cyclotomic field to be of the form: X 2n

+  1. The authors illustrate this
by using a recursive approach to deduce two constants from the secret key which subsequently
facilitates the key generation algorithm to construct a valid associated public key. The key
generation method of Gentry and Halevi (Gentry & Halevi, 2011) is fast. However, the scheme
appears particularly tailored to work with two-power roots of unity.

Researchers have also examined ways of improving key generation in fully homomorphic
encryption schemes. For example, in (Ogura et al., 2010), a method is proposed for construction
of keys for essentially random number fields by pulling random elements and analyzing
eigenvalues of the corresponding matrices. However, this method is unable to achieve the
improvement in efficiency in terms of reduced ciphertext blow up as done in (Smart & Vercau‐
teren, 2010) and (Gentry & Halevi, 2011).

Stehle and Steinfield improved Gentry’s fully homomorphic scheme and obtained a faster fully
homomorphic scheme with O(n3.5) bits complexity per elementary binary addition/multipli‐
cation gate (Stehle & Steinfeld, 2010). However, the hardness assumption of the security of the
scheme is stronger than that of Gentry’s scheme (Gentry, 2009). The improved complexity of
the proposed scheme stems from two sources. First, the authors have given a more aggressive
security analysis of the sparse subset sum problem (SSSP) against lattice attacks as compared to
the analysis presented in (Gentry, 2009). The SSSP along with the ideal lattice bounded distance
decoding (BDD) problem are the two problems underlying the security of Gentry’s fully
homomorphic scheme. In his security analysis of BDD, Gentry has used the best known
complexity bound for the approximate shortest vector problem (SVP) in lattices. However, in
analyzing SSSP, Gentry has assumed the availability of an exact SVP oracle. On the contrary,
the finer analysis of Stehle and Steinfield for SSSP takes into account the complexity of
approximate SVP, thereby making it more consistent with the assumption underlying the
analysis of the BDD problem. This leads to choices of smaller parameter in the scheme.
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Moreover, Stehle and Steinfield have relaxed the definition of fully homomorphic encryption
to allow for a negligible but non-zero probability of decryption error. They have shown that
the randomness in the SplitKey key generation for the squashed decryption algorithm (i.e., the
decryption algorithms of the bootstrappable scheme) in the Gentry’s scheme can be gainfully
exploited to allow a negligible decryption error probability. This decryption error, although
negligible in value, can lead to rounding precision used in representing the ciphertext
components that is almost half the value of the precision as achieved in Gentry’s scheme
(Gentry, 2009), which involves zero error probability.

In (Chunsheng, 2012), Chunsheng proposed a modification of the fully homomorphic encryp‐
tion scheme of Smart and Vercauteren (Smart & Vercauteren, 2010). The author has applied a
self-loop bootstrappable technique so that the security of the modified scheme only depends on
the hardness of the polynomial coset problem and does not require any assumption of the sparse
subset problem as required in the original work of Smart and Vercauteren (Smart & Vercauteren,
2010). In addition, the author have constructed a non-self-loop fully homomorphic encryption
scheme that uses cycle keys. In a nutshell, the security of the improved fully homomorphic
encryption scheme in this work is based on use of three mathematical approaches: (i) hardness
of factoring integer problem, (ii) solving Diophantine equation problem, and (iii) finding
approximate greatest common divisor problem.

Boneh and Freeman propose a linearly homomorphic signature scheme that authenticates
vector subspaces of a given ambient space (Boneh & Freeman, 2011). The scheme has several
novel features that were not present in any of the existing similar schemes. First, the scheme
is the first of its kind that enables authentication of vectors over binary fields; previous schemes
could not authenticate vectors with large or growing coefficients. Second, the scheme is the
only scheme that is based on the problem of finding short vectors in integer lattices, and therefore,
it enjoys the worst-case security guarantee that is common to lattice-based cryptosystems. The
scheme can be used to authenticate linear transformations of signed data, such as those arising
when computing mean and Fourier transform or in networks that use network coding (Boneh
& Freeman, 2011). The work has three major contributions in the state of the art as identified
by the authors: (i) Homomorphic signatures over F2: the authors have constructed the first
unforgeable linearly homomorphic signature scheme that authenticates vectors with coordinates in
F2. It is an example of a cryptographic primitive that can be built using lattice models, but
cannot be built using bilinear maps or other traditional algebraic methods based on factoring
or discrete log type problems. The scheme can be modified to authenticate vectors with
coefficients in other small fields, including prime fields and extension fields such as F2d.
Moreover, the scheme is private, in the sense that a derived signature on a vector v leaks no
information about the original signed vectors beyond what is revealed by v. (ii) A simple k-time
signature without random oracles: the authors have presented a stateless signature scheme and
have proved that it is secure in the standard model when used to sign at most k messages, for
small values of k. The public key of the scheme is significantly smaller than that of any other
stateless lattice-based signature scheme that can sign multiple large messages and is secure in
the standard model. The construction proposed by the authors can be viewed as removing the
random oracle from the signature scheme of Gentry, Peikert, and Vaikuntanathan (Gentry et al.,
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of keys for essentially random number fields by pulling random elements and analyzing
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decoding (BDD) problem are the two problems underlying the security of Gentry’s fully
homomorphic scheme. In his security analysis of BDD, Gentry has used the best known
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only scheme that is based on the problem of finding short vectors in integer lattices, and therefore,
it enjoys the worst-case security guarantee that is common to lattice-based cryptosystems. The
scheme can be used to authenticate linear transformations of signed data, such as those arising
when computing mean and Fourier transform or in networks that use network coding (Boneh
& Freeman, 2011). The work has three major contributions in the state of the art as identified
by the authors: (i) Homomorphic signatures over F2: the authors have constructed the first
unforgeable linearly homomorphic signature scheme that authenticates vectors with coordinates in
F2. It is an example of a cryptographic primitive that can be built using lattice models, but
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or discrete log type problems. The scheme can be modified to authenticate vectors with
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Moreover, the scheme is private, in the sense that a derived signature on a vector v leaks no
information about the original signed vectors beyond what is revealed by v. (ii) A simple k-time
signature without random oracles: the authors have presented a stateless signature scheme and
have proved that it is secure in the standard model when used to sign at most k messages, for
small values of k. The public key of the scheme is significantly smaller than that of any other
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2008), but only for signing k messages (Boneh & Freeman, 2011). (iii) New tools for lattice-based
signatures: the scheme is unforgeable based on a new hard problem on lattices, which the
authors have called the k-small integer solutions (k-SIS) problem. The authors have shown that
k-SIS reduces to the small integer solution (SIS) problem, which is known to be as hard as
standard worst-case lattice problems (Micciancio & Regev, 2007).

7. Conclusion and future trends

The study of fully homomorphic encryption has led to a number of new and exciting concepts
and questions, as well as a powerful tool-kit to address them. We conclude the chapter by
discussing a number of research directions related to the domain of fully homomorphic
encryption and more generally, on the problem of computing on encrypted data.

Applications of fully homomorphic encryption: While Gentry’s original construction was
considered as being infeasible for practical deployments, recent constructions and implemen‐
tation efforts have drastically improved the efficiency of fully homomorphic encryption
(Vaikuntanathan, 2011). The initial implementation efforts focused on Gentry’s original
scheme and its variants (Smart & Vercauteren, 2010; Smart & Vercauteren, 2012; Coron et al.,
2011; Gentry & Halevi, 2011), which seemed to pose rather inherent efficiency bottlenecks.
Later implementations leverage the recent algorithmic advances (Brakerski & Vaikuntanathan,
2011; Brakerski et al., 2011; Brakerski & Vaikuntanathan, 2011a) that result in asymptotically
better fully homomorphic encryption systems, as well as new algebraic mechanisms to
improve the overall efficiency of these schemes ( Naehrig et al., 2011; Gentry et al., 2012; Smart
& Vercauteren, 2012).

Non-malleability and homomorphic encryption: Homomorphism and non-malleability are
two orthogonal properties of an encryption scheme. Homomorphic encryption schemes
permit anyone to transform an encryption of a message m into an encryption of f(m) for non-
trivial functions f. Non-malleable encryption, on the other hand, prevents precisely this sort
of thing- it requires that no adversary be able to transform an encryption of m into an encryption
of any related message. Essentially, what we need is a combination of both the properties that
selectively permit homomorphic computations (Vaikuntanathan, 2011). This implies that the
evaluator should be able to homomorphically compute any function from some pre-specified
class Fhom; however, she should not be able to transform an encryption of m into an encryption
of f(m) for which f ∈  Fhom does not hold good (i.e., f does not belong to Fhom). The natural
question that arises is: whether we can control what is being (homomorphically) computed?

Answering this question turns out to be tricky. Boneh, Segev and Waters (Boneh et al., 2011)
propose the notion of targeted malleability – a possible formalization of such a requirement as
well as formal constructions of such encryption schemes. Their encryption scheme is based on
a strong knowledge of exponent-type assumption that allows iterative evaluation of at most t
functions, where t is a suitably determined and pre-specified constant. Improving their
construction as well as the underlying complexity assumptions is an important open problem
(Vaikuntanathan, 2011).
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It is also interesting to extend the definition of non-malleability to allow for chosen cipher-text
attacks. As an example, we consider the problem that involves implementing an encrypted targeted
advertisement system that generates advertisements depending on the contents of a user’s e-mail. Since
the e-mail is stored in an encrypted form with the user’s public key, the e-mail server performs
a homomorphic evaluation and computes an encrypted advertisement to be sent back to the
user. The user decrypts it, performs an action depending on what she sees. If the advertisement
is relevant, she might choose to click on it; otherwise, she simply discards it. However, if the
e-mail server is aware to this information, namely whether the user clicked on the advertise‐
ment or not, it can use this as a restricted decryption oracle to break the security of the user’s
encryption scheme and possibly even recover her secret key. Such attacks are ubiquitous
whenever we compute on encrypted data, almost to the point that CCA security seems
inevitable. Yet, it is easy to see that chosen ciphertext (CCA2-secure) homomorphic encryption
schemes cannot exist. Therefore, an appropriate security definition and constructions that
achieve the definition is in demand.

Fully homomorphic encryption and functional decryption: Homomorphic encryption
schemes permit anyone to evaluate functions on encrypted data, but the evaluators never see
any information about the result. It is possible to construct an encryption scheme where a user
can compute f(m) from an encryption of a message m, but she should not be able to learn any
other information about m (including the intermediate results in the computation of f)?
Essentially, the issue boils down to the following question: can we control the information that
the evaluator can see? Such an encryption scheme is called a functional encryption scheme. The
concept of functional encryption scheme was first introduced by Sahai and Waters (Sahai &
Waters, 2005) and subsequently investigated in a number of intriguing works (Katz et al.,
2013; Lewko et al., 2010; Boneh et al., 2011; Agrawal et al., 2011). Although the constructions
in these propositions work for several interesting families of functions (such as monotone
formulas and inner products), construction of a fully functional encryption scheme is still not
achieved and remains as an open problem. What we need is a novel and generic encryption
system that provides us with fine-grained control over what one can see and access and what
one can compute on data to get a desired output.

Other problems and applications: Another important open question relates to the assump‐
tions underlying the current fully homomorphic encryption systems. All known fully homo‐
morphic encryption schemes are based on hardness of lattice problems. The natural question that
arises - can we construct fully homomorphic from other approaches – say, for example, from
number-theoretic assumptions? Can we bring in the issue of the hardness of factoring or
discrete logarithms in this problem?

In addition to the scenarios where it is beneficial to keep all data encrypted and to perform
computations on encrypted data, fully homomorphic encryption can be gainfully exploited to
solve a number of practical problems in cryptography. Two such examples are the problems
of verifiably outsourcing computation (Goldwasser et al., 2008; Gennaro et al., 2010; Chung et al.,
2010; Applebaum et al., 2010) and constructing short non-interactive zero-knowledg e proofs
(Gentry, 2009). Some of the applications of fully homomorphic encryption do not require its
full power. For example, in private information retrieval (PIR), it is sufficient to have a somewhat
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2008), but only for signing k messages (Boneh & Freeman, 2011). (iii) New tools for lattice-based
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authors have called the k-small integer solutions (k-SIS) problem. The authors have shown that
k-SIS reduces to the small integer solution (SIS) problem, which is known to be as hard as
standard worst-case lattice problems (Micciancio & Regev, 2007).

7. Conclusion and future trends

The study of fully homomorphic encryption has led to a number of new and exciting concepts
and questions, as well as a powerful tool-kit to address them. We conclude the chapter by
discussing a number of research directions related to the domain of fully homomorphic
encryption and more generally, on the problem of computing on encrypted data.

Applications of fully homomorphic encryption: While Gentry’s original construction was
considered as being infeasible for practical deployments, recent constructions and implemen‐
tation efforts have drastically improved the efficiency of fully homomorphic encryption
(Vaikuntanathan, 2011). The initial implementation efforts focused on Gentry’s original
scheme and its variants (Smart & Vercauteren, 2010; Smart & Vercauteren, 2012; Coron et al.,
2011; Gentry & Halevi, 2011), which seemed to pose rather inherent efficiency bottlenecks.
Later implementations leverage the recent algorithmic advances (Brakerski & Vaikuntanathan,
2011; Brakerski et al., 2011; Brakerski & Vaikuntanathan, 2011a) that result in asymptotically
better fully homomorphic encryption systems, as well as new algebraic mechanisms to
improve the overall efficiency of these schemes ( Naehrig et al., 2011; Gentry et al., 2012; Smart
& Vercauteren, 2012).

Non-malleability and homomorphic encryption: Homomorphism and non-malleability are
two orthogonal properties of an encryption scheme. Homomorphic encryption schemes
permit anyone to transform an encryption of a message m into an encryption of f(m) for non-
trivial functions f. Non-malleable encryption, on the other hand, prevents precisely this sort
of thing- it requires that no adversary be able to transform an encryption of m into an encryption
of any related message. Essentially, what we need is a combination of both the properties that
selectively permit homomorphic computations (Vaikuntanathan, 2011). This implies that the
evaluator should be able to homomorphically compute any function from some pre-specified
class Fhom; however, she should not be able to transform an encryption of m into an encryption
of f(m) for which f ∈  Fhom does not hold good (i.e., f does not belong to Fhom). The natural
question that arises is: whether we can control what is being (homomorphically) computed?

Answering this question turns out to be tricky. Boneh, Segev and Waters (Boneh et al., 2011)
propose the notion of targeted malleability – a possible formalization of such a requirement as
well as formal constructions of such encryption schemes. Their encryption scheme is based on
a strong knowledge of exponent-type assumption that allows iterative evaluation of at most t
functions, where t is a suitably determined and pre-specified constant. Improving their
construction as well as the underlying complexity assumptions is an important open problem
(Vaikuntanathan, 2011).
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It is also interesting to extend the definition of non-malleability to allow for chosen cipher-text
attacks. As an example, we consider the problem that involves implementing an encrypted targeted
advertisement system that generates advertisements depending on the contents of a user’s e-mail. Since
the e-mail is stored in an encrypted form with the user’s public key, the e-mail server performs
a homomorphic evaluation and computes an encrypted advertisement to be sent back to the
user. The user decrypts it, performs an action depending on what she sees. If the advertisement
is relevant, she might choose to click on it; otherwise, she simply discards it. However, if the
e-mail server is aware to this information, namely whether the user clicked on the advertise‐
ment or not, it can use this as a restricted decryption oracle to break the security of the user’s
encryption scheme and possibly even recover her secret key. Such attacks are ubiquitous
whenever we compute on encrypted data, almost to the point that CCA security seems
inevitable. Yet, it is easy to see that chosen ciphertext (CCA2-secure) homomorphic encryption
schemes cannot exist. Therefore, an appropriate security definition and constructions that
achieve the definition is in demand.

Fully homomorphic encryption and functional decryption: Homomorphic encryption
schemes permit anyone to evaluate functions on encrypted data, but the evaluators never see
any information about the result. It is possible to construct an encryption scheme where a user
can compute f(m) from an encryption of a message m, but she should not be able to learn any
other information about m (including the intermediate results in the computation of f)?
Essentially, the issue boils down to the following question: can we control the information that
the evaluator can see? Such an encryption scheme is called a functional encryption scheme. The
concept of functional encryption scheme was first introduced by Sahai and Waters (Sahai &
Waters, 2005) and subsequently investigated in a number of intriguing works (Katz et al.,
2013; Lewko et al., 2010; Boneh et al., 2011; Agrawal et al., 2011). Although the constructions
in these propositions work for several interesting families of functions (such as monotone
formulas and inner products), construction of a fully functional encryption scheme is still not
achieved and remains as an open problem. What we need is a novel and generic encryption
system that provides us with fine-grained control over what one can see and access and what
one can compute on data to get a desired output.

Other problems and applications: Another important open question relates to the assump‐
tions underlying the current fully homomorphic encryption systems. All known fully homo‐
morphic encryption schemes are based on hardness of lattice problems. The natural question that
arises - can we construct fully homomorphic from other approaches – say, for example, from
number-theoretic assumptions? Can we bring in the issue of the hardness of factoring or
discrete logarithms in this problem?

In addition to the scenarios where it is beneficial to keep all data encrypted and to perform
computations on encrypted data, fully homomorphic encryption can be gainfully exploited to
solve a number of practical problems in cryptography. Two such examples are the problems
of verifiably outsourcing computation (Goldwasser et al., 2008; Gennaro et al., 2010; Chung et al.,
2010; Applebaum et al., 2010) and constructing short non-interactive zero-knowledg e proofs
(Gentry, 2009). Some of the applications of fully homomorphic encryption do not require its
full power. For example, in private information retrieval (PIR), it is sufficient to have a somewhat
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homomorphic encryption scheme that is capable of evaluating simple database indexing
functions. For this applications, what is needed is an optimized and less functional encryption
scheme that is more efficient than a fully homomorphic encryption function. Design of such
functions for different application scenarios is also a current hot topic of research.

Author details

Jaydip Sen*

Department of Computer Science, National Institute of Science & Technology, Odisha, India

References

[1] Adelsbach, A., Katzenbeisser, S., & Sadeghi, A. (2002). Cryptography Meets Water‐
marking: Detecting Watermarks with Minimal or Zero Knowledge Disclosure. In:
Proceedings of the European Signal Processing Conference (EUSIPCO’02), Vol 1, pp.
446-449, Toulouse, France.

[2] Agrawal, S., Freeman, D. M., & Vaikuntanathan, V. (2011). Functional Encryption for
Inner Product Predicates from Learning with Errors. In: Advances in Cryptology-
Proceedings of ASIACRYPT’11, Lecture Notes in Computer Science (LNCS), Vol
7073, Springer-Verlag, pp. 21-40.

[3] Ajtai, M. & Dwork, C. (1997). A Public Key Cryptosystem with Worst-Case/ Average-
Case Equivalence. In: Proceedings of the 29th Annual ACM International Symposium
on Theory of Computing (STOC’97), pp. 284-293, ACM Press, New York, NY, USA.

[4] Applebaum, B., Ishai, Y., & Kushilevitz, E. (2010). Semantic Security under Related-
Key Attacks and Applications. Innovations in Computer Science (ICS), pp. 45-55,
2011.

[5] Applebaum, B., Ishai, Y., & Kushilevitz, E. (2010). From Secrecy to Soundness: Effi‐
cient Verification via Secure Computation. In: Automata, Language and Program‐
ming - Proceedings of ICALP, Lecture Notes in Computer Science (LNCS), Vol 6198,
Springer-Verlag, pp. 152-163.

[6] Bao, F. (2003). Cryptanalysis of a Provable Secure Additive and Multiplicative Priva‐
cy Homomorphism. In: Proceedings of International Workshop on Coding and Cryp‐
tography (WCC’03), Versailles, France, pp. 43-49.

[7] Bellare, M. & Rogaway, P. (1995). Optimal Asymmetric Encryption- How to Encrypt
with RSA. In: Advances in Cryptology - Proceedings of EUROCRYPT’94, Lecture
Notes in Computer Science (LNCS), Vol 950, Springer-Verlag, pp. 92-111.

Theory and Practice of Cryptography and Network Security Protocols and Technologies22

[8] Benaloh, J. (1994). Dense Probabilistic Encryption. In: Proceedings of the Workshop
on Selected Areas of Cryptography, 1994, pp. 120-128.

[9] Benaloh, J. (1988). Verifiable Secret-Ballot Elections. Doctoral Dissertation, Depart‐
ment of Computer Science, Yale University, New Haven, Connecticut, USA.

[10] Ben-Or, M. & Cleve, R. (1992). Computing Algebraic Formulas Using a Constant
Number of Registers. SIAM Journal on Computing, Vol 21, No 1, pp. 54-58, 1992.

[11] Blum, M. & Goldwasser, S. (1985). An Efficient Probabilistic Public-Key Encryption
Scheme which Hides All Partial Information. In: Advances in Cryptology – Proceed‐
ings of EUROCRYPT’84, Lecture Notes in Computer Science (LNCS), Vol 196,
Springer-Verlag, pp. 289-299.

[12] Boneh, D. & Freeman, D. M. (2011). Linearly Homomorphic Signatures over Binary
Fields and New Tools for Lattice-Based Signatures. In: Public Key Cryptography
(PKC’11), Lecture Notes in Computer Science (LNCS), Vol 6571, Springer-Verlag, pp.
1-16.

[13] Boneh, D. & Lipton, R. (1996). Searching for Elements in Black Box Fields and Appli‐
cations. In: Advances in Cryptology- Proceedings of CRYPTO’96, Lecture Notes in
Computer Science (LNCS), Vol 1109, Springer-Verlag, pp. 283-297.

[14] Boneh, D., Segev, G., & Waters, B. (2012). Targeted Malleability: Homomorphic En‐
cryption for Restricted Computations. In: Proceedings of Innovations in Theoretical
Computer Science (ITCS), pp 350-366, ACM Press, New York, NY, USA, 2012.

[15] Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2011). Fully Homomorphic Encryp‐
tion without Bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference (ITCS’12), pp. 309-325, ACM Press, New York, NY,
USA.

[16] Brakerski, Z. & Vaikuntanathan, V. (2011). Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages. In: Advances in Cryptology-
Proceedings of CRYPTO’11, Lecture Notes in Computer Science (LNCS), Vol 6841,
Springer-Verlag, pp. 505-524.

[17] Brakerski, Z. & Vaikuntanathan, V. (2011a). Efficient Fully Homomorphic Encryption
from (Standard) LWE. In: Proceedings of the IEEE 52nd Annual Symposium on Foun‐
dations of Computer Science (FOCS’11), pp. 97-106, ACM Press, New York, NY,
USA.

[18] Bresson, E., Catalano, D., & Pointcheval, D. (2003). A Simple Public-Key Cryptosys‐
tem with a Double Trapdoor Decryption Mechanism and its Applications. In: Advan‐
ces in Cryptology- Proceedings of ASIACRYPT’03, Lecture Notes in Computer
Science (LNCS), Vol 2894, Springer-Verlag, pp. 37-54.

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

23



homomorphic encryption scheme that is capable of evaluating simple database indexing
functions. For this applications, what is needed is an optimized and less functional encryption
scheme that is more efficient than a fully homomorphic encryption function. Design of such
functions for different application scenarios is also a current hot topic of research.

Author details

Jaydip Sen*

Department of Computer Science, National Institute of Science & Technology, Odisha, India

References

[1] Adelsbach, A., Katzenbeisser, S., & Sadeghi, A. (2002). Cryptography Meets Water‐
marking: Detecting Watermarks with Minimal or Zero Knowledge Disclosure. In:
Proceedings of the European Signal Processing Conference (EUSIPCO’02), Vol 1, pp.
446-449, Toulouse, France.

[2] Agrawal, S., Freeman, D. M., & Vaikuntanathan, V. (2011). Functional Encryption for
Inner Product Predicates from Learning with Errors. In: Advances in Cryptology-
Proceedings of ASIACRYPT’11, Lecture Notes in Computer Science (LNCS), Vol
7073, Springer-Verlag, pp. 21-40.

[3] Ajtai, M. & Dwork, C. (1997). A Public Key Cryptosystem with Worst-Case/ Average-
Case Equivalence. In: Proceedings of the 29th Annual ACM International Symposium
on Theory of Computing (STOC’97), pp. 284-293, ACM Press, New York, NY, USA.

[4] Applebaum, B., Ishai, Y., & Kushilevitz, E. (2010). Semantic Security under Related-
Key Attacks and Applications. Innovations in Computer Science (ICS), pp. 45-55,
2011.

[5] Applebaum, B., Ishai, Y., & Kushilevitz, E. (2010). From Secrecy to Soundness: Effi‐
cient Verification via Secure Computation. In: Automata, Language and Program‐
ming - Proceedings of ICALP, Lecture Notes in Computer Science (LNCS), Vol 6198,
Springer-Verlag, pp. 152-163.

[6] Bao, F. (2003). Cryptanalysis of a Provable Secure Additive and Multiplicative Priva‐
cy Homomorphism. In: Proceedings of International Workshop on Coding and Cryp‐
tography (WCC’03), Versailles, France, pp. 43-49.

[7] Bellare, M. & Rogaway, P. (1995). Optimal Asymmetric Encryption- How to Encrypt
with RSA. In: Advances in Cryptology - Proceedings of EUROCRYPT’94, Lecture
Notes in Computer Science (LNCS), Vol 950, Springer-Verlag, pp. 92-111.

Theory and Practice of Cryptography and Network Security Protocols and Technologies22

[8] Benaloh, J. (1994). Dense Probabilistic Encryption. In: Proceedings of the Workshop
on Selected Areas of Cryptography, 1994, pp. 120-128.

[9] Benaloh, J. (1988). Verifiable Secret-Ballot Elections. Doctoral Dissertation, Depart‐
ment of Computer Science, Yale University, New Haven, Connecticut, USA.

[10] Ben-Or, M. & Cleve, R. (1992). Computing Algebraic Formulas Using a Constant
Number of Registers. SIAM Journal on Computing, Vol 21, No 1, pp. 54-58, 1992.

[11] Blum, M. & Goldwasser, S. (1985). An Efficient Probabilistic Public-Key Encryption
Scheme which Hides All Partial Information. In: Advances in Cryptology – Proceed‐
ings of EUROCRYPT’84, Lecture Notes in Computer Science (LNCS), Vol 196,
Springer-Verlag, pp. 289-299.

[12] Boneh, D. & Freeman, D. M. (2011). Linearly Homomorphic Signatures over Binary
Fields and New Tools for Lattice-Based Signatures. In: Public Key Cryptography
(PKC’11), Lecture Notes in Computer Science (LNCS), Vol 6571, Springer-Verlag, pp.
1-16.

[13] Boneh, D. & Lipton, R. (1996). Searching for Elements in Black Box Fields and Appli‐
cations. In: Advances in Cryptology- Proceedings of CRYPTO’96, Lecture Notes in
Computer Science (LNCS), Vol 1109, Springer-Verlag, pp. 283-297.

[14] Boneh, D., Segev, G., & Waters, B. (2012). Targeted Malleability: Homomorphic En‐
cryption for Restricted Computations. In: Proceedings of Innovations in Theoretical
Computer Science (ITCS), pp 350-366, ACM Press, New York, NY, USA, 2012.

[15] Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2011). Fully Homomorphic Encryp‐
tion without Bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference (ITCS’12), pp. 309-325, ACM Press, New York, NY,
USA.

[16] Brakerski, Z. & Vaikuntanathan, V. (2011). Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages. In: Advances in Cryptology-
Proceedings of CRYPTO’11, Lecture Notes in Computer Science (LNCS), Vol 6841,
Springer-Verlag, pp. 505-524.

[17] Brakerski, Z. & Vaikuntanathan, V. (2011a). Efficient Fully Homomorphic Encryption
from (Standard) LWE. In: Proceedings of the IEEE 52nd Annual Symposium on Foun‐
dations of Computer Science (FOCS’11), pp. 97-106, ACM Press, New York, NY,
USA.

[18] Bresson, E., Catalano, D., & Pointcheval, D. (2003). A Simple Public-Key Cryptosys‐
tem with a Double Trapdoor Decryption Mechanism and its Applications. In: Advan‐
ces in Cryptology- Proceedings of ASIACRYPT’03, Lecture Notes in Computer
Science (LNCS), Vol 2894, Springer-Verlag, pp. 37-54.

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

23



[19] Brickell, E. F. & Yacobi, Y. (1987). On Privacy Homomorphisms. In: Advances in
Cryptology – Proceedings of EUROCRYPT 1987, Lecture Notes in Computer Science
(LNCS) Vol 304, Springer-Verlag, pp. 117-125.

[20] Canetti, R., Goldreich, O., & Halevi, S. (2004). The Random Oracle Methodology, Re‐
visited. Journal of ACM (JACM), Vol 5, Issue 4, July 2004, pp. 557-594, ACM Press,
New York, NY, USA.

[21] Castagnos, G. (2007). An Efficient Probabilistic Public-Key Cryptosystem over Quad‐
ratic Fields Quotients. Finite Fields and Their Applications, Vol 13, No 3, pp. 563-576,
July 2007.

[22] Castagnos, G. (2006). Quelques Schemas De Cryptographic Asymetrique Probabi‐
liste. Doctoral Dissertation, Universite De Limoges, 2006. Available Online at: http://
epublications.unilim.fr/theses/2006/castagnos-guilhem/castagnos-guilhem.pdf

[23] Chung, K.-M., Kalai, Y. & Vadhan, S. (2010). Improved Delegation of Computation
Using Fully Homomorphic Encryption. In: Advances in Cryptology - Proceedings of
CRYPTO’10, Lecture Notes in Computer Science (LNCS), Vol 6223, Springer-Verlag,
pp. 483-501.

[24] Chunsheng, G. (2012). More Practical Fully Homomorphic Encryption. International
Journal of Cloud Computing and Services Science, Vol 1, Issue 4, pp. 199-201.

[25] Coron, J.-S., Mandal, A., Naccache, D., & Tibouchi, M. (2011). Fully Homomorphic
Encryption over the Integers with Shorter Public Keys. In: Advances in Cryptology -
Proceedings of CRYPTO’11, Lecture Notes in Computer Science (LNCS), Vol 6841,
Springer-Verlag, pp. 487-504.

[26] Cramer, R. & Damgard, I. (1998). Zero-Knowledge Proofs for Finite Field Arithmetic,
Or: Can Zero-Knowledge be for Free? In: Advances in Cryptology - Proceedings of
CRYPTO’98, Lecture Notes in Computer Science (LNCS), Vol 1462, Springer-Verlag,
pp. 424-441.

[27] Cramer, R., Damgard, I., & Maurer, U. (2000). General Secure Multi-party Computa‐
tion from any Linear Secret-Sharing Scheme. In: Advances in Cryptology – Proceed‐
ings of EUROCRYPT’00, Lecture Notes in Computer Science (LNCS), Vol 1807,
Springer-Verlag, pp. 316-334.

[28] Cramer, R. & Shoup, V. (2002). Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. In: Advances in Cryptology – Pro‐
ceedings of EUROCRYPT’02, Lecture Notes in Computer Science (LNCS), Vol 2332,
Springer-Verlag, New York, NY, USA, pp. 45-64.

[29] Daemen, J. & Rijmen, V. (2002). The Design of Rijndael: AES- The Advanced Encryp‐
tion Standard. Information Security and Cryptography, Springer, New York, NY,
USA, 2002.

Theory and Practice of Cryptography and Network Security Protocols and Technologies24

[30] Daemen, J. & Rijmen, V. (2000). The Block Cipher Rijndael. In: Proceedings of Inter‐
national Conference on Smart Cards Research and Applications (CARDS’98), Lecture
Notes in Computer Science (LNCS), Vol 1820, Springer-Verlag, pp. 247-256.

[31] Damgard, I. & Jurik, M. (2003). A Length-Flexible Threshold Cryptosystem with Ap‐
plications. In: Proceedings of the 8th Australasian Conference on Information Security
and Privacy (ACSIP’03), Lecture Notes in Computer Science (LNCS), Vol 2727,
Springer-Verlag, pp 350-364.

[32] Damgard, I. & Jurik, M. (2001). A Generalisation, a Simplification and Some Applica‐
tions of Paillier’s Probabilistic Public-Key System. In: Proceedings of the 4th Interna‐
tional Workshop on Practice and Theory in Public Key Cryptography (PKC’01),
Lecture Notes in Computer Science (LNCS), Vol 1992, Springer-Verlag, pp. 119-136.

[33] Damgard, I., Jurik, M., & Nielsen, J. (2010). A Generalization of Paillier’s Public-Key
System with Applications to Electronic Voting. International Journal on Information
Security (IJIS), Special Issues on Special Purpose Protocol, Vol 9, Issue 6, December
2010, pp. 371-385, Springer-Verlag, Heidelberg, Berlin, Germany.

[34] Diffie, W. & Hellman, M. (1976). New Directions in Cryptography. IEEE Transactions
on Information Theory, Vol 22, No 6, November 1976, pp. 644-654.

[35] Domingo-Ferrer, J. (2002). A Provably Secure Additive and Multiplicative Privacy
Homomorphism. In: Proceedings of the 5th International Conference on Information
Security (ISC’02), Lecture Notes in Computer Science (LNCS), Vol 2433, Springer-
Verlag, pp. 471-483.

[36] Ekdahl, E. & Johansson, T. (2002). A New Version of the Stream Cipher SNOW. In:
Proceedings of the 9th International Workshop on Selected Areas of Cryptography
(SAC’02), Lecture Notes in Computer Science (LNCS), Vol 2595, Springer-Verlag, pp.
47-61.

[37] ElGamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, Vol 31, Issue 4, July
1985, pp. 469-472.

[38] Feigenbaum, J. & Merritt, M. (1991). Open Questions, Talk Abstracts, and Summary
of Discussions. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol 2, pp. 1-45.

[39] Fellows, M. & Koblitz, N. (1993). Combinatorial Cryptosystems Galore! Finite Fields-
Theory, Applications and Algorithms. Contemporary Mathematics, Vol. 168, Las Ve‐
gas, 1994, pp. 51-61.

[40] Fontaine, C. & Galand, F. (2007). A Survey of Homomorphic Encryption for Nonspe‐
cialists. EURASIP Journal on Information Security, Vol 2007, January 2007, Article ID
15, Hindawi Publishing Corporation, New York, NY, USA. DOI: 10.1155/2007/13801.

[41] Fouque, P., Poupard, G., & Stern, J. (2000). Sharing Decryption in the Context of Vot‐
ing or Lotteries. In: Proceedings of the 4th International Conference on Financial

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

25



[19] Brickell, E. F. & Yacobi, Y. (1987). On Privacy Homomorphisms. In: Advances in
Cryptology – Proceedings of EUROCRYPT 1987, Lecture Notes in Computer Science
(LNCS) Vol 304, Springer-Verlag, pp. 117-125.

[20] Canetti, R., Goldreich, O., & Halevi, S. (2004). The Random Oracle Methodology, Re‐
visited. Journal of ACM (JACM), Vol 5, Issue 4, July 2004, pp. 557-594, ACM Press,
New York, NY, USA.

[21] Castagnos, G. (2007). An Efficient Probabilistic Public-Key Cryptosystem over Quad‐
ratic Fields Quotients. Finite Fields and Their Applications, Vol 13, No 3, pp. 563-576,
July 2007.

[22] Castagnos, G. (2006). Quelques Schemas De Cryptographic Asymetrique Probabi‐
liste. Doctoral Dissertation, Universite De Limoges, 2006. Available Online at: http://
epublications.unilim.fr/theses/2006/castagnos-guilhem/castagnos-guilhem.pdf

[23] Chung, K.-M., Kalai, Y. & Vadhan, S. (2010). Improved Delegation of Computation
Using Fully Homomorphic Encryption. In: Advances in Cryptology - Proceedings of
CRYPTO’10, Lecture Notes in Computer Science (LNCS), Vol 6223, Springer-Verlag,
pp. 483-501.

[24] Chunsheng, G. (2012). More Practical Fully Homomorphic Encryption. International
Journal of Cloud Computing and Services Science, Vol 1, Issue 4, pp. 199-201.

[25] Coron, J.-S., Mandal, A., Naccache, D., & Tibouchi, M. (2011). Fully Homomorphic
Encryption over the Integers with Shorter Public Keys. In: Advances in Cryptology -
Proceedings of CRYPTO’11, Lecture Notes in Computer Science (LNCS), Vol 6841,
Springer-Verlag, pp. 487-504.

[26] Cramer, R. & Damgard, I. (1998). Zero-Knowledge Proofs for Finite Field Arithmetic,
Or: Can Zero-Knowledge be for Free? In: Advances in Cryptology - Proceedings of
CRYPTO’98, Lecture Notes in Computer Science (LNCS), Vol 1462, Springer-Verlag,
pp. 424-441.

[27] Cramer, R., Damgard, I., & Maurer, U. (2000). General Secure Multi-party Computa‐
tion from any Linear Secret-Sharing Scheme. In: Advances in Cryptology – Proceed‐
ings of EUROCRYPT’00, Lecture Notes in Computer Science (LNCS), Vol 1807,
Springer-Verlag, pp. 316-334.

[28] Cramer, R. & Shoup, V. (2002). Universal Hash Proofs and a Paradigm for Adaptive
Chosen Ciphertext Secure Public-Key Encryption. In: Advances in Cryptology – Pro‐
ceedings of EUROCRYPT’02, Lecture Notes in Computer Science (LNCS), Vol 2332,
Springer-Verlag, New York, NY, USA, pp. 45-64.

[29] Daemen, J. & Rijmen, V. (2002). The Design of Rijndael: AES- The Advanced Encryp‐
tion Standard. Information Security and Cryptography, Springer, New York, NY,
USA, 2002.

Theory and Practice of Cryptography and Network Security Protocols and Technologies24

[30] Daemen, J. & Rijmen, V. (2000). The Block Cipher Rijndael. In: Proceedings of Inter‐
national Conference on Smart Cards Research and Applications (CARDS’98), Lecture
Notes in Computer Science (LNCS), Vol 1820, Springer-Verlag, pp. 247-256.

[31] Damgard, I. & Jurik, M. (2003). A Length-Flexible Threshold Cryptosystem with Ap‐
plications. In: Proceedings of the 8th Australasian Conference on Information Security
and Privacy (ACSIP’03), Lecture Notes in Computer Science (LNCS), Vol 2727,
Springer-Verlag, pp 350-364.

[32] Damgard, I. & Jurik, M. (2001). A Generalisation, a Simplification and Some Applica‐
tions of Paillier’s Probabilistic Public-Key System. In: Proceedings of the 4th Interna‐
tional Workshop on Practice and Theory in Public Key Cryptography (PKC’01),
Lecture Notes in Computer Science (LNCS), Vol 1992, Springer-Verlag, pp. 119-136.

[33] Damgard, I., Jurik, M., & Nielsen, J. (2010). A Generalization of Paillier’s Public-Key
System with Applications to Electronic Voting. International Journal on Information
Security (IJIS), Special Issues on Special Purpose Protocol, Vol 9, Issue 6, December
2010, pp. 371-385, Springer-Verlag, Heidelberg, Berlin, Germany.

[34] Diffie, W. & Hellman, M. (1976). New Directions in Cryptography. IEEE Transactions
on Information Theory, Vol 22, No 6, November 1976, pp. 644-654.

[35] Domingo-Ferrer, J. (2002). A Provably Secure Additive and Multiplicative Privacy
Homomorphism. In: Proceedings of the 5th International Conference on Information
Security (ISC’02), Lecture Notes in Computer Science (LNCS), Vol 2433, Springer-
Verlag, pp. 471-483.

[36] Ekdahl, E. & Johansson, T. (2002). A New Version of the Stream Cipher SNOW. In:
Proceedings of the 9th International Workshop on Selected Areas of Cryptography
(SAC’02), Lecture Notes in Computer Science (LNCS), Vol 2595, Springer-Verlag, pp.
47-61.

[37] ElGamal, T. (1985). A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, Vol 31, Issue 4, July
1985, pp. 469-472.

[38] Feigenbaum, J. & Merritt, M. (1991). Open Questions, Talk Abstracts, and Summary
of Discussions. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol 2, pp. 1-45.

[39] Fellows, M. & Koblitz, N. (1993). Combinatorial Cryptosystems Galore! Finite Fields-
Theory, Applications and Algorithms. Contemporary Mathematics, Vol. 168, Las Ve‐
gas, 1994, pp. 51-61.

[40] Fontaine, C. & Galand, F. (2007). A Survey of Homomorphic Encryption for Nonspe‐
cialists. EURASIP Journal on Information Security, Vol 2007, January 2007, Article ID
15, Hindawi Publishing Corporation, New York, NY, USA. DOI: 10.1155/2007/13801.

[41] Fouque, P., Poupard, G., & Stern, J. (2000). Sharing Decryption in the Context of Vot‐
ing or Lotteries. In: Proceedings of the 4th International Conference on Financial

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

25



Cryptography (FC’00), Lecture Notes in Computer Science (LNCS), Vol 1962, Spring‐
er-Verlag, pp. 90-104.

[42] Galbraith, S. D. (2002). Elliptic Curve Paillier Schemes. Journal of Cryptology, Vol 15,
No 2, pp. 129-138, August 2002.

[43] Gennaro, R., Gentry, C., & Parno, B. (2010). Non-Interactive Verifiable Computing:
Outsourcing Computation to Untrusted Workers. In: Advances in Cryptology-Pro‐
ceedings of CRYPTO’10, Lecture Notes in Computer Science (LNCS), Vol 6223,
Springer-Verlag, pp. 465-482.

[44] Gentry, C. (2010). Toward Basing Fully Homomorphic Encryption on Worst-Case
Hardness. In: Advances in Cryptology- Proceedings of CRYPTO’10, Lecture Notes in
Computer Science (LNCS), Vol 6223, Springer-Verlag, pp. 116-137.

[45] Gentry, C. (2009). Fully Homomorphic Encryption Using Ideal Lattices. In: Proceed‐
ings of the 41st Annual ACM Symposium on Theory of Computing (STOC’09), pp.
169-178, ACM Press, New York, NY, USA.

[46] Gentry, C. & Halevi, S. (2011). Implementing Gentry’s Fully-Homomorphic Encryp‐
tion Scheme. In: Advances in Cryptology - Proceedings of EUROCRYPT’11, Lecture
Note in Computer Science (LNCS), Vol 6632, Springer-Verlag, pp. 129-148.

[47] Gentry, C, Halevi, S., & Smart, N. (2012). Better Bootstrapping in Fully Homomor‐
phic Encryption. In: Proceedings of the 15th International Conference on Practice and
Theory in Public Key Cryptography (PKC’12), Lecture Notes in Computer Science
(LNCS), Vol 7293, Springer-Verlag, pp. 1-16.

[48] Gentry, C., Peikert, C., & Vaikuntanathan, V. (2008). Trapdoors for Hard Lattices and
New Cryptographic Constructions. In: Proceedings of the 40th Annual ACM Sympo‐
sium on Theory of Computing (STOC’08), pp. 197-206, ACM Press, New York, NY,
USA.

[49] Goldreich, O., Goldwasser, S., & Halevi, S. (1997). Public-Key Cryptosystems from
Lattice Reduction Problems. In: Advances in Cryptology- Proceedings of CRYP‐
TO’97, Lecture Notes in Computer Science (LNCS), Vol 1294, Springer-Verlag, pp.
112-131.

[50] Goldwasser, S., Kalai, Y. T., & Rothblum, G. N. (2008). Delegating Computation: In‐
teractive Proofs for Muggles. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing (STOC’08), pp. 113-122, ACM Press, New York, NY, USA.

[51] Goldwasser, S. & Micali, S. (1982). Probabilistic Encryption and How to Play Mental
Poker Keeping Secret All Partial Information. In: Proceedings of the 14th Annual
ACM Symposium on Theory of Computing (STOC’82), pp. 365-377, ACM Press,
New York, NY, USA.

[52] Goldwasser, S. & Micali, S. (1984). Probabilistic Encryption. Journal of Computer and
System Sciences, Vol 28, Issue 2, pp. 270-299, April 1984.

Theory and Practice of Cryptography and Network Security Protocols and Technologies26

[53] Golle, P., Jakobsson, M., Juels, A., & Syverson, P. (2004). Universal Re-Encryption for
Mixnets. In: Topics in Cryptology - Proceedings of the RSA Conference Cryptogra‐
phers’ Track (CT-RSA’04), Lecture Notes in Computer Science (LNCS), Vol 2964,
Springer-Verlag, pp. 163-178.

[54] Grigoriev, D. & Ponomarenko. (2006). Homomorphic Public-Key Cryptosystems and
Encrypting Boolean Circuits. Applicable Algebra in Engineering, Communication
and Computing, Vol 17, Issue 3-4, pp. 239-255, August 2006.

[55] Grigoriev, D. & Ponomarenko, I. (2004). Homomorphic Public-Key Cryptosystems
over Groups and Rings. Quaderni di Mathematica, Vol 13, pp. 304-325, 2004.

[56] Groth, J. (2004). Rerandomizable and Replayable Adaptive Chosen Ciphertext Attack
Secure Cryptosystems. In: Proceedings of the 1st Theory of Cryptography Conference
(TCC’04), Lecture Notes in Computer Science (LNCS), Vol 2951, Springer-Verlag, pp.
152-170.

[57] Hoffstein, J., Pipher, J., & Silverman, J. (1998). NTRU: A Ring-Based Public Key Cryp‐
tosystem. In: Proceedings of the 3rd International Symposium on Algorithmic Num‐
ber Theory (ANTS-III), ANTS’98, Lecture Notes in Computer Science (LNCS), Vol
1423, Springer-Verlag, pp. 267-288.

[58] Katz, J. Sahai, A., & Waters, B. (2013). Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. Journal of Cryptology, Vol 26, Issue 2,
pp. 191-224, April 2013, Springer-Verlag, Berlin, Heidelberg, Germany.

[59] Ko, K. H., Lee, S. J. Cheon, J. H., Han, J. W., Kang, J.-S., & Park, C. (2000). New Pub‐
lic-Key Cryptosystem Using Braid Groups. In: Advances in Cryptology – Proceed‐
ings of CRYPTO’00, Lecture Notes in Computer Science (LNCS), Vol 1880, Springer-
Verlag, pp. 166-183.

[60] Koblitz, N. (1998). Algebraic Aspects of Cryptography: Algorithms and Computation
in Mathematics, Vol 3, Springer-Verlag, Berlin, Heidelberg, Germany, 1998.

[61] Lewko, A. B., Okamoto, T., Sahai, A. Takashima, K. & Waters, B. (2010). Fully Secure
Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Advances in Cryptology- Proceedings of EUROCRYPT’10, Lecture
Notes in Computer Science (LNCS), Vol 6110, Springer-Verlag, pp. 62-91.

[62] Lipmaa, H. (2003). Verifiable Homomorphic Oblivious Transfer and Private Equality
Test. In: Advances in Cryptology- Proceedings of ASIACRYPT’03, Lecture Notes in
Computer Science (LNCS), Vol 2894, Springer-Verlag, pp. 416-433.

[63] Ly, L. V. (2002). Polly Two - A Public-Key Cryptosystem Based on Polly Cracker.
Doctoral Dissertation, Ruhr-Universitat, Bochum, Germany, October 2002.

[64] Lyubashevsky, V. & Micciancio, D. (2008). Asymptotically Efficient Lattice-Based
Digital Signatures. In: Proceedings of the 5th International Conference on Theory of

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

27



Cryptography (FC’00), Lecture Notes in Computer Science (LNCS), Vol 1962, Spring‐
er-Verlag, pp. 90-104.

[42] Galbraith, S. D. (2002). Elliptic Curve Paillier Schemes. Journal of Cryptology, Vol 15,
No 2, pp. 129-138, August 2002.

[43] Gennaro, R., Gentry, C., & Parno, B. (2010). Non-Interactive Verifiable Computing:
Outsourcing Computation to Untrusted Workers. In: Advances in Cryptology-Pro‐
ceedings of CRYPTO’10, Lecture Notes in Computer Science (LNCS), Vol 6223,
Springer-Verlag, pp. 465-482.

[44] Gentry, C. (2010). Toward Basing Fully Homomorphic Encryption on Worst-Case
Hardness. In: Advances in Cryptology- Proceedings of CRYPTO’10, Lecture Notes in
Computer Science (LNCS), Vol 6223, Springer-Verlag, pp. 116-137.

[45] Gentry, C. (2009). Fully Homomorphic Encryption Using Ideal Lattices. In: Proceed‐
ings of the 41st Annual ACM Symposium on Theory of Computing (STOC’09), pp.
169-178, ACM Press, New York, NY, USA.

[46] Gentry, C. & Halevi, S. (2011). Implementing Gentry’s Fully-Homomorphic Encryp‐
tion Scheme. In: Advances in Cryptology - Proceedings of EUROCRYPT’11, Lecture
Note in Computer Science (LNCS), Vol 6632, Springer-Verlag, pp. 129-148.

[47] Gentry, C, Halevi, S., & Smart, N. (2012). Better Bootstrapping in Fully Homomor‐
phic Encryption. In: Proceedings of the 15th International Conference on Practice and
Theory in Public Key Cryptography (PKC’12), Lecture Notes in Computer Science
(LNCS), Vol 7293, Springer-Verlag, pp. 1-16.

[48] Gentry, C., Peikert, C., & Vaikuntanathan, V. (2008). Trapdoors for Hard Lattices and
New Cryptographic Constructions. In: Proceedings of the 40th Annual ACM Sympo‐
sium on Theory of Computing (STOC’08), pp. 197-206, ACM Press, New York, NY,
USA.

[49] Goldreich, O., Goldwasser, S., & Halevi, S. (1997). Public-Key Cryptosystems from
Lattice Reduction Problems. In: Advances in Cryptology- Proceedings of CRYP‐
TO’97, Lecture Notes in Computer Science (LNCS), Vol 1294, Springer-Verlag, pp.
112-131.

[50] Goldwasser, S., Kalai, Y. T., & Rothblum, G. N. (2008). Delegating Computation: In‐
teractive Proofs for Muggles. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing (STOC’08), pp. 113-122, ACM Press, New York, NY, USA.

[51] Goldwasser, S. & Micali, S. (1982). Probabilistic Encryption and How to Play Mental
Poker Keeping Secret All Partial Information. In: Proceedings of the 14th Annual
ACM Symposium on Theory of Computing (STOC’82), pp. 365-377, ACM Press,
New York, NY, USA.

[52] Goldwasser, S. & Micali, S. (1984). Probabilistic Encryption. Journal of Computer and
System Sciences, Vol 28, Issue 2, pp. 270-299, April 1984.

Theory and Practice of Cryptography and Network Security Protocols and Technologies26

[53] Golle, P., Jakobsson, M., Juels, A., & Syverson, P. (2004). Universal Re-Encryption for
Mixnets. In: Topics in Cryptology - Proceedings of the RSA Conference Cryptogra‐
phers’ Track (CT-RSA’04), Lecture Notes in Computer Science (LNCS), Vol 2964,
Springer-Verlag, pp. 163-178.

[54] Grigoriev, D. & Ponomarenko. (2006). Homomorphic Public-Key Cryptosystems and
Encrypting Boolean Circuits. Applicable Algebra in Engineering, Communication
and Computing, Vol 17, Issue 3-4, pp. 239-255, August 2006.

[55] Grigoriev, D. & Ponomarenko, I. (2004). Homomorphic Public-Key Cryptosystems
over Groups and Rings. Quaderni di Mathematica, Vol 13, pp. 304-325, 2004.

[56] Groth, J. (2004). Rerandomizable and Replayable Adaptive Chosen Ciphertext Attack
Secure Cryptosystems. In: Proceedings of the 1st Theory of Cryptography Conference
(TCC’04), Lecture Notes in Computer Science (LNCS), Vol 2951, Springer-Verlag, pp.
152-170.

[57] Hoffstein, J., Pipher, J., & Silverman, J. (1998). NTRU: A Ring-Based Public Key Cryp‐
tosystem. In: Proceedings of the 3rd International Symposium on Algorithmic Num‐
ber Theory (ANTS-III), ANTS’98, Lecture Notes in Computer Science (LNCS), Vol
1423, Springer-Verlag, pp. 267-288.

[58] Katz, J. Sahai, A., & Waters, B. (2013). Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. Journal of Cryptology, Vol 26, Issue 2,
pp. 191-224, April 2013, Springer-Verlag, Berlin, Heidelberg, Germany.

[59] Ko, K. H., Lee, S. J. Cheon, J. H., Han, J. W., Kang, J.-S., & Park, C. (2000). New Pub‐
lic-Key Cryptosystem Using Braid Groups. In: Advances in Cryptology – Proceed‐
ings of CRYPTO’00, Lecture Notes in Computer Science (LNCS), Vol 1880, Springer-
Verlag, pp. 166-183.

[60] Koblitz, N. (1998). Algebraic Aspects of Cryptography: Algorithms and Computation
in Mathematics, Vol 3, Springer-Verlag, Berlin, Heidelberg, Germany, 1998.

[61] Lewko, A. B., Okamoto, T., Sahai, A. Takashima, K. & Waters, B. (2010). Fully Secure
Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Advances in Cryptology- Proceedings of EUROCRYPT’10, Lecture
Notes in Computer Science (LNCS), Vol 6110, Springer-Verlag, pp. 62-91.

[62] Lipmaa, H. (2003). Verifiable Homomorphic Oblivious Transfer and Private Equality
Test. In: Advances in Cryptology- Proceedings of ASIACRYPT’03, Lecture Notes in
Computer Science (LNCS), Vol 2894, Springer-Verlag, pp. 416-433.

[63] Ly, L. V. (2002). Polly Two - A Public-Key Cryptosystem Based on Polly Cracker.
Doctoral Dissertation, Ruhr-Universitat, Bochum, Germany, October 2002.

[64] Lyubashevsky, V. & Micciancio, D. (2008). Asymptotically Efficient Lattice-Based
Digital Signatures. In: Proceedings of the 5th International Conference on Theory of

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

27



Cryptography (TCC’08), Lecture Notes in Computer Science (LNCS), Vol 4948,
Springer-Verlag, pp. 37-54.

[65] Lyubashevsky, V. & Micciancio, D. (2006). Generalized Compact Knapsacks are Col‐
lision Resistant. In: Proceedings of the 33rd International Conference on Automata,
Languages and Programming (ICALP’06), Lecture Notes in Computer Science
(LNCS), Vol 4052, Springer-Verlag, pp. 144-155.

[66] Lyubashevsky, V., Micciancio, D., Peikert, C., & Rosen, A. (2008). SWIFT: A Modest
Proposal for FFT Hashing. In: Proceedings of the 15th International Workshop on Fast
Software Encryption (FSE’08), Lecture Notes in Computer Science (LNCS), Vol 5068,
Springer-Verlag, pp. 54-72.

[67] Lyubashevsky, V., Peikert, C., & Regev, O. (2010). On Ideal Lattices and Learning
with Errors over Rings. In: Advances in Cryptology- Proceedings of EURO‐
CRYPT’10, Lecture Notes in Computer Science (LNCS), Vol 6110, Springer-Verlag,
pp. 1-23.

[68] Menezes, A., Van Orschot, P. & Vanstone, S. (1997). Handbook of Applied Cryptog‐
raphy. CRC Press, USA. Available Online at: http://www.cacr.math.uwaterloo.ca/
hac/.

[69] Micciancio, D. (2007). Generalized Compact Knapsacks, Cyclic Lattices, and Efficient
One-Way Functions. Computational Complexity, Vol 16, No 4, pp. 365-411, Decem‐
ber 2007.

[70] Micciancio, D. (2001). Improving Lattice Based Cryptosystems Using Hermite Nor‐
mal Form. In: Cryptography and Lattices - Proceedings of the International Confer‐
ence on Cryptography and Lattices (CaLC’01), Lecture Notes in Computer Science
(LNCS), Vol 2146, Springer-Verlag, pp. 126-145.

[71] Micciancio, D. & Regev, O. (2007). Worst-Case to Average-Case Reductions Based on
Gaussian Measures. SIAM Journal on Computing, Vol 37, Issue 1, pp. 267-302, April
2007.

[72] Naccache, D. & Stern, J. (1998). A New Public Key Cryptosystem Based on Higher
Residues. In: Proceedings of the 5th ACM Conference on Computer and Communica‐
tions Security (CCS’98), pp. 59-66, ACM Press, New York, NY, USA.

[73] Naehrig, M., Lauter, K., & Vaikuntanathan, V. (2011). Can Homomorphic Encryption
be Practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Securi‐
ty, pp. 113-124, ACM Press, New York, NY, USA.

[74] Nguyen, P. & Stern, J. (1999). Cryptanalysis of the Ajtai-Dwork Cryptosystem. In:
Advances in Cryptology – Proceedings of CRYPTO’98, Lecture Notes in Computer
Science (LNCS), Springer-Verlag, Vol 1462, New York, NY, USA, pp. 223-242.

[75] Ogura, N., Yamamoto, G., Kobayashi, T., & Uchiyama, S. (2010). An Improvement of
Key Generation Algorithm for Gentry’s Homomorphic Encryption Scheme. In: Ad‐

Theory and Practice of Cryptography and Network Security Protocols and Technologies28

vances in Information and Computer Security- Proceedings of the 5th International
Conference on Advances in Information and Computer Security (IWSEC’10), Lecture
Notes in Computer Science (LNCS), Vol 6434, Springer-Verlag, pp. 70-83.

[76] Okamoto, T. & Uchiyama, S. (1998). A New Public-Key Cryptosystem as Secure as
Factoring. In: Advances in Cryptology- Proceedings of EUROCRYPT’98, Lecture
Notes in Computer Science (LNCS), Vol 1403, Springer-Verlag, pp. 308-318.

[77] Okamoto, T., Uchiyama, S., & Fujisaki, E. (2000). EPOC: Efficient Probabilistic Public-
Key Encryption. Technical Report, 2000, Proposal to IEEE P1363a. Available Online
at: http://grouper.iee.org/groups/1363/StudyGroup/NewFam.html.

[78] Paeng, S.-H, Ha, K.-C., Kim, J. H., Chee, S., & Park, C. (2001). New Public Key Cryp‐
tosystem Using Finite Non Abelian Groups. In: Advances in Cryptology- Proceed‐
ings of CRYPTO’01, Lecture Notes in Computer Science (LNCS), Vol 2139, Springer-
Verlag, pp. 470-485.

[79] Paillier, P. (2007). Impossibility Proofs for RSA Signatures in the Standard Model. In:
Topics in Cryptology - Proceedings of the RSA Conference Cryptographers’ Track
(CT-RSA’07), Lecture Notes in Computer Science (LNCS), Vol 4377, pp. 31-48, San
Francisco, California, USA.

[80] Paillier, P. (1999). Public-Key Cryptosystems Based on Composite Degree Residuosi‐
ty Classes. In: Advances in Cryptology – Proceedings of EUROCRYPT’99, Lecture
Notes in Computer Science (LNCS), Vol 1592, Springer-Verlag, pp. 223-238.

[81] Pfitzmann, B. & Waidner, M. (1997). Anonymous Fingerprinting. In: Advances in
Cryptology- Proceedings of the EUROCRYPT’97, Lecture Notes in Computer Science
(LNCS), Vol 1233, Springer-Verlag, pp. 88-102.

[82] Peikert, C. & Rosen, A. (2007). Lattices that Admit Logarithmic Worst-Case to Aver‐
age-Case Connection Factors. In: Proceedings of the 39th Annual ACM Symposium
on Theory of Computing (STOC’07), pp. 478-487, ACM Press, June 2007.

[83] Peikert, C. & Rosen, A. (2006). Efficient Collision-Resistant Hashing from Worst-Case
Assumptions on Cyclic Lattices. In: Theory of Cryptography - Proceedings of the 3rd

International Conference on Theory of Cryptography (TCC’06), Lecture Notes in
Computer Science (LNCS), Vol 3876, Springer-Verlag, pp. 145-166.

[84] Poupard, G. & Stern, J. (2000). Fair Encryption of RSA Keys. In: Advances in Cryptol‐
ogy- Proceedings of EUROCRYPT’00, Lecture Notes in Computer Science (LNCS),
Vol 1807, Springer-Verlag, pp. 172-189.

[85] Rappe, D. (2004). Homomorphic Cryptosystems and their Applications. Doctoral
Dissertation. University of Dortmund, Dortmund, Germany.

[86] Regev, O. (2005). On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC’05), pp. 84-93, ACM Press, New York, NY, USA.

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

29



Cryptography (TCC’08), Lecture Notes in Computer Science (LNCS), Vol 4948,
Springer-Verlag, pp. 37-54.

[65] Lyubashevsky, V. & Micciancio, D. (2006). Generalized Compact Knapsacks are Col‐
lision Resistant. In: Proceedings of the 33rd International Conference on Automata,
Languages and Programming (ICALP’06), Lecture Notes in Computer Science
(LNCS), Vol 4052, Springer-Verlag, pp. 144-155.

[66] Lyubashevsky, V., Micciancio, D., Peikert, C., & Rosen, A. (2008). SWIFT: A Modest
Proposal for FFT Hashing. In: Proceedings of the 15th International Workshop on Fast
Software Encryption (FSE’08), Lecture Notes in Computer Science (LNCS), Vol 5068,
Springer-Verlag, pp. 54-72.

[67] Lyubashevsky, V., Peikert, C., & Regev, O. (2010). On Ideal Lattices and Learning
with Errors over Rings. In: Advances in Cryptology- Proceedings of EURO‐
CRYPT’10, Lecture Notes in Computer Science (LNCS), Vol 6110, Springer-Verlag,
pp. 1-23.

[68] Menezes, A., Van Orschot, P. & Vanstone, S. (1997). Handbook of Applied Cryptog‐
raphy. CRC Press, USA. Available Online at: http://www.cacr.math.uwaterloo.ca/
hac/.

[69] Micciancio, D. (2007). Generalized Compact Knapsacks, Cyclic Lattices, and Efficient
One-Way Functions. Computational Complexity, Vol 16, No 4, pp. 365-411, Decem‐
ber 2007.

[70] Micciancio, D. (2001). Improving Lattice Based Cryptosystems Using Hermite Nor‐
mal Form. In: Cryptography and Lattices - Proceedings of the International Confer‐
ence on Cryptography and Lattices (CaLC’01), Lecture Notes in Computer Science
(LNCS), Vol 2146, Springer-Verlag, pp. 126-145.

[71] Micciancio, D. & Regev, O. (2007). Worst-Case to Average-Case Reductions Based on
Gaussian Measures. SIAM Journal on Computing, Vol 37, Issue 1, pp. 267-302, April
2007.

[72] Naccache, D. & Stern, J. (1998). A New Public Key Cryptosystem Based on Higher
Residues. In: Proceedings of the 5th ACM Conference on Computer and Communica‐
tions Security (CCS’98), pp. 59-66, ACM Press, New York, NY, USA.

[73] Naehrig, M., Lauter, K., & Vaikuntanathan, V. (2011). Can Homomorphic Encryption
be Practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Securi‐
ty, pp. 113-124, ACM Press, New York, NY, USA.

[74] Nguyen, P. & Stern, J. (1999). Cryptanalysis of the Ajtai-Dwork Cryptosystem. In:
Advances in Cryptology – Proceedings of CRYPTO’98, Lecture Notes in Computer
Science (LNCS), Springer-Verlag, Vol 1462, New York, NY, USA, pp. 223-242.

[75] Ogura, N., Yamamoto, G., Kobayashi, T., & Uchiyama, S. (2010). An Improvement of
Key Generation Algorithm for Gentry’s Homomorphic Encryption Scheme. In: Ad‐

Theory and Practice of Cryptography and Network Security Protocols and Technologies28

vances in Information and Computer Security- Proceedings of the 5th International
Conference on Advances in Information and Computer Security (IWSEC’10), Lecture
Notes in Computer Science (LNCS), Vol 6434, Springer-Verlag, pp. 70-83.

[76] Okamoto, T. & Uchiyama, S. (1998). A New Public-Key Cryptosystem as Secure as
Factoring. In: Advances in Cryptology- Proceedings of EUROCRYPT’98, Lecture
Notes in Computer Science (LNCS), Vol 1403, Springer-Verlag, pp. 308-318.

[77] Okamoto, T., Uchiyama, S., & Fujisaki, E. (2000). EPOC: Efficient Probabilistic Public-
Key Encryption. Technical Report, 2000, Proposal to IEEE P1363a. Available Online
at: http://grouper.iee.org/groups/1363/StudyGroup/NewFam.html.

[78] Paeng, S.-H, Ha, K.-C., Kim, J. H., Chee, S., & Park, C. (2001). New Public Key Cryp‐
tosystem Using Finite Non Abelian Groups. In: Advances in Cryptology- Proceed‐
ings of CRYPTO’01, Lecture Notes in Computer Science (LNCS), Vol 2139, Springer-
Verlag, pp. 470-485.

[79] Paillier, P. (2007). Impossibility Proofs for RSA Signatures in the Standard Model. In:
Topics in Cryptology - Proceedings of the RSA Conference Cryptographers’ Track
(CT-RSA’07), Lecture Notes in Computer Science (LNCS), Vol 4377, pp. 31-48, San
Francisco, California, USA.

[80] Paillier, P. (1999). Public-Key Cryptosystems Based on Composite Degree Residuosi‐
ty Classes. In: Advances in Cryptology – Proceedings of EUROCRYPT’99, Lecture
Notes in Computer Science (LNCS), Vol 1592, Springer-Verlag, pp. 223-238.

[81] Pfitzmann, B. & Waidner, M. (1997). Anonymous Fingerprinting. In: Advances in
Cryptology- Proceedings of the EUROCRYPT’97, Lecture Notes in Computer Science
(LNCS), Vol 1233, Springer-Verlag, pp. 88-102.

[82] Peikert, C. & Rosen, A. (2007). Lattices that Admit Logarithmic Worst-Case to Aver‐
age-Case Connection Factors. In: Proceedings of the 39th Annual ACM Symposium
on Theory of Computing (STOC’07), pp. 478-487, ACM Press, June 2007.

[83] Peikert, C. & Rosen, A. (2006). Efficient Collision-Resistant Hashing from Worst-Case
Assumptions on Cyclic Lattices. In: Theory of Cryptography - Proceedings of the 3rd

International Conference on Theory of Cryptography (TCC’06), Lecture Notes in
Computer Science (LNCS), Vol 3876, Springer-Verlag, pp. 145-166.

[84] Poupard, G. & Stern, J. (2000). Fair Encryption of RSA Keys. In: Advances in Cryptol‐
ogy- Proceedings of EUROCRYPT’00, Lecture Notes in Computer Science (LNCS),
Vol 1807, Springer-Verlag, pp. 172-189.

[85] Rappe, D. (2004). Homomorphic Cryptosystems and their Applications. Doctoral
Dissertation. University of Dortmund, Dortmund, Germany.

[86] Regev, O. (2005). On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC’05), pp. 84-93, ACM Press, New York, NY, USA.

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

29



[87] Rivest, R., Adleman, L., & Dertouzos, M. (1978a). On Data Banks and Privacy Homo‐
morphisms. Foundations of Secure Communication, pp. 169-177, Academic Press.

[88] Rivest, R., Shamir, A., & Adleman, L. (1978b). A Method for Obtaining Digital Signa‐
tures and Public-Key Cryptosystems. Communications of the ACM, Vol 21, No 2, pp.
120-126.

[89] Sahai, A. & Waters, B. (2005). Fuzzy Identity-Based Encryption. In: Advances in
Cryptology - Proceedings of EUROCRYPT’05, Lecture Notes in Computer Science
(LNCS), Vol 3494, Springer-Verlag, pp. 457-473.

[90] Sander, T. & Tschudin, C. F. (1998). Towards Mobile Cryptography. In: Proceedings
of IEEE Symposium on Security & Privacy, Oakland, California, USA, pp. 215-224,
May 1998.

[91] Sander, T. & Tshudin, C. F. (1998a). Protecting Mobile Agents against Malicious
Hosts. In: Proceedings of International Conference on Mobile Agents and Security,
Lecture Notes in Computer Science (LNCS), Vol 1419, Springer-Verlag, pp. 44-60.

[92] Sander, T., Young, A., & Yung, M. (1999). Non-Interactive CryptoComputing for NC.
In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, pp. 564-566, October 1999.

[93] Shannon, C. (1949). Communication Theory of Secrecy Systems. Bell System Techni‐
cal Journal, Vol 28, Issue 4, pp. 656-715, October 1949.

[94] Smart, N. P. & Vercauteren, F. (2010). Fully Homomorphic Encryption with Relative‐
ly Small Key and Ciphertext Sizes. In: Public Key Cryptography - Proceedings of the
13th International Conference on Practice and Theory in Public Key Cryptography
(PKC’10), Lecture Notes in Computer Science (LNCS), Vol 6056, Springer-Verlag, pp.
420-443.

[95] Smart, N. & Vercauteren. (2012). Fully Homomorphic SIMD Operations. Design Co‐
des and Cryptography, Springer, USA, July 2012.

[96] Stehle, D. & Steinfeld, R. (2010). Faster Fully Homomorphic Encryption. In: Advan‐
ces in Cryptology – Proceedings of ASIACRYPT’10, Lecture Notes in Computer Sci‐
ence (LNCS), Vol 6477, Springer-Verlag, pp. 377-394.

[97] Vaikuntanathan, V. (2011). Computing Blindfolded: New Developments in Fully Ho‐
momorphic Encryption. In: Proceedings of the IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS’11), pp. 5-16, IEEE Computer Society Press,
Washington, DC, USA.

[98] Van Tilborg, H. C. A. & Jajodia, S. (Eds) (2011). Encyclopaedia of Cryptography and
Security. Springer-Verlag, New York, NY, USA, 2011.

Theory and Practice of Cryptography and Network Security Protocols and Technologies30

[99] Vernam, G. S. (1926). Cipher Printing Telegraph Systems for Secret Wire and Radio
Telegraphic Communications. Journal of the American Institute of Electrical Engi‐
neers, Vol 45, pp. 295-301.

[100] Wagner, D. (2003). Cryptanalysis of an Algebraic Privacy Homomorphism. In: Pro‐
ceedings of the 6th International Conference on Information Security (ISC’03), Lecture
Notes in Computer Science (LNCS), Vol 2851, Springer-Verlag, pp.234-239.

[101] Wagner, N. R. & Magyarik, M. R. (1985). A Public Key Cryptosystem Based on the
Word Problem. In: Advances in Cryptology- Proceedings of CRYPTO’84, Lecture
Notes in Computer Science (LNCS), Vol 196, Springer-Verlag, pp. 19-36.

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

31



[87] Rivest, R., Adleman, L., & Dertouzos, M. (1978a). On Data Banks and Privacy Homo‐
morphisms. Foundations of Secure Communication, pp. 169-177, Academic Press.

[88] Rivest, R., Shamir, A., & Adleman, L. (1978b). A Method for Obtaining Digital Signa‐
tures and Public-Key Cryptosystems. Communications of the ACM, Vol 21, No 2, pp.
120-126.

[89] Sahai, A. & Waters, B. (2005). Fuzzy Identity-Based Encryption. In: Advances in
Cryptology - Proceedings of EUROCRYPT’05, Lecture Notes in Computer Science
(LNCS), Vol 3494, Springer-Verlag, pp. 457-473.

[90] Sander, T. & Tschudin, C. F. (1998). Towards Mobile Cryptography. In: Proceedings
of IEEE Symposium on Security & Privacy, Oakland, California, USA, pp. 215-224,
May 1998.

[91] Sander, T. & Tshudin, C. F. (1998a). Protecting Mobile Agents against Malicious
Hosts. In: Proceedings of International Conference on Mobile Agents and Security,
Lecture Notes in Computer Science (LNCS), Vol 1419, Springer-Verlag, pp. 44-60.

[92] Sander, T., Young, A., & Yung, M. (1999). Non-Interactive CryptoComputing for NC.
In: Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, pp. 564-566, October 1999.

[93] Shannon, C. (1949). Communication Theory of Secrecy Systems. Bell System Techni‐
cal Journal, Vol 28, Issue 4, pp. 656-715, October 1949.

[94] Smart, N. P. & Vercauteren, F. (2010). Fully Homomorphic Encryption with Relative‐
ly Small Key and Ciphertext Sizes. In: Public Key Cryptography - Proceedings of the
13th International Conference on Practice and Theory in Public Key Cryptography
(PKC’10), Lecture Notes in Computer Science (LNCS), Vol 6056, Springer-Verlag, pp.
420-443.

[95] Smart, N. & Vercauteren. (2012). Fully Homomorphic SIMD Operations. Design Co‐
des and Cryptography, Springer, USA, July 2012.

[96] Stehle, D. & Steinfeld, R. (2010). Faster Fully Homomorphic Encryption. In: Advan‐
ces in Cryptology – Proceedings of ASIACRYPT’10, Lecture Notes in Computer Sci‐
ence (LNCS), Vol 6477, Springer-Verlag, pp. 377-394.

[97] Vaikuntanathan, V. (2011). Computing Blindfolded: New Developments in Fully Ho‐
momorphic Encryption. In: Proceedings of the IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS’11), pp. 5-16, IEEE Computer Society Press,
Washington, DC, USA.

[98] Van Tilborg, H. C. A. & Jajodia, S. (Eds) (2011). Encyclopaedia of Cryptography and
Security. Springer-Verlag, New York, NY, USA, 2011.

Theory and Practice of Cryptography and Network Security Protocols and Technologies30

[99] Vernam, G. S. (1926). Cipher Printing Telegraph Systems for Secret Wire and Radio
Telegraphic Communications. Journal of the American Institute of Electrical Engi‐
neers, Vol 45, pp. 295-301.

[100] Wagner, D. (2003). Cryptanalysis of an Algebraic Privacy Homomorphism. In: Pro‐
ceedings of the 6th International Conference on Information Security (ISC’03), Lecture
Notes in Computer Science (LNCS), Vol 2851, Springer-Verlag, pp.234-239.

[101] Wagner, N. R. & Magyarik, M. R. (1985). A Public Key Cryptosystem Based on the
Word Problem. In: Advances in Cryptology- Proceedings of CRYPTO’84, Lecture
Notes in Computer Science (LNCS), Vol 196, Springer-Verlag, pp. 19-36.

Homomorphic Encryption — Theory and Application
http://dx.doi.org/10.5772/56687

31



Chapter 2

Optical Communication with
Weak Coherent Light Fields

Kim Fook  Lee, Yong Meng  Sua and
Harith B.  Ahmad

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56375

1. Introduction

Entanglement and superposition are foundations for the emerging field of quantum commu‐
nication and information processing. These two fundamental features of quantum mechanics
have made quantum key distribution unconditionally secure (Scarani et al., 2009; Weedbrook
et al., 2010) compared to communication based on classical key distribution. Currently,
implementation of an optical quantum communication is mainly based on discrete and
continuous quantum variables. They are usually generated through nonlinear interaction
processes in χ(2) (Kwiat et al., 1995) and χ(3) (Lee et al., 2006,2009) media. Discrete-variable qubit
based implementations using polarization (Liang et al., 2006, 2007; Chen et al. 2007, 2008;
Sharping et al., 2006) and time-bin (Brendel et al., 1999; Tittel et al., 1998, 1999) entanglement
have difficulty to obtain unconditional-ness, and also usually have low optical data-rate
because of post-selection technique with low probability of success in a low efficient single
photon detector at telecom-band (Liang et al., 2005, 2006, 2007). Continuous-variable imple‐
mentations using quadrature entanglement (Yonezawa et al., 2004; Bowen et al., 2003;
Silberhorn et al., 2002) and polarization squeezing (Korolkova et al., 2002) can have high
efficiency and high optical data-rate because of available high speed and efficient homodyne
detection. However, the quality of quadrature entanglement is very sensitive to loss, which is
imperfect for implementing any entanglement based quantum protocols over long distance.
Continuous-variable protocols that do not rely on entanglement, for instance, coherent-state
based quantum communication (Yuen, 2004; Corndorf et al., 2003; Barbosa et al., 2003;
Grosshans et al., 2002, 2003; Qi et al., 2007; Wilde Qi et al., 2008), are perfect for long distance
optical communication. Several experimental approaches were taken to resolve transmission
loss for long distance optical communication by using coherent light source. Optical wave
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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mechanical implementations (Lee et al., 2002, 2004) of entanglement and superposition with
coherent fields have been demonstrated.

We discuss and demonstrate a new type of optical communications based on weak coherent
light fields in detail in this chapter.

2. Correlation functions of two weak light fields

Two orthogonal light fields are used to implement correlation function between two distant
observers. In the Stapp’s approach (Grib et al., 1999; Peres, 1995) for two distant observers A
and B, when analyzer A is oriented along the polarization angle θ1, the transmitted |θ1 // and
reflected |θ1 ⊥ polarization vectors of the light are given by,

1 1 1 1 1/ /
cos sin ,H Vq q q= + (1)

1 1 1 1 1sin cos ,H Vq q q
^
= - + (2)

where the H and V are the horizontal and vertical axes. Analyzer A is a combination of half
wave plate (HWP) and a polarization beam splitter (PBS) for projecting the linear polarization
of the incoming photon. The operator associated with analyzer A can be represented by

1 1 1 1 1/ /
,A q q q q

^
= -

)
(3)

( ) ( )1 1 1 1 1 1 1 1 1 1 12 2 .A Cos H H V V Sin H V V Hq q= - + +
)

(4)

The operator A1 has eigenvalues of ±1, such that,

1 1 1/ / / /
1 ,A q q=

)
(5)

1 1 11 .A q q
^ ^
= -

)
(6)

Depending on the photon is transmitted or rejected by the analyzer. Similarly, the analyzer B
oriented at θ2 can be defined as operator B2,

( ) ( )2 2 2 2 2 2 2 2 2 2 22 2 .B Cos H H V V Sin H V V Hq q= - + +
)

(7)
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Operator A1(B2) with eigenvalues of ±1 can be measured by using the balanced detection
scheme as shown in Fig. 1. Two detectors are placed at the two output ports of a cube polari‐
zation beam splitter. Their output currents are subtracted from each other. The arrangement
of this detection scheme can be used for measuring operator A1 of Eq.(4) and B2 of Eq.(7) that
is the subtraction between the projection of the transmitted signal D// and the projection of the
reflected signal D⊥.

Let’s consider a beam of photons incidents on the PBS, if one photon goes through the PBS, it
will produce non-zero signal at detector D// and zero signal at detector D⊥. Then, the subtraction
yields positive signal as of D// − D⊥ ≥ 0. If a photon is reflected from the PBS, it will go to the
detector D⊥ and produce non-zero signal at detector D⊥ and zero signal at detector D//. Then,
the subtraction yields negative signal as of D// − D⊥ ≤ 0. For a certain amount of time, the
subtraction records the random positive and negative spikes corresponding to the eigenvalues
of +1 and -1 of operator A1, respectively, as shown in the inset of Fig. 1.

Beam of photons 

//q

^q

PBS at q  

+1 

-1 

D// 

D^ 

< A >  = 0 

or 

t 

< B >  = 0 HWP  

Figure 1. Detection scheme based on balanced homodyne detection for measuring operators A1 and B2.

If the incoming photons are in the superposition of |θ1 // and |θ1 ⊥, the detection scheme A
records a series of discrete random values, +1 and -1. Then, the mean value of A1 is zero, that
is A1 = 0. Similarly, we can apply the same detection scheme for measuring operator B2 and
obtain B2  = 0. The expectation value of the product A1B2 or the mean value of the product
signals of A1 and B2 will produce correlation functions, as given by,

1 2 1 2 1 2( , ) cos2( ).C A Bq q q qµ µ ± ± (8)

As shown in Eq.(8) above, there are 4 type of correlation functions analog to four Bell states.
Theoritical prediction for the mean value measurements of A1B2  are shown in Fig. 2.
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Figure 2. Theoritical prediction of correlation functions (a) –cos 2(θ1− θ2), (b) −cos 2(θ1+ θ2), (c) cos 2(θ1 - θ2), (d) cos 2(θ1

+ θ2).

3. Balanced homodyne detector

Balanced homodyne detector is utilised as the detection scheme for the weak coherent light
fields for optical communication.

It  consists  of  a  50/50  beam  splitter,  two  photo  detectors,  a  local  oscillator  field  and  a
transimpendance amplifier.  Superposed local oscillator field and weak light field will  be
detected by photodiodes D1 and D2, lead to the generation of the photocurrent I1 andI2. The
photodiodes are connected together in such a way that the output equal to the I1 minusI2

as shown in Fig. 3.
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Figure 3. Balanced Homodyne detection.
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The balanced detector has two input ports. The signal field and local oscillator field optically
mixed at the beam splitter. The local oscillator field is a large amplitude lightwave with the
same frequency as the signal and having a well-defined phase with respect to the signal field.
Generally, local oscillator field can be obtained from the same laser source as the signal field.
The emerging output fields ε1 and ε2 are the superposition of signal and local oscillator fields.
The output fields ε1 and ε2 are given as,

1

2

1 ( ), (a)
2
1 ( ). (b)
2

LO s

LO s

  

  

= +

= -
(9)

where εLO  and εs are the amplitude of the signal and local oscillator field respectively.
Photocurrents that produced by the output fields ε1 and ε2 are given as

2 *
1 1 1 1 ,I   = = (10)

2 *
2 2 2 2.I   = = (11)

Hence, the output of the balanced homodyne detector will be given as,

1 2 2 .s LOI I  - = (12)

Since the signal and local oscillator fields are derived from the same laser source with relative
phase φ. By considering only the real part of the signal and local oscillator fields, it can be
described as,

( ),s sA Cos t  w= (13)

( ).LO LOA Cos t  w j= + (14)

Where Aεs and AεLO  are the amplitude for signal and local oscillator fields, ω is optical
frequency, φ is relative phase between the fields. Hence the output of the balanced homodyne
detector is given by,

1 2 {cos( ) cos(2 )}.s LOI I A A t  j w j- = + + (15)
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Figure 2. Theoritical prediction of correlation functions (a) –cos 2(θ1− θ2), (b) −cos 2(θ1+ θ2), (c) cos 2(θ1 - θ2), (d) cos 2(θ1
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The second term in the Eq.(15) is the fast varying term beyond the detection of the of the photo
detector. Therefore, the output of the balanced homodyne detector is phase dependence, which
is given by,

1 2 cos( ).s LOI I A A  j- µ (16)

One of the main features of the balanced homodyne detector is the high signal to noise ratio
compared to a single detector. For example, classical intensity fluctuations of the laser would
affect the measurement of a single detector. Contrary, any changes in intensity will be canceled
by the subtraction of the photocurrent with an ideal balanced homodyne detector.

However, due to the Poissonian statistics of the coherent light and random splitting process
in the 50/50 beam splitter, fluctuations in intensity cannot be completely removed. Therefore
even with the presence of only local oscillator field, the balanced homodyne detector will have
a shot noise level above the electronics noise level as depicted in Fig.4, limiting the signal to
noise ratio.
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Figure 4. Frequency spectrum of balanced homodyne detector. The red line is the electronics noise of the BHD with‐
out any light while the blue line is the shot noise level of the BHD with the presence of the local oscillator field.

4. Practical demonstration of the optical communication with two weak
light fields

A proof-of-principle experiment to demonstrate the correlations of two weak light fields as
described in section 2 is shown in Fig.5. A continuous wave laser at telecom band wavelength
(1534nm) is used to provide two orthogonal weak light fields. We use a 50/50 beam splitter to
optically mix the vertically and horizontally polarized coherent light fields. The beam 1 from
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the output port 1 of the beam splitter is a superposition of the vertically and horizontally
polarized weak light fields, similarly for beam 2 from output port 2 of the beam splitter. The
balanced homodyne detectors are made of two p-i-n photodiodes (EXT500) and the signal
measured by the balanced homodyne detectors will be further amplified by a transimpedance
amplifier. A quarter wave plate at 45° as part of measuring device is inserted at beams 1 and
2 to transform the linearly polarized states to circularly polarized states. By using a quarter
wave plate transformation matrix, the field amplitudes V1, H1, V2 and H2 are transformed as,

1 1 1

1 1 1

2 2 2

2 2 2

ˆ ˆ , (a)
ˆ ˆ , (b)

ˆ ˆ , (c)
ˆ ˆ , (d)

V iH V
H H iV
V iH V
H H iV

®- +

® -

® - +

® -

(17)

where the phase shift due to the beam splitter is included.
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Figure 5. Experimental setup for demonstration of the optical communication with weak coherent light fields.

For simplicity we use unit vector notation and drop the amplitude of field notation. Now,
analyzer A in beam 1 will experience homogeneous superposition of left circularly polarized
and right circularly polarized weak light fields. Similarly for analyzer B in beam 2. Analyzer
A(B) is placed before the balanced homodynes detector A(B) to project out the phase angle 1(2)
as,

1 1 1 1 1
ˆ ˆˆ cos sin ,e H Vq q® + (18)

2 2 2 2 2
ˆ ˆˆ cos sin .e H Vq q® + (19)
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the output port 1 of the beam splitter is a superposition of the vertically and horizontally
polarized weak light fields, similarly for beam 2 from output port 2 of the beam splitter. The
balanced homodyne detectors are made of two p-i-n photodiodes (EXT500) and the signal
measured by the balanced homodyne detectors will be further amplified by a transimpedance
amplifier. A quarter wave plate at 45° as part of measuring device is inserted at beams 1 and
2 to transform the linearly polarized states to circularly polarized states. By using a quarter
wave plate transformation matrix, the field amplitudes V1, H1, V2 and H2 are transformed as,

1 1 1

1 1 1

2 2 2

2 2 2

ˆ ˆ , (a)
ˆ ˆ , (b)

ˆ ˆ , (c)
ˆ ˆ , (d)

V iH V
H H iV
V iH V
H H iV

®- +

® -

® - +

® -

(17)

where the phase shift due to the beam splitter is included.
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Figure 5. Experimental setup for demonstration of the optical communication with weak coherent light fields.

For simplicity we use unit vector notation and drop the amplitude of field notation. Now,
analyzer A in beam 1 will experience homogeneous superposition of left circularly polarized
and right circularly polarized weak light fields. Similarly for analyzer B in beam 2. Analyzer
A(B) is placed before the balanced homodynes detector A(B) to project out the phase angle 1(2)
as,

1 1 1 1 1
ˆ ˆˆ cos sin ,e H Vq q® + (18)

2 2 2 2 2
ˆ ˆˆ cos sin .e H Vq q® + (19)
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The superposed field in beam 1 after the λ/4 wave plate and the analyzer can be expressed as,

( )
1 1 1 1 1 1
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(20)

and similarly for the superposed field in beam 2,
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(21)

where ω is optical frequency, and φ is the relative phase of the two orthogonal weak light
fields. Thus, the interference signals obtained by the photodetector D1// in balanced homodyne
detectors at beam 1 are given as,

1

1

(2 )
1/ /

1
(2 )

1

1

( ) .
sin(2 ). (a)

( ) .
sin(2 ). (b)

i

i

D ie c c

D ie c c

q j

q p j

j

q j

j
q j

- +

- + +
^

= - +

µ +

= +
µ - +

(22)

On the other hand, for photodetector D2//, the reflected beat signal becomes 22b

Then, the balanced detector A measures

1 1/ / 1

1

( )
2sin(2 ).

A D Dj

q j
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(23)

Similarly, the interference signals obtained by the photodetectors in balanced homodyne
detector at beam 2 can be written as,
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and the balanced detector B measures

2 2/ / 2

2

( )
2sin(2 ).

B D Dj

q j
^= -

= - +
(25)

The interference signals of Eq.(23) and Eq.(25) above for balanced detectors A and B are the
measurements of operators A1 and B2, respectively. The interference signal in detector A is
anti-correlated to detector B because of the phase shift of the beam splitter. The interference
signals contain information of the projection angles of the analyzers. The average of the
interference signals is zero, that is, <A1> = 0 and <B2> = 0. To further discuss the significant of
measuring the operator A1, the interference signals obtained in balanced detector A can be
rewritten as,

1 1 1( ) 2{cos(2 )sin( ) sin(2 )cos( )},A j q j q j= + (26)

which is identical in structure with operator A1 as in Eq.(4), that is

( ) ( )1 1 1 1 1 1 1 1 1 1 12 2 .A Cos H H V V Sin H V V Hq q= - - +
)

(27)

The factor of 2 in Eq.(26) is due to the 3 dB gain obtained by balanced detection scheme. Note
that the unit polarization projectors (| H1 H1 | − |V1 V1 | ) and (| H1 V1 | + |V1 H1 | ) in
Eq.(27) can be interpreted by in-phase and out-of-phase components of the light field. Similarly
for the interference signals obtained in balanced detector B.

The interference signals in detectors A and B are then multiplied to obtain the anti-correlated
multiplication signal,

1 2 1 2

1 2 1 2

sin(2 )sin(2 )
cos(2( )) cos(2( )).

A B q j q j
q q q q j

´ µ - + +
µ - - - + +

(28)

Then, the mean value of this multiplied signal is measured. We obtain one of the correlation
functions C(θ1, θ2) as described in section 2,

1 2 1 2 1 2( , ) cos2( ),A B C q q q q´ µ µ - - (29)

where the second term in Eq.(26) is averaging to zero due to the slow varying relative phase
φ of the two orthogonal weak light fields from 0 to 2π. We normalized the correlation function
C(θ1, θ2) with its maximum obtainable value that is, θ1 =θ2. Thus, for the setting of the
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The superposed field in beam 1 after the λ/4 wave plate and the analyzer can be expressed as,
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and similarly for the superposed field in beam 2,
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where ω is optical frequency, and φ is the relative phase of the two orthogonal weak light
fields. Thus, the interference signals obtained by the photodetector D1// in balanced homodyne
detectors at beam 1 are given as,
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On the other hand, for photodetector D2//, the reflected beat signal becomes 22b
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Similarly, the interference signals obtained by the photodetectors in balanced homodyne
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and the balanced detector B measures
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The interference signals of Eq.(23) and Eq.(25) above for balanced detectors A and B are the
measurements of operators A1 and B2, respectively. The interference signal in detector A is
anti-correlated to detector B because of the phase shift of the beam splitter. The interference
signals contain information of the projection angles of the analyzers. The average of the
interference signals is zero, that is, <A1> = 0 and <B2> = 0. To further discuss the significant of
measuring the operator A1, the interference signals obtained in balanced detector A can be
rewritten as,

1 1 1( ) 2{cos(2 )sin( ) sin(2 )cos( )},A j q j q j= + (26)

which is identical in structure with operator A1 as in Eq.(4), that is

( ) ( )1 1 1 1 1 1 1 1 1 1 12 2 .A Cos H H V V Sin H V V Hq q= - - +
)

(27)

The factor of 2 in Eq.(26) is due to the 3 dB gain obtained by balanced detection scheme. Note
that the unit polarization projectors (| H1 H1 | − |V1 V1 | ) and (| H1 V1 | + |V1 H1 | ) in
Eq.(27) can be interpreted by in-phase and out-of-phase components of the light field. Similarly
for the interference signals obtained in balanced detector B.

The interference signals in detectors A and B are then multiplied to obtain the anti-correlated
multiplication signal,

1 2 1 2

1 2 1 2

sin(2 )sin(2 )
cos(2( )) cos(2( )).

A B q j q j
q q q q j

´ µ - + +
µ - - - + +

(28)

Then, the mean value of this multiplied signal is measured. We obtain one of the correlation
functions C(θ1, θ2) as described in section 2,

1 2 1 2 1 2( , ) cos2( ),A B C q q q q´ µ µ - - (29)

where the second term in Eq.(26) is averaging to zero due to the slow varying relative phase
φ of the two orthogonal weak light fields from 0 to 2π. We normalized the correlation function
C(θ1, θ2) with its maximum obtainable value that is, θ1 =θ2. Thus, for the setting of the
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analyzers at θ1 =θ2, the normalized correlation function C(θ1, θ2)= −1 shows that the two beams
are anti-correlated. To generate other correlation functions, such as C(θ1, θ2)∝ −cos2(θ1 + θ2)
the λ/4 wave plate at beam 2 is rotated at -45°, then the beat signal measured by balanced
homodyne detector B2 of Eq.(25) is given by

2 2/ / 2 2( ) ( ) ( ) 2sin(2 ).B D Dj j j q j^µ - µ - - (30)

Hence, obtaining the correlation function,

1 2 1 2( , ) cos2( ).C q q q qµ - + (31)

As for correlation function C(θ1, θ2)∝cos2(θ1 −θ2) a λ/2 plate in beam 2 is inserted, then the
minus sign of beat signal B2 of Eq.(30) is changed to positive sign, yielding the desired
correlation function. Similarly, with the λ/2 wave plate at beam 2 and the λ/4 wave plate at
beam 2 rotated at -45°, the beat signal B2 of Eq.(30) is equal to 2sin(2θ2 −φ). Thus, providing
the last correlation function C(θ1, θ2)∝cos2(θ1 + θ2).

4.1. Correlation measurement of a stable field and a noise field

To verify the above analysis and measurement method for weak light fields, we present an
experiment measurement of one stable coherent light field and one random noise phase
modulated light field.

One stable coherent field is mixed with one noise field in a beam splitter. The experimental
result has been recently published(Lee, 2009). Fig. 6(a) and (b) are the beat signals obtained at
A and B, where the phase ϕc(t) is modulated with random noise through an acousto-optic
modulator. The product of the beat signal at A and B is shown in Fig. 6(c). The mean-value
measurement produces the bipartite correlation –cos2(θ1–θ2), which is still classical correla‐
tion. However, it is obvious that the information of θ1 and θ2 are protected by classical noise
not quantum noise. Classical noise is not completely random compared to quantum noise as
inherited by coherent state.

In the next section, two weak coherent light fields |α  and |β  are used for generating
quantum correlation, where the quantum noise ϕ (t) = ϕβ - ϕα provided by mean photon
number fluctuation.

4.2. Correlation measurement of two weak light fields

By using the experiment setup as proposed in Fig.5, we are able to generate 4 types of bipartite
correlation, given as

1 2 1 2( , ) cos2( ).C q q q qµ ± ± (32)
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To verify the analysis discussed in section 2, we perform systematic studies of the proposed
experiment. We use a piezoelectric transducer (PZT) to modulate the phase of a weak light
field. Then, all 4 types of correlation function were obtained by manipulation of experiment
setup as discussed in previous section. We normalized the correlation function -cos 2(θ

1
-θ

2
)

with its maximum obtainable value, that is θ
1
=θ

2
. Fig.7 shows the normalized correlation

function ±cos 2(θ
1
 ± θ

2
) as a function of the relative projection angle of the analyzer A and B.

The blue line is the predicted theoretical value while the red circle with the error bar is the
experimental data.

For each data point, we take ten measurements of the multiplied signal and obtain the average
mean value. Each measurement was obtained by fix the projection angle of the analyzer A and
rotates the projection angle of analyzer B. The error bar is mainly due to the electronic noises
and temperature dependence of polarization optics.

4.3. Bit generation and measurement

After we established one of the bipartite correlation functions between observer A and B, bit
generation and measurement for optical communications can be done by implementing bit
correlations between them.

Lock-in-amplifier is used to measure the bit correlation of between observer A and B. Fig.8
depicts the experimental setup for bit measurement for observer A and B. To perform this
measurement for the established correlation function of –cos 2(θ

1
 − θ

2
), we ramp the Piezo‐

electric transducer (PZT) at one of the weak light field to obtain one period of interference
signal. An example of single period of interference signal measured at observer and reference
signal for the lock-in amplifier is shown in Fig.9. For practical optical communication, phase
locking of the two orthogonal weak light fields are required.
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analyzers at θ1 =θ2, the normalized correlation function C(θ1, θ2)= −1 shows that the two beams
are anti-correlated. To generate other correlation functions, such as C(θ1, θ2)∝ −cos2(θ1 + θ2)
the λ/4 wave plate at beam 2 is rotated at -45°, then the beat signal measured by balanced
homodyne detector B2 of Eq.(25) is given by

2 2/ / 2 2( ) ( ) ( ) 2sin(2 ).B D Dj j j q j^µ - µ - - (30)

Hence, obtaining the correlation function,

1 2 1 2( , ) cos2( ).C q q q qµ - + (31)

As for correlation function C(θ1, θ2)∝cos2(θ1 −θ2) a λ/2 plate in beam 2 is inserted, then the
minus sign of beat signal B2 of Eq.(30) is changed to positive sign, yielding the desired
correlation function. Similarly, with the λ/2 wave plate at beam 2 and the λ/4 wave plate at
beam 2 rotated at -45°, the beat signal B2 of Eq.(30) is equal to 2sin(2θ2 −φ). Thus, providing
the last correlation function C(θ1, θ2)∝cos2(θ1 + θ2).

4.1. Correlation measurement of a stable field and a noise field

To verify the above analysis and measurement method for weak light fields, we present an
experiment measurement of one stable coherent light field and one random noise phase
modulated light field.

One stable coherent field is mixed with one noise field in a beam splitter. The experimental
result has been recently published(Lee, 2009). Fig. 6(a) and (b) are the beat signals obtained at
A and B, where the phase ϕc(t) is modulated with random noise through an acousto-optic
modulator. The product of the beat signal at A and B is shown in Fig. 6(c). The mean-value
measurement produces the bipartite correlation –cos2(θ1–θ2), which is still classical correla‐
tion. However, it is obvious that the information of θ1 and θ2 are protected by classical noise
not quantum noise. Classical noise is not completely random compared to quantum noise as
inherited by coherent state.

In the next section, two weak coherent light fields |α  and |β  are used for generating
quantum correlation, where the quantum noise ϕ (t) = ϕβ - ϕα provided by mean photon
number fluctuation.

4.2. Correlation measurement of two weak light fields

By using the experiment setup as proposed in Fig.5, we are able to generate 4 types of bipartite
correlation, given as

1 2 1 2( , ) cos2( ).C q q q qµ ± ± (32)
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To verify the analysis discussed in section 2, we perform systematic studies of the proposed
experiment. We use a piezoelectric transducer (PZT) to modulate the phase of a weak light
field. Then, all 4 types of correlation function were obtained by manipulation of experiment
setup as discussed in previous section. We normalized the correlation function -cos 2(θ
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For each data point, we take ten measurements of the multiplied signal and obtain the average
mean value. Each measurement was obtained by fix the projection angle of the analyzer A and
rotates the projection angle of analyzer B. The error bar is mainly due to the electronic noises
and temperature dependence of polarization optics.

4.3. Bit generation and measurement
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signal for the lock-in amplifier is shown in Fig.9. For practical optical communication, phase
locking of the two orthogonal weak light fields are required.
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We measure quadrature phases of orthogonal weak light fields with the step size of nπ/2 (n =
integer) as shown in Fig. 10(a) (blue line). Using the same lock-in reference phase in the lock-
in amplifier, we measure the quadrature phases of weak coherent state at detector B as shown
in Fig. 10(a) (dashed red line). We have observed the bits correlation between two parties for
the shared correlation function of −cos 2(θ

1
 − θ

2
) as shown in Fig. 4(a), where the positive

Figure 7. Experimental measurement of Bi-partite correlation functions (a)–cos 2(θ
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Figure 8. Experimental setup for demonstration of the bit generation and measurement
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(negative) quadrature signal is encoded as keys/bits ‘1’ (‘0’), respectively. By using the same
lock-in reference phase, we observe bits correlations for the other three types of correlation
functions −cos 2(θ

1
 + θ

2
), cos 2(θ

1
 + θ

2
), and cos 2(θ

1
 − θ

2
) as shown in Figs. 10(b), 10(c), and

10(d), respectively.

In real practice of long distance optical communication, we can establish one of the bit
correlations for calibrating the lock-in reference phase at observer A and B. We further explore
the feasibility of the scheme long distance optical communication for by performing bits
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Figure 9. (a) Single period of interference signal measured at observer A (red line) compared to b) piezoelectric driv‐
ing voltage (blue dashed line), which is used as reference phase in the lock-in amplifier.
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We measure quadrature phases of orthogonal weak light fields with the step size of nπ/2 (n =
integer) as shown in Fig. 10(a) (blue line). Using the same lock-in reference phase in the lock-
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(negative) quadrature signal is encoded as keys/bits ‘1’ (‘0’), respectively. By using the same
lock-in reference phase, we observe bits correlations for the other three types of correlation
functions −cos 2(θ

1
 + θ

2
), cos 2(θ

1
 + θ

2
), and cos 2(θ

1
 − θ

2
) as shown in Figs. 10(b), 10(c), and

10(d), respectively.

In real practice of long distance optical communication, we can establish one of the bit
correlations for calibrating the lock-in reference phase at observer A and B. We further explore
the feasibility of the scheme long distance optical communication for by performing bits
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correlations between two observers over a distance of 10 km through a transmission fiber. We
couple one of the orthogonal weak light fields into 10 km of transmission fiber and a quarter-
wave plate and a half-wave plate are used at the output of the transmission fiber to compensate
the birefringence. The correlation between two observers A and B are found to be preserved
over the 10 km transmission fiber (Sua et al., 2011). We managed to establish four types of
correlation functions and performed bits correlations for each shared correlation function
between two observers.

In short, for our proposed weak coherent light fields optical communication scheme, infor‐
mation is encoded onto the superposition of the vertically and horizontally polarized weak
light fields; decoding involves detection of the weak light fields by balanced homodyne
detector and quadrature phases measurement by lock-in amplifier. For reliable measurement
of the encoded signal, both phase and polarization of the weak light field must be stable.

Apparently, stability and accurate control of phase and polarization turned out to be the main
challenge for the practical implementation of weak coherent light fields optical communica‐
tion. The state of polarization of the light wave is not preserved in the typical transmission
fiber. Dynamic control of the state of polarization of the light is critical to ensure the reliability
the proposed optical communication scheme. Each dynamic polarization controller is bulky
and expensive (Noe et al., 1999), severely limits the practicality of our scheme. Phase locking
is another challenging obstacle as well. Phase locking is required between the two orthogonal
weak light fields that used to implement the bit correlation between two observers. Without
the phase locking, quadrature phases measurement performed by lock-in amplifier is mean‐
ingless. Therefore, optical phase-locked loop must be employed for the phase locking of two
weak light fields. However, for high data rate optical communication, the delays allowed in
the phased-locked loop are so small that phase locking becomes an enormous challenge (Barry
et al., 1992; Kazovsky, 1986).

5. Conclusion

We have experimentally demonstrated a new type of optical communication protocol based
on weak coherent light fields. Coherent bipartite quantum correlations of two distant observers
are generated and used to implement keys (bits) correlation over a distance of 10 km. Our
scheme can be used to provide security as a supplement to the existence decoy-state Bennett-
Brassard 1984 protocol and the differential phase-shift quantum key distribution (DPS-QKD)
protocol. The realization of intrinsic correlation of weak coherent light fields by using the
measurement method is a first step toward linear-optics quantum computing with weak light
fields and single-photon source.

Acknowledgements

K.F.L and Y.M.S would like to acknowledge that this research is supported by start-up fund
from Department of Physics, Michigan Technological University. H.B.A gratefully acknowl‐

Theory and Practice of Cryptography and Network Security Protocols and Technologies46

edges the support from University of Malaya High Impact Research Grant UM.C/HIR/MOHE/
SC/01 on this work.

Author details

Kim Fook  Lee1, Yong Meng  Sua1 and Harith B.  Ahmad2

1 Department of Physics, Michigan Technological University, Houghton, Michigan, USA

2 Department of Physics, University of Malaya, Kuala Lumpur, Malaysia

References

[1] Barbosa, G. A.; Corndorf, E.; Kumar, P. & Yuen, H. P. (2003). Secure Communication
using Mesoscopic coherent states, Phys. Rev. Lett., Vol.90, pp227901

[2] Barry, J. R. & Kahn, J. M. (1992). Carrier synchronization for homodyne and heterodyne-
detection of optical quadriphase-shift keying, J. Lightwave Technol., Vol.10, pp1939–
1951

[3] Bhattacharya, N.; van Linden van den Heuvell, H. B. & Spreeuw, R. J. C. (2002).
Implementation of Quantum Search Algorithm using Classical Fourier Optics, Phys.
Rev. Lett., Vol. 88, pp137901

[4] Bigourd, D.; Chatel, B.; Schleich, W. P. & Girard, B. (2008). Factorization of Numbers
with the Temporal Talbot Effect: Optical Implementation by a Sequence of Shaped
Ultrashort Pulses, Phys. Rev. Lett., Vol.100, pp030202

[5] Bowen, W. P.; Schnabel, R.; Lam, P. K.; & Ralph, T. C. (2003). Experimental Investigation
of Criteria for Continuous variable entanglement, Phys. Rev. Lett., Vol.90, pp043601

[6] Brendel, J.; Gisin, N.; Tittel, W. & Zbinden, H. (1999). Pulsed energy-time entangled
twin-photon source for quantum communication. Phys. Rev. Lett., Vol.82, pp2594

[7] Chen, J.; Lee, K. F.; and Kumar, P. (2007). Deterministic quantum splitter based on time-
reversed Hong-Ou-Mandel interference, Phys. Rev. A, Vol.76, pp031804(R)

[8] Chen, J.; Altepeter, J. B.; Medic, M.; Lee, K. F.; Gokden, B.; Hadfield, R. H.; Nam, S. W.
& Kumar, P. (2008). Demonstration of a Quantum Controlled-NOT Gate in the
Telecommunications Band, Phys. Rev. Lett., Vol.100, pp133603

[9] Corndorf, E.; Barbosa, G. A.; Liang, C.; Yuen, H. P. & Kumar, P. (2003). High-speed
data encryption over 25 km of fiber by two-mode coherent state quantum cryptogra‐
phy, Opt. Letters. Vol.28, pp2040-2042

[10] Grib, A.A.; & Rodrigues, W. A. (1999). Nonlocality in Quantum Physics, Springer, ISBN
030646182X, New York, USA

Optical Communication with Weak Coherent Light Fields
http://dx.doi.org/10.5772/56375

47



correlations between two observers over a distance of 10 km through a transmission fiber. We
couple one of the orthogonal weak light fields into 10 km of transmission fiber and a quarter-
wave plate and a half-wave plate are used at the output of the transmission fiber to compensate
the birefringence. The correlation between two observers A and B are found to be preserved
over the 10 km transmission fiber (Sua et al., 2011). We managed to establish four types of
correlation functions and performed bits correlations for each shared correlation function
between two observers.

In short, for our proposed weak coherent light fields optical communication scheme, infor‐
mation is encoded onto the superposition of the vertically and horizontally polarized weak
light fields; decoding involves detection of the weak light fields by balanced homodyne
detector and quadrature phases measurement by lock-in amplifier. For reliable measurement
of the encoded signal, both phase and polarization of the weak light field must be stable.

Apparently, stability and accurate control of phase and polarization turned out to be the main
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1. Introduction

Cryptographic protocols are divided in two main classes, symmetric systems where keys are secret and

asymmetric approaches with public keys. The security of this second category is based on algebraic

problems known to be difficult to solve. Historically, in 1976, Diffie-Hellman described a protocol

[26] which was one of the first crypto-systems based on the discrete logarithm problem. Later, the

introduction of the elliptic curve in cryptography was promoted by V. Miller [55] and N. Koblitz [47]

and a large spectrum of crypto-systems appeared. Pairings are bilinear maps which allow to transform

an approach on abelian curves, such as elliptic ones, to a problem on finite fields. A first use of such

maps concerns cryptanalysis and was proposed in1993 by Menezes Okamoto and Vanstone [53] and in

1994 by G. Frey and H.G. Rück [36] they linked pairings to the discrete logarithmic problem on curves.

In 2000, A. Joux [45] had proposed a tripartite Diffie-Hellmann keys exchange using pairing. That was

the beginning of a blossoming literature on the subject. In 2003, D. Boneh and M. Franklin broke a

challenge given by Shamir[65] in 1984, creating an identity-based encryption scheme [19] based on

pairings. The construction of the pairings is based on the algorithm proposed in 1986 by Victor Miller

[54, 56]. A consequence of the rich literature on this subject [62] was the creation of a conference

devoted to pairing based cryptography, Pairings [60].

With the birth of this new domain of investigation in cryptography, the problem of implementing these

protocols occurs. This point is very relevant to the interest of pairings, the costs and the performances

of the implementation make a cryptosystem available. Some good studies on pairings implementation

are given by P. Barreto et al [13, 15], we can also refer to some books [29, 37]. We detail later what is

a pairing, but at a high level: a pairing is a bilinear map between two groups G1,G2 into a third group

G3 all abelian groups and of the same order.

e : G1 ×G2 −→ G3

©2012 El Mrabet, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 El Mrabet; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

Cryptographic protocols are divided in two main classes, symmetric systems where keys are secret and

asymmetric approaches with public keys. The security of this second category is based on algebraic

problems known to be difficult to solve. Historically, in 1976, Diffie-Hellman described a protocol

[26] which was one of the first crypto-systems based on the discrete logarithm problem. Later, the

introduction of the elliptic curve in cryptography was promoted by V. Miller [55] and N. Koblitz [47]

and a large spectrum of crypto-systems appeared. Pairings are bilinear maps which allow to transform

an approach on abelian curves, such as elliptic ones, to a problem on finite fields. A first use of such

maps concerns cryptanalysis and was proposed in1993 by Menezes Okamoto and Vanstone [53] and in

1994 by G. Frey and H.G. Rück [36] they linked pairings to the discrete logarithmic problem on curves.

In 2000, A. Joux [45] had proposed a tripartite Diffie-Hellmann keys exchange using pairing. That was

the beginning of a blossoming literature on the subject. In 2003, D. Boneh and M. Franklin broke a

challenge given by Shamir[65] in 1984, creating an identity-based encryption scheme [19] based on

pairings. The construction of the pairings is based on the algorithm proposed in 1986 by Victor Miller

[54, 56]. A consequence of the rich literature on this subject [62] was the creation of a conference

devoted to pairing based cryptography, Pairings [60].

With the birth of this new domain of investigation in cryptography, the problem of implementing these

protocols occurs. This point is very relevant to the interest of pairings, the costs and the performances

of the implementation make a cryptosystem available. Some good studies on pairings implementation

are given by P. Barreto et al [13, 15], we can also refer to some books [29, 37]. We detail later what is

a pairing, but at a high level: a pairing is a bilinear map between two groups G1,G2 into a third group

G3 all abelian groups and of the same order.

e : G1 ×G2 −→ G3
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The bilinearity is the property that

e(a ·A,b ·B) = e(A,B)a·b.

For efficient realization G1 and G2 are subgroups of an elliptic curve and G3 is a subgroup of a finite

field. The size of the group is fixed by security considerations and lays on the fact that the discrete

logarithm problem is hard to solve over G1,G2 and G3. The pairings are mainly computed with the

Miller’s algorithm. As a pairing evaluation can be enclosed in a smart card, the question of an efficient

implementation is very important.

Several publications are dealing with the efficiency of implementation of pairings. Each of them focus

on one aspect of the implementation. We want here to bring together each possible optimizations. The

outline of the chapter is the following. First in Section 2 we present the necessary background for a

pairing implementation. We present the two first pairings the Weil and the Tate pairings, as well as

the optimizations of these, the Eta pairing, the Ate pairing, the twisted Ate pairing, which leads to the

notion of optimal pairing and pairing lattices. We also give a first analysis of the arithmetic of pairings.

In Section 4, we present the mathematical optimizations of pairings. The use of twisted elliptic curves

which leads to the denominator elimination, the improvement of a squaring using cyclotomic subgroups.

In Section 5, we present the arithmetical optimizations of a pairing implementation. We describe the

different options for an efficient multiplication in Section 5.2, 5.3, 5.3.1 and 5.4. We describe as well

how an original representation of a finite field can improve a pairing computation in Section 5.5. In

Section 5.6, we describe how the choice of the model of elliptic curve and of its coordinates has a

consequence on the implementation. Finally, we conclude in Section 6.

2. Background and notation

Let E be an elliptic curve over a finite field Fq, with P∞ denoting the identity element of the associated

group of rational points E(Fp). For a positive integer r|#E(Fp) coprime to p, let Fpk be the smallest

extension field of Fp which contains the r-th roots of unity in Fp; the extension degree k is called the

security multiplier or embedding degree. Let E(Fp)[r] (respectively E(Fpk )[r]) denote the subgroup

of E(Fp) (respectively E(Fpk )) of all points of order dividing r. The two groups G1 and G2 will be

subgroups of elliptic curve groups and G3 is a subgroup of the multiplicative group of a finite field.

2.1. The Weil, Tate and Ate pairings

2.1.1. The Miller algorithm

The Miller algorithm is the most important step for the Weil, Tate and Ate pairings computation. It is

constructed like a double and add scheme using the construction of [r]P. Miller’s algorithm is based on

the notion of divisors. We only give here the essential elements for the pairing computation.

The Miller algorithm constructs the rational function fr,P associated to the point P, where P is a

generator of G1 ⊂ E(Fp); and at the same time, it evaluates fr,P(Q) for a point Q ∈ G2 ⊂ E(Fpk ).
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Algorithm 1: Miller(P,Q, l)

Data: l = (ln . . . l0)(radix 2 representation), P ∈ G1(⊂ E(Fp)) and Q ∈ G2(⊂ E(Fpk ));
Result: FP(Q) ∈ G3(⊂ F∗

pk );

1 : T ← P ;

2 : f1 ← 1 ;

3 : f2 ← 1 ;

for i = n−1 to 0 do

4 : T ← [2]T , 5 : f1 ←− f1
2
×h1(Q), h1(x) is the equation of the tangent at the point T ;

if li = 1 then

6 : T ← T +P ;

7 : f1 ←− f1 ×h2(Q), h2(x) is the equation of the line (PT );

end

end

return f1

2.1.2. The pairings

Definition 2.1. The Weil pairing, denoted eW , is defined by:

eW : G1 ×G2 → G3,

(P,Q) → (−1)r fr,P(Q)
fr,Q(P)

.

Definition 2.2. The Tate pairing, denoted eTate, is defined by:

G1 ×G2 �→ G3

(P,Q) �→ eTate(P,Q) = fr,P(Q).

Here, the function fr,P is normalized, i.e. (ur
0 fr,P)(P∞) = 1 for some Fp-rational uniformizer at P∞.

This pairing is only defined up to a representative of (Fpk )r. In order to obtain a unique value we raise

it to the power
pk
−1
r , obtaining an r-th root of unity that we call the reduced Tate pairing

êTate(P,Q) = fr,P(Q)
pk

−1
r .

Let πp be the Frobenius map over the elliptic curve: πp : E → E : (x,y) → (xp,yp). We denote the

Frobenius trace by t. Let T = t −1, G1 := E[r]∩Ker(πp − [1]) and G2 := E[r]∩Ker(πp − [q])

Theorem 2.3. For P ∈ G1 and p ∈ G2 the following properties hold [43]:

⋄ fT ,Q(P) is a bilinear pairing called the Ate pairing.

⋄ Let N = gcd(T k
− 1, pk

− 1) and T k
− 1 = NL, then eTate(Q,P)L = fT ,Q(P)

c(pk
−1)/N, where c =

∑
k−1
i=0 T k−1−i pi

≡ kpk−1mod(r)

⋄ for r not dividing L, the Ate pairing is non degenerated.
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The bilinearity is the property that

e(a ·A,b ·B) = e(A,B)a·b.

For efficient realization G1 and G2 are subgroups of an elliptic curve and G3 is a subgroup of a finite

field. The size of the group is fixed by security considerations and lays on the fact that the discrete

logarithm problem is hard to solve over G1,G2 and G3. The pairings are mainly computed with the

Miller’s algorithm. As a pairing evaluation can be enclosed in a smart card, the question of an efficient

implementation is very important.

Several publications are dealing with the efficiency of implementation of pairings. Each of them focus

on one aspect of the implementation. We want here to bring together each possible optimizations. The

outline of the chapter is the following. First in Section 2 we present the necessary background for a

pairing implementation. We present the two first pairings the Weil and the Tate pairings, as well as

the optimizations of these, the Eta pairing, the Ate pairing, the twisted Ate pairing, which leads to the

notion of optimal pairing and pairing lattices. We also give a first analysis of the arithmetic of pairings.

In Section 4, we present the mathematical optimizations of pairings. The use of twisted elliptic curves

which leads to the denominator elimination, the improvement of a squaring using cyclotomic subgroups.

In Section 5, we present the arithmetical optimizations of a pairing implementation. We describe the

different options for an efficient multiplication in Section 5.2, 5.3, 5.3.1 and 5.4. We describe as well

how an original representation of a finite field can improve a pairing computation in Section 5.5. In

Section 5.6, we describe how the choice of the model of elliptic curve and of its coordinates has a

consequence on the implementation. Finally, we conclude in Section 6.

2. Background and notation

Let E be an elliptic curve over a finite field Fq, with P∞ denoting the identity element of the associated

group of rational points E(Fp). For a positive integer r|#E(Fp) coprime to p, let Fpk be the smallest

extension field of Fp which contains the r-th roots of unity in Fp; the extension degree k is called the

security multiplier or embedding degree. Let E(Fp)[r] (respectively E(Fpk )[r]) denote the subgroup

of E(Fp) (respectively E(Fpk )) of all points of order dividing r. The two groups G1 and G2 will be

subgroups of elliptic curve groups and G3 is a subgroup of the multiplicative group of a finite field.

2.1. The Weil, Tate and Ate pairings

2.1.1. The Miller algorithm

The Miller algorithm is the most important step for the Weil, Tate and Ate pairings computation. It is

constructed like a double and add scheme using the construction of [r]P. Miller’s algorithm is based on

the notion of divisors. We only give here the essential elements for the pairing computation.

The Miller algorithm constructs the rational function fr,P associated to the point P, where P is a

generator of G1 ⊂ E(Fp); and at the same time, it evaluates fr,P(Q) for a point Q ∈ G2 ⊂ E(Fpk ).
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Algorithm 1: Miller(P,Q, l)

Data: l = (ln . . . l0)(radix 2 representation), P ∈ G1(⊂ E(Fp)) and Q ∈ G2(⊂ E(Fpk ));
Result: FP(Q) ∈ G3(⊂ F∗

pk );

1 : T ← P ;

2 : f1 ← 1 ;

3 : f2 ← 1 ;

for i = n−1 to 0 do

4 : T ← [2]T , 5 : f1 ←− f1
2
×h1(Q), h1(x) is the equation of the tangent at the point T ;

if li = 1 then

6 : T ← T +P ;

7 : f1 ←− f1 ×h2(Q), h2(x) is the equation of the line (PT );

end

end

return f1

2.1.2. The pairings

Definition 2.1. The Weil pairing, denoted eW , is defined by:

eW : G1 ×G2 → G3,

(P,Q) → (−1)r fr,P(Q)
fr,Q(P)

.

Definition 2.2. The Tate pairing, denoted eTate, is defined by:

G1 ×G2 �→ G3

(P,Q) �→ eTate(P,Q) = fr,P(Q).

Here, the function fr,P is normalized, i.e. (ur
0 fr,P)(P∞) = 1 for some Fp-rational uniformizer at P∞.

This pairing is only defined up to a representative of (Fpk )r. In order to obtain a unique value we raise

it to the power
pk
−1
r , obtaining an r-th root of unity that we call the reduced Tate pairing

êTate(P,Q) = fr,P(Q)
pk

−1
r .

Let πp be the Frobenius map over the elliptic curve: πp : E → E : (x,y) → (xp,yp). We denote the

Frobenius trace by t. Let T = t −1, G1 := E[r]∩Ker(πp − [1]) and G2 := E[r]∩Ker(πp − [q])

Theorem 2.3. For P ∈ G1 and p ∈ G2 the following properties hold [43]:

⋄ fT ,Q(P) is a bilinear pairing called the Ate pairing.

⋄ Let N = gcd(T k
− 1, pk

− 1) and T k
− 1 = NL, then eTate(Q,P)L = fT ,Q(P)

c(pk
−1)/N, where c =

∑
k−1
i=0 T k−1−i pi

≡ kpk−1mod(r)

⋄ for r not dividing L, the Ate pairing is non degenerated.
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We therefore obtain the reduced Ate pairing fT ,Q(P)
(pk

−1)/r which is a power of the Tate pairing. As

the trace t is in average of size
√

p, for r ∼ p, the loop length of Miller’s algorithm when computing the

Ate pairing is obviously going to be two times shorter than the loop length for the Tate pairing.

2.2. The Duursma-Lee pairing

Duursma and Lee use a family of hyperelliptic curves including supersingular curves over finite fields

of characteristic three and adapt it to pairing.

For Fp with p = 3m and k = 6, suitable curves are defined by an equation of the form

E : y2 = x3
− x+ b,

with b = ±1 ∈ F3. If Fp3 = Fp[ρ ]/(ρ3
− ρ − b), and Fp6 = Fp3 [σ ]/(σ2 + 1) then the distortion

map φ : E(Fp)→ E(Fp6 ) is defined by φ (x,y) = (ρ − x,σy). Then, setting G1 = G2 = E(F3m ) and

G3 = Fp6 , Algorithm 2 computes an admissible, symmetric pairing.

Algorithm 2: The Duursma-Lee pairing algorithm.

Input : P = (xP,yP) ∈ G1 and Q = (xQ,yQ) ∈ G2.

Output: e(P,Q) ∈ G3.

f ← 1;

for i = 1 upto m do

xP ← x3
P, yP ← y3

P;

µ ← xP + xQ + b;

λ ←−yPyQσ −µ
2;

g ← λ −µρ −ρ
2;

f ← f ·g;

xQ ← x1/3
Q , yQ ← y1/3

Q ;

end

return f p3
−1;

2.3. The η and ηG pairings

Barreto et al. [12] introduce the η pairing by generalising the Duursma-Lee pairing to allow use of

supersingular curves over finite fields of any small characteristic; Kwon [49] independently used the

same approach and in both cases characteristic two is of specific interest. The η pairing has already

a simple final powering, but work done by Galbraith et al. [38] (see [59, Section 5.4]) demonstrates

that it can be eliminated entirely; the crucial step is the lack of normal denominator elimination,

which is enabled by evaluation of additional line functions. Interestingly, the analysis of this approach

demonstrates no negative security implication in terms of pairing inversion and so on. We follow

Whelan and Scott [71] by terming this approach to the ηG pairing.

For Fp with p = 2m and k = 4, suitable curves are defined by an equation of the form

E : y2 + y = x3 + x+ b
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Algorithm 3: The η pairing algorithm.

Input : P = (xP,yP) ∈ G1 and Q = (xQ,yQ) ∈ G2.

Output: e(P,Q) ∈ G3.

f ← 1;

for i = 1 upto m do

xP ← x2
P, yP ← y2

P;

µ ← xP + xQ;

λ ← µ + xPxQ + yP + yQ + b;

g ← λ + µt +(µ + 1)t2;

f ← f ·g;

xQ ← x1/2
Q , yQ ← y1/2

Q ;

end

return f p2
−1;

Algorithm 4: The ηG pairing algorithm.

Input : P = (xP,yP) ∈ G1 and Q = (xQ,yQ) ∈ G2.

Output: e(P,Q) ∈ G3.

with b ∈ F2. If Fp2 = Fp[s]/(s2 + s + 1) and Fp4 = Fp2 [t]/(t2 + t + s) then the distortion map

φ : E(Fp) → E(Fp4 ) is defined by φ (x,y) = (x+ s2,y+ sx+ t). Note that s = t5 and that t satisfies

t4 = t +1, so we can also represent Fp4 as Fp[t]/(t4 + t +1). Then, by setting G1 = G2 = E(Fp) and

G3 = Fp4 , Algorithm 4 computes an admissible, symmetric pairing.

Historically, the Weil and Tate pairing was developed by mathematicians without any consideration

for cryptography. As efficient implementation of pairings become an interesting question for

cryptographers, they searched for improving these two pairings. The Ate and twisted Ate pairing were

improvement of the Tate pairing, throught mathematical properties [43]. The notion of Optimal pairing

[70] and pairing lattices [42] are the latest properties of pairing. The number of iterations is reduced

to the minimum in [70]. In [42], F. Hess proves that every pairing are in relation, because the different

pairings are in fact element of a lattice in which each pairing is a power of another pairing. To present

the following Sections, we work over the Tate pairing, since as any optimizations of the Tate pairing

can be easily adapted to others pairings.

2.4. Analysis of the arithmetic

In order to present the different existing options for the optimizations of a pairing computation, we will

focus on the Miller’s algorithm. Among the several algorithms which exist to compute a pairing, the

most efficient implementations are obtained with the Miller’s algorithm.

Let P = (XP,YP) be a point in affine coordinates of the set E(Fp)[r] (or in Jacobian coordinates with

ZP = 1). We consider the point p of order r in E(Fpk ), also given in affine coordinates (xQ,yQ). Let

G1 =< P > be the subgroup of order r of E(Fp) generated by the point P and G2 =<Q> the subgroup

of order r of E(Fpk ). We want to compute a pairing between G1 and G2, under the condition G1 �= G2.

The group G3 is a subgroup of order r of F⋆

pk .
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We therefore obtain the reduced Ate pairing fT ,Q(P)
(pk

−1)/r which is a power of the Tate pairing. As

the trace t is in average of size
√

p, for r ∼ p, the loop length of Miller’s algorithm when computing the

Ate pairing is obviously going to be two times shorter than the loop length for the Tate pairing.

2.2. The Duursma-Lee pairing

Duursma and Lee use a family of hyperelliptic curves including supersingular curves over finite fields

of characteristic three and adapt it to pairing.

For Fp with p = 3m and k = 6, suitable curves are defined by an equation of the form

E : y2 = x3
− x+ b,

with b = ±1 ∈ F3. If Fp3 = Fp[ρ ]/(ρ3
− ρ − b), and Fp6 = Fp3 [σ ]/(σ2 + 1) then the distortion

map φ : E(Fp)→ E(Fp6 ) is defined by φ (x,y) = (ρ − x,σy). Then, setting G1 = G2 = E(F3m ) and

G3 = Fp6 , Algorithm 2 computes an admissible, symmetric pairing.

Algorithm 2: The Duursma-Lee pairing algorithm.

Input : P = (xP,yP) ∈ G1 and Q = (xQ,yQ) ∈ G2.

Output: e(P,Q) ∈ G3.

f ← 1;

for i = 1 upto m do

xP ← x3
P, yP ← y3

P;

µ ← xP + xQ + b;

λ ←−yPyQσ −µ
2;

g ← λ −µρ −ρ
2;

f ← f ·g;

xQ ← x1/3
Q , yQ ← y1/3

Q ;

end

return f p3
−1;

2.3. The η and ηG pairings

Barreto et al. [12] introduce the η pairing by generalising the Duursma-Lee pairing to allow use of

supersingular curves over finite fields of any small characteristic; Kwon [49] independently used the

same approach and in both cases characteristic two is of specific interest. The η pairing has already

a simple final powering, but work done by Galbraith et al. [38] (see [59, Section 5.4]) demonstrates

that it can be eliminated entirely; the crucial step is the lack of normal denominator elimination,

which is enabled by evaluation of additional line functions. Interestingly, the analysis of this approach

demonstrates no negative security implication in terms of pairing inversion and so on. We follow

Whelan and Scott [71] by terming this approach to the ηG pairing.

For Fp with p = 2m and k = 4, suitable curves are defined by an equation of the form

E : y2 + y = x3 + x+ b
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Algorithm 3: The η pairing algorithm.

Input : P = (xP,yP) ∈ G1 and Q = (xQ,yQ) ∈ G2.

Output: e(P,Q) ∈ G3.

f ← 1;

for i = 1 upto m do

xP ← x2
P, yP ← y2

P;

µ ← xP + xQ;

λ ← µ + xPxQ + yP + yQ + b;

g ← λ + µt +(µ + 1)t2;

f ← f ·g;

xQ ← x1/2
Q , yQ ← y1/2

Q ;

end

return f p2
−1;

Algorithm 4: The ηG pairing algorithm.

Input : P = (xP,yP) ∈ G1 and Q = (xQ,yQ) ∈ G2.

Output: e(P,Q) ∈ G3.

with b ∈ F2. If Fp2 = Fp[s]/(s2 + s + 1) and Fp4 = Fp2 [t]/(t2 + t + s) then the distortion map

φ : E(Fp) → E(Fp4 ) is defined by φ (x,y) = (x+ s2,y+ sx+ t). Note that s = t5 and that t satisfies

t4 = t +1, so we can also represent Fp4 as Fp[t]/(t4 + t +1). Then, by setting G1 = G2 = E(Fp) and

G3 = Fp4 , Algorithm 4 computes an admissible, symmetric pairing.

Historically, the Weil and Tate pairing was developed by mathematicians without any consideration

for cryptography. As efficient implementation of pairings become an interesting question for

cryptographers, they searched for improving these two pairings. The Ate and twisted Ate pairing were

improvement of the Tate pairing, throught mathematical properties [43]. The notion of Optimal pairing

[70] and pairing lattices [42] are the latest properties of pairing. The number of iterations is reduced

to the minimum in [70]. In [42], F. Hess proves that every pairing are in relation, because the different

pairings are in fact element of a lattice in which each pairing is a power of another pairing. To present

the following Sections, we work over the Tate pairing, since as any optimizations of the Tate pairing

can be easily adapted to others pairings.

2.4. Analysis of the arithmetic

In order to present the different existing options for the optimizations of a pairing computation, we will

focus on the Miller’s algorithm. Among the several algorithms which exist to compute a pairing, the

most efficient implementations are obtained with the Miller’s algorithm.

Let P = (XP,YP) be a point in affine coordinates of the set E(Fp)[r] (or in Jacobian coordinates with

ZP = 1). We consider the point p of order r in E(Fpk ), also given in affine coordinates (xQ,yQ). Let

G1 =< P > be the subgroup of order r of E(Fp) generated by the point P and G2 =<Q> the subgroup

of order r of E(Fpk ). We want to compute a pairing between G1 and G2, under the condition G1 �= G2.

The group G3 is a subgroup of order r of F⋆

pk .
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Let T = (XT ,YT ,ZT ) be a point of E(Fpk ) in Jacobian coordinates. The main advantage of Jacobian

coordinates is that there is no inversion during the arithmetical operation over the elliptic curve.

The Miller’s algorithm is given in Algorithm 5.

Algorithm 5: Miller(P,Q,r)

Données: r = (rn . . .r0)(binary representation), P ∈ G1(⊂ E(Fp)) and Q ∈ G2(⊂ E(Fpk ));
Résultat: fr,P(Q) ∈ G3(⊂ F⋆

pk );

1. T ← P ;

2. f1 ← 1 ;

3. f2 ← 1 ;

for i = n−1 to 0 do

1 4. T ← [2]T ;

5. f1 ←− f1
2
× l1(Q), l1 is the tangent at point T of E. ;

6. f2 ←− f2
2
× v1(Q), v1 is the vertical line at point [2]T . ;

( Div( l1
v1
) = 2(T )− ([2]T )−P∞);

2 if ni = 1 then

7. T ← T +P ;

8. f1 ←− f1 × l2(Q), l2 is the line (PT ) ;

9. f2 ←− f2 × v2(Q), v2 is the vertical line at P+T ;

( Div( l2
v2
) = (T )+DP − ((T )⊕DP)−P∞);

end

return
f1

f2

end

The functions l1(Q), l2(Q), v1(Q) and v2(Q) occurring in Miller’s algorithm have their images in F⋆

pk .

The parameters f1 and f2 are elements of F⋆

pk .

The order r of the subgroups is chosen with a very sparse binary decomposition. In this case, the

addition step in Miller’s algorithm is not often executed, whereas the doubling step is computed for

every iteration of the Miller’s algorithm. As a consequence, we consider that the complexity of Miller’s

algorithm is approximately given by the doubling step. So we will only consider the computation of l1
and v1 in the complexity evaluation of Miller’s algorithm.

In a general case, we consider that the equation of the elliptic curve is given into the Weierstrass form

E : Y 2 = X3 + aXZ4 + bZ6, with a and b elements of Fp. In order to be very general, we consider

a and b ordinary. Indeed, it is possible to consider that a = −3 [20] and the value of b is also a

vector of optimizations, but we do not take in consideration these options. We denote P = (XP,YP),
T = (XT ,YT ,ZT ) is the current point in the Miller’s algorithm and 2T = (X2T ,Y2T ,Z2T ) the doubling

of T .

The formulas of the doubling in Jacobian coordinates are the following [25]

C = 2Y 2
T , D = Z2

T , A = 4XTY 2
T = 2XTC, B = (3X2

T + aZ4
T ) (1)
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X2T = B2
−2A, Y2T = B(A−X2T )−2C2, Z2T = 2YT ZT . (2)

In this case, the expressions of l1 and v1, for Q = (xQ,yQ) ∈ E(Fpk ) are given by

l1(xQ,yQ) = Z2
P(Z2T DyQ −B(DxQ −XT )−2YT ) (3)

v1(xQ,yQ) = Z2
2T ZPxQ + 4Y 2

P (XPD+XT Z2
P)−Z2

PB2. (4)

We could remark that some intermediary results of the previous formulas may be reused, for instance

Y 2
T , Z2

T , 4XTY 2
T , (3X2

T + aZ4
T ). This precomputation reduce the cost of the doubling step, considering

the number of operations over the finite field Fp.

Let Ape (respectively Subpe , Sqpe and Mpe ) denote an addition (respectively a subtraction, a squaring and

a multiplication) in the finite field Fpe , for e a natural integer. Let also Ma be the cost of a multiplication

by a. The Table 1 gives the cost of each operation occurring in the computation of the doubling step.

Each cost is given in number of operations over the finite fields. We optimize the computation as

possible without any trick different from the one which are following. We consider that a multiplication

by 2 is nothing more than a shift in binary representation and thus may be neglected. As a consequence,

a multiplication by 3 can be seen as a multiplication by 2 plus an addition and then a multiplication by

3 is equivalent to an addition.

Doubling of a point over E 4Ap + 3Subp +Ma + 4Sp + 4Mp

Evaluation of l1 2Subp + Subpk SP +(3+ 3k)MP

Evaluation of v1 2Ap + Subp + 3SP +(5+ k)MP

Step 1 in Algorithm 5 6Ap + 4Subp + Subpk + 8Sp +(12+ 4k)Mp + 2Spk + 2Mpk

Table 1. Cost of the doubling step in Miller’s algorithm

We will present in Section 4 the optimizations related with mathematics and in Section the optimization

in pairings related with the arithmetic of finite fields, in Section 4 the optimizations related with

mathematics, in Section 5 the optimizations related with algorithmical breakout.

3. Pairing based cryptography

The first use of pairing in cryptography was destructive: in [53] the Weil pairing was used to shift the

discrete logarithm problem from an elliptic curve to a finite field. As the discrete logarithm problem is

more easily solved over a finite field than over an elliptic curve, the MOV attack consists in transfering

a hard problem over a structure where the same problem is easier. The MOV attack is named after its

authors Menezes Okamoto and Vanstome. Later on the pairing was used to improve existing protocols

as tri-partite Diffie Hellman key exchange [45] and to construct original protocol like identity based

encryption [19, 21].

The aim of identity based encryption is that a person λ , even if λ does not know anything about

cryptography, is able to receive and more importantly to read an encrypted message with almost no

help.
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Let T = (XT ,YT ,ZT ) be a point of E(Fpk ) in Jacobian coordinates. The main advantage of Jacobian

coordinates is that there is no inversion during the arithmetical operation over the elliptic curve.

The Miller’s algorithm is given in Algorithm 5.

Algorithm 5: Miller(P,Q,r)

Données: r = (rn . . .r0)(binary representation), P ∈ G1(⊂ E(Fp)) and Q ∈ G2(⊂ E(Fpk ));
Résultat: fr,P(Q) ∈ G3(⊂ F⋆

pk );

1. T ← P ;

2. f1 ← 1 ;

3. f2 ← 1 ;

for i = n−1 to 0 do

1 4. T ← [2]T ;

5. f1 ←− f1
2
× l1(Q), l1 is the tangent at point T of E. ;

6. f2 ←− f2
2
× v1(Q), v1 is the vertical line at point [2]T . ;

( Div( l1
v1
) = 2(T )− ([2]T )−P∞);

2 if ni = 1 then

7. T ← T +P ;

8. f1 ←− f1 × l2(Q), l2 is the line (PT ) ;

9. f2 ←− f2 × v2(Q), v2 is the vertical line at P+T ;

( Div( l2
v2
) = (T )+DP − ((T )⊕DP)−P∞);

end

return
f1

f2

end

The functions l1(Q), l2(Q), v1(Q) and v2(Q) occurring in Miller’s algorithm have their images in F⋆

pk .

The parameters f1 and f2 are elements of F⋆

pk .

The order r of the subgroups is chosen with a very sparse binary decomposition. In this case, the

addition step in Miller’s algorithm is not often executed, whereas the doubling step is computed for

every iteration of the Miller’s algorithm. As a consequence, we consider that the complexity of Miller’s

algorithm is approximately given by the doubling step. So we will only consider the computation of l1
and v1 in the complexity evaluation of Miller’s algorithm.

In a general case, we consider that the equation of the elliptic curve is given into the Weierstrass form

E : Y 2 = X3 + aXZ4 + bZ6, with a and b elements of Fp. In order to be very general, we consider

a and b ordinary. Indeed, it is possible to consider that a = −3 [20] and the value of b is also a

vector of optimizations, but we do not take in consideration these options. We denote P = (XP,YP),
T = (XT ,YT ,ZT ) is the current point in the Miller’s algorithm and 2T = (X2T ,Y2T ,Z2T ) the doubling

of T .

The formulas of the doubling in Jacobian coordinates are the following [25]

C = 2Y 2
T , D = Z2

T , A = 4XTY 2
T = 2XTC, B = (3X2

T + aZ4
T ) (1)
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X2T = B2
−2A, Y2T = B(A−X2T )−2C2, Z2T = 2YT ZT . (2)

In this case, the expressions of l1 and v1, for Q = (xQ,yQ) ∈ E(Fpk ) are given by

l1(xQ,yQ) = Z2
P(Z2T DyQ −B(DxQ −XT )−2YT ) (3)

v1(xQ,yQ) = Z2
2T ZPxQ + 4Y 2

P (XPD+XT Z2
P)−Z2

PB2. (4)

We could remark that some intermediary results of the previous formulas may be reused, for instance

Y 2
T , Z2

T , 4XTY 2
T , (3X2

T + aZ4
T ). This precomputation reduce the cost of the doubling step, considering

the number of operations over the finite field Fp.

Let Ape (respectively Subpe , Sqpe and Mpe ) denote an addition (respectively a subtraction, a squaring and

a multiplication) in the finite field Fpe , for e a natural integer. Let also Ma be the cost of a multiplication

by a. The Table 1 gives the cost of each operation occurring in the computation of the doubling step.

Each cost is given in number of operations over the finite fields. We optimize the computation as

possible without any trick different from the one which are following. We consider that a multiplication

by 2 is nothing more than a shift in binary representation and thus may be neglected. As a consequence,

a multiplication by 3 can be seen as a multiplication by 2 plus an addition and then a multiplication by

3 is equivalent to an addition.

Doubling of a point over E 4Ap + 3Subp +Ma + 4Sp + 4Mp

Evaluation of l1 2Subp + Subpk SP +(3+ 3k)MP

Evaluation of v1 2Ap + Subp + 3SP +(5+ k)MP

Step 1 in Algorithm 5 6Ap + 4Subp + Subpk + 8Sp +(12+ 4k)Mp + 2Spk + 2Mpk

Table 1. Cost of the doubling step in Miller’s algorithm

We will present in Section 4 the optimizations related with mathematics and in Section the optimization

in pairings related with the arithmetic of finite fields, in Section 4 the optimizations related with

mathematics, in Section 5 the optimizations related with algorithmical breakout.

3. Pairing based cryptography

The first use of pairing in cryptography was destructive: in [53] the Weil pairing was used to shift the

discrete logarithm problem from an elliptic curve to a finite field. As the discrete logarithm problem is

more easily solved over a finite field than over an elliptic curve, the MOV attack consists in transfering

a hard problem over a structure where the same problem is easier. The MOV attack is named after its

authors Menezes Okamoto and Vanstome. Later on the pairing was used to improve existing protocols

as tri-partite Diffie Hellman key exchange [45] and to construct original protocol like identity based

encryption [19, 21].

The aim of identity based encryption is that a person λ , even if λ does not know anything about

cryptography, is able to receive and more importantly to read an encrypted message with almost no

help.
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The public key of λ is its identity, its private key would be send to λ by a trusted authority T. This

trusted authority will have all the private keys related with the identity based protocol.

The general scheme of identity based encryption is the following.

The public data are an elliptic curve E over a finite field Fp, a pairing ê and a hash function H, this hash

function associates a point of E(Fp) to an identity: H : {Identity} → E(Fp). We consider that two

person Alice and Bob want to exchange a common secret for use it as a key in a secure communication.

With the public data, Alice can compute QB = H(Bob) the public key of Bob and Bob can compute

QA = H(Alice) the public key of Alice.

Alice and Bob request the trusted authority to receive their secret key. The secret key is a point of

E(Fp).

The trusted authority chooses s, as its secret key, then it generates PA = [s]QA the secret key of Alice

and PB = [s]QB the secret key of Bob.

Then, Alice (respectively Bob) can compute ê(PA,QB) (resp. ê(QA,PB), by bilinearity, Alice and Bob

have calculated the same key: ê(QA,QB)
[s]. Indeed:

ê([s]H(A),H(B)) = ê(H(A), [s]H(B)) = ê(H(A),H(B))[s].

4. Mathematical optimizations

We recall here the mathematical optimizations of pairings. As a pairing is defined over an elliptic

curve which is an abelian variety, the first optimization for a pairing computation comes from the

mathematical background of pairings. We will use the twist of an elliptic curve, the pairing friendly

elliptic curve will follow. We will consider the cyclotomic subgroup of a finite field and then how the

final exponentiation in a pairing computation can be improve.

4.1. The twist of an elliptic curve

The twisted elliptic curve of E is another elliptic curve isomorphic to E. Using twisted elliptic curves

(when it is possible) in pairing based cryptography is a way to avoid the denominator evaluation in

Miller’s algorithm. The execution of Miller’s algorithm involves computation over E(Fpk ), considering

a twist of degree d of E(Fpk ) allows some computations to be executed in Ẽ(Fpk/d ), where Ẽ(Fpk/d )

is the twisted elliptic curve of E(Fpk ) [64].

Definition 4.1. Let E and E ′ be two elliptic curves, the elliptic curve E ′ is a twisted elliptic curve of

E if there exists an isomorphisme Φ defined over Fp mapping each point of E ′ to a point of E.

There is a limited number of twisted elliptic curves of E. The number of twisted curves depends on the

finite field on which the elliptic curve E is defined. The Theorem 4.2 from [64] gives the classification

of the possible twists.

Theory and Practice of Cryptography and Network Security Protocols and Technologies58
Efficient Computation for Pairing Based Cryptography: A State of the Art 9

10.5772/56295

Theorem 4.2. Let E be an elliptic curve of equation y2 = x3 + ax+ b defined over Fpk . Following

the value of k, the possible degrees d of twists are 2, 3, 4 and 6. Let E ′ be a twist of E, the morphism

between E and E ′ is one of the following.

• d = 2, E ′
: Dy2 = x3 + ax+ b defined over Fpk/2 , where D ∈ Fpk/2 is not a quadratic residue, i.e.

such that the polynomial X2
−D has no solution over Fpk/2 . The morphism Φd is defined by

Φd : E ′
→ E

Φd(x,y) → (x,yD1/2).

• d = 4. The elliptic curve E has a twist of degree 4 if and only if b = 0. The equation of E ′ is then

y2 = x3 + a
D x, where D is not a residue of degree 4, i.e. D is not solution in Fpk/4 of a polynomial

X4
−D. The morphism is then

Φd : E ′
→ E

Φd(x,y) → (xD1/2,yD3/4).

• d = 3 (resp. 6), the curve E has a twist of degree 3 or 6 if and only if a = 0. The equation of

E ′ is then y2 = x3 + b
D , where D is not a residue of degree 3 (resp. 6), i.e. D is not solution of a

polynomial X3
−D (resp. X6

−D). The morphism is then

Φd : E ′
→ E

Φd(x,y) → (xD1/3,yD1/2).

Considering the definition above, an elliptic curve can admit a twist of degree 2, 3, 4 or 6. We will

only consider here the twisted elliptic curve for an even degree. In order to simplify the notations,

we will consider a twist of degree 2. The same method can be applied for twists of degree 4 and 6.

The case of twist of degree 3 is a little different, but can also be considered, we refer to [31] for more

details. Using a twisted elliptic curve of E(Fpk ) allows to make some computation of the Miller’s

algorithm in a subfield of Fpk , instead of Fpk and thus allows to simplify the computation. Using a

twisted elliptic curve is the solution to avoid the denominators in the Miller’s algorithm (i.e. the update

of the function f2). We will denote Ẽ(Fpk/2 ) the twisted curve of E(Fpk ), for an even k. We could

remark that the twisted elliptic curve of E is an elliptic curve define over an extension of degree half of

the initial extension (Fpk ) [11]. Let ν ∈ Fpk/2 a non square element in Fpk/2 , then
√

ν is an element of

Fpk \Fpk/2 . We can define Ẽ the twisted elliptic curve of E(Fpk ) of equation νy2 = x3
−3x+ b. The

morphism mapping Ẽ(Fpk/2 ) to E(Fpk ) is Ψ2 define by

Ψ2 : Ẽ(Fpk/2 ) → E(Fpk )
(x,y) → (x,y

√

ν).

The probability that the point Q = (x,y
√

ν) image of Q′ = (x,y) ∈ Ẽ by Ψ2 belongs to the subgroup

generate by P ∈ E(Fp) is negligeable [11]. This assures us that the pairing is non degenerated between

Efficient Computation for Pairing Based Cryptography: A State of the Art
http://dx.doi.org/10.5772/56295

59



8 Theory and Practice of Cryptography and Network Security Protocols and Technologies

The public key of λ is its identity, its private key would be send to λ by a trusted authority T. This

trusted authority will have all the private keys related with the identity based protocol.

The general scheme of identity based encryption is the following.

The public data are an elliptic curve E over a finite field Fp, a pairing ê and a hash function H, this hash

function associates a point of E(Fp) to an identity: H : {Identity} → E(Fp). We consider that two

person Alice and Bob want to exchange a common secret for use it as a key in a secure communication.

With the public data, Alice can compute QB = H(Bob) the public key of Bob and Bob can compute

QA = H(Alice) the public key of Alice.

Alice and Bob request the trusted authority to receive their secret key. The secret key is a point of

E(Fp).

The trusted authority chooses s, as its secret key, then it generates PA = [s]QA the secret key of Alice

and PB = [s]QB the secret key of Bob.

Then, Alice (respectively Bob) can compute ê(PA,QB) (resp. ê(QA,PB), by bilinearity, Alice and Bob

have calculated the same key: ê(QA,QB)
[s]. Indeed:

ê([s]H(A),H(B)) = ê(H(A), [s]H(B)) = ê(H(A),H(B))[s].

4. Mathematical optimizations

We recall here the mathematical optimizations of pairings. As a pairing is defined over an elliptic

curve which is an abelian variety, the first optimization for a pairing computation comes from the

mathematical background of pairings. We will use the twist of an elliptic curve, the pairing friendly

elliptic curve will follow. We will consider the cyclotomic subgroup of a finite field and then how the

final exponentiation in a pairing computation can be improve.

4.1. The twist of an elliptic curve

The twisted elliptic curve of E is another elliptic curve isomorphic to E. Using twisted elliptic curves

(when it is possible) in pairing based cryptography is a way to avoid the denominator evaluation in

Miller’s algorithm. The execution of Miller’s algorithm involves computation over E(Fpk ), considering

a twist of degree d of E(Fpk ) allows some computations to be executed in Ẽ(Fpk/d ), where Ẽ(Fpk/d )

is the twisted elliptic curve of E(Fpk ) [64].

Definition 4.1. Let E and E ′ be two elliptic curves, the elliptic curve E ′ is a twisted elliptic curve of

E if there exists an isomorphisme Φ defined over Fp mapping each point of E ′ to a point of E.

There is a limited number of twisted elliptic curves of E. The number of twisted curves depends on the

finite field on which the elliptic curve E is defined. The Theorem 4.2 from [64] gives the classification

of the possible twists.
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Theorem 4.2. Let E be an elliptic curve of equation y2 = x3 + ax+ b defined over Fpk . Following

the value of k, the possible degrees d of twists are 2, 3, 4 and 6. Let E ′ be a twist of E, the morphism

between E and E ′ is one of the following.

• d = 2, E ′
: Dy2 = x3 + ax+ b defined over Fpk/2 , where D ∈ Fpk/2 is not a quadratic residue, i.e.

such that the polynomial X2
−D has no solution over Fpk/2 . The morphism Φd is defined by

Φd : E ′
→ E

Φd(x,y) → (x,yD1/2).

• d = 4. The elliptic curve E has a twist of degree 4 if and only if b = 0. The equation of E ′ is then

y2 = x3 + a
D x, where D is not a residue of degree 4, i.e. D is not solution in Fpk/4 of a polynomial

X4
−D. The morphism is then

Φd : E ′
→ E

Φd(x,y) → (xD1/2,yD3/4).

• d = 3 (resp. 6), the curve E has a twist of degree 3 or 6 if and only if a = 0. The equation of

E ′ is then y2 = x3 + b
D , where D is not a residue of degree 3 (resp. 6), i.e. D is not solution of a

polynomial X3
−D (resp. X6

−D). The morphism is then

Φd : E ′
→ E

Φd(x,y) → (xD1/3,yD1/2).

Considering the definition above, an elliptic curve can admit a twist of degree 2, 3, 4 or 6. We will

only consider here the twisted elliptic curve for an even degree. In order to simplify the notations,

we will consider a twist of degree 2. The same method can be applied for twists of degree 4 and 6.

The case of twist of degree 3 is a little different, but can also be considered, we refer to [31] for more

details. Using a twisted elliptic curve of E(Fpk ) allows to make some computation of the Miller’s

algorithm in a subfield of Fpk , instead of Fpk and thus allows to simplify the computation. Using a

twisted elliptic curve is the solution to avoid the denominators in the Miller’s algorithm (i.e. the update

of the function f2). We will denote Ẽ(Fpk/2 ) the twisted curve of E(Fpk ), for an even k. We could

remark that the twisted elliptic curve of E is an elliptic curve define over an extension of degree half of

the initial extension (Fpk ) [11]. Let ν ∈ Fpk/2 a non square element in Fpk/2 , then
√

ν is an element of

Fpk \Fpk/2 . We can define Ẽ the twisted elliptic curve of E(Fpk ) of equation νy2 = x3
− 3x+ b. The

morphism mapping Ẽ(Fpk/2 ) to E(Fpk ) is Ψ2 define by

Ψ2 : Ẽ(Fpk/2 ) → E(Fpk )
(x,y) → (x,y

√

ν).

The probability that the point Q = (x,y
√

ν) image of Q′ = (x,y) ∈ Ẽ by Ψ2 belongs to the subgroup

generate by P ∈ E(Fp) is negligeable [11]. This assures us that the pairing is non degenerated between
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P ∈ E(Fp) and Q = Ψ2(Q
′). As a consequence, we can consider that the coordinates of the point Q

are element of Fpk/2 plus a multiplication by
√

ν .

We give the formulae for Miller’s algorithm with the use of a twisted elliptic curve. Let A, B, C, D, E and

F be the intermediate values in the doubling and addition of a point over E (in Jacobian coordinates).

These values are dependant only on the point P = (XP;YP;ZP) and multiples of P: T = (XT ;YT ;ZT );
2T = (X2T ;Y2T ;Z2T ) and T +P = (X3;Y3;Z3). The equations of functions l1, l2, v1 and v2 are

l1(xQ,yQ

√

ν) = Z2
P(Z2T DyQ

√

ν −B(DxQ −XT )−2YT ),
v1(xQ,yQ

√

ν) = Z2
2T ZPxQ + 4Y 2(XPD+XT Z2

P)−9Z2
P(X

2
T −Z4

T )
2,

l2(xQ,yQ

√

ν) = Z2
T+P(Z

3
T EyQ

√

ν −ZT F(Z2
T xQ)−YT E),

v2(xQ,yQ

√

ν) = Z3
T E(Z3

3xQ +E(A+B)−Z2
T Z2

PF).

(5)

The multiplications and additions in these formulae are made in Fp and Fpk/2 . For xQ ∈ Fpk/2 , if

we consider carefully the equations of v1 and v2, we can remark that the results v1(xQ,yQ

√

ν) and

v2(xQ,yQ

√

ν) are elements of Fpk/2 . Indeed, the y-coordinate of Q does not appear in the denominator

v1 and consequently
√

ν either. This simple remark allows the elimination of the denominators during

the Tate pairing computation.

Property 4.3. During the evaluation of Miller’s algorithm for the Tate pairing, the evaluation of f2
and thus the computations of v1 and v2 can be omited [11].

Indeed, when using a twist, the equation shows that v1(Q), v2(Q) ∈ Fpk/2 and then f2 ∈ Fpk/2 . By

definition of the embedding degree k of the elliptic curve,
pk
−1
r is a multiple of pk/2

−1 and f
pk

−1
r

2 = 1

by the following proposition.

Property 4.4. Let r be a prime divisor of #E(Fp) and E be an elliptic curve of embedding degree k

relatively to r. Then
pk
−1
r is a multiple of pk/2

−1.

Proof. The demonstration is a straight forward consequence of the construction of k as the smallest

integer such that r divides pk
−1. So for an even k, pk

−1 = (pk/2
−1)(pk/2 +1) and r a prime integer

divides pk
− 1. Using the Gauss theorem, r divides (pk/2

− 1) or (pk/2 + 1). If r divides (pk/2
− 1),

then the definition of k would be wrong, thus the only possibility is that r divides (pk/2 + 1).

For all ξ ∈ Fpk/2 , we know that ξ
pk/2

−1
≡ 1 (from the Little Fermat’s theorem). Consequently the final

exponentiation of the Tate pairing kills every factor of the result belonging to a proper subfield of Fpk .

The Miller’s computation can be simplified by forgetting v1 and v2. But with the same remark, we can

also simplify the function l1 and l2 into

l1(xQ,yQ

√

ν) = Z2T DyQ

√

ν −B(DxQ −XT )−2YT ,

l2(xQ,yQ

√

ν) = Z3
T EyQ

√

ν −ZT F(Z2
T xQ)−YT E.

(6)

This method can be applied for every pairing with a final exponentiation. In the case of the Weil

pairing, we can also apply it by raising the result of Weil pairing at the power pk/2
−1. The cost of this

exponentiation will be study in Section 4.4.
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In order to illustrate the simplification of the computation with the use of a pairing, we compare two

computations of the doubling step in Miller’s algorithm. The Miller Lite execution is the computation of

the Miller’s algorithm for the Tate pairing (Miller(P,Q)). The Miller full execution is the computation

of Miller(Q,P). The Table 2 compare the cost of the doubling step in Miller Lite and Miller Full with

and without the use of twisted elliptic curve.

Miller Without twist With twist

Lite 8Sp +(12+ 4k)Mp + 2Spk + 2Mpk 4Sp +(7+ k)Mp + Spk +Mpk

Full 3kMp + 10Spk + 14Mpk kMp + 5Spk + 7Mpk

Table 2. Cost of Miller Lite and Miller Full

4.2. Pairing friendly fields and elliptic curves

The computation of pairings implies computations over extension fields of the form Fpk . If the

embedding degree k is smooth, than the arithmetic in Fpk can be computed step by step. A complete an

extensive nice definition of smooth number is given in [50], we recall here an intuitive naive definition.

Definition 4.5. A smooth integer is an integer such that its prime factor are composed only by small

primes.

Example 4.6. An integer of the form 2i3 j is smooth.

We illustrate how a smooth integer k allows a construction of Fpk with a tower field.

Example 4.7. Let l be a prime number and m an integer such that k = lm. The extension Fpk of Fp

can be constructed like an extension of degree l of Fpm . We suppose that we have already constructed

the extension Fpm . Let P(X) be an irreducible polynomial of degree l in Fpm [X ]. Then Fplm = F(pm)l

is constructed with the quotient

Fplm = Fpm [X ]/ (P(X)) .

We use the tower field construction in order to optimize the multiplication over Fpk . We will see

in Section 5 that for extensions of degree 2 and 3, we can use the Karatsuba and Toom Cook

multiplications. The tower field construction reduce the number of elementary operations over Fp

to compute a multiplication in Fpk [35].

A.Menezes and N.Koblitz [48] proposed the definition of pairing friendly elliptic curves. There are

elliptic curves suitable for pairing computation. Pairing friendly fields are defined with k smooth.

Definition 4.8. A pairing friendly field Fpk is an extension of a finite field Fp with the following

property

• the characteristic p is such that p ≡ 1 mod(12),

• the embedding degree k is such that k = 2i3 j.

Pairing friendly field are such that the polynomial reduction over the extension Fpk is very easy to

compute [50, Theorem 3.75].
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P ∈ E(Fp) and Q = Ψ2(Q
′). As a consequence, we can consider that the coordinates of the point Q

are element of Fpk/2 plus a multiplication by
√

ν .
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2T = (X2T ;Y2T ;Z2T ) and T +P = (X3;Y3;Z3). The equations of functions l1, l2, v1 and v2 are

l1(xQ,yQ

√

ν) = Z2
P(Z2T DyQ

√

ν −B(DxQ −XT )−2YT ),
v1(xQ,yQ

√

ν) = Z2
2T ZPxQ + 4Y 2(XPD+XT Z2

P)−9Z2
P(X

2
T −Z4

T )
2,

l2(xQ,yQ

√

ν) = Z2
T+P(Z

3
T EyQ

√

ν −ZT F(Z2
T xQ)−YT E),

v2(xQ,yQ

√

ν) = Z3
T E(Z3

3xQ +E(A+B)−Z2
T Z2

PF).

(5)

The multiplications and additions in these formulae are made in Fp and Fpk/2 . For xQ ∈ Fpk/2 , if
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√
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v2(xQ,yQ

√
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√
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pk
−1
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pk

−1
r

2 = 1
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pk
−1
r is a multiple of pk/2

−1.
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−1 = (pk/2
−1)(pk/2 +1) and r a prime integer

divides pk
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pk/2

−1
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The Miller’s computation can be simplified by forgetting v1 and v2. But with the same remark, we can
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l1(xQ,yQ

√

ν) = Z2T DyQ

√

ν −B(DxQ −XT )−2YT ,

l2(xQ,yQ

√

ν) = Z3
T EyQ

√

ν −ZT F(Z2
T xQ)−YT E.

(6)

This method can be applied for every pairing with a final exponentiation. In the case of the Weil

pairing, we can also apply it by raising the result of Weil pairing at the power pk/2
−1. The cost of this

exponentiation will be study in Section 4.4.
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In order to illustrate the simplification of the computation with the use of a pairing, we compare two
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Table 2. Cost of Miller Lite and Miller Full
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embedding degree k is smooth, than the arithmetic in Fpk can be computed step by step. A complete an

extensive nice definition of smooth number is given in [50], we recall here an intuitive naive definition.
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Example 4.7. Let l be a prime number and m an integer such that k = lm. The extension Fpk of Fp

can be constructed like an extension of degree l of Fpm . We suppose that we have already constructed

the extension Fpm . Let P(X) be an irreducible polynomial of degree l in Fpm [X ]. Then Fplm = F(pm)l

is constructed with the quotient

Fplm = Fpm [X ]/ (P(X)) .

We use the tower field construction in order to optimize the multiplication over Fpk . We will see

in Section 5 that for extensions of degree 2 and 3, we can use the Karatsuba and Toom Cook

multiplications. The tower field construction reduce the number of elementary operations over Fp

to compute a multiplication in Fpk [35].

A.Menezes and N.Koblitz [48] proposed the definition of pairing friendly elliptic curves. There are

elliptic curves suitable for pairing computation. Pairing friendly fields are defined with k smooth.

Definition 4.8. A pairing friendly field Fpk is an extension of a finite field Fp with the following

property

• the characteristic p is such that p ≡ 1 mod(12),

• the embedding degree k is such that k = 2i3 j.

Pairing friendly field are such that the polynomial reduction over the extension Fpk is very easy to

compute [50, Theorem 3.75].
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Theorem 4.9. Let β ∈ Fp be a neither a square nor a cube in Fp and Fpk a pairing friendly field with

k = 2i3 j . Then the polynomial Xk
−β is irreducible in Fp.

Using the definition and the above property, we construct the extension Fpk = Fp[X ]/(Xk
−β ) using

several extensions of degree 2 and 3. The construction is done step by step with square or cubic root of

β and the results.

Example 4.10. Example of possible tower field for k = 2231 :

Fp
2
→ L = Fp[T ]/(T

2
−β ),

K
3
→ M = L[U ]/(U3

−T ),

L
2
→ N = M[V ]/(V 2

−U).

The representation of fields L, M and N are as follow

L = {l0 + l1β , with l0, l1 ∈ Fp},

M = {m0 +m1T +m2T 2, with m0,m1,m2 ∈ L},

N = {n0 + n1U , with n0,n1 ∈ M}.

The arithmetic in Fpk can be composed in each floor of the tower field construction. As k is a product

of power of 2 and 3, the Karatsuba and Toom Cook methods are the more suitable for improving

the multiplication in Fpk . We consider that a multiplication in Fpk with k = 2i3 j involves 3i5 j

multiplications in Fp, which is denoted Mpk = 3i5 jMp.

4.3. Cyclotomic subgroup and squaring

A. Lenstra and M. Stam introduce in [52] an efficient method for squaring. They use the structure

of a cyclotomic subgroup. They construct an extension of degree 6 with a polynomial different from

X6
−β . The cyclotomic subgroup G

φk(p) is the subgroup of order φk(p) of F⋆

pk , where φk(p) is the

kth cyclotomic polynomial evaluated at p. The cyclotomic polynomials are constructed such that there

roots are the primitive roots of unity.

The multiplication developed by Lenstra and Stam is interesting for computing squares in degree 6

extension of Fp (or a degree multiple of 6). It could be interesting to generalize it for other degree

extension. They construct the degree 6 extension using the cyclotomic polynomial φk(X) = Xk/3
−

Xk/6 + 1. This method can be used for every degree extension multiple of 6.

Let α ∈ G
φk(p), α =

k−1

∑

i=0

aiγ
i, where for all i, ai ∈ Fp and B = (1,γ ,γ2, . . . ,γk−1) is a basis of Fpk .
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We are seeking for the general expression of an element in G
φk(p). We consider that α is a polynomial

in several variables in Fp (the ais), with coefficients power of γ in Fpk .

As α belong to the cyclotomic subgroup G
φk(p), the order of α divides the cardinal of G

φk(p) which is

φk(p). So, we have that α
pk/3

−pk/6+1 = 1 in G
φk(p). This equality can be written α

pk/3+1 = α
pk/6

.

In order to find the decomposition of α ×α
pk/3

−α
pk/6

, we can then formally compute α
pk/3

and α
pk/6

α ×α
pk/3

−α
pk/6

=
k−1

∑

i=0

viγ
i.

Where

v0 = a2
1 −a0a2 −a4 −a2

4 + a3a5,

v1 = −a0 + a1a2 + a3 −2a0a3 + a2
3 −a2a4 −a1a5,

v2 = −a0a1 + a3a4 −a5 −2a2a5 + a2
5,

v3 = −a1 −a2a3 + 2a1a4 −a2
4 −a0a5 + a3a5,

v4 = a2
0 + a1a2 + a3 −2a0a3 −a4a5,

v5 = −a2 + a2
2 −a1a3 −a0a4 + a3a4 −2a2a5.

As α ∈ G
φk(p), we have that

k−1

∑

i=0

viγ
i = 0. With this equation, we construct a system in the αi, the

resolution of this system will give us the general form of an element in G
φk(p).

The subgroup G
φk(p) is the set of elements α such that ∀i, vi = 0, which gives α

2 = α
2 +B.Γ.t v, with

B = (1,γ ,γ2, ...,γk−1) and with Γ a chosen matrix. As v is zero in Fp, we can reduce the cost of a

square with this method.

Denoting α
2 =

k

∑

i=1

siγ
i, we have the equality

k

∑

i=1

siγ
i = (

k

∑

i=1

aiγ
i)2 +B.Γt .v.

We can formally develop the right expression and for a well chosen matrix Γ, the formulae for a square

in Fpk would be simplified. For instance, for k = 6[52] :
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Theorem 4.9. Let β ∈ Fp be a neither a square nor a cube in Fp and Fpk a pairing friendly field with

k = 2i3 j . Then the polynomial Xk
−β is irreducible in Fp.

Using the definition and the above property, we construct the extension Fpk = Fp[X ]/(Xk
−β ) using

several extensions of degree 2 and 3. The construction is done step by step with square or cubic root of

β and the results.

Example 4.10. Example of possible tower field for k = 2231 :

Fp
2
→ L = Fp[T ]/(T

2
−β ),

K
3
→ M = L[U ]/(U3

−T ),

L
2
→ N = M[V ]/(V 2

−U).

The representation of fields L, M and N are as follow

L = {l0 + l1β , with l0, l1 ∈ Fp},

M = {m0 +m1T +m2T 2, with m0,m1,m2 ∈ L},

N = {n0 + n1U , with n0,n1 ∈ M}.

The arithmetic in Fpk can be composed in each floor of the tower field construction. As k is a product

of power of 2 and 3, the Karatsuba and Toom Cook methods are the more suitable for improving

the multiplication in Fpk . We consider that a multiplication in Fpk with k = 2i3 j involves 3i5 j

multiplications in Fp, which is denoted Mpk = 3i5 jMp.

4.3. Cyclotomic subgroup and squaring

A. Lenstra and M. Stam introduce in [52] an efficient method for squaring. They use the structure

of a cyclotomic subgroup. They construct an extension of degree 6 with a polynomial different from

X6
−β . The cyclotomic subgroup G

φk(p) is the subgroup of order φk(p) of F⋆

pk , where φk(p) is the

kth cyclotomic polynomial evaluated at p. The cyclotomic polynomials are constructed such that there

roots are the primitive roots of unity.

The multiplication developed by Lenstra and Stam is interesting for computing squares in degree 6

extension of Fp (or a degree multiple of 6). It could be interesting to generalize it for other degree

extension. They construct the degree 6 extension using the cyclotomic polynomial φk(X) = Xk/3
−

Xk/6 + 1. This method can be used for every degree extension multiple of 6.

Let α ∈ G
φk(p), α =

k−1

∑

i=0

aiγ
i, where for all i, ai ∈ Fp and B = (1,γ ,γ2, . . . ,γk−1) is a basis of Fpk .
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We are seeking for the general expression of an element in G
φk(p). We consider that α is a polynomial

in several variables in Fp (the ais), with coefficients power of γ in Fpk .

As α belong to the cyclotomic subgroup G
φk(p), the order of α divides the cardinal of G

φk(p) which is

φk(p). So, we have that α
pk/3

−pk/6+1 = 1 in G
φk(p). This equality can be written α

pk/3+1 = α
pk/6

.

In order to find the decomposition of α ×α
pk/3

−α
pk/6

, we can then formally compute α
pk/3

and α
pk/6

α ×α
pk/3

−α
pk/6

=
k−1

∑

i=0

viγ
i.

Where

v0 = a2
1 −a0a2 −a4 −a2

4 + a3a5,

v1 = −a0 + a1a2 + a3 −2a0a3 + a2
3 −a2a4 −a1a5,

v2 = −a0a1 + a3a4 −a5 −2a2a5 + a2
5,

v3 = −a1 −a2a3 + 2a1a4 −a2
4 −a0a5 + a3a5,

v4 = a2
0 + a1a2 + a3 −2a0a3 −a4a5,

v5 = −a2 + a2
2 −a1a3 −a0a4 + a3a4 −2a2a5.

As α ∈ G
φk(p), we have that

k−1

∑

i=0

viγ
i = 0. With this equation, we construct a system in the αi, the

resolution of this system will give us the general form of an element in G
φk(p).

The subgroup G
φk(p) is the set of elements α such that ∀i, vi = 0, which gives α

2 = α
2 +B.Γ.t v, with

B = (1,γ ,γ2, ...,γk−1) and with Γ a chosen matrix. As v is zero in Fp, we can reduce the cost of a

square with this method.

Denoting α
2 =

k

∑

i=1

siγ
i, we have the equality

k

∑

i=1

siγ
i = (

k

∑

i=1

aiγ
i)2 +B.Γt .v.

We can formally develop the right expression and for a well chosen matrix Γ, the formulae for a square

in Fpk would be simplified. For instance, for k = 6[52] :
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α
2 = B.











2a1 + 3a4(a4 −2a1)
2a0 + 3(a0 + a3)(a0 −a3)
−2a5 + 3a5(a5 −2a2)

2(a2 −a4)+ 3a1(a1 −2a4)
2(a0 −a3)+ 3a3(2a0 −a3)

−2a2 + 3a2(a2 −2a5)











. (7)

Granger, Page and Smart apply this method to construct the Table 3 [41].

Degree extension k cost of a square in Fpk

6 4,5Mp

12 18Mp + 12Sp

24 84Mp + 24Sp

Table 3. Complexity of a square in F
pk

In the particular case where k = 6 and p ≡ 2 (mod 9), the cost of a square with the Lenstra and Stam

method is less than 0,75Mpk , which is usually the ratio of a square compare to a multiplication.

Example 4.11. In Fp6 , a square with Lenstra and Stam method cost 6× 0,75Mp ≈ 4,5Mp. With the

classical ratio, a square in Fp6 costs 15×0,75Mp ≈ 10Mp.

4.4. The finale exponentiation

The Tate pairing (and also the Ate, optimal Ate) is composed of two steps, first the Miller’s execution

and then a final exponentiation. This exponentiation is a very expensive operation as it takes place in

Fpk and the exponent
pk
−1
r is a large integer. In order to simplify this exponentiation it is split in two

parts [48] using the fact that:

(pk
−1)

r
=

(pk
−1)

φk(p)
×

φk(p)

r
,

where φk(p) is the evaluation in p of the k-th cyclotomic polynomial.

The first part of the exponentiation uses the twisted elliptic curve and it is equivalent to computing

the Frobenius map of elements in Fpk . The second part is a reduced exponentiation in Fpk which is

performed with classical method for exponentiation.

4.4.1. First part of the exponentiation

We consider here the exponentiation to the power
pk
−1

φk(p)
. We can first remark that if k = 2i3 j, then

φk(p) = pk/3
− pk/6 + 1 and

pk
−1

φk(p)
= (pk/2

− 1)(pk/6 + 1). Using a twist, the result of Miller’s

algorithm is something like (X +Y
√

ν) avec X ,Y ∈ Fpk/2 .

The computation of (X +Y
√

ν)pk/2
−1 can be decomposed in

(X +Y
√

ν)pk/2

× (X +Y
√

ν)−1.
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As (X +Y
√

ν)−1 = (X +Y
√

ν)pk/2

, we have that

(X +Y
√

ν)pk/2
−1 = (X +Y

√

ν)2pk/2

.

Raising an element of Fpk to a power pk/2 is a Frobenius operation, which mainly consists in shifts. The

total cost of the exponentiation to the power (pk/2
−1) is a square in Fpk and a Frobenius application.

Let (X ′+Y ′
√

ν) be the result of (X +Y
√

ν)pk/2
−1.

We then have to compute (X ′+Y ′
√

ν)pk/6+1 which is another application of the Frobenius.

Let γ be a root of Xk
−β in Fpk . An element a of Fpk can be decomposed in a =

k−1

∑

i=0

aiγ
i, with ai ∈ Fp.

The property of a finite field gives ap =
k−1

∑

i=0

aiγ
ip and recursively

apj

=
k−1

∑

i=0

aiγ
ip j

.

For i and j two integers let qi j and ri j be the quotient and the remainder of the Euclidien division of ip j

by k, we know that

γ
ip j

= β
qi j mod(p)

γ
ri j .

The computation of (X ′+Y ′
√

ν)pk/6+1 can be decomposed in

(X ′+Y ′
√

ν)pk/6+1 = (X ′pk/6

+Y ′pk/6√

ν
(pk/6)

)× (X ′+Y ′
√

ν)

For example, if we describe what happened for the variable X ′ raised to the power pk/6, we obtain the

following step






X ′ =
k/2−1

∑

i=0

xiγ
i,

X ′pk/6

=
k/2−1

∑

i=0

xiγ
ip(k/6)

,

X ′pk/6

=
k/2−1

∑

i=0

(xiβ
qi(k/6) mod (p))γri(k/6) .

We have to compute the k
2 products (xiβ

qi(k/6) mod(p)), with xi and β
qi(k/6) mod(p) in Fp. The total

complexity of the first part of the exponentiation is 2kMp +Spk +Mpk plus shifts and multiplications by

β .
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α
2 = B.
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−2a2 + 3a2(a2 −2a5)
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Granger, Page and Smart apply this method to construct the Table 3 [41].

Degree extension k cost of a square in Fpk
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12 18Mp + 12Sp

24 84Mp + 24Sp

Table 3. Complexity of a square in F
pk

In the particular case where k = 6 and p ≡ 2 (mod 9), the cost of a square with the Lenstra and Stam

method is less than 0,75Mpk , which is usually the ratio of a square compare to a multiplication.

Example 4.11. In Fp6 , a square with Lenstra and Stam method cost 6× 0,75Mp ≈ 4,5Mp. With the

classical ratio, a square in Fp6 costs 15×0,75Mp ≈ 10Mp.

4.4. The finale exponentiation

The Tate pairing (and also the Ate, optimal Ate) is composed of two steps, first the Miller’s execution

and then a final exponentiation. This exponentiation is a very expensive operation as it takes place in

Fpk and the exponent
pk
−1
r is a large integer. In order to simplify this exponentiation it is split in two

parts [48] using the fact that:

(pk
−1)

r
=

(pk
−1)

φk(p)
×

φk(p)

r
,

where φk(p) is the evaluation in p of the k-th cyclotomic polynomial.

The first part of the exponentiation uses the twisted elliptic curve and it is equivalent to computing

the Frobenius map of elements in Fpk . The second part is a reduced exponentiation in Fpk which is

performed with classical method for exponentiation.

4.4.1. First part of the exponentiation

We consider here the exponentiation to the power
pk
−1

φk(p)
. We can first remark that if k = 2i3 j, then

φk(p) = pk/3
− pk/6 + 1 and

pk
−1

φk(p)
= (pk/2

− 1)(pk/6 + 1). Using a twist, the result of Miller’s

algorithm is something like (X +Y
√

ν) avec X ,Y ∈ Fpk/2 .

The computation of (X +Y
√

ν)pk/2
−1 can be decomposed in

(X +Y
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× (X +Y
√

ν)−1.
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, we have that
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−1 = (X +Y
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.

Raising an element of Fpk to a power pk/2 is a Frobenius operation, which mainly consists in shifts. The

total cost of the exponentiation to the power (pk/2
−1) is a square in Fpk and a Frobenius application.

Let (X ′+Y ′
√

ν) be the result of (X +Y
√
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−1.

We then have to compute (X ′+Y ′
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ν)pk/6+1 which is another application of the Frobenius.

Let γ be a root of Xk
−β in Fpk . An element a of Fpk can be decomposed in a =
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∑
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The property of a finite field gives ap =
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=
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ip j

.

For i and j two integers let qi j and ri j be the quotient and the remainder of the Euclidien division of ip j

by k, we know that

γ
ip j

= β
qi j mod(p)

γ
ri j .

The computation of (X ′+Y ′
√

ν)pk/6+1 can be decomposed in

(X ′+Y ′
√

ν)pk/6+1 = (X ′pk/6

+Y ′pk/6√

ν
(pk/6)

)× (X ′+Y ′
√

ν)

For example, if we describe what happened for the variable X ′ raised to the power pk/6, we obtain the

following step






X ′ =
k/2−1

∑

i=0

xiγ
i,

X ′pk/6

=
k/2−1

∑

i=0

xiγ
ip(k/6)

,

X ′pk/6

=
k/2−1

∑

i=0

(xiβ
qi(k/6) mod (p))γri(k/6) .

We have to compute the k
2 products (xiβ

qi(k/6) mod(p)), with xi and β
qi(k/6) mod(p) in Fp. The total

complexity of the first part of the exponentiation is 2kMp +Spk +Mpk plus shifts and multiplications by

β .

Efficient Computation for Pairing Based Cryptography: A State of the Art
http://dx.doi.org/10.5772/56295

65



16 Theory and Practice of Cryptography and Network Security Protocols and Technologies

Second part of the exponentiation

The second part of the exponentiation is the hard part. We use classical method of exponentiation like

the Lucas sequences [16] or sliding windows [40]. In [67], more tricky method are developed.

The Lucas sequence method induces a cost of a square and a multiplication in the intermediate field

Fpk/2 for each bit of the exponent. The sliding window method has the advantage that the squares are

computed in the cyclotomic subgroup and consequently we can use the method described in Section

4.3. The complexity of the two methods is linearly related to the number of the bits in the binary

decomposition of the exponent, we recall here the complexity of the methods and refer to for instance

the book [25] for more details.

Let br be the number of bits of r, the prime number dividing the cardinal of E. Let bpk be the number of

bits of pk. The respective size of br, bpk , r and pk are fixed by the security level we want to reach. We

give them in the Table 4. The number of positive integers smaller than k and prime with k is ϕ(k), the

Euler totent function evaluated at k. The number ϕ(k) is also the number of primitive k-roots of unity,

then it is the degree of the polynomial φk(p). The exponent of the second part of the exponentiation is

( ϕ(k)
k bpk −br) bits.

The number of squares and multiplications involved for the computation of the exponentiation depends

on
ϕ(k)

k bpk −br = (τkγ −1)br, where

γ =
bpk

br
,

τk =
ϕ(k)

k
=

{
1/2 si k = 2i, i � 1

1/3 si k = 2i3 j, i, j � 1 .

The number γ is related to the security levels given in the Table 4 and its is a good appreciation of the

total complexity of the exponentiation.

Security level in bits 80 128 192 256

Minimal number of for r 160 256 384 512

Minimal number of for pk 1 024 3 072 7 680 15 360

γ =
b

pk

br
6,4 12 20 30

Table 4. Security level

The complexity of the Lucas sequance method is [16]

CLuc = (Mpk/2 + Spk/2 ) log2

(
φk(p)

r

)

.

The complexity of the sliding window method is [40]

Csw =

(
log2(e)

log2(p)
+ log2(p)

)

SG
φk (p)

+

(
log2(e)

log2(p)

(

2n−1
−1

)

+
log2(e)

n+ 2
−1

)

Mpk ,
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where e = φk(p)
r , and n is the integer giving the size of the window in bits, generally n = 4.

5. Arithmetical optimisation

As the pairings computation lays on arithmetic over finite fields, a way to improve the efficiency of

computation of pairings is to improve the arithmetic of finite fields and extension of finite fields.

The elliptic curve used in pairing based cryptography are constructed throught the complex

multiplication method. These methods of constructions do not allow to fixe p the characteristic of

the field Fp, we can only choose the number of bits in the decomposition of p. As a consequence, the

arithmetic of pairings is particular. We cannot choose p with a special structure which would provide an

efficient arithmetic, like for example a sparse decomposition or a Mersenne or Pseudo Mersenne prime.

A very nice overview of construction of elliptic curve for pairing based cryptography is available in the

work of Freeman, Scott and Teske [33].

We then begin this section with the presentation of efficient multiplications in finite fields and extensions

of finite fields. We recall the different methods for a multiplication and we will provide a comparison

of efficiency of these multiplications in Section 5.2, 5.3, 5.4. In Section 5.5, we will consider the

representation of elements in a finite field. Indeed, in Section 5.1 we describe the classical representation

of a finite field, this classical representation is used for the description of the multiplications. But it is

possible, to have original representations of finite field, which can offer opportunities for improvement

in pairing based cryptography. In Section 5.6 we will consider how the choice of coordinates can be a

way for improving the efficiency of computation of pairings and on the equation of the elliptic curve.

5.1. Setting

We consider in this Section the cost of operations over Fpk in number of operations over Fp. We give

the notations for the rest of the chapter. Let Fp be a finite field field of prime characteristic p, with p

of thousands digits. Let Fpk be the extension of degree k of Fp. The extension Fpk is defined through

an irreducible polynomial P(X) of degree k. Let A and B be two elements of Fpk . The elements of Fpk

are described in the basis B = (1,γ ,γ2, . . . ,γk−1), for γ a roots of P(X) in Fpk . An element of Fpk is a

polynomial in γ with coefficients in Fp:

Fpk = {

k−1

∑

i=0

aiγ
i,ai ∈ Fp}.

A is represented by
k−1

∑

i=1

aiγ
i and B by B =

k−1

∑

i=0

biγ
i. The product of A and B can be done in two steps. The

first one is the the product of the polynomials, to obtain the polynomial C(X) = A(X)×B(X) of degree

(2k−2). The second step is the polynomial reduction modulo P(X). The cost of this reduction depends

on the form of P(X). The more P(X) is sparse, the more the reduction is efficient. As a consequence,

P(X) should be as possible chosen of the form Xk
−β , with β ∈ Fp [50]. In this case, the polynomial

reduction is reduced to multiplications by β and (k−1) additions:

C(X) =C0(X)+C1(X)Xk
≡C0(X)+βC1(X) mod(P(X)).
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the Lucas sequences [16] or sliding windows [40]. In [67], more tricky method are developed.

The Lucas sequence method induces a cost of a square and a multiplication in the intermediate field

Fpk/2 for each bit of the exponent. The sliding window method has the advantage that the squares are

computed in the cyclotomic subgroup and consequently we can use the method described in Section

4.3. The complexity of the two methods is linearly related to the number of the bits in the binary

decomposition of the exponent, we recall here the complexity of the methods and refer to for instance

the book [25] for more details.

Let br be the number of bits of r, the prime number dividing the cardinal of E. Let bpk be the number of

bits of pk. The respective size of br, bpk , r and pk are fixed by the security level we want to reach. We

give them in the Table 4. The number of positive integers smaller than k and prime with k is ϕ(k), the

Euler totent function evaluated at k. The number ϕ(k) is also the number of primitive k-roots of unity,

then it is the degree of the polynomial φk(p). The exponent of the second part of the exponentiation is

( ϕ(k)
k bpk −br) bits.

The number of squares and multiplications involved for the computation of the exponentiation depends

on
ϕ(k)

k bpk −br = (τkγ −1)br, where

γ =
bpk

br
,

τk =
ϕ(k)

k
=

{
1/2 si k = 2i, i � 1

1/3 si k = 2i3 j, i, j � 1 .

The number γ is related to the security levels given in the Table 4 and its is a good appreciation of the

total complexity of the exponentiation.

Security level in bits 80 128 192 256

Minimal number of for r 160 256 384 512

Minimal number of for pk 1 024 3 072 7 680 15 360

γ =
b

pk

br
6,4 12 20 30

Table 4. Security level

The complexity of the Lucas sequance method is [16]

CLuc = (Mpk/2 + Spk/2 ) log2

(
φk(p)

r

)

.

The complexity of the sliding window method is [40]

Csw =

(
log2(e)

log2(p)
+ log2(p)

)

SG
φk (p)

+

(
log2(e)

log2(p)

(

2n−1
−1

)

+
log2(e)

n+ 2
−1

)

Mpk ,
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where e = φk(p)
r , and n is the integer giving the size of the window in bits, generally n = 4.

5. Arithmetical optimisation

As the pairings computation lays on arithmetic over finite fields, a way to improve the efficiency of

computation of pairings is to improve the arithmetic of finite fields and extension of finite fields.

The elliptic curve used in pairing based cryptography are constructed throught the complex

multiplication method. These methods of constructions do not allow to fixe p the characteristic of

the field Fp, we can only choose the number of bits in the decomposition of p. As a consequence, the

arithmetic of pairings is particular. We cannot choose p with a special structure which would provide an

efficient arithmetic, like for example a sparse decomposition or a Mersenne or Pseudo Mersenne prime.

A very nice overview of construction of elliptic curve for pairing based cryptography is available in the

work of Freeman, Scott and Teske [33].

We then begin this section with the presentation of efficient multiplications in finite fields and extensions

of finite fields. We recall the different methods for a multiplication and we will provide a comparison

of efficiency of these multiplications in Section 5.2, 5.3, 5.4. In Section 5.5, we will consider the

representation of elements in a finite field. Indeed, in Section 5.1 we describe the classical representation

of a finite field, this classical representation is used for the description of the multiplications. But it is

possible, to have original representations of finite field, which can offer opportunities for improvement

in pairing based cryptography. In Section 5.6 we will consider how the choice of coordinates can be a

way for improving the efficiency of computation of pairings and on the equation of the elliptic curve.

5.1. Setting

We consider in this Section the cost of operations over Fpk in number of operations over Fp. We give

the notations for the rest of the chapter. Let Fp be a finite field field of prime characteristic p, with p

of thousands digits. Let Fpk be the extension of degree k of Fp. The extension Fpk is defined through

an irreducible polynomial P(X) of degree k. Let A and B be two elements of Fpk . The elements of Fpk

are described in the basis B = (1,γ ,γ2, . . . ,γk−1), for γ a roots of P(X) in Fpk . An element of Fpk is a

polynomial in γ with coefficients in Fp:

Fpk = {

k−1

∑

i=0

aiγ
i,ai ∈ Fp}.

A is represented by
k−1

∑

i=1

aiγ
i and B by B =

k−1

∑

i=0

biγ
i. The product of A and B can be done in two steps. The

first one is the the product of the polynomials, to obtain the polynomial C(X) = A(X)×B(X) of degree

(2k−2). The second step is the polynomial reduction modulo P(X). The cost of this reduction depends

on the form of P(X). The more P(X) is sparse, the more the reduction is efficient. As a consequence,

P(X) should be as possible chosen of the form Xk
−β , with β ∈ Fp [50]. In this case, the polynomial

reduction is reduced to multiplications by β and (k−1) additions:

C(X) =C0(X)+C1(X)Xk
≡C0(X)+βC1(X) mod(P(X)).
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with, C0(X),C1(X) of degree (k−1).

The following theorem [50, Theorem 3.75] gives us a natural construction of the extension Fpk using a

sparse representation.

Theorem 5.1. Let k be an integer and Fpk an extension of degree k of Fp, for p a prime number.

There exists β an element of Fp which is not a k-th roots in Fp and such that the polynomial Xk
−β is

irreducible over Fp.

Thus, we can consider that the complexity of a product in Fpk is highly dependent on the complexity

of the product of two polynomials, neglecting the complexity of the modular reduction. We introduce

above the possible multiplications of polynomials.

5.2. The school book method

As the name gives the hint, the school book multiplication is the one we learned at school. The school

book method of two polynomials is the following

A(γ)×B(γ) =
2k−1

∑

i=0

(
i

∑

j=0

(a jbi− j)

)

γ
i.

This simple method is very expensive, indeed its complexity is quadratic in the degree of the

polynomials. The cost of this method is k2 multiplications in Fp plus k(2k − 1) addition, thus the

complexity is k(2k−1)Ap + k2Mp.

The interpolation method are an alternative to the school book method, there are efficient for k greater

than a fixed value. This value depends on the method.

5.3. Interpolation method

Let A(X) = a0 + a1X + . . .+ ak−1Xk−1 and B(X) = b0 + b1X + . . .+ bk−1Xk−1 be the polynomials

obtained by substitution (γ becomes X). The result C(X) of A(X)×B(X) is a polynomial of degree

(2k − 1). It is known that a polynomial of degree m is determined by its image in (m+ 1) distinct

values.

Theorem 5.2. Let P(X) be a polynomial of degree m, then P(X) is determined by the image of (m+1)
distinct values.

The multiplications by the interpolation method use in this theorem. The methodology is to find (2k−1)
images of the polynomial C(X) and then to reconstruct C(X) by interpolation. All multiplications by

interpolation follow this scheme

1. Find (2k−1) distinct values in Fp

denoted by α0,α1, . . . ,α2k−2.

2. Evaluate the polynomials A(X) and B(X) in these values

keep in memory A(α0), . . . ,A(α2k−2),B(α0), . . . ,B(α0).
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3. Compute the evaluation of C in these (2k−1) values,

C(αi) = A(αi)B(αi).

4. Use these evaluations of C(X) to reconstruct by interpolation the polynomial C(X).

The complexity of a multiplication by interpolation depends

1. on the evaluation of the A(αi), B(αi),

2. on the multiplications in Fp C(αi) = A(αi)×B(αi),

3. and on the reconstruction of the polynomial expression of C(X).

If we compare the interpolation method with the school book method, we substitute some

multiplications in Fp by multiplications by constants in Fp. The constants are determined by the choice

of the αi values. The drawback is that the multiplication by interpolation need more additions, but as

an addition in Fp is less expensive than a multiplication, for some degree k interpolation methods are

more efficient than the school book method.

Let Ma the cost of a multiplication by the constant a in Fp. The evaluations in (αi){i=0...(2k−1)} cost

2(2k−1)(k−1) (Ap +CMp) ,

when executed using the Horner scheme:

A(αi) = a0 +αi (a1 +αi(a2 +αi[. . .])) .

The computation of the C(αi) = A(αi)×B(αi) involves (2k− 1) multiplications in Fp, which costs

(2k−1)Mp.

Two classical method of interpolation exist, the Lagrange and the Newton interpolation methods.

5.3.1. Lagrange’s interpolation method

We suppose that we have obtained the evaluation of the polynomial A(X) and B(X) in 2k−1, denoted

(α0,α1, . . . ,α2k−2). We then have the image of C(X) = A(X)×B(X) in these 2k − 1 points. The

reconstruction of the coefficients of C(X) using the Lagrange interpolation is done through the formula:

C(X) =
2k−2

∑

i=0









C(αi)×

2k−2

∏

j=0, j �=i

(X −α j)

2k−2

∏

j=0, j �=i

(αi −α j)









. (8)

The complexity of Lagrange’s interpolation is

(2k−1)Mp +(2k−1)(4k−3)CMp + 2(2k−1)(3k−2)Ap. (9)
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with, C0(X),C1(X) of degree (k−1).

The following theorem [50, Theorem 3.75] gives us a natural construction of the extension Fpk using a

sparse representation.

Theorem 5.1. Let k be an integer and Fpk an extension of degree k of Fp, for p a prime number.

There exists β an element of Fp which is not a k-th roots in Fp and such that the polynomial Xk
−β is

irreducible over Fp.

Thus, we can consider that the complexity of a product in Fpk is highly dependent on the complexity

of the product of two polynomials, neglecting the complexity of the modular reduction. We introduce

above the possible multiplications of polynomials.

5.2. The school book method

As the name gives the hint, the school book multiplication is the one we learned at school. The school

book method of two polynomials is the following

A(γ)×B(γ) =
2k−1

∑

i=0

(
i
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(a jbi− j)
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γ
i.

This simple method is very expensive, indeed its complexity is quadratic in the degree of the

polynomials. The cost of this method is k2 multiplications in Fp plus k(2k − 1) addition, thus the

complexity is k(2k−1)Ap + k2Mp.

The interpolation method are an alternative to the school book method, there are efficient for k greater

than a fixed value. This value depends on the method.

5.3. Interpolation method

Let A(X) = a0 + a1X + . . .+ ak−1Xk−1 and B(X) = b0 + b1X + . . .+ bk−1Xk−1 be the polynomials

obtained by substitution (γ becomes X). The result C(X) of A(X)×B(X) is a polynomial of degree

(2k − 1). It is known that a polynomial of degree m is determined by its image in (m+ 1) distinct

values.

Theorem 5.2. Let P(X) be a polynomial of degree m, then P(X) is determined by the image of (m+1)
distinct values.

The multiplications by the interpolation method use in this theorem. The methodology is to find (2k−1)
images of the polynomial C(X) and then to reconstruct C(X) by interpolation. All multiplications by

interpolation follow this scheme

1. Find (2k−1) distinct values in Fp

denoted by α0,α1, . . . ,α2k−2.

2. Evaluate the polynomials A(X) and B(X) in these values

keep in memory A(α0), . . . ,A(α2k−2),B(α0), . . . ,B(α0).
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3. Compute the evaluation of C in these (2k−1) values,

C(αi) = A(αi)B(αi).

4. Use these evaluations of C(X) to reconstruct by interpolation the polynomial C(X).

The complexity of a multiplication by interpolation depends

1. on the evaluation of the A(αi), B(αi),

2. on the multiplications in Fp C(αi) = A(αi)×B(αi),

3. and on the reconstruction of the polynomial expression of C(X).

If we compare the interpolation method with the school book method, we substitute some

multiplications in Fp by multiplications by constants in Fp. The constants are determined by the choice

of the αi values. The drawback is that the multiplication by interpolation need more additions, but as

an addition in Fp is less expensive than a multiplication, for some degree k interpolation methods are

more efficient than the school book method.

Let Ma the cost of a multiplication by the constant a in Fp. The evaluations in (αi){i=0...(2k−1)} cost

2(2k−1)(k−1) (Ap +CMp) ,

when executed using the Horner scheme:

A(αi) = a0 +αi (a1 +αi(a2 +αi[. . .])) .

The computation of the C(αi) = A(αi)×B(αi) involves (2k− 1) multiplications in Fp, which costs

(2k−1)Mp.

Two classical method of interpolation exist, the Lagrange and the Newton interpolation methods.

5.3.1. Lagrange’s interpolation method

We suppose that we have obtained the evaluation of the polynomial A(X) and B(X) in 2k−1, denoted

(α0,α1, . . . ,α2k−2). We then have the image of C(X) = A(X)×B(X) in these 2k − 1 points. The

reconstruction of the coefficients of C(X) using the Lagrange interpolation is done through the formula:

C(X) =
2k−2

∑

i=0









C(αi)×

2k−2

∏

j=0, j �=i

(X −α j)

2k−2

∏

j=0, j �=i

(αi −α j)









. (8)

The complexity of Lagrange’s interpolation is

(2k−1)Mp +(2k−1)(4k−3)CMp + 2(2k−1)(3k−2)Ap. (9)
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5.3.2. Newton’s interpolation

As in the Lagrange’s interpolation, we dispose of the C(αi)s and we want to find the coefficients of

C(X). The Newton’s interpolation needs the construction of intermediates values.

The first step is the computation of the values c′i






c′0 = C(α0)
c′1 = (C(α1)− c′0)

1
(α1−α0)

c′2 =
�

(C(α2)− c′0)
1

(α2−α0)
− c′1

�
1

(α2−α1)
... =

...

c′2k−2 =
�

(C(α2k−2)− c′0)
1

(α2k−2−α0)
− c′1

�
1

(α2k−2−α1)
− . . .

With the c′is, the expression of C(X) is

C(X) = c′0 + c′1(X −α0)+ c′2(X −α0)(X −α1)
+ . . .+ c′2k−2(X −α0)(X −α1) . . . (X −α2k−2).

The reconstruction of the coefficients of C(X) can be done using the Horner’s scheme

C(X) = c′0 +(X −α0)[c
′

1 +(X −α1)(c
′

2 +(X −α2)(. . .
. . .+(X −α2k)[c

′

2k−1 +(X −α2k−1)c
′

2k−2]))].

The efficiency of the multiplication by interpolation depends on the choice of the αis. The Newton’s

interpolation involves divisions be the differences of the αis, these elements can be precomputed

once for all as the αis are fixed. Furthermore, the divisions by (αi −α j)
−1 can be transformed in

multiplication by constants, as we work in a finite field.

The complexity of Newton’s interpolation is the sum of the complexity of the computation of the C(αi),
the c′i and the reconstruction of the coefficients of C(X).

The complexity of Newton’s interpolation is

4(2k2
−3k+ 1)Ap + 4(2k2

−3k+ 1)CMp +(2k−1)Mp.

5.3.3. Comparison between the two methods

The two methods involves the same number of multiplications in the base field Fp: (2k − 1), for

polynomials of degree (k−1).
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The Lagrange’s interpolation is very important when computations can be parallelised. Indeed, the

computation of the C(αi)×

∏

j �=i

(X −α j)

∏

j �=i

(αi −α j)
are independent. The Newton’s interpolation involves less

additions and multiplications by constants than the Lagrange’s one, but we cannot parallelise the

computation. The c′i must be computed one after another.

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Operation

Method
Lagrange Newton

Ap 12k2
−14k+ 4 8k2

−12k+ 4

CMp 8k2
−10k+ 3 8k2

−12k+ 4

Mp (2k−1) (2k−1)

Table 5. Complexity in number of operation over the base field

The Lagrange’s interpolation should be privileged when computations can be parallelised and Newton

when the size of the device is limited, typically for smart cards.

5.4. Karatsuba and Toom Cook methods

5.4.1. Karatsuba’s method

The Karatsuba multiplication is a straightforward application of the Newton’s method, for polynomials

of degree 1. The result of the multiplication is a polynomial of degree 2, then we need 2 + 1 = 3

points of interpolation. These values are {0,1,∞}. The Karatsuba multiplication provide the product of

two polynomials of degree 1 in 3 multiplications in the base field, instead of 4 using the school book

method. The multiplication by constants in the Newton multiplication are free, because of the choice of

the interpolation values. Let A(X) = A0 +A1X and B(X) = B0 +B1X be two polynomials of degree 1

and C(X) = A(X)×B(X).

We evaluate the polynomial C(X) in the point {0,1,∞} using equations 10.

C(0) = (A1X +A0)(B1X +B0) mod(X),
= A0 ×B0,

C(1) = (A1X +A0)(B1X +B0) mod(X −1),
= (A0 +A1)× (B0 +B1),

C(∞) = (A1X +A0)(B1X +B0) mod(X −∞),
= A1 ×B1 ×X2 mod(X −∞).

(10)

The evaluation of polynomial C(X) in the 3 values involves 2Ap +3Mp operations in the base field Fp.

Then, we use the formulas in the Newton interpolation to reconstruct the polynomial C(X).
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5.3.2. Newton’s interpolation

As in the Lagrange’s interpolation, we dispose of the C(αi)s and we want to find the coefficients of

C(X). The Newton’s interpolation needs the construction of intermediates values.

The first step is the computation of the values c′i






c′0 = C(α0)
c′1 = (C(α1)− c′0)

1
(α1−α0)

c′2 =
�

(C(α2)− c′0)
1

(α2−α0)
− c′1

�
1

(α2−α1)
... =

...

c′2k−2 =
�

(C(α2k−2)− c′0)
1

(α2k−2−α0)
− c′1

�
1

(α2k−2−α1)
− . . .

With the c′is, the expression of C(X) is

C(X) = c′0 + c′1(X −α0)+ c′2(X −α0)(X −α1)
+ . . .+ c′2k−2(X −α0)(X −α1) . . . (X −α2k−2).

The reconstruction of the coefficients of C(X) can be done using the Horner’s scheme

C(X) = c′0 +(X −α0)[c
′

1 +(X −α1)(c
′

2 +(X −α2)(. . .
. . .+(X −α2k)[c

′

2k−1 +(X −α2k−1)c
′

2k−2]))].

The efficiency of the multiplication by interpolation depends on the choice of the αis. The Newton’s

interpolation involves divisions be the differences of the αis, these elements can be precomputed

once for all as the αis are fixed. Furthermore, the divisions by (αi −α j)
−1 can be transformed in

multiplication by constants, as we work in a finite field.

The complexity of Newton’s interpolation is the sum of the complexity of the computation of the C(αi),
the c′i and the reconstruction of the coefficients of C(X).

The complexity of Newton’s interpolation is

4(2k2
−3k+ 1)Ap + 4(2k2

−3k+ 1)CMp +(2k−1)Mp.

5.3.3. Comparison between the two methods

The two methods involves the same number of multiplications in the base field Fp: (2k − 1), for

polynomials of degree (k−1).
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The Lagrange’s interpolation is very important when computations can be parallelised. Indeed, the

computation of the C(αi)×

∏

j �=i

(X −α j)

∏

j �=i

(αi −α j)
are independent. The Newton’s interpolation involves less

additions and multiplications by constants than the Lagrange’s one, but we cannot parallelise the

computation. The c′i must be computed one after another.

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵

Operation

Method
Lagrange Newton

Ap 12k2
−14k+ 4 8k2

−12k+ 4

CMp 8k2
−10k+ 3 8k2

−12k+ 4

Mp (2k−1) (2k−1)

Table 5. Complexity in number of operation over the base field

The Lagrange’s interpolation should be privileged when computations can be parallelised and Newton

when the size of the device is limited, typically for smart cards.

5.4. Karatsuba and Toom Cook methods

5.4.1. Karatsuba’s method

The Karatsuba multiplication is a straightforward application of the Newton’s method, for polynomials

of degree 1. The result of the multiplication is a polynomial of degree 2, then we need 2 + 1 = 3

points of interpolation. These values are {0,1,∞}. The Karatsuba multiplication provide the product of

two polynomials of degree 1 in 3 multiplications in the base field, instead of 4 using the school book

method. The multiplication by constants in the Newton multiplication are free, because of the choice of

the interpolation values. Let A(X) = A0 +A1X and B(X) = B0 +B1X be two polynomials of degree 1

and C(X) = A(X)×B(X).

We evaluate the polynomial C(X) in the point {0,1,∞} using equations 10.

C(0) = (A1X +A0)(B1X +B0) mod(X),
= A0 ×B0,

C(1) = (A1X +A0)(B1X +B0) mod(X −1),
= (A0 +A1)× (B0 +B1),

C(∞) = (A1X +A0)(B1X +B0) mod(X −∞),
= A1 ×B1 ×X2 mod(X −∞).

(10)

The evaluation of polynomial C(X) in the 3 values involves 2Ap +3Mp operations in the base field Fp.

Then, we use the formulas in the Newton interpolation to reconstruct the polynomial C(X).
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c
′

0 = C(0),
= A0B0,

c
′

1 = (C(1)− c
′

0)
1

(1−0)
,

= (A0 +A1)(B0 +B1)−A0B0,

c
′

2 =
�

(C(∞)− c
′

0)
1

(∞−0)
− c

′

1

�
1

(∞−1)
,

=
�

(A1B1X
2
−A0B0)

1
(X−0)

− ((A0 +A1)(B0 +B1)−A0B0)
�

1
(X−1)

mod(X −∞),

= A1B1X
2

X
2 −

A0B0

X
2 −

((A0+A1)(B0+B1)−A0B0)
X

mod(X −∞),
= A1B1.

C(X) = c
′

0 + c
′

1X + c
′

2X(X −1),
= A0B0 +((A0 +A1)(B0 +B1)−A0B0)X +A1B1X(X −1),
= A0B0 +((A0 +A1)(B0 +B1)−A0B0 −A1B1)X +A1B1X

2.

We can resume the computation of the polynomial C(X) using Karatsuba’s multiplication by the

following equation






c0 = A0 ×B0,

c1 = (A0 +A1)× (B0 +B1),
c2 = A1 ×B1,

C(X) = c0 +(c1 − c0 − c2)X + c2X
2.

(11)

For polynomials of degree 1, the complexity of Karatsuba’s multiplication is 3Mp + 4Ap.

The Karatsuba’s multiplication can be recursively applied for polynomials of degree greater than 1. Let

A(X) = A0 +A1X + . . .AmX
m, we can split A(X) in two parts of degree smaller or equal to

�
m

2

�
:

A(X) = A0 +A1X + . . .A
⌊

m

2 ⌋
−1 +X

⌊
m

2 ⌋

�

A
⌊

m

2 ⌋
+A

⌊
m

2 ⌋
+1X + . . .AmX

⌊
m

2 ⌋

�

,

= �
A0 +Y

�
A1, where we denote Y = X

⌊
m

2 ⌋.

Then, we apply the Karatsuba’s multiplication to the two parts. Each of the three multiplications

can also be done using the Karatsuba’s multiplication. The recursive application of Karatsuba’s

multiplication is the most efficient method for the computation of polynomials of degree a power of

2. The asymptotic complexity of Karatsuba’s multiplication is O(mlog2(3)) multiplications and O(m)
additions, with m being the degree of the polynomials we want to multiply.
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5.4.2. Toom Cook 3 multiplication

Exactly like the Karatsuba’s multiplication, Toom Cook 3 multiplication is an application of Newton’s

interpolation. The Toom Cook 3 method provide the product of polynomials of degree 2 with 5

multiplications of coefficients, instead of 9 using the school book method multiplication. The values

for the interpolation are {0,1,−1,2,∞}. Unlike the Karatsuba’s method, there are few multiplications

and divisions by constants that we cannot avoid.

Let A(X) = A0 + A1X + A2X2 and B(X) = B0 + B1X + B2X2 be polynomials of degree 2 and

C(X) = A(X)× B(X) obtained using the Toom Cook method. The evaluation part of Toom Cook

3 multiplication involves 10 additions of Ai and Bi, for i = 0,1,2. The evaluation of A(X) needs 5

additions.






A(0) = A0,

Sp1 = A0 +A2,

A(1) = Sp1 +A1,

A(−1) = Sp1 −A1,

A(2) = A0 + 2A1 + 4A2,

A(∞) = A2X2 mod(X −∞).

We begin with the evaluation of C(X) in the αi pour i = 0,1,2,3,4.






C(0) = A(0)×B(0) = A0B0,

C(1) = A(1)×B(1),
C(−1) = A(−1)×B(−1),

C(2) = A(2)×B(2),
C(∞) = A(∞)×B(∞) = A2B2X4 mod(X −∞).

We apply the Newton’s method to find the coefficients c′i






c′0 = C(0),
c′1 = C(1)− c′0,

c′2 = 1
2

�
C(−1)− c′0 + c′1

�
,

c′3 = 1
6C(2)− 1

6 c′0 −
1
3 c′1 −

1
3 c′2,

c′4 = A2B2.

The reconstruction of C(X) is then

C(X) = c′0 + c′1X + c′2X(X −1)+ c′3X(X −1)(X + 1)
c′4X(X −1)(X + 1)(−2).

This step can be resume by the formula
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(X−1)

mod(X −∞),

= A1B1X
2

X
2 −
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X
2 −

((A0+A1)(B0+B1)−A0B0)
X

mod(X −∞),
= A1B1.

C(X) = c
′

0 + c
′

1X + c
′

2X(X −1),
= A0B0 +((A0 +A1)(B0 +B1)−A0B0)X +A1B1X(X −1),
= A0B0 +((A0 +A1)(B0 +B1)−A0B0 −A1B1)X +A1B1X

2.

We can resume the computation of the polynomial C(X) using Karatsuba’s multiplication by the

following equation






c0 = A0 ×B0,

c1 = (A0 +A1)× (B0 +B1),
c2 = A1 ×B1,

C(X) = c0 +(c1 − c0 − c2)X + c2X
2.

(11)

For polynomials of degree 1, the complexity of Karatsuba’s multiplication is 3Mp + 4Ap.

The Karatsuba’s multiplication can be recursively applied for polynomials of degree greater than 1. Let

A(X) = A0 +A1X + . . .AmX
m, we can split A(X) in two parts of degree smaller or equal to

�
m

2

�
:

A(X) = A0 +A1X + . . .A
⌊

m

2 ⌋
−1 +X

⌊
m

2 ⌋

�

A
⌊

m

2 ⌋
+A

⌊
m

2 ⌋
+1X + . . .AmX

⌊
m

2 ⌋

�

,

= �
A0 +Y

�
A1, where we denote Y = X

⌊
m

2 ⌋.

Then, we apply the Karatsuba’s multiplication to the two parts. Each of the three multiplications

can also be done using the Karatsuba’s multiplication. The recursive application of Karatsuba’s

multiplication is the most efficient method for the computation of polynomials of degree a power of

2. The asymptotic complexity of Karatsuba’s multiplication is O(mlog2(3)) multiplications and O(m)
additions, with m being the degree of the polynomials we want to multiply.
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5.4.2. Toom Cook 3 multiplication

Exactly like the Karatsuba’s multiplication, Toom Cook 3 multiplication is an application of Newton’s

interpolation. The Toom Cook 3 method provide the product of polynomials of degree 2 with 5

multiplications of coefficients, instead of 9 using the school book method multiplication. The values

for the interpolation are {0,1,−1,2,∞}. Unlike the Karatsuba’s method, there are few multiplications

and divisions by constants that we cannot avoid.

Let A(X) = A0 + A1X + A2X2 and B(X) = B0 + B1X + B2X2 be polynomials of degree 2 and

C(X) = A(X)× B(X) obtained using the Toom Cook method. The evaluation part of Toom Cook

3 multiplication involves 10 additions of Ai and Bi, for i = 0,1,2. The evaluation of A(X) needs 5

additions.






A(0) = A0,

Sp1 = A0 +A2,

A(1) = Sp1 +A1,

A(−1) = Sp1 −A1,

A(2) = A0 + 2A1 + 4A2,

A(∞) = A2X2 mod(X −∞).

We begin with the evaluation of C(X) in the αi pour i = 0,1,2,3,4.






C(0) = A(0)×B(0) = A0B0,

C(1) = A(1)×B(1),
C(−1) = A(−1)×B(−1),

C(2) = A(2)×B(2),
C(∞) = A(∞)×B(∞) = A2B2X4 mod(X −∞).

We apply the Newton’s method to find the coefficients c′i






c′0 = C(0),
c′1 = C(1)− c′0,

c′2 = 1
2

�
C(−1)− c′0 + c′1

�
,

c′3 = 1
6C(2)− 1

6 c′0 −
1
3 c′1 −

1
3 c′2,

c′4 = A2B2.

The reconstruction of C(X) is then

C(X) = c′0 + c′1X + c′2X(X −1)+ c′3X(X −1)(X + 1)
c′4X(X −1)(X + 1)(−2).

This step can be resume by the formula
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C(X) = c′0 + (c′1 − c′2 − c′3 −2c′4)X +(c′2 − c′4)X
2

+ (c′3 −2c′4)X
3 + c′4X4.

Which gives






C0 = c′0,

C1 = c′1 − c′2 − c′3 −2c′4,

C2 = c′2 − c′4,

C3 = c′3 −2c′4,

C4 = c′4,

C(X) = C0 +C1X +C2X2 +C3X3 +C4X4.

For polynomials of degree 2, the complexity of Toom Cook 3 is 5Mp + 11CMp + 11Ap. As for

Karatsuba’s method, the Toom Cook 3 method can be recursively applied. The asymptotic complexity

of Toom Cook 3 multiplication is O(mlog3(5)) multiplications and O(m) additions, where m is the degree

of the polynomials we want to multiply.

5.4.3. Extensions to other extensions

The Toom Cook 3 method can be extended to Toom Cook 5, this multiplication is suited for polynomials

of degree 3. Few works deal with the multiplication of polynomials of degree greater than 3. For

polynomials of degree 4, we can use the Karatsuba’s method. As a consequence, in pairing based

cryptography, field with extension degree of the form 2i3 j are called pairing friendly because we can

use tower fields and for each stage of the tower we use the Karatsuba or Toom Cook 3 multiplication.

However in pairing based cryptography (and in cryptography in general) there are some cases where

it is more interesting to use fields with degree extensions different from 2 and 3. We can cite the

problem of compression (i.e. representing elements in a finite field subgroup with fewer bits than

classical algorithms) for extension fields in terms of algebraic tori Tn(Fq) [63] or applications based

on T30(Fq), such as El Gamal encryption, El Gamal signatures and voting schemes in [69].

Let Fp be a finite field of characteristic greater than 5. For instance for polynomials of degree 5,

we can begin with Karatsuba’s method and then use Karatsuba and Toom Cook 3 for each part. This

construction gives an efficient multiplication for polynomials of degree 5, but not the most efficient. For

degree 5 extensions, Montgomery [58] has proposed a Karatsuba-like formula for 5-terms polynomials

performed using 13 base field multiplications. This work was improved by El Mrabet et all in [30] using

Newton’s interpolation.

We recall here Montgomery’s method for an extension of degree 5. Let A = a0 + a1X + a2X2 +
a3X3 +a4X4 and B = b0 +b1X +b2X2 +b3X3 +b4X4 in Fp5 with coefficients over Fp. Montgomery

constructs the polynomial C(X) = A(X) ·B(X) using the following formula C = (a0 + a1X + a2X2 +
a3X3 + a4X4)(b0 + b1X + b2X2 + b3X3 + b4X4)
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= (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 + b3 + b4)(X
5
−X4 +X3)

+(a0 −a2 −a3 −a4)(b0 −b2 −b3 −b4)(X
6
−2X5 + 2X4

−X3)

+(a0 + a1 + a2 −a4)(b0 + b1 + b2 −b4)(−X5 + 2X4
−2X3 +X2)

+(a0 + a1 −a3 −a4)(b0 + b1 −b3 −b4)(X
5
−2X4 +X3)

+(a0 −a2 −a3)(b0 −b2 −b3)(−X6 + 2X5
−X4)

+(a1 + a2 −a4)(b1 + b2 −b4)(−X4 + 2X3
−X2)

+(a3 + a4)(b3 + b4)(X
7
−X6 +X4

−X3)

+(a0 + a1)(b0 + b1)(−X5 +X4
−X2 +X)

+(a0 −a4)(b0 −b4)(−X6 + 3X5
−4X4 + 3X3

−X2)

+a4b4(X
8
−X7 +X6

−2X5 + 3X4
−3X3 +X2)

+a3b3(−X7 + 2X6
−2X5 +X4)

+a1b1(X
4
−2X3 + 2X2

−X)

+a0b0(X
6
−3X5 + 3X4

−2X3 +X2
−X + 1).

The cost of these computations is 13Mq + 22Aq. Note that in order to recover the final expression of

the polynomial of degree 8, we have to re-organize the 13 lines to find its coefficients. We denote the

products on each of the 13 lines by ui, 0 ≤ i ≤ 12 (i.e. u12 = (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 +
b3 +b4), u11 = (a0 −a2 −a3 −a4)(b0 −b2 −b3 −b4) etc.) By re-arranging the formula in function of

the degree of X , we obtain the following expression for C

C = u3X8

+(−u2 −u3 + u6)X
7

+(u0 + 2u2 + u3 −u4 −u6 −u8 + u11)X
6

+(−3u0 −2u2 −2u3 + 3u4 −u5 + 2u8 + u9 −u10 −2u11 + u12)X
5

+(3u0 + u1 + u2 + 3u3 −4u4 + u5 + u6 −u7 −u8 −2u9 + 2u10 + 2u11 −u12)X
4

+(−2u0 −2u1 −3u3 + 3u4 −u6 + 2u7 + u9 −2u10 −u11 + u12)X
3

+(u0 + 2u1 + u3 −u4 −u5 −u7 + u10)X
2

+(−u0 −u1 + u5)X
+ u0.

Considering this expression, hidden additions must be taken in account. Once every simplification is

done, the total complexity of Montgomery’s method is 13Mp + 62Ap.

In [30], the Newton’s interpolation gives a better result for the multiplication of 5-terms polynomials.

The interpolation values are α0 = 0, α1 = 1, α2 = −1, α3 = 2, α4 = −2, α5 = 4, α6 = −4, α7 = 3,

α8 =∞. With these values, the evaluations of A and B are only composed of shifts and additions. Details

are provide in [30], the evaluations of A(X) and B(X) have a total complexity of 48Ap. The evaluation

of C(X) in the αis costs 9Mp. The computation of the c′is is not straightforward. Indeed, there are

few divisions by 3, 5 and 7 that appear in the formula Section 5.3.2. To avoid the computation of a

division which is an expensive operation over a finite field, using a trick on the binary decomposition of

integers, they perform very efficiently the divisions. The complexity for these divisions is smaller than
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C(X) = c′0 + (c′1 − c′2 − c′3 −2c′4)X +(c′2 − c′4)X
2

+ (c′3 −2c′4)X
3 + c′4X4.

Which gives






C0 = c′0,

C1 = c′1 − c′2 − c′3 −2c′4,

C2 = c′2 − c′4,

C3 = c′3 −2c′4,

C4 = c′4,

C(X) = C0 +C1X +C2X2 +C3X3 +C4X4.

For polynomials of degree 2, the complexity of Toom Cook 3 is 5Mp + 11CMp + 11Ap. As for

Karatsuba’s method, the Toom Cook 3 method can be recursively applied. The asymptotic complexity

of Toom Cook 3 multiplication is O(mlog3(5)) multiplications and O(m) additions, where m is the degree

of the polynomials we want to multiply.

5.4.3. Extensions to other extensions

The Toom Cook 3 method can be extended to Toom Cook 5, this multiplication is suited for polynomials

of degree 3. Few works deal with the multiplication of polynomials of degree greater than 3. For

polynomials of degree 4, we can use the Karatsuba’s method. As a consequence, in pairing based

cryptography, field with extension degree of the form 2i3 j are called pairing friendly because we can

use tower fields and for each stage of the tower we use the Karatsuba or Toom Cook 3 multiplication.

However in pairing based cryptography (and in cryptography in general) there are some cases where

it is more interesting to use fields with degree extensions different from 2 and 3. We can cite the

problem of compression (i.e. representing elements in a finite field subgroup with fewer bits than

classical algorithms) for extension fields in terms of algebraic tori Tn(Fq) [63] or applications based

on T30(Fq), such as El Gamal encryption, El Gamal signatures and voting schemes in [69].

Let Fp be a finite field of characteristic greater than 5. For instance for polynomials of degree 5,

we can begin with Karatsuba’s method and then use Karatsuba and Toom Cook 3 for each part. This

construction gives an efficient multiplication for polynomials of degree 5, but not the most efficient. For

degree 5 extensions, Montgomery [58] has proposed a Karatsuba-like formula for 5-terms polynomials

performed using 13 base field multiplications. This work was improved by El Mrabet et all in [30] using

Newton’s interpolation.

We recall here Montgomery’s method for an extension of degree 5. Let A = a0 + a1X + a2X2 +
a3X3 +a4X4 and B = b0 +b1X +b2X2 +b3X3 +b4X4 in Fp5 with coefficients over Fp. Montgomery

constructs the polynomial C(X) = A(X) ·B(X) using the following formula C = (a0 + a1X + a2X2 +
a3X3 + a4X4)(b0 + b1X + b2X2 + b3X3 + b4X4)
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−X2 +X)

+(a0 −a4)(b0 −b4)(−X6 + 3X5
−4X4 + 3X3

−X2)

+a4b4(X
8
−X7 +X6

−2X5 + 3X4
−3X3 +X2)

+a3b3(−X7 + 2X6
−2X5 +X4)

+a1b1(X
4
−2X3 + 2X2

−X)

+a0b0(X
6
−3X5 + 3X4

−2X3 +X2
−X + 1).

The cost of these computations is 13Mq + 22Aq. Note that in order to recover the final expression of

the polynomial of degree 8, we have to re-organize the 13 lines to find its coefficients. We denote the

products on each of the 13 lines by ui, 0 ≤ i ≤ 12 (i.e. u12 = (a0 + a1 + a2 + a3 + a4)(b0 + b1 + b2 +
b3 +b4), u11 = (a0 −a2 −a3 −a4)(b0 −b2 −b3 −b4) etc.) By re-arranging the formula in function of

the degree of X , we obtain the following expression for C

C = u3X8

+(−u2 −u3 + u6)X
7

+(u0 + 2u2 + u3 −u4 −u6 −u8 + u11)X
6

+(−3u0 −2u2 −2u3 + 3u4 −u5 + 2u8 + u9 −u10 −2u11 + u12)X
5

+(3u0 + u1 + u2 + 3u3 −4u4 + u5 + u6 −u7 −u8 −2u9 + 2u10 + 2u11 −u12)X
4

+(−2u0 −2u1 −3u3 + 3u4 −u6 + 2u7 + u9 −2u10 −u11 + u12)X
3

+(u0 + 2u1 + u3 −u4 −u5 −u7 + u10)X
2

+(−u0 −u1 + u5)X
+ u0.

Considering this expression, hidden additions must be taken in account. Once every simplification is

done, the total complexity of Montgomery’s method is 13Mp + 62Ap.

In [30], the Newton’s interpolation gives a better result for the multiplication of 5-terms polynomials.

The interpolation values are α0 = 0, α1 = 1, α2 = −1, α3 = 2, α4 = −2, α5 = 4, α6 = −4, α7 = 3,

α8 =∞. With these values, the evaluations of A and B are only composed of shifts and additions. Details

are provide in [30], the evaluations of A(X) and B(X) have a total complexity of 48Ap. The evaluation

of C(X) in the αis costs 9Mp. The computation of the c′is is not straightforward. Indeed, there are

few divisions by 3, 5 and 7 that appear in the formula Section 5.3.2. To avoid the computation of a

division which is an expensive operation over a finite field, using a trick on the binary decomposition of

integers, they perform very efficiently the divisions. The complexity for these divisions is smaller than
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2Ap. The global complexity for the computation of the c′is is then 64Ap. Finally, the reconstruction of

the polynomial C(X) using the Horner’s scheme has a complexity of 28Ap. And the total complexity

of the 5-terms polynomials is 9Mq + 137Aq.

The comparison with Montgomery’s result is not evident, but implementations in [30] shows that the

results are more efficient than the Montgomery’s one.

In the two articles, the authors give also results for 6-terms and 7-terms polynomials.

The fact that we can compute efficiently the multiplication for extensions greater than 2 and 3 gives the

opportunity to consider pairing computation over elliptic curve with an embedding degree k different

from 2i3 j and can improve the implementation of pairings. But this work is still to be made.

5.5. Original representation of finite fields

In the previous section we consider efficient multiplications for a classical representation of finite fields

and extension of finite fields. But they are many ways to represent a finite field. In [22], the authors use

an original representation of finite field to provide a very efficient implementation of a pairing. This

original representation is the Residue Number System (RNS) representation and it was developed in

[7, 8]. The RNS representation relays on the Chinese remainder theorem. Let B = {m1, . . . ,mn} be a

set of co-prime natural integers, M =
n

∏

i=1

mi and 0 ≤ X < M. There exists a unique representation XB of

X in the basis B, XB = {X mod m1, . . .X mod mn}= {x1,x2, . . . ,xn}. Given XB , we can reconstruct

X using the Chinese Remainder theorem:

X =

(
n

∑

i=1

(xi ×b−1
i mod mi)×bi

)

mod M, where bi =
M

mi
.

The RNS representation is obviously very interesting for parallel computations. An efficient

multiplication in RNS representation is described in [7, 8]. This multiplication is based on the

Montgomery modular multiplication. In [22], the authors present two very efficient implementation

of a pairing algorithm on an FPGA, in RNS representation. They implement the optimal Ate pairing at

several security levels over Altera and Xilinx FPGA. They compare there result with previous work and

obtaint very nice results.

5.6. The arithmetic of Pairings

The complexity of a computation of a pairing depends on the finite field and the arithmetic underlying,

but also of the model and the equation of the elliptic curve and the choice of the coordinates. Usually,

an elliptic curve is represented using the short Weierstrass equation which is on the form E : y2 =
x3 + ax+ b, with a and b elements of the finite field Fp. In [20], Brier and Joye show that the value a

can be chosen to be −3. This value contributes to improve the computation of pairings. But, even on

a short Weierstrass equation, several cases exist, we can have b = 0, a = 0 with b a square or not just

an integer. For each option, the coordinates have also an influence on the efficiency of the computation

of a pairing. The coordinates are usually chosen between affine, Projective and Jacobian. The affine

coordinates are often put aside. Indeed, the operations over the elliptic curve in affine coordinates

involves inversion over finite fields. As inversion over a finite field is an expensive operation, one try to

avoid them so far as possible. To achieve this aim, the Projective or Jacobian coordinates are suitable,
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as by construction, the Projective and Jacobian coordinates substitute inversions in affine coordinates

into multiplications. The fact that the affine coordinates involves inversions was a drawback to their use

in pairing based cryptography. In [51], the authors analyzed the use of affine coordinates for pairing

based cryptography. They adapt two known techniques for speeding up field inversion to the pairing

based cryptography case. They found out that for high security levels, an implementation in affine

coordinates of a pairing will be much faster than an implementation in projective coordinates. The

first technique to improve the inversion consists in computing inverses in extension fields by using

towers of extension field and transform inverse computation to subfield computations via the norm map.

Using this technique, the authors reduce drastically the ratio of the costs of inversions to multiplications

in extension fields. This is very interesting for the computation of pairings over a large extension

field, typically at high level security such as 256 bits. The second trick is to take advantage of the

inversion-sharing, a standard trick whenever several inversions are computed at once. This method

involves the lecture of the binary expansion from right to left, instead of left to right. This second

method is very interesting when multi-core processors are used, indeed, it can be easily parallelized. We

can find in [51] detailed performance numbers with timing for base field and extension field arithmetic.

For security level more reasonable, the Projective and Jacobian coordinates are for now more suitable.

In [24], the authors resume, compare and improve several works dealing with the optimizations of

pairings, considering all the possibilities for the Weierstrass equation. They give efficient computations

in Jacobian and Projective coordinates. We resume there work in Table 6.

Curve Doubling Prev Doubling

Curve order Addition Result Addition

Twist deg. Result of [24]

y2 = x3 + ax Ma +(2k/d + 2)Mp + 8Sp [2] Ma +(2k/d + 1)Mp + 11Sp

any (2k/d + 12)Mp + Sp (2k/d + 10)Mp + 6Sp

d = 2,4 New coord. Jacobian

y2 = x3 + c2 (2k/d + 3)Mp + 5Sp [23] (2k/d + 3)Mp + 5Sp

3|♯E Mc +(2k/d + 3)Mp + 5Sp Mc +(2k/d + 3)Mp + 5Sp

d = 2,6 Projective Projective

y2 = x3 + b Mb +(2k/d + 2)Mp + 7Sp [2] (2k/d + 3)Mp + 8Sp

3 ∤ ♯E Mb +(2k/d + 2)Mp + 7Sp (2k/d + 3)Mp + 8Sp

d = 2,6 Projective Jacobian

y2 = x3 + b Mb +(k+ 6)Mp + 7Sp [31] Mb +(2k+ 8)Mp + 9Sp

any (k+ 16)Mp + 3Sp not reported

d = 3 Projective Projective

Table 6. Comparaison of pairings considering Weierstrass models

There exists several model of elliptic curves, for instance

• Short Weierstrass: y2 = x3 + ax+ b, for a, b in K.

• Legendre coordinates: y2 = x(x−1)(x−λ ), for λ ∈ K.

• Montgomery: by2 = x3 + ax2 + x, for a, b in K.

• Edwards coordinates: x2 + y2 = c(1+ x2y2) over K.

• Huff’s coordinates: aX(Y 2
−Z2) = bY (X2

−Z2) for a2
�= b2

�= 0 over K.
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2Ap. The global complexity for the computation of the c′is is then 64Ap. Finally, the reconstruction of
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of the 5-terms polynomials is 9Mq + 137Aq.

The comparison with Montgomery’s result is not evident, but implementations in [30] shows that the

results are more efficient than the Montgomery’s one.

In the two articles, the authors give also results for 6-terms and 7-terms polynomials.

The fact that we can compute efficiently the multiplication for extensions greater than 2 and 3 gives the

opportunity to consider pairing computation over elliptic curve with an embedding degree k different

from 2i3 j and can improve the implementation of pairings. But this work is still to be made.

5.5. Original representation of finite fields

In the previous section we consider efficient multiplications for a classical representation of finite fields

and extension of finite fields. But they are many ways to represent a finite field. In [22], the authors use

an original representation of finite field to provide a very efficient implementation of a pairing. This

original representation is the Residue Number System (RNS) representation and it was developed in

[7, 8]. The RNS representation relays on the Chinese remainder theorem. Let B = {m1, . . . ,mn} be a

set of co-prime natural integers, M =
n

∏

i=1

mi and 0 ≤ X < M. There exists a unique representation XB of

X in the basis B, XB = {X mod m1, . . .X mod mn}= {x1,x2, . . . ,xn}. Given XB , we can reconstruct

X using the Chinese Remainder theorem:

X =

(
n

∑

i=1

(xi ×b−1
i mod mi)×bi

)

mod M, where bi =
M

mi
.

The RNS representation is obviously very interesting for parallel computations. An efficient

multiplication in RNS representation is described in [7, 8]. This multiplication is based on the

Montgomery modular multiplication. In [22], the authors present two very efficient implementation

of a pairing algorithm on an FPGA, in RNS representation. They implement the optimal Ate pairing at

several security levels over Altera and Xilinx FPGA. They compare there result with previous work and

obtaint very nice results.

5.6. The arithmetic of Pairings

The complexity of a computation of a pairing depends on the finite field and the arithmetic underlying,

but also of the model and the equation of the elliptic curve and the choice of the coordinates. Usually,

an elliptic curve is represented using the short Weierstrass equation which is on the form E : y2 =
x3 + ax+ b, with a and b elements of the finite field Fp. In [20], Brier and Joye show that the value a

can be chosen to be −3. This value contributes to improve the computation of pairings. But, even on

a short Weierstrass equation, several cases exist, we can have b = 0, a = 0 with b a square or not just

an integer. For each option, the coordinates have also an influence on the efficiency of the computation

of a pairing. The coordinates are usually chosen between affine, Projective and Jacobian. The affine

coordinates are often put aside. Indeed, the operations over the elliptic curve in affine coordinates

involves inversion over finite fields. As inversion over a finite field is an expensive operation, one try to

avoid them so far as possible. To achieve this aim, the Projective or Jacobian coordinates are suitable,
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as by construction, the Projective and Jacobian coordinates substitute inversions in affine coordinates

into multiplications. The fact that the affine coordinates involves inversions was a drawback to their use

in pairing based cryptography. In [51], the authors analyzed the use of affine coordinates for pairing

based cryptography. They adapt two known techniques for speeding up field inversion to the pairing

based cryptography case. They found out that for high security levels, an implementation in affine

coordinates of a pairing will be much faster than an implementation in projective coordinates. The

first technique to improve the inversion consists in computing inverses in extension fields by using

towers of extension field and transform inverse computation to subfield computations via the norm map.

Using this technique, the authors reduce drastically the ratio of the costs of inversions to multiplications

in extension fields. This is very interesting for the computation of pairings over a large extension

field, typically at high level security such as 256 bits. The second trick is to take advantage of the

inversion-sharing, a standard trick whenever several inversions are computed at once. This method

involves the lecture of the binary expansion from right to left, instead of left to right. This second

method is very interesting when multi-core processors are used, indeed, it can be easily parallelized. We

can find in [51] detailed performance numbers with timing for base field and extension field arithmetic.

For security level more reasonable, the Projective and Jacobian coordinates are for now more suitable.

In [24], the authors resume, compare and improve several works dealing with the optimizations of

pairings, considering all the possibilities for the Weierstrass equation. They give efficient computations

in Jacobian and Projective coordinates. We resume there work in Table 6.

Curve Doubling Prev Doubling

Curve order Addition Result Addition

Twist deg. Result of [24]

y2 = x3 + ax Ma +(2k/d + 2)Mp + 8Sp [2] Ma +(2k/d + 1)Mp + 11Sp

any (2k/d + 12)Mp + Sp (2k/d + 10)Mp + 6Sp

d = 2,4 New coord. Jacobian

y2 = x3 + c2 (2k/d + 3)Mp + 5Sp [23] (2k/d + 3)Mp + 5Sp

3|♯E Mc +(2k/d + 3)Mp + 5Sp Mc +(2k/d + 3)Mp + 5Sp

d = 2,6 Projective Projective

y2 = x3 + b Mb +(2k/d + 2)Mp + 7Sp [2] (2k/d + 3)Mp + 8Sp

3 ∤ ♯E Mb +(2k/d + 2)Mp + 7Sp (2k/d + 3)Mp + 8Sp

d = 2,6 Projective Jacobian

y2 = x3 + b Mb +(k+ 6)Mp + 7Sp [31] Mb +(2k+ 8)Mp + 9Sp

any (k+ 16)Mp + 3Sp not reported

d = 3 Projective Projective

Table 6. Comparaison of pairings considering Weierstrass models

There exists several model of elliptic curves, for instance

• Short Weierstrass: y2 = x3 + ax+ b, for a, b in K.

• Legendre coordinates: y2 = x(x−1)(x−λ ), for λ ∈ K.

• Montgomery: by2 = x3 + ax2 + x, for a, b in K.

• Edwards coordinates: x2 + y2 = c(1+ x2y2) over K.

• Huff’s coordinates: aX(Y 2
−Z2) = bY (X2

−Z2) for a2
�= b2

�= 0 over K.
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Several works study the efficiency of an implementation of pairing over some of these models of elliptic

curves. The Edwards elliptic curves were recently introduced in cryptographie. In [32], Edwards

demonstrates that every elliptic curve E defined over an algebraic number field is birationally equivalent

over some extension of that field to a curve given by the equation:

x2 + y2 = c2(1+ x2y2). (12)

Edwards curves became interesting for elliptic curve cryptography when it was proven by Bernstein

and Lange in [18] that they provide addition and doubling formulas faster than all addition formulas

known at that time. The advantage of Edwards coordinates is that the addition law can be complete (i.e.

the formulas for adding or doubling two points are the same) and thus the exponentiation in Edwards

coordinates is naturally protected against side channel attacks. Recently, the Edwards elliptic curves

were used to compute pairings [3, 44]. In [46], the authors study the Huff’s model of an elliptic curve,

they provide explicit formulae for fast doubling and addition and also for Tate pairing computation.

Another example is the work in [72], in this work the authors consider the Selmer elliptic curves,

they present formulae for doubling, addition and pairing computations. They compare there results to

various elliptic curve models such as Weierstrass, Edwards, Hessian. There is many choices for the

equation/model of the elliptic curve and of the coordinates, the website [17] regroups every new result

on this subject. It is a very nice overview of this topic of research.

6. Conclusions

We presented the various pairings available for cryptographic use. As the pairing are aimed to be

implemented in smart cards, the efficiency of a pairing implementation is a subject of several research.

We presented optimizations developed for the improvement of a pairing implementation. We introduced

the twisted elliptic curve which leads to the denominator elimination. We constructed the extension field

Fpk using tower fields and the method for an efficient multiplication over each step of the tower. We

described efficient squaring method combine with the cyclotomic subgroup. We also highlighted the

fact that the choice of the model of the elliptic curve and the choice of the coordinates is important for an

efficient implementation. We saw that the representation of an element in the base field Fp with original

definition can leads to very efficient implementation. To conclude, the optimizations of pairing are a

very interesting point of research and a lot of scientists work hardly to find new optimizations. Further

research can follow the presented optimizations and adapt to the case of pairings over hyperelliptic

curves, or find any other point of optimizations in the implementation.
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1. Introduction

The ubiquitous environment was described as a vision for 21st century computing [1]. In the
last ten years, the ubiquitous network has become one of the remarkable trends of information
and communications technology. One of the most important characteristics of the ubiquitous
network is open access anytime anywhere. This corresponds to the mobility and diversity of
power conscious PC processors, mobile processors, cryptography processors, RFID tags, and
so forth. In view of the desire for better cost performance, simplicity, functionality, usability,
and so on, the ad hoc network is an emerging technology for next generation ubiquitous
computing [2]. However, these specific features involve fundamental issues as follows.

i. Currently, the promotive force of diversity is not the conventional wired network
based on large servers, but convenient wireless LANs and handheld small devices,
like the PDA (personal digital assistant), mobile phone and so forth. Although the
diversity of various platforms is inevitable, it also causes notorious security issues
such as insecurity, security threats or illegal attacks, such as tapping, intrusion and
pretension. Nowadays, WEP (Wired Equivalent Privacy) is not so effective for
wireless LANs. Worldwide diversity vs. the security threat are the two faces charac‐
teristic of the ubiquitous network [3]. Safety of the ubiquitous network has two
aspects. One is the front-end security of the ubiquitous device and the other is the
protection of the multimedia data itself, stored in the ubiquitous device. Neither
approach always promises complete safety, but they complement one another. A
cutting-edge technique for front-end security is the TPM (trusted platform module),
commonly known as the security chip. Since the TPM implements RSA (Rivest-
Shamir-Adelman), it works for short, password-size text data, and its major role is

© 2013 Fukase; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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implicitly digital signing. In view of the running time, the encryption of long-length
multimedia data, such as an image, is definitely outside the TPM. The other approach,
back-end security, protects huge amounts of data because multimedia information,
crucial for the interaction between ubiquitous devices and human beings, uses
massive amounts of data. Back-end security is usually covered by common key
schemes. Common key module-embedded processors are built-in cryptography
processors for IC cards and portable electronic devices.

ii. On the other hand, considering that cipher algorithms are open to third parties in the
evaluation of cipher strength, hardware specifications are more important than
cipher strength in developing an ad hoc network infrastructure. A fundamental issue
in maintaining the mobility of the ubiquitous environment is how to achieve power-
saving mobility. The power consuming factors of ubiquitous networks are large
server systems controlled by network providers and small ubiquitous platform
systems, handheld devices and so forth. These small systems consist of processors,
memory and displays. The power dissipation of memory strongly depends on that
of a memory cell and the memory space required for embedded software. LCDs
(liquid crystal displays) and processors consume similar power in running mobile
devices. While the LCD is turned on only when it displays some information,
processors are always in the standby state to receive calls. Thus, power-saving
restrictions for mobile devices are inevitably imposed on the processors.

iii. Another issue of ubiquitous computing is its strong dependency on embedded
software. This has a crucial effect on the total design of ubiquitous devices. Perform‐
able features of ubiquitous devices in processing multimedia data have mainly relied
on embedded software. For example, if a new protocol appears, embedded software
requires users to download an update package. Despite embedding, so far, it has
rapidly increased software size due to the RTOS (real time OS), firmware, application
software and so on. This results in more software costs and wider memory space.
Since cutting-edge ubiquitous devices need not only sophisticated and complicated
processing, but also power conscious high-speed operation, the embedded software
approaches taken so far will not always continue to play key roles in ubiquitous
computing.

In order to solve the fundamental issues described above, power conscious management of
ubiquitous networks and cryptographic protection of massive data spreading over ubiquitous
networks are required. It is really the practice of cryptography network security technologies
to show optimum design for the trade-off to achieve specific features of the ubiquitous
network. The double cipher scheme presented in this paper combines two cipher algorithms
[4]. One is random number addressing cryptography (RAC), closely related to the internal
behaviour of the processors. RAC is a transposition cipher devised from the direct connection
of a built-in random number generator (RNG), a register file and a data cache. The register file
plays the role of a streaming buffer. A random store, based on the direct connection, scrambles
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or transposes a series of multimedia data at random without any special encryption operation.
The other algorithm of the double cipher is a data sealing algorithm. This is implemented
during the data transfer from the register file to the data cache, by using another built-in RNG.
This complements the RAC’s shortcoming and enhances the security of the data information
as a whole.

Since the double cipher scheme uses built-in RNGs at the micro-operation level, it is more
effective than normal usage based on the processing of random number operands at the
instruction level. In addition, the double cipher scheme requires no additional chip area or
power dissipation. A linear feedback shift register (LFSR) is used as the RNG to achieve a
longer cycle with negligible additional area. Thus, the double cipher scheme is a microarchi‐
tecture-based, software-transparent hardware cipher that offers security for the whole data
with negligible hardware cost and moderate performance overhead. This is very suited to very
large scale integration (VLSI) implementation. The VLSI implementation of the double cipher
follows the multicore structure for bi-directional communication and multiple pipelines for
multimedia processing and cipher streaming [5]. The cipher streaming is executed by the SIMD
(Single Instruction stream Multiple Data stream) mode cipher and decipher codes. They do
not attach operands, as is described above, but repeat instances to transfer byte-structured data
from a register file to a data cache.

In this paper, we describe the double cipher scheme, hardware algorithm, architectural
organization, structural aspect, internal behaviour and VLSI implementation of the double
cipher in a sophisticated ubiquitous processor named HCgorilla by using a 0.18-μm standard
cell CMOS chip. We evaluate the prospective specifications of the HCgorilla chip with respect
to the hardware resource or cost, power dissipation, throughput and cipher strength. Potential
aspects compared with the usual security techniques, cipher techniques and cryptography
module-embedded processors are also described. HCgorilla is a power conscious hardware
approach that provides multimedia data with practical security over a ubiquitous network.

2. Preliminaries

The problem statement and the course of the research of this study are described in more detail
in this section. In addition, the area of application is also explained.

2.1. Trends and issues of ubiquitous networks

Faced with the progressive ubiquitous environment, we have experienced the alternative
requirements, diversity or security [1]. Figure 1 illustrates that the diversity of the various
devices has caused illegal attacks, intrusions, pretensions and so forth. When diversity is from
the small mobile phone and the PDA to large traditional servers, in normal circumstances
ubiquitous networks are functional and useful, but they are hard to control in abnormal
circumstances. Since diversity brings about open access to ubiquitous networks anytime
anywhere, this really threatens user security.
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Figure 1. Diversity vs. security threat in a ubiquitous network

In order to achieve secure ubiquitous networks, both machines and data must be protected
from abnormal phenomena. Table 1 surveys the current status of security techniques related
to the ubiquitous network. Since tremendous network issues need complicated algorithms to
detect and recognize individual phenomena, in the main, software techniques have been used.
However, they are inflexible to individual demands, and are not always sufficient from the
practical viewpoint. The hardware implementation of an IDS (intrusion detection system) and
an IPS (intrusion prevention system) is another result we exploited independently [6]. As is
clear from Table 1, cryptography is used for the protection of ubiquitous platforms. The
cryptography adopted for the front-end security of an individual machine is public key
cryptography to protect short, password-size text data. On the other hand, common key
cryptography is used for the protection of data. Comparing the numerical values in Table 1 is
irrelevant because they strongly depend on process technologies.
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Table 1. HCgorilla vs. regular security techniques
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Table 2 shows various aspects of ubiquitous media. They are classified into discrete and
streaming media. Both types are expressed by byte structure. Discrete media is still useful in
the ubiquitous environment. Interactive games use many algorithmic processes for discrete
data. Streaming media is more important because most ubiquitous applications use streaming
media. This is further divided into two types in view of its complexity. Text data is one type
of streaming data, because it is useful as refrain information in the event of a disaster. Con‐
sidering endless data is hard for mobile devices; the target of this work is discrete media and
stream data. Yet, they need a sophisticated and complicated process. Since streaming media
is massive, it is reasonable to protect the security by a common key, which is preferable to
protect large quantities of byte-structured ubiquitous information.

Discrete media Streaming media

Stream data Data stream

Definition Individual data A sequence of similar

elements

A sequence of data, which may be

different from each other

Characteristic Discrete Stream of continuous media

Size or quantity Short Long Endless

Complexity Low Medium High

Examples Games, intelligent processes Text, audio, video Seismography, tsunami, traffic

Basic structure Byte string

Buffer storage Respectable reregister file

Data han-

dling

Media Algorithmic process SIMD mode applications like signal processing, graphic

rendering, data compression, etc.

Security Public key Common key cryptography

Table 2. Ubiquitous media

Although the performable features of various ubiquitous devices illustrated in Figure 1 have
mainly relied on embedded software, such an approach inevitably exhausts much hardware
resources and results in the deterioration of speed and power, which are worsening alongside
the rapid increase in ubiquitous technologies in recent years. The majority of these technologies
are resource constrained in terms of chip area and battery energy available. It is very difficult
for the regular techniques of the massive quantity of multimedia information to satisfy the
overall demands. Thus, a drastic improvement is required for the embedded system to achieve
really promising ubiquitous devices. In this respect, a practical solution will be a security aware
high-performance sophisticated single VLSI chip processor [8].

2.2. Challenge and goal

The practices of an ad hoc environment require resource-constrained security. To achieve
mobility, various processor chips embedded in ubiquitous platforms are designed so that the
occupied area and energy budget are as small as possible [9–11]. On the other hand, the temporal
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Although the performable features of various ubiquitous devices illustrated in Figure 1 have
mainly relied on embedded software, such an approach inevitably exhausts much hardware
resources and results in the deterioration of speed and power, which are worsening alongside
the rapid increase in ubiquitous technologies in recent years. The majority of these technologies
are resource constrained in terms of chip area and battery energy available. It is very difficult
for the regular techniques of the massive quantity of multimedia information to satisfy the
overall demands. Thus, a drastic improvement is required for the embedded system to achieve
really promising ubiquitous devices. In this respect, a practical solution will be a security aware
high-performance sophisticated single VLSI chip processor [8].

2.2. Challenge and goal

The practices of an ad hoc environment require resource-constrained security. To achieve
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occupied area and energy budget are as small as possible [9–11]. On the other hand, the temporal
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formation of wireless and mobile ad hoc networks does not have the benefit of a permanent
network infrastructure but relies on the connections themselves. Thus, a practical solution to
achieve ad hoc security is single-chip VLSI processor built-in hardware cryptography. However,
to the best of our knowledge, safety aware chips to protect multimedia data over ad hoc networks
have never appeared. Thus, it is a challenging task to actualize not only the processing, but also
the protection of multimedia data by unifying the role of PC processors, mobile processors, Java
CPUs, cryptography processors and so on into a ubiquitous processor [5].

The goal of our study, described in this article, is the development of hardware cryptography,
named the double cipher, to protect multimedia data over ad hoc networks and the imple‐
mentation of the double cipher into a VLSI processor named HCgorilla. The hardware
algorithm of the double cipher is based on the analysis of the internal behaviour of processors.
The microarchitecture-level analysis is advantageous in achieving power-conscious multime‐
dia data protection with high performance. Since power consumption and throughput are the
basic metrics of processor specifications, careful attention is paid to them at each design step
from the topmost architecture level to the transistor level. Actually, in recent years, the VLSI
trend has exploited power conscious high performance not higher speed. Parallelism is really
the global standard approach to the development of contemporary VLSI processors.

2.3. Application area

Figure 2 illustrates an application scenario of mobile phones which embed HCgorilla. Here, a
standard image is multimedia data sent from the sender’s mobile phone to the receiver’s. Since
the sender and receiver embed the same cipher chip, the entire encryption of the standard
image is completely decrypted by the receiver. HCgorilla is able to carry out simultaneous
processing of the encryption and decryption, taking into account bi-directional communication
over networks. The common key is delivered ad hoc without relying on the network provider.
Of course, public key infrastructure can be available for common key delivery. An electronic
signature is also useful to certificate the message by using a security chip.

Figure 2. Application scenario
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The double cipher is applicable to any multimedia data because

i. the double cipher falls into the category of block cipher as described in Chapter 3,

ii. multimedia data (image, audio, text) is byte structured as shown in Table 2.

Image data is expressed by PPM (portable PixMap), JPEG (joint photographic expert group),
BMP (bit MaP) and so on. Figure 3 exemplifies the PPM image file of a standard image. This
image has 256 lines and each line consists of 256 pixels. A PPM file consists of a header and
pixel data. The header contains the PPM format ID, number of pixels in width and height and
graduation. The pixel data contains all the graduation elements that are the 1-byte quantization
of R-, G-, or B-elements. The 1-byte R-, G-, or B-graduation elements are the target of the double
cipher process.

Figure 3. PPM image file

The double cipher can be applicable to cryptographic streaming. Here, the stream is a sequence
of pixels, and the cryptographic streaming is the continuous encryption or decryption of a
whole image and a moving picture. In view of the video display, the flame rate is 30 flames/
sec. So, the resolution of the PPM format requires a bandwidth of

256×256×3×30bytes / sec≈6Mbytes / sec≈50 Mbps (1)

On the other hand, the resolution of a QVGA (quarter video graphics array) format (320×240
pixels/flame) requires a bandwidth of

0.23×30bytes / sec≈55 Mbps (2)

Figure 4 shows the scanning modes of the image data. The continuous scan follows the exact
sequence of the data format. The discontinuous scan accesses the data format in a predeter‐
mined order of discrete addresses. The mixed scan mode is also shown.
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Figure 4. Scanning modes of an image (a) Continuous scan (b) Discontinuous scan (c) Mixed scan

Figure 5 illustrates the structure and encryption of audio data. This is also formed in bytes. In
the case of WAV (waveform audio file) format, it consists of a header and waveform data
derived by sampling and quantizing the analogue data. The quantization derives the byte form
of a sampling bit at each sampling point.

Figure 5. Audio data

3. Double cipher

The cipher strength does not merely depend on the algorithm of encryption itself, taking into
account a round robin attack. It does not seek how to encrypt, but searches a key used in the
encryption. Since the key is produced by an RNG, it is the essence of cipher strength. For
example, the Vernam cipher lacks sealing ability, that is, the information of a plaintext is leaked
by simply observing the ciphertext on the communication channel. Yet, it is assured that the
Vernam cipher is ideally strong due to the use of a full length random number string.
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In general, the cipher strength can be improved by increasing not only the key length but also
all kinds of bit operations, which can be seen in the improvement from DES (data encryption
standard) to AES (advanced encryption standard) [12]. This is based on the general rule of
deciphering a secret key cryptography that seeks an unknown key or password, assuming that
the plaintext, ciphertext and encryption algorithms are open [13]. According to this, the author
proposes the double cipher scheme with two RNGs [4]. Consequently, this increases the key
length. In practice, the double cipher approach promises strong cipher strength by providing
double kinds of operations. Another advantage of this approach is power consciousness with
negligible hardware cost and high throughput due to the microarchitecture-level hardware
mechanism.

3.1. Proposed scheme

The hardware algorithm of the double cipher is proposed based on the analysis of the internal
behaviour of the processors. The additional chip area and power dissipation required for this
algorithm are negligibly small. The first scheme, RAC, is a transposition cipher devised from
the direct connection of a built-in RNG (LFSR), register file (buffer of external data) and a data
cache. A random store based on the direct connection scrambles or transposes a series of
multimedia data at random without any special encryption operation. The second scheme is
a data sealing algorithm implemented during the data transfer from the register file to the data
cache. This complements the RAC’s shortcoming and enhances the security of data information
as a whole.

Figure 6 shows the basic algorithm of the double cipher in more detail. Here, d1d2d3d4d5

exemplifies a plaintext block; di (i is an integer) is a 1-byte character, graduation element, and
quantization of a sampling bit when the plaintext is formed into text style, image, and audio,
respectively; 30241 is the corresponding key or the output of the first RNG, LFSR1;
h(d2)h(d5)h(d3)h(d1)h(d4) is a ciphertext that is the result of the double encryption. In the execution
of the RAC, the plaintext and LFSR1’s output are synchronized according to their sequence.
For example, the first data “d1” and the first random number “3” are synchronized. During the
storage in the third location of the data cache, a hidable function h works for the plaintext block.
The sequence of a random addressing store like this results in the formation of a cipher in the
data cache.

Double cipher encryption proceeds according to the following micro-operations.

i. Make the LFSR1 output integer specify a register file address.

ii. Synchronize a data cache address with the current clock count.

iii. Transfer the specified register file’s content to the synchronized data cache address.
During the transfer, a hidable function works for the plaintext block by using LFSR2
output.

The sequence of a random addressing store like this results in the formation of a cipher in the
data cache. Double cipher decryption similarly proceeds. These micro-operations are practiced
by a simple wired logic, which is effective in maintaining usability, speed and power con‐
sciousness.
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Figure 4. Scanning modes of an image (a) Continuous scan (b) Discontinuous scan (c) Mixed scan
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Since multimedia data is much longer than the plaintext shown in Figure 6, the adoption of
block ciphers is inevitable in order to satisfy the demand for data quantity and performance.
Figure 7 illustrates the relation among plaintext, blocks, dominant stages of the cipher pipeline
(shortened to pipes hereafter) and the double cipher process. The relation between the cipher
pipe and core is clear from Figure 8. The reason that both encryption and also decryption are
shown in Figure 7 is that a single ubiquitous processor should cover bi-directional communi‐
cation over networks as described in Section 2.3. A practical buffer for the external plaintext
or ciphertext data is a register file whose space and speed are limited. So, the external data is
divided into blocks and stored in a register file. The transfer of the block to the register file is
assumed to be in DMA (direct memory access) mode, though it is not our concern in this study.

Figure 7. Double cipher mechanism within a single ubiquitous processor

Figure 6. Double cipher
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Regarding the quantitative aspect of the double cipher process, the double cipher scheme
regulates the block length to be the same as a buffer size. On the other hand, the block width
is usually fixed to a byte because ubiquitous media takes the form of a byte-structured stream.
The extensibility of the block structure is useful in high-speed processing. Another effect of
the extension of the block length is to make the key length long, and thus the strength of the
double cipher is expected to be strong in practice. The relation between the block, n-bit LFSR,
register file and data cache is proved as follows.

No.of blocks=plain or ciphertextsize / block size (3)

Block size= logical space size (4)

Block's word length= logical space length (5)

2n =register file's logical space size=data cache's logical space size (6)

The block transfer is subject to transposition and substitution ciphers. The interaction between
the block, register file, data cache and LFSR is as follows. Core1 carries out RAC by making
the LFSR1 output specify a register file address, synchronizing a data cache address with the
current clock count, and transposing the specified register file’s content to the synchronized
data cache address. Then, LFSR2 makes the hidable function h on the data lines work for the
substitution of the transferred data. The resultant content, stored in the data cache, is the
encryption of the register file’s content. The sequence of random addressing storage like this
results in the formation of a cipher in the data cache. Double cipher decryption similarly
proceeds within Core2.

3.2. VLSI implementation

According to the micro-operations shown in Figure 7, the architecture of the double cipher
scheme-implemented VLSI processor is designed as shown in Figure 8. It is a ubiquitous
processor named HCgorilla. The reason it is called a ubiquitous processor is due to its specific
features for ubiquitous computing being power consciousness to achieve mobility, cost
performance, simplicity, functionality, usability to actualize diversity and secureness to
protect spreading platforms. HCgorilla is one of the most promising solutions for ubiquitous
computing.

The correspondence of the double core, plaintext/ciphertext, register file and data cache is
obvious in Figures 7 and 8. The double core contributes to cover both bi-directional commu‐
nication and the recent trend of parallelism. Media pipes with sophisticated structures are
newly added in Figure 8. This aims to cover media processing, indispensable for ubiquitous
computing. Thus, HCgorilla unifies basic aspects of PC processors, mobile processors, media
processors, cryptography processors and so forth and follows multicore and multiple pipe‐
lines.
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processors, cryptography processors and so forth and follows multicore and multiple pipe‐
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Each aspect specific to ubiquitous computing is achieved as follows. To begin with, secureness
is achieved by the cipher pipe. The cipher pipe undertakes double encryption during the
transfer from the register file to the data cache. While an LFSR controls the transposition cipher,
RAC, another LFSR controls a substitution cipher or data sealing implemented by the hidable
unit, HIDU (HIdable Data Unit). The double cipher executes the SIMD mode cipher and
decipher codes. They do not attach operands, but repeat instances to transfer byte-structured
data from a register file to a data cache. rsw encrypts the content stored in one half of the register
file and rlw decrypts the content of the other half of the register file. These codes occupy the
cipher pipe as long as the corresponding data stream continues. Thus, the SIMD mode
sequence forms double cipher streaming.

The second aspect, power conscious resource-constrained implementation, is achieved by the
design steps in the following.

i. Architecture level parallelism: HCgorilla exploits parallelism not higher speed in
order to achieve power consciousness. Parallelism at the architecture level takes a
multicore and multiple pipeline structure. Each core is composed of Java-compatible
media pipes and cipher pipes. In addition, the register file and data cache are shared
by the double core. Following the HW/SW co-design approach, two symmetric cores
run multiple threads in parallel.

ii. Circuit module level: LFSR is used as the RNG built in the cipher pipe. LFSR falling
into the category of M-sequence requires minimal additional chip area and power
dissipation. A tiny n-bit LFSR produces the huge 2n-length random numbers. 1K-,
1M-, 1G-byte length texts require only 10-, 20-, and 30-bit LFSRs respectively.

Figure 8. Architecture of HCgorilla
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iii. Instruction level parallelism (ILP): A wave-pipelined MFU (MultiFunctional Unit) is
built in the execution stage of the media pipe to achieve effective ILP. This is the
combination of wave-pipelining and multifunctionalization of the arithmetic logic
functions for media processing. Since the latency of the waved MFU is constant,
independent of the arithmetic logic operations, the media instructions are free from
scheduling [14]. The wave-pipelining is effective also in achieving power conscious
high speed.

iv. Microarchitecture level: Gated clocking is applied as described below.

Another aspect of HCgorilla, specific for ubiquitous computing, is its functionality and
usability. Usability is an indispensable aspect of a multimedia mobile embedded system.
Platform neutrality especially is very promising in providing multimedia entertainment such
as music and games, the GPS (Global Positioning System) and so forth [15, 16]. In order to fulfil
this feature, sophisticated language processing is required. In this respect, Java is expected to
be useful. Thus, the media pipe shown in Figure 8 is a sort of an interpreter-type Java CPU [17].
The instruction set of HCgorilla is composed of 58 Java-compatible instructions together with
two SIMD mode cipher instructions.

In Figure 8, the “Gated clock” block is a circuit module to control gated clocking [18]. Gated
clocking is a cell-based approach for power saving at the microarchitecture level. It stops the
clocking of such circuit blocks with low activity that waste switching power. Since leakage
power is not a critical factor in the case of the 0.18-μm CMOS standard cell process used in this
study, the gated clock is very effective for power saving. HCgorilla controls the clocking of the
stack access and execution stages where switching probability is higher. In addition, the media
pipe introduces scan logic for DFT (design for testability). This makes the pipeline register a
shift register by serially connecting the FFs in order to read, write, and retrieve the pipeline
stage status. The retrieval is useful for detecting and solving design errors. The scan logic is
useful for the verification of the media pipe with a sophisticated structure. On the other hand,
the scan logic is not applied to the cipher pipe because the cipher pipe is simpler and easier to
verify. In addition, the scan logic and hardware cryptography are inconsistent with each other
because the scan logic is apt to induce side-channel attack [19]. While traditional cryptographic
protocols assume that only I/O signals are available to an attacker, every cryptographic circuit
leaks information through other physical channels. An attack that takes advantage of these
physical channels is called a side-channel attack. Side-channel attacks exploit easily accessible
information, such as power consumption, running time, I/O behaviour under malfunctions
and electromagnetic emissions.

Although Java is preferable as described above, in view of language processing, Java language
systems are actually more complicated than regular language systems. The platform neutrality
of Java applications is due to an intermediate form or class file produced by using Java
compilers. This is really convenient for the JVM (Java virtual machine), but secondary for a
processor itself. Since ubiquitous clients use small scale systems, the pre-processing of
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complicated class files should be covered by large servers with Java applications. Even Java
bytecodes have a problem, that is, the running of Java bytecodes is time-consuming due to the
interpreting process. Although JVM or JIT (just-in-time compilation) built-in runtime systems
are common for mobile devices, like mobile phones, they need more ROM (read only memory)
space. This degrades the usability, cost and performance features of small ubiquitous devices.

In order to solve the issues described above, we have so far developed the software support
system for the HCgorilla chips shown in Figure 9 [20]. The system is composed of a Java
interface and parallelizing compilers. For example, the software support may run on proxy
servers. Web delay, installing the software support on web servers, is one of the anticipative
drawbacks of this approach. Obviously, it will take some time to transfer the executable code
over the Internet. However, the transfer of class files to commercial processors also takes some
time. In addition, the transfer time is not so important for the evaluation of web delays [21].
The main factor in web delays is the response time of the web servers. Another concern with
this approach is maintaining security during the transfer. However, transferring the executable
codes over the Internet does not generate a trust problem, because Java basically seeks the
global standard of the Internet.

Figure 9. HCgorilla, web server, software support, and parallelizing compiler

HCgorilla, shown in Figure 8, is implemented in a 0.18-μm CMOS standard cell chip. The
design environment is summarized in Table 3. Figure 10 shows the chip structure, die photo
and floor planning of HCgorilla.7. This corresponds to Figure 8.
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Software

OS Red Hat Linux 4/CentOS 5.4

Synthesis tool Synopsys - Design Compiler D-2010.03

Simulation tool Synopsys - VCS version Y-2006.06-SP1

Physical Implementation tool Synopsys - IC Compiler C-2009.06

Verification tool Mentor - Calibre v2010.02_13.12

Equivalent verification tool Synopsys – Formality B-2008.09-SP5

Static Timing analysis tool Synopsys – Primetime pts,vA-2007.12-SP3

Language

Synthesis VHDL

Simulation Verilog-HDL

Technology

ROHM 0.18-μm CMOS Kyoto univ. Standard Cell Library

Table 3. Design environment of HCgorilla

(a) (b) 

Figure 10. HCgorilla.7 (a) Structure (b) Die photo and floor planning

4. Evaluation and discussion

The overall evaluation of the HCgorilla chip ranging from the hardware cost, power dissipa‐
tion, and throughput to cipher strength are described. Except for the hardware cost, quanti‐
tative measurement of the real chip and actual processor is difficult at this point. However,
the simulation-based evaluation using the powerful CAD tools shown in Table 3 is reasonable
enough. We prepared a DUV (design under verification) simulator and a test program run on
the HCgorilla chip. Employing netlist, extracted from the chip layout, and analysing the
algorithmic complexity are partly introduced. Table 4 summarizes the basic evaluation of
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HCgorilla.7 compared with a previous derivative that we developed. These employ the same
0.18-μm CMOS standard cell technology. The overall aspects, chip parameters, and hardware
specifications are also shown in this table.

HCgorilla.6 HCgorilla.7

Design Rule ROHM 0.18-μm CMOS

Wiring 1 poly Si, 5 metal layers

Area Chip 2.5×5 mm 5.0 mm×7.5 mm

Core 4.28 mm×6.94 mm

Assembly Pad Signal 158

VDD/VSS 32

Package PGA257

Power supply 1.8 V (I/O 3.3 V)

Power consumption 275 mW 274 mW

Instruction cache 16 bits×64 words×2

Data cache 16 bits×128 words×2

Stack memory 16 bits×16 words×8

Register file 16 bits×128 words

RNG 6 bits×2

No. of cores 2

ILP degree 4

Clock frequency 200 MHz

Throughput Media pipe 0.17 GIPS

Cipher pipe 0.1-0.2 GOPS

Transfer rate 160-320 Mbps

Table 4. Prospective specifications and potential aspects of HCgorilla chips

4.1. Hardware cost and power consumption

The hardware resource or cost is measured by the area occupied on the real chip, shown in
Figure 10 (b). Figure 11 (a) shows the sharing of the occupied area. The portions denoted by
“Stack access” and “Waved MFU” show the sum of four media pipes. The portion denoted by
“Cipher pipes” shows the sum of four RNGs, register file and two HIDUs. The portion of the
“D cache” is the sum of the media data cache and the cipher data cache. The media pipe, cipher
pipe, and data cache employ 24,367, 270, and 20,625 cells, respectively. HCgorilla.7 and
HCgorilla.6 have almost the same architecture. Yet, their chip areas are different. This is due
to whether or not floor planning is undertaken. Since floor planning takes more area, it
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contradicts low resource implementation. In addition, a clear layout often withstands side-
channel attacks, tampering and so forth. Nevertheless, floor planning is indispensable for local
and global clock separation, effective gated clocking and so on. Figure 11 (b) demonstrates the
distribution of power dissipation derived from static evaluation, which summarizes the mean
value of every cell. It does not take into account the switching condition. Figure 11 (c) shows
the register file length dependency of power dissipation. The register file length swings
backwards and forwards from HCgorilla.7’s register file length, 128 words.

Figure 11. Overall evaluation of HCgorilla.7 (a) Occupied area (b) Power distribution (c) Power dissipation vs. register
file length

4.2. Throughput

The cipher pipe’s throughput, that is the mean value of the number of double cipher operations
per unit of time, is derived from

Throughput OPS = no.of double cipher operations
running time sec

(7)
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Since the running in Equation (7) is the repetition of the block transfer, rewriting the register
file and double cipher operation, the running time is derived from

Running time=m(t1 + t2) + t3    (8)

Here, m is the number of blocks. The block width is usually fixed to a byte because ubiquitous
media, like pixels, takes the form of a byte-structured stream. As a consequence, the register
file width is evaluated by bytes. On the other hand, the register file length is measured
expediently by word as shown in Figure 7. t1 is block access time or the latency taken to transfer
a block to the register file. t2 is the time of an SIMD mode cipher operation. t3 is the latency
taken to transfer a block from the data cache. t2 is evaluated by the DUV simulator that
simulates a test program run on the HCgorilla chip. As for t1 and t3, let the memory access
speed of mobile phones be 208 to 532 Mbytes/s and the mean value be adopted. Although such
a method based on Equation (8) compromises the analysis, simulation and measurement, it is
reliable considering that the cipher streaming of media data is undertaken regularly.

The cipher pipe’s transfer rate, that is the mean value of the amount of transferred data per
unit of time, is given by

Transfer rate bps = full text size b
transfer time sec

  (9)

Identifying the transfer time in the denominator of Equation (9) with the running time in
Equation (8), the following relation is derived.

Transfer rate Mbps =throughput GOPS ×register file width b ×103 (10)

Figure 12 shows the register file length dependency of HCgorilla.7’s throughput in running a
test program as shown in Figure 13. The register file length swings similarly to Figure 11 (c).
The test program is composed of the double cipher and media processing. The plaintext used
in the double cipher processing is 240×320-pixel QVGA format data. Then, the time of the SIMD
mode cipher operation, t2, is derived and the throughput in GOPS is derived from Equations
(8) and (7). Similarly, the throughput in GIPS is derived from

Throughput IPS = no.of instructions
running time sec

 (11)

The running time of the media processing is also derived by using the DUV simulator that
simulates the test program. The media pipe’s throughput is almost constant in Figure 12. This
is because the clock speed is kept constant in varying the length of the register file.

In order to justify the instruction scheduling the free media pipe, the media processing of the
test program is coded in three ways, that is, routines A, B, and C. These are distinguished in
that the variable k and loop count are integers or floating point numbers. Routine A uses only
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integers and Routine B floating point numbers. Routine C uses both integer and floating point
numbers. The hardware parallelism is utilized by dividing the summation into four threads
and assigning them into four stacks in order to make full use of the two waved MFUs. The
simulation result shows that the media pipe’s throughput differs little between routines A, B,
and C.

4.3. Cipher strength

Figure 14 shows how to measure the double cipher strength by experimenting with a rough-
and-ready guess or round robin attack in a ubiquitous environment, where HCgorilla built-in
platforms are used. The cipher strength is the degree of endurance against attack by a malicious
third party. The attack is the third party’s irregular action to decipher, break, or crack the
cipher. This is clearly distinguished from decryption, that is, the right recipient’s regular
process of recovering the plaintext by using the given key.

Figure 12. Throughput vs. register file length

Figure 13. A test program and the internal behaviour of HCgorilla
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Figure 14. Measurement of double cipher strength (a) Round robin attack (b) Measurement flow

According to a normal scenario, the rules applied in deciphering the secret key cryptography
in Figure 14 are as follows.

i. A plaintext, a ciphertext and the cipher algorithm are open to third parties.

ii. The key or the initial value of the RNG used in encryption is secret from third parties,
though it is open to the right recipient.

A true key is sought out in deciphering. Sometimes it is called a password. The reason a
plaintext and a ciphertext are open is because they are numerous and so, in turn, their quantity
is beyond protection. In addition, it is reasonable that the cipher algorithm, or its specification,
is open because its value is in its usability in the communication stages. This demands the
spread of the algorithm in certain communities.

LFSR1 and LFSR2 in Figure 14 are RNGs for the double cipher built in the cipher pipes of a
sender and a right recipient. They are also used by third parties according to rule (a). Key1 and
Key2 are the initial values of LFSR1 and LFSR2 issued by the sender. Further encryption of
these secret keys that are the target of attack is conventionally applied to maintain their
confidentiality. For example, WEP cipher keys are encrypted by the RC4 cipher. In Figure 14,
a public key system is available to exchange the key between a sender platform and a right
recipient platform.

Text1 is a plaintext/ciphertext and Text2 is a ciphertext/plaintext derived by applying Key1
and Key2 to Text1. KeyA and KeyB are the guesses for Key1 and Key2 and are the initial values
of the third party’s LFSR1 and LFSR2. RNGA and RNGB, which are completely independent
of LFSR1 and LFSR2, are used for rough-and-ready guesses or random guesses by the third
party. Text3 is the guess of Text1 by the third party. When Text3 disagrees with Text1, one of
RNGA and RNGB is forced to proceed to the next stage. If the disagreement continues by the
end of the cycle of random number generation, the comparison of Text3 and Text1 is repeated
by using the other RNG. Thus, the round robin attack against the double cipher undergoes
nested loops.

From the discussion described above, the cipher strength is given by
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Cipher strength=time for the round robin attack=  
=no.of round robin attacks×clock cycle time≤2LFSR1 size+LFSR2 size ×clock cycle time

(12)

Since

LFSR1 or LFSR2 size≥ log2{ register file length
2 } (13)

holds from Figure 13, the register file length is a critical factor of cipher strength. However,
enlarging memory size surely causes an increase in power dissipation, the deterioration of
clock speed, throughput and so forth. Thus, the demand of cipher strength is inevitably limited.

Figure 14 (b) shows the flow of measuring the number of round robin attacks in Equation
(12). A result is achieved for every round robin attack. j is the number of blocks. The reason
the measurement steps are distinguished in the cases of j=0 and j>1 is because the same random
number sequence is issued for all the blocks from Figure 13. k is the number of RAC trial attacks.
l is the number of HIDU trial attacks. Counting k and l through the experiment, the double
cipher strength is derived from the number of nested loops or the time needed to decipher.
This evaluates the degree of endurance or the strength. Actually, the cryptographic strength
is the number of attack trials multiplied by the time for decryption. Each of the nested loops
guesses a key at random, decrypts the ciphertext by using the key and judges if the decipher
is successful.

Figure 15 shows the cipher strength achieved by practicing the method shown in Figure 14
and by using the 240×320-pixel QVGA format data, which is the same test data as is used by
the test program shown in Figure 13. Note that the test data does not affect the cipher strength
from Figure 13 and Figure 14 (b). It depends entirely on the block size or the half size of the
register file because the blocks, after the success of the first attack, are simply decrypted by the
known key. The abscissa is notched by the full length of the register file and the half size
indicates a logical space. Although, from Table 3, HCgorilla.7’s register file length is 128 words,

Figure 15. Cipher strength vs. register file length
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to understand the dependency of the cipher strength, the register file length is varied from 32
to 512 words. Correspondingly, the size of LFSR is varied from 5 to 9 bits. The measurements
are undertaken five times for each length. The dotted lines show the upper limit or the
maximum number of the round robin attacks in the right hand side of Equation (11). The
maximum strength of the double cipher is proportional to 2LFSR1 size+LFSR2 size from Figure 14 (b).
Similarly, the single cipher reaches 2LFSR1 size.

4.4. Discussion

Overall, the discussion is based on the evaluation described above. In view of the cipher
strength, Figure 15 indicates that a longer buffer size is desirable. The double cipher increases
the cipher strength as the key length or the cycle of random numbers expands. Although the
hardware implementation of longer cycle random number generation is very easy, it surely
involves a power consuming increase in the size of the stream buffer or register file. Consid‐
ering that cipher algorithms are open to third parties in the evaluation of cipher strength,
hardware specifications are more important than cipher strength in developing HCgorilla.
While the power dissipation rapidly increases from the 128-word length in Figure 11 (c), the
cipher pipe’s throughput almost saturates at the 128-word length in Figure 12. The 128-word
length is the optimum buffer size because (i) the power dissipation of mobile processors is
usually less than 1 watt, and (ii) the cipher pipe’s transfer rate shown in Table 4 is comparable
to that of an ATM.

In view of cipher streaming, 0.1 GOPS is allowable for video format, because the running time
used for cipher streaming occupies a very small portion of the video processing time. Actually,
1-Mbyte of text forms 4.3 flames of QVGA format. It takes 143 msec in video processing. The
running time of cipher streaming is only 3.6% of 143-msec video processing. On the other hand,
a 1-minute video takes 2.2-sec running time for cipher streaming, because, as shown in
Equation (2), the text size is 414 Mbytes from the bandwidth. In the case of PPM format, 1-
Mbyte of text forms 5 flames. This takes 167 msec in video processing, that is, only 3%. Then,
as shown in Equation (1), a 1-minute video’s text size is 360 Mbytes from the bandwidth. In
this case, cipher streaming takes only 1.9 sec.

However, HCgorilla’s throughput in GOPS is not always reasonable in view of CPU perform‐
ance. The throughput of commercial mobile processors is more than 10 GOPS, though this has
the benefit of the cutting-edge technologies of process, clock and hardware parallelism. In
order to further enhance HCgorilla’s GOPS value, which directly affects the increase in Mbps
value, the running time should be decreased from Equation (7). This is possible with respect
to the following strategies.

i. Reduce t1 and t3 by using a memory buffer with faster access speed.

ii. Reduce the summation of block access and transfer times, ∑(t1+t3), by increasing the
register file size. Expanding the register file length leads to an increase in cipher
strength. However, it needs to take into account the trade-off between throughput
and power dissipation. Judging from Equation (7), increasing the register file size
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causes more power dissipation. In fact, from Figure 11 (c), the power dissipation
rapidly increases from the 128-word length.

iii. Reduce t2 by the increase in speed of the cipher pipe’s clock. Increasing the number
of pipeline stages is also useful for this aim.

Table 5 summarizes various aspects of the double cipher vs. usual common key ciphers. The
double cipher, especially RAC, has the following characteristic aspects.

i. RAC simplifies the processing of multimedia data, because RAC directly handles a
byte string whose structure is the same as that of the multimedia data as shown in
Table 2. The effect of simplicity ranges over every aspect.

ii. RAC allows expandable block length. Different from usual common key ciphers, RAC
does not fix the block length, but regulates it to be the same as the buffer size.
Although the register file’s logical length is 64 words at this point, we are planning
to increase it.

iii. RAC handles wider blocks. The byte string is wider than the bit string used by other
usual ciphers. At this point, the width is 2 bytes and is 16 times wider.

iv. RAC encrypts a plaintext block without any arithmetic logic operation. The cipher
mechanism due to the random transfer between a register file and a data cache is
quite different from other ciphers.

Block Cipher means
Through-

put
Running

time
Cipher

strength
ResourceString

unit
Length Key

Transforma
tion

Double
cipher

RAC Byte As long as a buffer
(register file) length

Needless High Medium Practically
strong

Small

Data
sealing

Bit Bitwise XOR

Vernam Bit Full length Short Strong Large

Stream LFSR A few bits or a
character

Medi-um Medi-um Small

A5

AES-CTR 128 bits 1-2 times
length of
AES key

Bitwise XOR,
scramble,
shift, etc.

Long Strong Large

Block AES

DES 64 bits

Table 5. Double cipher vs. regular common key cryptography

These aspects allow double cipher higher throughput, shorter running time and practical
strength. The throughput is given by the product of block data size and clock frequency,
assuming the processing of one block per clock. Thus, higher clock frequency together with
expandable data size provides higher throughput. Since the block data size is the product of
expandable block length and width, it is allowed to increase with ease. The expandable block
length allows the double cipher to have practical cipher strength. The extension of the block
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length surely makes the key length long. Thus, the double cipher strength is expected to be
strong in practice, because the cipher strength is closely related to the key length. The evalu‐
ation of running time is based on computational complexity and the dominant factor is the
total number of iterative loops. AES has nesting loops for arithmetic, logic and functional
operations. The first loop is for matrix operation and the second for rounds. However, RAC is
released from such complexity.

5. Conclusion

The author has proposed a cipher scheme useful in practice for ad hoc networks with tempo‐
rarily sufficient strength. The proposal is based on two cipher schemes. The first scheme is
based on RAC and the second uses a data sealing algorithm. This double cipher scheme can
be implemented in a security aware, power conscious and high-performance single VLSI chip
processor by using built-in RNGs. Streaming the buffer size is determined from the trade-off
between cipher strength, power dissipation and throughput. In practice, this is important
because hardware specifications are more important than cipher strength in VLSI implemen‐
tation.

HCgorilla is a sophisticated ubiquitous processor implementing the double cipher scheme.
The VLSI implementation of HCgorilla is undertaken by using a 0.18-μm standard cell CMOS
chip. The hardware cost, power dissipation, throughput and cipher strength of the latest
HCgorilla chip are evaluated from real chip, logic synthesis and simulation by using CAD
tools. Examining algorithmic complexity is partly used. The evaluation shows that HCgorilla
is a power conscious, high-performance hardware approach that treats multimedia data with
practical security over a ubiquitous network.

The future work of this research is the implementation of the double cipher into HCgorilla’s
media pipe. Although the cipher pipe and the media pipe are explicitly distinguished from
each other in this study, the mixing of instruction scheduling free media processing with cipher
processing at the microarchitecture level will further contribute power conscious security in
ad hoc networks. Since such improvement applies the scan logic to encrypted data flow, an
additional problem is raised, that is, whether the scan logic is able to avoid attacks by third
parties. Apart from the disclosure of cipher algorithms, a design tolerant to side-channel attack
and resistant to tamper is inevitable for VLSI implementation.
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length surely makes the key length long. Thus, the double cipher strength is expected to be
strong in practice, because the cipher strength is closely related to the key length. The evalu‐
ation of running time is based on computational complexity and the dominant factor is the
total number of iterative loops. AES has nesting loops for arithmetic, logic and functional
operations. The first loop is for matrix operation and the second for rounds. However, RAC is
released from such complexity.

5. Conclusion

The author has proposed a cipher scheme useful in practice for ad hoc networks with tempo‐
rarily sufficient strength. The proposal is based on two cipher schemes. The first scheme is
based on RAC and the second uses a data sealing algorithm. This double cipher scheme can
be implemented in a security aware, power conscious and high-performance single VLSI chip
processor by using built-in RNGs. Streaming the buffer size is determined from the trade-off
between cipher strength, power dissipation and throughput. In practice, this is important
because hardware specifications are more important than cipher strength in VLSI implemen‐
tation.

HCgorilla is a sophisticated ubiquitous processor implementing the double cipher scheme.
The VLSI implementation of HCgorilla is undertaken by using a 0.18-μm standard cell CMOS
chip. The hardware cost, power dissipation, throughput and cipher strength of the latest
HCgorilla chip are evaluated from real chip, logic synthesis and simulation by using CAD
tools. Examining algorithmic complexity is partly used. The evaluation shows that HCgorilla
is a power conscious, high-performance hardware approach that treats multimedia data with
practical security over a ubiquitous network.

The future work of this research is the implementation of the double cipher into HCgorilla’s
media pipe. Although the cipher pipe and the media pipe are explicitly distinguished from
each other in this study, the mixing of instruction scheduling free media processing with cipher
processing at the microarchitecture level will further contribute power conscious security in
ad hoc networks. Since such improvement applies the scan logic to encrypted data flow, an
additional problem is raised, that is, whether the scan logic is able to avoid attacks by third
parties. Apart from the disclosure of cipher algorithms, a design tolerant to side-channel attack
and resistant to tamper is inevitable for VLSI implementation.
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1. Introduction

Broadly speaking, cryptography is the problem of doing communication or computation
involving two or more parties who may not trust one another. The best known cryptographic
problem is the transmission of secret messages. Suppose wish to communicate in secret. For
example, you may wish to give your credit card number to a merchant in exchange for goods,
hopefully without any malevolent third party intercepting your credit card number. The way
this is done is to use a cryptographic protocol. The most important distinction is between
private key cryptosystems and public key cryptosystems.

The way a private key cryptosystem works is that two parties, ‘Alice’ and ‘Bob’, wish to
communicate by sharing a private key, which only they know. The exact form of the key doesn’t
matter at this point – think of a string of zeroes and ones. The point is that this key is used by
Alice to encrypt the information she wishes to send to Bob. After Alice encrypts she sends the
encrypted information to Bob, who must now recover the original information. Exactly how
Alice encrypts the message depends upon the private key, so that to recover the original
message Bob needs to know the private key, in order to undo the transformation Alice applied.

Unfortunately, private key cryptosystems have some severe problems in many contexts. The
most basic problem is how to distribute the keys? In many ways, the key distribution problem
is just as difficult as the original problem of communicating in private – a malevolent third
party may be eavesdropping on the key distribution, and then use the intercepted key to
decrypt some of the message transmission.

One of the earliest discoveries in quantum computation and quantum information was that
quantum mechanics can be used to do key distribution in such a way that Alice and Bob’s
security cannot be compromised. This procedure is known as quantum cryptography or
quantum key distribution (abbreviated QKD). The basic idea is to exploit the quantum
mechanical principle that observation in general disturbs the system being observed. Thus, if

© 2013 Tan; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Tan; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[16] Kochnev, D. S, & Terekhov, A. A. Surviving Java for Mobiles. IEEE Pervasive Com‐
puting (2003). , 2(2), 90-95.

[17] Chen, K-Y, Chang, J. M, & Hou, T-W. Multithreading in Java: Performance and Scala‐
bility on Multicore Systems. IEEE Transactions on Computers (2011). , 60(11),
1521-1534.

[18] Lee, Y, Jeong, D-K, & Kim, T. Comprehensive Analysis and Control of Design Pa‐
rameters for Power Gated Circuits. IEEE Transactions on VLSI Systems (2011). , 19(3),
494-498.

[19] Alioto, M, Poli, M, & Rocchi, S. A General Power Model of Differential Power Analy‐
sis Attacks to Static Logic Circuits. IEEE Transactions on VLSI Systems (2010). , 18(5),
711-724.

[20] Fukase, M. A Ubiquitous Processor Embedded With Progressive Cipher Pipelines.
International Journal of Multimedia Technology (2013)., 3(1), 31-37.

[21] Zari, M, Saiedian, H, & Naeem, M. Understanding and Reducing Web Delays. Com‐
puter Magazine (2001). , 34(12), 30-37.

Theory and Practice of Cryptography and Network Security Protocols and Technologies110

Chapter 5

Introduction to Quantum Cryptography

Xiaoqing Tan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56092

1. Introduction

Broadly speaking, cryptography is the problem of doing communication or computation
involving two or more parties who may not trust one another. The best known cryptographic
problem is the transmission of secret messages. Suppose wish to communicate in secret. For
example, you may wish to give your credit card number to a merchant in exchange for goods,
hopefully without any malevolent third party intercepting your credit card number. The way
this is done is to use a cryptographic protocol. The most important distinction is between
private key cryptosystems and public key cryptosystems.

The way a private key cryptosystem works is that two parties, ‘Alice’ and ‘Bob’, wish to
communicate by sharing a private key, which only they know. The exact form of the key doesn’t
matter at this point – think of a string of zeroes and ones. The point is that this key is used by
Alice to encrypt the information she wishes to send to Bob. After Alice encrypts she sends the
encrypted information to Bob, who must now recover the original information. Exactly how
Alice encrypts the message depends upon the private key, so that to recover the original
message Bob needs to know the private key, in order to undo the transformation Alice applied.

Unfortunately, private key cryptosystems have some severe problems in many contexts. The
most basic problem is how to distribute the keys? In many ways, the key distribution problem
is just as difficult as the original problem of communicating in private – a malevolent third
party may be eavesdropping on the key distribution, and then use the intercepted key to
decrypt some of the message transmission.

One of the earliest discoveries in quantum computation and quantum information was that
quantum mechanics can be used to do key distribution in such a way that Alice and Bob’s
security cannot be compromised. This procedure is known as quantum cryptography or
quantum key distribution (abbreviated QKD). The basic idea is to exploit the quantum
mechanical principle that observation in general disturbs the system being observed. Thus, if

© 2013 Tan; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

© 2013 Tan; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



there is an eavesdropper listening in as Alice and Bob attempt to transmit their key, the
presence of the eavesdropper will be visible as a disturbance of the communications channel
Alice and Bob are using to establish the key. Alice and Bob can then throw out the key bits
established while the eavesdropper was listening in, and start over.

The first quantum cryptographic ideas were proposed by Stephen Wiesner wrote “Conjugate
Coding”[1], which unfortunately took more than ten years to see the light of print. In the mean
time, Charles H. Bennett (who knew of Wiesner’s idea) and Gilles Brassard picked up the
subject and brought it to fruition in a series of papers that culminated with the demonstration
of an experimental prototype that established the technological feasibility of the concept [2].
Quantum cryptographic systems take advantage of Heisenberg’s uncertainty principle,
according to which measuring a quantum system in general disturbs it and yields incomplete
information about its state before the measurement. Eavesdropping on a quantum communi‐
cation channel therefore causes an unavoidable disturbance, alerting the legitimate users. This
yields a cryptographic system for the distribution of a secret random cryptographic key
between two parties initially sharing no secret information that is secure against an eaves‐
dropper having at her disposal unlimited computing power. Once this secret key is established,
it can be used together with classical cryptographic techniques such as the one-time-pad (OTP)
to allow the parties to communicate meaningful information in absolute secrecy.

The second major type of cryptosystem is the public key cryptosystem. Public key cryptosys‐
tem don’t rely on Alice and Bob sharing a secret key in advance. Instead, Bob simply publishes
a ‘public key’, which is made available to the general public. Alice can make use of this public
key to encrypt a message which she sends to Bob. The third party cannot use Bob’s public key
to decrypt the message. Public key cryptography did not achieve widespread use until the
mid-1970s, when it was proposed independently by Whitfield Diffie and Martin Hellman,
Rivest, Adi Shamir, and Leonard Adleman developed the RSA cryptosystem, which at the time
of writing is the most widely deployed public key cryptosystem, believed to offer a fine balance
of security and practical usability.

The key to the security of public key cryptosystems is that it should be difficult to invert the
encryption stage if only the public key is available. For example, it turns out that inverting the
encryption stage of RSA is a problem closely related to factoring. Much of the presumed
security of RSA comes from the belief that factoring is a problem hard to solve on a classical
computer. However, Shor’s fast algorithm for factoring on cryptosystems which can be broken
if a fast algorithm for solving the discrete logarithm problem – like Shor’s quantum algorithm
for discrete logarithm – were known. This practical application of quantum computers to the
breaking of cryptographic codes has excited much of the interest in quantum computation and
quantum information.

In addition to key distribution, quantum techniques may also assist in the achievement of
subtler cryptographic goals, important in the post-cold war world, such as protecting private
information while it is being used to reach public decisions. Such techniques, pioneered by
Claude Crepeau [3] [4], allow two people to compute an agreed-upon function f(x; y) on private
inputs x and y when one person knows x, the other knows y, and neither is willing to disclose
anything about their private input to the other, except for what follows logically from one’s
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private input and the function's output. The classic example of such discreet decision making
is the “dating problem”, in which two people seek a way of making a date if and only if each
likes the other, without disclosing any further information. For example, if Alice likes Bob but
Bob doesn’t like Alice, the date should be called off without Bob finding out that Alice likes
him, on the other hand, it is logically unavoidable for Alice to learn that Bob doesn't like her,
because if he did the date would be on.

In general, the goal of quantum cryptography is to perform tasks that are impossible or
intractable with conventional cryptography. Quantum cryptography makes use of the subtle
properties of quantum mechanics such as the quantum no-cloning theorem and the Heisenberg
uncertainty principle. Unlike conventional cryptography, whose security is often based on
unproven computational assumptions, quantum cryptography has an important advantage
in that its security is often based on the laws of physics. Thus far, proposed applications of
quantum cryptography include QKD, quantum bit commitment and quantum coin tossing.
These applications have varying degrees of success. The most successful and important
application – QKD – has been proven to be unconditionally secure. Moreover, experimental
QKD has now been performed over hundreds of kilometers over both standard commercial
telecom optical fibers and open-air. In fact, commercial QKD systems are currently available
on the market [5].

Classical secret sharing can be used in a number of ways besides for a joint checking account.
The secret key could access a bank vault, or a computer account, or any of a variety of things. In
addition, secret sharing is a necessary component for performing secure distributed computa‐
tions among a number of people who do not completely trust each other. With the boom in
quantum computation, it seems possible, even likely, that quantum states will become nearly as
important as classical data. It might therefore be useful to have some way of sharing secret
quantum states as well as secret classical data. Such a quantum secret sharing (abbreviated QSS)
scheme might be useful for sharing quantum keys, such as those used in quantum key distribu‐
tion or in other quantum cryptographic protocols. In addition, QSS might allow us to take
advantage of the additional power of quantum computation in secure distributed computations.

Imagine that it is fifteen years from now and someone announces the successful construction
of a large quantum computer. The New York Times runs a front-page article reporting that all
of the public-key algorithms used to protect the Internet have been broken by quantum
computer. Perhaps, after seeing quantum computers destroy RSA and DSA and ECDSA,
Internet users will leap to the conclusion that cryptography is dead. For solving the problem,
some researchers provided the idea about post-quantum cryptography which refers to
research on cryptographic primitives (usually public-key cryptosystems) that are not breaka‐
ble using quantum computers. This term came about because most currently popular public-
key cryptosystems rely on the integer factorization problem or discrete logarithm problem,
both of which would be easily solvable on large enough quantum computers using Shor’s
algorithm [6] [7]. Even though current publicly known experimental quantum computing is
nowhere near powerful enough to attack real cryptosystems, many cryptographers are
researching new algorithms, in case quantum computing becomes a threat in the future. This
work is popularized by the PQCrypto conference series since 2006.
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In the past few years, a remarkable surge of interest in the international scientific and industrial
community has propelled quantum cryptography into mainstream computer science and
physics. Furthermore, quantum cryptography is becoming increasingly practical at a fast pace.
The first quantum key distribution prototype [2] worked over a distance of 32 centimeters in
1989. Two additional experimental demonstrations have been set up since, which work over
significant lengths of optical fibre [8] [9]. The highest bit rate system currently demonstrated
exchanges secure keys at 1 Mbit/s (over 20 km of optical fibre) and 10 kbit/s (over 100 km of
fibre), achieved by a collaboration between the University of Cambridge and Toshiba using
the BB84 protocol with decoy pulses.

As of March 2007 the longest distance over which quantum key distribution has been demonstrat‐
ed using optic fibre is 148.7 km, achieved by Los Alamos National Laboratory/NIST using the
BB84 protocol. Significantly, this distance is long enough for almost all the spans found in today's
fibre networks. The distance record for free space QKD is 144 km between two of the Canary
Islands, achieved by a European collaboration using entangled photons (the Ekert scheme) in
2006, and using BB84 enhanced with decoy states in 2007. The experiments suggest transmis‐
sion to satellites is possible, due to the lower atmospheric density at higher altitudes. For example
although the minimum distance from the International Space Station to the ESA Space Debris
Telescope is about 400 km, the atmospheric thickness is about an order of magnitude less than
in the European experiment, thus yielding less attenuation compared to this experiment.

2. Quantum cryptography fundamentals

On a wider context, quantum cryptography is a branch of quantum information processing,
which includes quantum computing, quantum measurements, and quantum teleportation.
Quantum computation and quantum information is the study of the information processing
tasks that can be accomplished using quantum mechanical systems.

Quantum mechanics is a mathematical framework or set of rules for the construction of physical
theories. The rules of quantum mechanics are simple but even experts find them counterintui‐
tive, and the earliest antecedents of quantum computation and quantum information may be
found in the long-standing desire of physicists to better understand quantum mechanics. Perhaps
the most striking of these is the study of quantum entanglement. Entanglement is a uniquely
quantum mechanical resource that plays a key role in many of the most interesting applica‐
tions of quantum computation and quantum information; entanglement is iron to the classical
world’s bronze age. In recent years there has been a tremendous effort trying to better under‐
stand the properties of entanglement considered as a fundamental resource of Nature, of
comparable importance to energy, information, entropy, or any other fundamental resource.
Although there is as yet no complete theory of entanglement, some progress has been made in
understanding this strange property of quantum mechanics. It is hoped by many researchers
that further study of the properties of entanglement will  yield insights that facilitate the
development of new applications in quantum computation and quantum information.

As we known, it is interesting to learn that one decade before people realized that a quantum
computer could be used to break public key cryptography, they had already found a solution
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against this quantum attack – quantum key distribution (QKD). Based on the fundamental
principles in quantum physics, QKD provides an unconditionally secure way to distribute
random keys through insecure channels. The secure key generated by QKD could be further
applied in the OTP scheme or other encryption algorithms to enhance information security. In
this chapter, we will introduce the fundamental principles behind various QKD or QSS and
present the state-of-the art quantum cryptography technologies.

2.1. Entanglement state

The counterintuitive predictions of quantum mechanics about correlated systems were first
discussed by Albert Einstein in 1935, in a joint paper with Boris Podolsky and Nathan Rosen
[10]. They demonstrated a thought experiment that attempted to show that quantum mechan‐
ical theory was impossible.

But flowing the EPR paper, Erwin Schrodinger wrote letter (in German) to Einstein in which
he used the word Verschrankung (translated by himself as entanglement) “to describe the
correlations between two particles that interact and then separate, as in the EPR experiment”
[11]. He shortly thereafter published a seminal paper defining and discussing the notion, and
terming it “entanglement”.

Entanglement is usually created by direct interactions between subatomic particles. These
interactions can take numerous forms. One of the most commonly used methods is spontane‐
ous parametric down-conversion to generate a pair of photons entangled in polarization [12].
Other methods include the use of a fiber coupler to confine and mix photons, the use of
quantum dots to trap electrons until decay occurs, the use of the Hong-Ou-Mandel effect, etc.
In the earliest tests of Bell’s theorem, the entangled particles were generated using atomic
cascades. It is also possible to create entanglement between quantum systems that never
directly interacted, through the use of entanglement swapping.

Consider two noninteracting systems A and B, with respective Hilbert spaces HA and HB. The
Hilbert space of the composite system is the tensor product HA ⊗ HB. If the first system is in
state |ψ A and the second in state |ψ B, the state of the composite system is |ψ A ⊗ |ψ B.
States of the composite system which can be represented in this form are called separable states,
or product states. Not all states are separable states. Fix a basis {| i A} for HA and a basis {| j B}
for HB. The most general state in HA ⊗ HB is the form of

,
ijAB A B

i j
C i jy = Äå (1)

This state is separable if cij =ci
Acj

B yielding |ψ A =∑
i
ci

A | i A and |ϕ B =∑
j
cj

B | j B. It is

inseparable if cij ≠ci
Acj

B If a state is inseparable, it is called an entangled state. For example,
given two basis vectors {|0 A, |1 A} of HAand two basis vectors {|0 B, |1 B} of HB, the
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In the past few years, a remarkable surge of interest in the international scientific and industrial
community has propelled quantum cryptography into mainstream computer science and
physics. Furthermore, quantum cryptography is becoming increasingly practical at a fast pace.
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comparable importance to energy, information, entropy, or any other fundamental resource.
Although there is as yet no complete theory of entanglement, some progress has been made in
understanding this strange property of quantum mechanics. It is hoped by many researchers
that further study of the properties of entanglement will  yield insights that facilitate the
development of new applications in quantum computation and quantum information.

As we known, it is interesting to learn that one decade before people realized that a quantum
computer could be used to break public key cryptography, they had already found a solution
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against this quantum attack – quantum key distribution (QKD). Based on the fundamental
principles in quantum physics, QKD provides an unconditionally secure way to distribute
random keys through insecure channels. The secure key generated by QKD could be further
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or product states. Not all states are separable states. Fix a basis {| i A} for HA and a basis {| j B}
for HB. The most general state in HA ⊗ HB is the form of
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1 ( 0 0 1 1 )
2 A B A B

+ (2)

If the composite system is in this state, it is impossible to attribute to either system A or system
B a definite pure state. Another way to say this is that while the von Neumann entropy of the
whole state is zero, the entropy of the subsystems is greater than zero. In this sense, the systems
are “entangled”. This has specific empirical ramifications for interferometry [13]. It is worth‐
while to note that the above example is one of four Bell states, which are maximally entangled
pure states.

2.2. One-time-pad and key distribution problem

In conventional cryptography, an unbreakable code does exist. It is called the one-time-pad
and was invented by Gilbert Vernam in 1918 [14]. In the one-time-pad method, a message
(traditionally called the plain text) is first converted by Alice into a binary form (a string
consisting of “0”s and “1”s) by a publicly known method. A key is a binary string of the same
length as the message. By combining each bit of the message with the respective bit of the key
using XOR (i.e. addition modulo two), Alice converts the plain text into an encrypted form
(called the cipher text). i.e. for each bit

(mod 2).i i ic m kº + (3)

Alice then transmits the cipher text to Bob via a broadcast channel. Anyone including an
eavesdropper can get a copy of the cipher text. However, without the knowledge of the key,
the cipher text is totally random and gives no information whatsoever about the plain text. For
decryption, Bob, who shares the same key with Alice, can perform another XOR (i.e. addition
modulo two) between each bit of the cipher text with the respective bit of the key to recover
the plain text. This is because

2 (mod 2).i i i i i ic m k m k mº + º + º (4)

The one-time-pad method is unbreakable, but it has a serious drawback: it supposes that Alice
and Bob initially share a random string of secret that is as long as the message. Therefore, the
one-time-pad simply shifts the problem of secure communication to the problem of key
distribution. This is the key distribution problem. The one of possible solution to the key
distribution problem is public key cryptography.

Quantum mechanics can provide a solution to the key distribution problem. In quantum key
distribution, an encryption key is generated randomly between Alice and Bob by using non
orthogonal quantum states. In quantum mechanics there is a quantum no-cloning theorem,
which states that it is fundamentally impossible for anyone including an eavesdropper to make
an additional copy of an unknown quantum state. Therefore, any attempt by an eavesdropper
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to learn information about a key in a QKD process will lead to disturbance, which can be
detected by Alice and Bob who can, for example, check the bit error rate of a random sample
of the raw transmission data.

2.3. Quantum no-cloning theorem

The quantum no-cloning theorem was stated by Wootters, Zurek, and Dieks in 1982, and has
profound implications in quantum computing and related fields.

Theorem (Quantum no-cloning theorem) An arbitrary quantum state cannot be duplicated
perfectly.

Proof: Suppose the state of a quantum system A, which we wish to copy, is |ψ A. In order to
make a copy, we take a system B with the same state space and initial state | e B. The initial,
or blank, state must be independent of |ψ A, of which we have no prior knowledge. The
composite system is then described by the tensor product, and its state is |ψ A | e B.

There are only two ways to manipulate the composite system. We could perform an observa‐
tion, which irreversibly collapses the system into some eigenstate of the observable, corrupting
the information contained in the qubit. This is obviously not what we want. Alternatively, we
could control the Hamiltonian of the system, and thus the time evolution operator U (for a
time independent Hamiltonian, U (t)= e −iHt /ℏ, where − H / ℏ is called the generator of transla‐
tions in time) up to some fixed time interval, which yields a unitary operator. Then U acts as
a copier provided that

,
A B A B

U e  = (5)

for all possible states |ϕ  in the state space (including |ψ ). Since U is unitary, it preserves
the inner product:

† ,
B A A B B A A B B A A B

e e e U U e y  y   y y= = (6)

and since quantum mechanical states are assumed to be normalized, it follows that
ϕ |ψ = ϕ |ψ 2.

This implies that either ϕ =ψ (in which case ϕ |ψ =1) or ϕ is orthogonal to ψ (in which case
ϕ |ψ =0 ). However, this is not the case for two arbitrary states. While orthogonal states in a

specifically chosen basis {|0 , |1 }, for example, |ϕ = 1

2
(|0 + |1 ) and |ψ = 1

2
(|0 − |1 )

fit the requirement that ϕ |ψ = ϕ |ψ 2, this result does not hold for more general quantum
states. Apparently U cannot clone a general quantum state.

Quantum no-cloning theorem is a direct result of the linearity of quantum physics. It is closely
related to another important theorem in quantum mechanics, which states: if a measurement
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modulo two) between each bit of the cipher text with the respective bit of the key to recover
the plain text. This is because
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The one-time-pad method is unbreakable, but it has a serious drawback: it supposes that Alice
and Bob initially share a random string of secret that is as long as the message. Therefore, the
one-time-pad simply shifts the problem of secure communication to the problem of key
distribution. This is the key distribution problem. The one of possible solution to the key
distribution problem is public key cryptography.

Quantum mechanics can provide a solution to the key distribution problem. In quantum key
distribution, an encryption key is generated randomly between Alice and Bob by using non
orthogonal quantum states. In quantum mechanics there is a quantum no-cloning theorem,
which states that it is fundamentally impossible for anyone including an eavesdropper to make
an additional copy of an unknown quantum state. Therefore, any attempt by an eavesdropper
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detected by Alice and Bob who can, for example, check the bit error rate of a random sample
of the raw transmission data.

2.3. Quantum no-cloning theorem

The quantum no-cloning theorem was stated by Wootters, Zurek, and Dieks in 1982, and has
profound implications in quantum computing and related fields.
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Proof: Suppose the state of a quantum system A, which we wish to copy, is |ψ A. In order to
make a copy, we take a system B with the same state space and initial state | e B. The initial,
or blank, state must be independent of |ψ A, of which we have no prior knowledge. The
composite system is then described by the tensor product, and its state is |ψ A | e B.

There are only two ways to manipulate the composite system. We could perform an observa‐
tion, which irreversibly collapses the system into some eigenstate of the observable, corrupting
the information contained in the qubit. This is obviously not what we want. Alternatively, we
could control the Hamiltonian of the system, and thus the time evolution operator U (for a
time independent Hamiltonian, U (t)= e −iHt /ℏ, where − H / ℏ is called the generator of transla‐
tions in time) up to some fixed time interval, which yields a unitary operator. Then U acts as
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states. Apparently U cannot clone a general quantum state.

Quantum no-cloning theorem is a direct result of the linearity of quantum physics. It is closely
related to another important theorem in quantum mechanics, which states: if a measurement
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allows one to gain information about the state of a quantum system, then in general the state
of this quantum system will be disturbed, unless we know in advance that the possible states
of the original quantum system are orthogonal to each other.

At first sight, the impossibility of making perfect copies of unknown quantum states seems to
be a shortcoming. Surprisingly, it can also be an advantage. It turned out that by using this
impossibility smartly, unconditionally secure key distribution could be achieved: any attempts
by the eavesdropper to learn the information encoded quantum mechanically will disturb the
quantum state and expose her existence. Specially, we can get the following characteristics
about quantum no-cloning theorem:

• The no-cloning theorem prevents us from using classical error correction techniques on
quantum states. For example, we cannot create backup copies of a state in the middle of a
quantum computation, and use them to correct subsequent errors. Error correction is vital
for practical quantum computing, and for some time this was thought to be a fatal limitation.
In 1995, Shor and Steane revived the prospects of quantum computing by independently
devising the first quantum error correcting codes, which circumvent the no-cloning
theorem.

• Similarly, cloning would violate the no teleportation theorem, which says classical telepor‐
tation (not to be confused with entanglement-assisted teleportation) is impossible. In other
words, quantum states cannot be measured reliably.

• The no-cloning theorem does not prevent superluminal communication via quantum
entanglement, as cloning is a sufficient condition for such communication, but not a
necessary one. Nevertheless, consider the EPR thought experiment, and suppose quantum
states could be cloned. Assume parts of a maximally entangled Bell state are distributed to
Alice and Bob. Alice could send bits to Bob in the following way: If Alice wishes to transmit
a “0”, she measures the spin of her electron in the z direction, collapsing Bob’s state to either
| z + B or | z − B. To transmit “1”, Alice does nothing to her qubit. Bob creates many copies
of his electron’s state, and measures the spin of each copy in the z direction. Bob will know
that Alice has transmitted a “0” if all his measurements will produce the same result;
otherwise, his measurements will have outcomes +1/2 and −1/2 with equal probability. This
would allow Alice and Bob to communicate across space-like separations.

• The no-cloning theorem prevents us from viewing the holographic principle for black holes
as meaning we have two copies of information lying at the event horizon and the black hole
interior simultaneously. This leads us to more radical interpretations like black hole
complementarity.

2.4. Heisenberg uncertainty principle

Heisenberg’s Uncertainty Principle (abbreviated HUP) is one of the fundamental concepts of
quantum physics, and is the basis for the initial realization of fundamental uncertainties in the
ability of an experimenter to measure more than one quantum variable at a time. Attempting
to measure an elementary particle’s position to the highest degree of accuracy, for example,
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leads to an increasing uncertainty in being able to measure the particle’s momentum to an
equally high degree of accuracy.

Suppose A and B are two Hermitian operators, and |ψ  is a quantum state. Suppose
ψ | AB |ψ = x + iy, where x and y are real. Note that ψ | A, B |ψ =2iy and
ψ |{A, B}|ψ =2x. This implies that

2 2 2
, { , } 4 .A B A B ABy y y y y yé ù + =ë û (7)

By the Cauchy-Schwarz inequality | ψ | AB |ψ | 2 ≤ ψ | A 2 |ψ ψ | B 2 |ψ ,  which combined
with the equation (1) and dropping a non-negative term gives

2 2 2, 4 .A B A By y y y y yé ù £ë û (8)

Suppose C  and D are two observables. Substituting A=C − <C >  and B = D − < D >  into the last
equation, where the average value of the observable C  is often written <C > = ψ |C |ψ  and
similar to D, we obtain Heisenberg’s uncertainty principle as it is usually stated

,
( ) ( ) .

2
C D

C D
y yé ùë ûD D ³ (9)

Quantum communication the sending of encoded messages that are un-hackable by any
computer. This i allows s possible because the messages are carried by tiny particles of light
called photons. If an eavesdropper attempts to read out the message in transit, they will be
discovered by the disturbance their measurement causes to the particles as an inevitable
consequence of the HUP. In the regime of quantum experiments, by contrast, we are uncertain
about the results of experiments because the particle itself is uncertain. It has no position or
speed until we measure it. We can design some protocol of quantum cryptography by using
the property of quantum from HUP.

3. Quantum key distribution

The first attempt of using quantum mechanics to achieve missions impossible in classical
information started in the early 70’s. Stephen Wiesner proposed two communication modali‐
ties not allowed by classical physics: “quantum multiplexing” channel and counterfeit-free
bank-note. Unfortunately, his paper was rejected and couldn’t be published until a decade
later. In 1980’s, Charles H.Bennett and Gilles Brassard extended Wiesner’s idea and applied it
to solve the key distribution problem in classical cryptography. In 1984, the well known BB84
QKD protocol was published [15]. QKD is a new tool in the cryptographer’s toolbox: it allows
for secure key agreement over an untrusted channel where the output key is entirely inde‐
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The first attempt of using quantum mechanics to achieve missions impossible in classical
information started in the early 70’s. Stephen Wiesner proposed two communication modali‐
ties not allowed by classical physics: “quantum multiplexing” channel and counterfeit-free
bank-note. Unfortunately, his paper was rejected and couldn’t be published until a decade
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pendent from any input value, a task that is impossible using classical cryptography. QKD
does not eliminate the need for other cryptographic primitives, such as authentication, but it
can be used to build systems with new security properties.

To conquer the errors made by noise and wiretapping in the quantum channel, unconditionally
secure secret-key agreement over a public channel was designed, information reconciliation
and privacy amplification can be used to quantum key distribution, or otherwise, quantum
entanglement purification should be used. The first general although rather complex proof of
unconditional security was given by Mayers [16], which was followed by a number of other
proofs. In Mayers’ proof, the BB84 scheme proposed by Bennett and Brassard was proved to
be unconditionally secure. Building on the quantum privacy amplification idea, Lo and Chau,
proposed a conceptually simpler proof of security [17].

In QKD, two parties, Alice and Bob, obtain some quantum states and measure them. They
communicate (all communication form this point onwards is classical) to determine which of
their measurement results could lead to secret key bits; some are discarded in a process called
sifting because the measurement settings were incompatible. They perform error correction
and then estimate a security parameter which describes how much information an eavesdrop‐
per might have about their key data. If this amount is above a certain threshold, then they abort
as they cannot guarantee any secrecy whatsoever. If it is below the threshold, then they can
apply privacy amplification to squeeze out any remaining information the eavesdropper might
have, and arrive at a shared secret key. Some of this classical communication must be authen‐
ticated to avoid man-in-the-middle attacks. Some portions of the protocol can fail with
negligible probability.

A flow chart describing the stages of quantum key distribution is given in Figure 1.

Authentication key

Key confirmation

Secret key

Quantum state 
transmission and 

measurement

Error 
correction

Privacy amplication
Secret key 
distillable

Abort

Yes

Yes No

Security 
parameter 
estimation

Key sifting/ 
reconciliation

Figure 1. Flow chart of the stages of a quantum key distribution protocol. Stages with double lines require classical
authentication. [18]
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3.1. The BB84 QKD protocol

The best-known protocol for QKD is the Bennett and Brassard protocol (BB84). The procedure
of BB84 is as follows (also shown in Table 1).

1. Quantum communication phase

1. In BB84, Alice sends Bob a sequence of photons through an insecure quantum channel, each
independently chosen from one of the four polarizations-vertical, horizontal, 45-degrees
and 135-degrees.

2. For each photon, Bob randomly chooses one of the two measurement bases (rectilinear
and diagonal) to perform a measurement.

3. Bob records his measurement bases and results. Bob publicly acknowledge his receipt of
signals.

2. Public discussion phase

1. Alice broadcasts her bases of measurements. Bob broadcasts his bases of measurements.

2. Alice and Bob discard all events where they use different bases for a signal.

3. To test for tampering, Alice randomly chooses a fraction, p, of all remaining events as test
events. For those test events, she publicly broadcasts their positions and polarizations.

4. Bob broadcasts the polarizations of the test events.

5. Alice and Bob compute the error rate of the test events (i.e., the fraction of data for which
their value disagree). If the computed error rate is larger than some prescribed threshold
value, say 11%, they abort. Otherwise, they proceed to the next step.

6. Alice and Bob each convert the polarization data of all remaining data into a binary string
called a raw key (by, for example, mapping a vertical of 45-degrees photon to “0” and a
horizontal or 135-degrees photon to “1”). The can perform classical postprocessing such
as error correction and privacy amplification to generate a final key.

Alice’s bit sequence 0 1 1 1 0 1 0 0 0 1

Alice’s basis + × + + × + × × + ×

Alice’s photon polarization → ↖ ↑ ↑ ↗ ↑ ↗ ↗ → ↖

Bob’s basis + + × + + × × + + ×

Bob’s measured polarization → ↑ ↖ ↑ → ↗ ↗ ↑ → ↖
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pendent from any input value, a task that is impossible using classical cryptography. QKD
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Figure 1. Flow chart of the stages of a quantum key distribution protocol. Stages with double lines require classical
authentication. [18]
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3.1. The BB84 QKD protocol
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The basic idea of the BB84 QKD protocol is beautiful and its security can be intuitively
understood from the quantum no-cloning theorem. On the other hand, to apply QKD in
practice, Alice and Bob need to find the upper bound of Eve’s information quantitatively, given
the observed quantum bit error rate (abbreviated QBER) and other system parameters. This is
the primary goal of various QKD security proofs and it had turned out to be extremely difficult.
One major challenge comes from the fact that Eve could launch attacks way beyond today’s
technologies and our imaginations. Nevertheless, QKD was proved to be unconditionally
secure. This is most significant achievements in quantum information.

3.2. QKD based on EPR

An essentially equivalent protocol that utilizes Einstein-Podolsky-Rosen (EPR) correlations
has been worked on by Artur Ekert [19] and Bennett, Brassard, and Mermin [20]. To take
advantage of EPR correlations, particles are prepared in such a way that they are “entangled”.
This means that although they may be separated by large distances in space, they are not
independent of each other. Suppose the entangled particles are photons. If one of the particles
is measured according to the rectilinear basis and found to have a vertical polarization, then
the other particle will also be found to have a vertical polarization if it is measured according
to the rectilinear basis. If however, the second particle is measured according to the circular
basis, it may be found to have either left-circular or right-circular polarization.

In his 1991 paper, Ekert [19] suggested basing the security of this two-qubit protocol on Bell’s
inequality, an inequality which demonstrates that some correlations predicted by quantum
mechanics cannot be reproduced by the local theory. To do this, Alice and Bob can use a third
basis. In this way the probability that they might happen to choose the same basis is reduced
from 1

2  to 2
9 , but at the same time as they establish a key, they collect enough data to test Bell’s

inequality. They can thus check that the source really emits the entangled state and not merely
product states. The following year Bennett, Brassard, and Mermin [20] criticized Ekert’s letter,
arguing that the violation of Bell’s inequality is not necessary for the security of quantum
cryptography and emphasizing the close connection between the Ekert and the BB84 schemes.
This criticism quantum cryptography might be missing an important point. Although the exact
relation between security and Bell’s inequality is not yet fully known, there are clear results
establishing fascinating connections.

The steps of the protocol for developing a secret key using EPR correlations of entangled
photons are explained below.

1. Alice creates EPR pairs of polarized photons, keeping one particle for herself and sending
the other particle of each pair to Bob.

2. Alice randomly measures the polarization of each particle she kept according to the
rectilinear or circular basis. She records each measurement type and the polarization
measured.

3. Bob randomly measures each particle he received according to the rectilinear or circular
basis. He records each measurement type and the polarization measured.
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4. Alice and Bob tell each other which measurement types were used, and they keep the data
from all particle pairs where they both chose the same measurement type.

5. They convert the remaining data to a string of bits using a convention such as: left-circular
= 0, right-circular = 1, horizontal = 0, vertical = 1.

One important difference between the BB84 and the EPR methods is that with BB84, the key
created by Alice and Bob must be stored classically until it is used. Therefore, although the key
was completely secure when it was created, its continued security over time is only as great
as the security of its storage. Using the EPR method, Alice and Bob could potentially store the
prepared entangled particles and then measure them and create the key just before they were
going to use it, eliminating the problem of insecure storage.

So the idea consists in replacing the quantum channel carrying two qubits from Alice to Bob
by a channel carrying two qubits from a common source, one qubit to Alice and one to Bob. A
first possibility would be that the source always emits the two qubits in the same state chosen
randomly among the four states of the BB84 protocol. Alice and Bob would then both measure
their qubit in one of the two bases, again chosen independently and randomly. The source then
announces the bases, and Alice and Bob keep the data only when they happen to have made
their measurements in the compatible basis. If the source is reliable, this protocol is equivalent
to that of BB84: It is as if the qubit propagates backwards in time from Alice to the source, and
then forward to Bob. But better than trusting the source, which could be in Eve’s hand the
Ekert protocol assumes that the two qubits are emitted in a maximally entangled state like
|ϕ + = 1

2
(|00 + |11 ).

Then, when Alice and Bob happen to use the same basis, either the x basis or the y basis, i.e.,
in about half of the cases, their results are identical, providing them with a common key.

3.3. Continuous variable QKD

In the BB84 QKD protocol, Alice’s random bits are encoded in a two dimensional space like
the polarization state of a single photon. More recently, QKD protocols working with contin‐
uous variables have been proposed. Among them, the Gaussian modulated coherent state
(GMCS) QKD protocol has drawn special attention [21].

The protocol runs as follows. First, Alice draws two random numbers xA and pA from a
gaussian distribution of mean zero and variance VAN0, where N0 denotes the shot-noise
variance. Then, she sends the coherent state | xA + i pA  to Bob, who randomly chooses to
measure either quadrature x or p. Later, using a public authenticated channel, he informs Alice
about which quadrature he measured, so she may discard the irrelevant data. After many
similar exchanges, Alice and Bob (and possibly the eavesdropper Eve) share a set of correlated
gaussian variables, which we call ‘key elements’.

The basic scheme of the GMCS QKD protocol can be shown in Figure 2.
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arguing that the violation of Bell’s inequality is not necessary for the security of quantum
cryptography and emphasizing the close connection between the Ekert and the BB84 schemes.
This criticism quantum cryptography might be missing an important point. Although the exact
relation between security and Bell’s inequality is not yet fully known, there are clear results
establishing fascinating connections.

The steps of the protocol for developing a secret key using EPR correlations of entangled
photons are explained below.

1. Alice creates EPR pairs of polarized photons, keeping one particle for herself and sending
the other particle of each pair to Bob.

2. Alice randomly measures the polarization of each particle she kept according to the
rectilinear or circular basis. She records each measurement type and the polarization
measured.

3. Bob randomly measures each particle he received according to the rectilinear or circular
basis. He records each measurement type and the polarization measured.
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4. Alice and Bob tell each other which measurement types were used, and they keep the data
from all particle pairs where they both chose the same measurement type.

5. They convert the remaining data to a string of bits using a convention such as: left-circular
= 0, right-circular = 1, horizontal = 0, vertical = 1.

One important difference between the BB84 and the EPR methods is that with BB84, the key
created by Alice and Bob must be stored classically until it is used. Therefore, although the key
was completely secure when it was created, its continued security over time is only as great
as the security of its storage. Using the EPR method, Alice and Bob could potentially store the
prepared entangled particles and then measure them and create the key just before they were
going to use it, eliminating the problem of insecure storage.

So the idea consists in replacing the quantum channel carrying two qubits from Alice to Bob
by a channel carrying two qubits from a common source, one qubit to Alice and one to Bob. A
first possibility would be that the source always emits the two qubits in the same state chosen
randomly among the four states of the BB84 protocol. Alice and Bob would then both measure
their qubit in one of the two bases, again chosen independently and randomly. The source then
announces the bases, and Alice and Bob keep the data only when they happen to have made
their measurements in the compatible basis. If the source is reliable, this protocol is equivalent
to that of BB84: It is as if the qubit propagates backwards in time from Alice to the source, and
then forward to Bob. But better than trusting the source, which could be in Eve’s hand the
Ekert protocol assumes that the two qubits are emitted in a maximally entangled state like
|ϕ + = 1
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(|00 + |11 ).

Then, when Alice and Bob happen to use the same basis, either the x basis or the y basis, i.e.,
in about half of the cases, their results are identical, providing them with a common key.

3.3. Continuous variable QKD

In the BB84 QKD protocol, Alice’s random bits are encoded in a two dimensional space like
the polarization state of a single photon. More recently, QKD protocols working with contin‐
uous variables have been proposed. Among them, the Gaussian modulated coherent state
(GMCS) QKD protocol has drawn special attention [21].

The protocol runs as follows. First, Alice draws two random numbers xA and pA from a
gaussian distribution of mean zero and variance VAN0, where N0 denotes the shot-noise
variance. Then, she sends the coherent state | xA + i pA  to Bob, who randomly chooses to
measure either quadrature x or p. Later, using a public authenticated channel, he informs Alice
about which quadrature he measured, so she may discard the irrelevant data. After many
similar exchanges, Alice and Bob (and possibly the eavesdropper Eve) share a set of correlated
gaussian variables, which we call ‘key elements’.

The basic scheme of the GMCS QKD protocol can be shown in Figure 2.
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Figure 2. The Gaussian modulated coherent state (GMCS) QKD. X: amplitude quadrature; P: phase quadrature. [22]

Alice modulates both the amplitude quadrature and phase quadrature of a coherent state with
Gaussian distributed random numbers. In classical electromagnetism, these two quadratures
correspond to the in-phase and out-of-phase components of electric field, which can be
conveniently modulated with optical phase and amplitude modulators. Alice sends the
modulated coherent state together with a strong local oscillator (a strong laser pulse which
serves as a phase reference) to Bob. Bob randomly measures one of the two quadratures with
a phase modulator and a homodyne detector. After performing his measurements, Bob
informs Alice which quadrature he actually measures for each pulse and Alice drops the
irrelevant data. At this stage, they share a set of correlated Gaussian variables which are called
the ― raw key. Given the variances of the measurement results below certain thresholds, they
can further work out perfectly correlated secure key by performing reconciliation and privacy
amplification. Classical data processing is then necessary for Alice and Bob to obtain a fully
secret binary key.

The security of the GMCS QKD can be comprehended from the uncertainty principle. In
quantum optics, the amplitude quadrature and phase quadrature of a coherent state form a
pair of conjugate variables, which cannot be simultaneously determined with arbitrarily high
accuracies due to Heisenberg uncertainty principle. From the observed variance in one
quadrature, Alice and Bob can upper bound Eve‘s information about the other quadrature.
This provides a way to verify the security of the generated key. Recently, an unconditional
security proof of the GMCS QKD appeared [23].

Different from the BB84 QKD, in GMCS QKD, homodyne detectors are employed to measure
electric fields rather than photon energy. By using a strong local oscillator, high efficiency and
fast photo diodes can be used to construct the homodyne detector which could result in a high
secure key generation rate. However, the performance of the GMCS QKD is strongly depend‐
ent on the channel loss. Recall that in the BB84 QKD system, the channel loss plays a simple
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role: it reduces the communication efficiency but it will not introduce QBER. A photon is either
lost in the channel, in which case Bob will not register anything, or it will reach Bob‘s detector
intact. On the other hand, in the GMCS QKD, the channel loss will introduce vacuum noise
and reduce the correlation between Alice and Bob’s data. As the channel loss increases, the
vacuum noise will become so high that it is impossible for Alice and Bob to resolve a small
excess noise (which is used to upper bound Eve‘s information) on the top of a huge vacuum
noise.

Comparing with the BB84 QKD, the GMCS QKD could yield a high secure key rate over short
distances [24] [25].

3.4. Decoy state QKD

The security of QKD has been rigorously proven in a number of recent papers. There has been
tremendous interest in experimental QKD [26] [27]. Unfortunately, all those exciting recent
experiments are, in principle, insecure due to real-life imperfections. More concretely, highly
attenuated lasers are often used as sources. But, these sources sometimes produce signals that
contain more than one photon. Those multi-photon signals open the door to powerful new
eavesdropping attacks including photon splitting attack. For example, Eve can, in principle,
measure the photon number of each signal emitted by Alice and selectively suppress single
photon signals. She splits multi-photon signals, keeping one copy for herself and sending one
copy to Bob. Now, since Eve has an identical copy of what Bob possesses, the unconditional
security of QKD is completely compromised.

In summary, in standard BB84 protocol, only signals originated from single photon pulses
emitted by Alice are guaranteed to be secure. Consequently, paraphrasing GLLP (Gottesman,
Lo, Lutkenhaus, Preskill [28]), the secure key generation rate (per signal state emitted by Alice)
can be shown to be given by:

2 2 1{ ( ) [1 ( )]},S Q H E H em m³ - + W - (10)

where Qμ and Eμ are respectively the gain and quantum bit error rate (QBER) of the signal
state (Here, the gain means the ratio of the number of Bob’s detection events (where Bob
chooses the same basis as Alice) to Alice’s number of emitted signals. QBER means the error
rate of Bob’s detection events for the case that Alice and Bob use the same basis), Ω and e1 are
respectively the fraction and QBER of detection events by Bob that have originated from single-
photon signals emitted by Alice and H2 is the binary Shannon entropy. It is a prior very hard
to obtain a good lower bound on Ω and a good upper bound on e1. Therefore, prior art methods
(as in GLLP [28], under (semi-) realistic assumptions, if imperfections are sufficiently small,
then BB84 is unconditionally secure.) make the most pessimistic assumption that all multi-
photon signals emitted by Alice will be received by Bob. For this reason, until now, it has been
widely believed that the demand for unconditional security will severely reduce the perform‐
ance of QKD systems.
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attenuated lasers are often used as sources. But, these sources sometimes produce signals that
contain more than one photon. Those multi-photon signals open the door to powerful new
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In [29], they present a simple method that will provide very good bounds to Ω and e1. The
method is based on the decoy state idea first proposed by Hwang [12]. While the idea of Hwang
was highly innovative, his security analysis was heuristic. Consequently, H.K. Lo etc’s method
for the first time makes most of the long distance QKD experiments reported in the literature
unconditionally secure. And their method has the advantage that it can be implemented with
essentially the current hardware. So, unlike prior art solutions based on single-photon sources,
their method does not require daunting experimental developments. The key point of the
decoy state idea is that Alice prepares a set of additional states — decoy states, in addition to
standard BB84 states. Those decoy states are used for the purpose of detecting eavesdropping
attacks only, whereas the standard BB84 states are used for key generation only. The only
difference between the decoy state and the standard BB84 states is their intensities (i.e., their
photon number distributions). By measuring the yields and QBER of decoy states, Alice and
Bob can obtain reliable bounds to Ω and e1, thus allowing them to surpass all prior art results
substantially [30].

At first, we recall the original decoy state QKD by Hwang [12] in detail.

Define Yn= yield = conditional probability that a signal will be detected by Bob, given that it
is emitted by Alice as an n-photon state.

To design a method to test experimentally the yield (i.e. transmittance) of multi-photons, we
can use two-photon states as decoys and test their yield. For example, Alice and Bob estimate
the yield Y2 = x / N  if Alice sends N two-photon signals to Bob and Bob detects x signals. If Eve
selectively sends multi-photons, Y2 will be abnormally large. So Eve will be caught.

The two kinds of states are as follows for the decoy state QKD (Toy Model).

a. Signal state: Poisson photon number distribution μ (at Alice).

b. Decoy state: two-photon signals.

The procedure of decoy state QKD (Toy Model) is as following.

1. Alice randomly sends either a signal state or decoy state to Bob.

2. Bob acknowledges receipt of signals.

3. Alice publicly announces which are signal states and which are decoy states.

4. Alice and Bob compute the transmission probability for the signal states and for the decoy
states respectively.

If Eve selectively transmits two-photons, an abnormally high fraction of the decoy state B) will
be received by Bob. Eve will be caught. But the practical problem with toy model is making
perfect two-photon state is hard. So the solution of Hwang’s decoy state QKD is to make
another mixture of good and bad photons with a different weight.

There is two kinds of states for Hwang’s decoy state QKD.

a. Signal state: Poisson photon number distribution: α (at Alice) with mixture 1.
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b. Decoy state: Poisson photon number distribution: μ∼2 (at Alice) with mixture 2.

If Eve lets an abnormally high fraction of multi-photons go to Bob, then decoy states (which
has high weight of multi-photons) will have an abnormally high transmission. Therefore, Alice
and Bob can catch Eve.

But there are some drawbacks of Hwang’s original idea:

1. Hwang’s security analysis was heuristic, rather than rigorous.

2. “Dark counts”–an important effect–are not considered.

3. Final results (distance and key generation rate) are unclear.

Suppose that a decoy state and a signal state have the same characteristics (wavelength, timing
information, etc) by H.K. Lo etc’s methods [29]. Therefore, Eve cannot distinguish a decoy state
from a signal state and the only piece of information available to Eve is the number of photons
in a signal. Therefore, the yield, Yn (yield of an n-photon signal), and QBER, en (quantum bit
error rate of an n-photon signal), can depend on only the photon number,n, but not which
distribution (decoy or signal) the state is from. If Eve cannot treat the decoy state any differently
from signal state, then

Yn(signal)=Yn(decoy)=Yn

en(signal)= en(decoy)= en.

Let us imagine that Alice varies over all non-negative values of μ randomly and independently
for each signal, Alice and Bob can experimentally measure the yield Qμ and the QBER Eμ.
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Since the relations between the variables Qμ’s and Yn’s and between Eμ’s and en’s are linear,
given the set of variables Qμ’s and Eμ’s measured from their experiments, Alice and Bob can
deduce mathematically with high confidence the variables Yn’s and en’s. This means that Alice
and Bob can constrain simultaneously the yields, Yn and QBER en simultaneously for all n.
Suppose Alice and Bob know their channel property well. Then, they know what range of
values of Yn’s and en’s is acceptable. Any attack by Eve that will change the value of any one
of the Yn’s and en’s substantially will, in principle, be caught with high probability by decoy
state method. Therefore, in order to avoid being detected, the eavesdropper, Eve, has very
limited options in her eavesdropping attack. In summary, the ability for Alice and Bob to verify
experimentally the values of Yn and en’s in the decoy state method greatly strengthens their
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In [29], they present a simple method that will provide very good bounds to Ω and e1. The
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can use two-photon states as decoys and test their yield. For example, Alice and Bob estimate
the yield Y2 = x / N  if Alice sends N two-photon signals to Bob and Bob detects x signals. If Eve
selectively sends multi-photons, Y2 will be abnormally large. So Eve will be caught.

The two kinds of states are as follows for the decoy state QKD (Toy Model).

a. Signal state: Poisson photon number distribution μ (at Alice).

b. Decoy state: two-photon signals.

The procedure of decoy state QKD (Toy Model) is as following.

1. Alice randomly sends either a signal state or decoy state to Bob.
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b. Decoy state: Poisson photon number distribution: μ∼2 (at Alice) with mixture 2.
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But there are some drawbacks of Hwang’s original idea:
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3. Final results (distance and key generation rate) are unclear.
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Let us imagine that Alice varies over all non-negative values of μ randomly and independently
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Since the relations between the variables Qμ’s and Yn’s and between Eμ’s and en’s are linear,
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deduce mathematically with high confidence the variables Yn’s and en’s. This means that Alice
and Bob can constrain simultaneously the yields, Yn and QBER en simultaneously for all n.
Suppose Alice and Bob know their channel property well. Then, they know what range of
values of Yn’s and en’s is acceptable. Any attack by Eve that will change the value of any one
of the Yn’s and en’s substantially will, in principle, be caught with high probability by decoy
state method. Therefore, in order to avoid being detected, the eavesdropper, Eve, has very
limited options in her eavesdropping attack. In summary, the ability for Alice and Bob to verify
experimentally the values of Yn and en’s in the decoy state method greatly strengthens their
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power in detecting eavesdropping, thus leading to a dramatic improvement in the perform‐
ance of their QKD system. The decoy state method allows Alice and Bob to detect deviations
from the normal behavior due to eavesdropping attacks.

In [29], they also give for the first time a rigorous analysis of the security of decoy state QKD.
Moreover, they show that the decoy state idea can be combined with the prior art GLLP
analysis. And we can get the comparison results with and without decoy state as the following
Figure3.
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Figure 3. Compare results with and without decoy state.

4. The security of QKD

Bennett and Brassard have ever said that the most important question in quantum cryptogra‐
phy is to determine how secure it really is.

Security proofs are very important because a) they provide the foundation of security to a QKD
protocol, b) they provide a formula for the key generation rate of a QKD protocol and c) they
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may even provide a construction for the classical post-processing protocol (for error correction
and privacy amplification) that is necessary for the generation of the final key. Without security
proofs, a real-life QKD system is incomplete because we can never be sure about how to
generate a secure key and how secure the final key really is.

After the qubit exchange and basis reconciliation, Alice and Bob each have a sifted key. Ideally,
these keys are identical. But in real life, there are always some errors, and Alice and Bob must
apply some classical information processing protocols, like error correction and privacy
amplification to their data. The first protocol is necessary to obtain identical keys and the
second to obtain a secret key. Essentially, the problem of eavesdropping is to find protocols
which, given that Alice and Bob can only measure the QBER, either provide Alice and Bob
with a verifiably secure key or stop the protocol and inform the users that the key distribution
has failed. This is a delicate problem at the intersection of quantum physics and information
theory. Actually, it comprises several eavesdropping problems, depending on the precise
protocol, the degree of idealization one admits, the technological power one assumes Eve has,
and the assumed fidelity of Alice and Bob’s equipment. Let us immediately stress that a
complete analysis of eavesdropping on a quantum channel has yet to be achieved.

4.1. Eavesdropping attacks

In order to simplify the problem, several eavesdropping strategies of limited generality have
been defined ([31-33]) and analyzed. Of particular interest is the assumption that Eve attaches
independent probes to each qubit and measures her probes one after the other. They can be
classified as follows:

Individual attacks: In an individual attack, Eve performs an attack on each signal independ‐
ently. The intercept-resend attack is an example of an individual attack. let us consider the
simple example of an intercept-resend attack by an eavesdropper Eve, who measures each
photon in a randomly chosen basis and then resends the resulting state to Bob. For instance,
if Eve performs a rectilinear measurement, photons prepared by Alice in the diagonal bases
will be disturbed by Eve’s measurement and give random answers. When Eve resends
rectilinear photons to Bob, if Bob performs a diagonal measurement, then he will get random
answers. Since the two bases are chosen randomly by each party, such an intercept-resend
attack will give a bit error rate of 0.5×0.5+0.5×0 = 25%, which is readily detectable by Alice and
Bob. Sophisticated attacks against QKD do exist. Fortunately, the security of QKD has now
been proven.

Collective attacks: A more general class of attacks is collective attack where for each signal,
Eve  independently  couples  it  with  an  ancillary  quantum  system,  commonly  called  an
ancilla, and evolves the combined signal/ancilla unitarily. She can send the resulting signals
to Bob, but keep all ancillas herself. Unlike the case of individual attacks, Eve postpones
her choice of  measurement.  Only after  hearing the public  discussion between Alice and
Bob, does Eve decide on what measurement to perform on her ancilla to extract informa‐
tion about the final key.
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may even provide a construction for the classical post-processing protocol (for error correction
and privacy amplification) that is necessary for the generation of the final key. Without security
proofs, a real-life QKD system is incomplete because we can never be sure about how to
generate a secure key and how secure the final key really is.

After the qubit exchange and basis reconciliation, Alice and Bob each have a sifted key. Ideally,
these keys are identical. But in real life, there are always some errors, and Alice and Bob must
apply some classical information processing protocols, like error correction and privacy
amplification to their data. The first protocol is necessary to obtain identical keys and the
second to obtain a secret key. Essentially, the problem of eavesdropping is to find protocols
which, given that Alice and Bob can only measure the QBER, either provide Alice and Bob
with a verifiably secure key or stop the protocol and inform the users that the key distribution
has failed. This is a delicate problem at the intersection of quantum physics and information
theory. Actually, it comprises several eavesdropping problems, depending on the precise
protocol, the degree of idealization one admits, the technological power one assumes Eve has,
and the assumed fidelity of Alice and Bob’s equipment. Let us immediately stress that a
complete analysis of eavesdropping on a quantum channel has yet to be achieved.

4.1. Eavesdropping attacks

In order to simplify the problem, several eavesdropping strategies of limited generality have
been defined ([31-33]) and analyzed. Of particular interest is the assumption that Eve attaches
independent probes to each qubit and measures her probes one after the other. They can be
classified as follows:

Individual attacks: In an individual attack, Eve performs an attack on each signal independ‐
ently. The intercept-resend attack is an example of an individual attack. let us consider the
simple example of an intercept-resend attack by an eavesdropper Eve, who measures each
photon in a randomly chosen basis and then resends the resulting state to Bob. For instance,
if Eve performs a rectilinear measurement, photons prepared by Alice in the diagonal bases
will be disturbed by Eve’s measurement and give random answers. When Eve resends
rectilinear photons to Bob, if Bob performs a diagonal measurement, then he will get random
answers. Since the two bases are chosen randomly by each party, such an intercept-resend
attack will give a bit error rate of 0.5×0.5+0.5×0 = 25%, which is readily detectable by Alice and
Bob. Sophisticated attacks against QKD do exist. Fortunately, the security of QKD has now
been proven.

Collective attacks: A more general class of attacks is collective attack where for each signal,
Eve  independently  couples  it  with  an  ancillary  quantum  system,  commonly  called  an
ancilla, and evolves the combined signal/ancilla unitarily. She can send the resulting signals
to Bob, but keep all ancillas herself. Unlike the case of individual attacks, Eve postpones
her choice of  measurement.  Only after  hearing the public  discussion between Alice and
Bob, does Eve decide on what measurement to perform on her ancilla to extract informa‐
tion about the final key.
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Joint attacks: The most general class of attacks is joint attack. In a joint attack, instead of
interacting with each signal independently, Eve treats all the signals as a single quantum
system. She then couples the signal system with her ancilla and evolves the combined signal
and ancilla system unitarily. She hears the public discussion between Alice and Bob before
deciding on which measurement to perform on her ancilla.

For joint and collective attacks, the usual assumption is that Eve measures her probe only after
Alice and Bob have completed all public discussion about basis reconciliation, error correction,
and privacy amplification. For the more realistic individual attacks, one assumes that Eve waits
only until the basis reconciliation phase of the public discussion. With today’s technology, it
might even be fair to assume that in individual attacks Eve must measure her probe before the
basis reconciliation [34]. The motivation for this assumption is that one hardly sees what Eve
could gain by waiting until after the public discussion on error correction and privacy
amplification before measuring her probes, since she is going to measure them independently
anyway. About practical QKD, they summary some assumptions about security of QKD in
[18]. We describe them in the next subsection 4.2.

4.2. Some assumptions about security of QKD

Quantum key distribution is often described by its proponents as “unconditionally secure” to
emphasize its difference with computationally secure classical cryptographic protocols. While
there are still conditions that need to be satisfied for quantum key distribution to be secure,
the phrase “unconditionally secure” is justified because, not only are the conditions reduced,
they are in some sense minimal necessary conditions. Any secure key agreement protocol must
make a few minimal assumptions, for security cannot come from nothing: we must be able to
identify and authenticate the communicating parties, we must be able to have some private
location to perform local operations, and all parties must operate within the laws of physics.

The following statement describes the security of quantum key distribution, and there are
many formal mathematical arguments for the security of QKD.

Theorem 1 (Security statement for quantum key distribution) If 1) quantum mechanics is
correct, and 2) authentication is secure, and 3) our devices are reasonably secure, then with
high probability the key established by quantum key distribution is a random secret key
independent (up to a negligible difference) of input values.

Assumption 1: Quantum mechanics is correct. This assumption requires that any eavesdrop‐
per be bounded by the laws of quantum mechanics, although within this realm there are no
further restrictions beyond the eavesdropper’s inability to access the devices. In particular, we
allow the eavesdropper to have arbitrarily large quantum computing technology, far more
powerful than the current state of the art. Quantum mechanics has been tested experimentally
for nearly a century, to very high precision. But even if quantum mechanics is superseded by
a new physical theory, it is not necessarily true that quantum key distribution would be
insecure: for example, secure key distribution can be achieved in a manner similar to QKD
solely based on the assumption that no faster-than-light communication is possible [35].
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Assumption 2: Authentication is secure. This assumption is one of the main concerns of those
evaluating quantum key distributions. In order to be protected against man-in-the-middle
attack, much of the classical communication in QKD must be authenticated. Authentication
can be achieved with unconditional security using short shared keys, or with computational
security using public key cryptography.

Assumption 3: Our devices are secure. Constructing a QKD implementation that is verifiably
secure is a substantial engineering challenge that researchers are still working on. Although
the first prototype QKD system leaked key information over a side channel (it made different
noises depending on the photon polarization, and thus the “prototype was unconditionally
secure against any eavesdropper who happened to be deaf” [36] ), experimental cryptanalysis
leads to better theoretical and practical security. More sophisticated side-channel attacks
continue to be proposed against particular implementations of existing systems (e.g., [37]), but
so too are better theoretical methods being proposed, such as the decoy state method [38].
Device-independent security proofs [39, 40] aim to minimize the security assumptions on
physical devices. It seems reasonable to expect that further theoretical and engineering
advances will eventually bring us devices which have strong arguments and few assumptions
for their security.

4.3. Security proofs for QKD

Proving the security of QKD against the most general attack was a very hard problem. It took
more than 10 years, but the unconditional security of QKD was finally established in several
papers in the 1990s. One approach by Mayers [16] was to prove the security of the BB84 directly.
A simpler approach by Lo and Chau [17], mad use of the idea of entanglement distillation by
Bennett, DiVincenzo, Smolin and Wootters (BDSW) [41] and quantum privacy amplification
by Deutsch et al. [42] to solve the security of an entanglement-based QKD protocol. The two
approaches have been unified by the work of Shor and Preskill [43], who provided a simple
proof of security of BB84 using entanglement distillation idea. Other early security proofs of
QKD include Biham, Boyer, Boykin, Mor, and Roychowdhury [44], and Ben-Or [45].

There are several approaches to security proof as following. [5]

4.3.1. Entanglement distillation

Entanglement distillation protocol (EDP) provides a simple approach to security proof [17,
42,  43].  The  basic  insight  is  that  entanglement  is  a  sufficient  (but  not  necessary)  condi‐
tion for  a secure key.  In the noiseless case,  suppose two distant parties,  Alice and Bob,
share a maximally entangled state of the form |ϕ AB = 1

2
(|00 AB + |11 AB). If each of Alice

and Bob measure their systems, then they will  both get “0”s or “1”s,  which is a shared
random key.  Moreover,  if  we consider the combined system of the three parties—Alice,
Bob and an eavesdropper, Eve, we can use a pure-state description (the “Church of Larger
Hilbert space”) and consider a pure state |ψ ABE .  In this case, the von Neumann entro‐
py of Eve S (ρE )=S (ρAB)=0. This means that Eve has absolutely no information on the final
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solely based on the assumption that no faster-than-light communication is possible [35].
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proof of security of BB84 using entanglement distillation idea. Other early security proofs of
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There are several approaches to security proof as following. [5]
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Entanglement distillation protocol (EDP) provides a simple approach to security proof [17,
42,  43].  The  basic  insight  is  that  entanglement  is  a  sufficient  (but  not  necessary)  condi‐
tion for  a secure key.  In the noiseless case,  suppose two distant  parties,  Alice and Bob,
share a maximally entangled state of the form |ϕ AB = 1
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(|00 AB + |11 AB). If each of Alice

and Bob measure their systems, then they will  both get “0”s or “1”s,  which is a shared
random key.  Moreover,  if  we consider the combined system of the three parties—Alice,
Bob and an eavesdropper, Eve, we can use a pure-state description (the “Church of Larger
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key.  In  the  noisy  case,  Alice  and Bob may share  N  pairs  of  qubits,  which  are  a  noisy
version of  N  maximally entangled states.  Now, using the idea of  entanglement distilla‐
tion protocol  (EDP) discussed in BDSW [41],  Alice and Bob may apply local  operations
and classical communications (LOCCs) to distill from the N  noisy pairs a smaller number,
say M  almost perfect pairs i.e., a state close to |ϕ AB

M . Once such a EDP has been performed,
Alice and Bob can measure their respective system to generate an M -bit final key.

How can Alice and Bob be sure that their EDP will be successful? Whether an EDP will be
successful or not depends on the initial state shared by Alice and Bob. In practice, Alice and
Bob can never be sure what initial state they possess. Therefore, it is useful for them to add a
verification step. By, for example, randomly testing a fraction of their pairs, they have a pretty
good idea about the properties (e.g., the bit-flip and phase error rates) of their remaining pairs
and are pretty confident that their EDP will be successful.

4.3.2. Communication complexity/quantum memory

The communication complexity/quantum memory approach to security proof was proposed
by Ben-Or [45] and subsequently by Renner and Koenig [46]. See also [47]. They provide a
formula for secure key generation rate in terms of an eavesdropper’s quantum knowledge on
the raw key: Let Z  be a random variable with range ℤ, let ρ be a random state, and let F  be a
two-universal function on ℤ with range S ={0, 1}s which is independent of Z  and ρ. Then [46]
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Incidentally, the quantum de Finnetti’s theorem [48] is often useful for simplifying security
proofs of this type.

4.3.3. Twisted state approach

What is a necessary and sufficient condition for secure key generation? From the entanglement
distillation approach, we know that entanglement distillation a sufficient condition for secure
key generation. For some time, it was hoped that entanglement distillation is also a necessary
condition for secure key generation. However, such an idea was proven to be wrong in [49]
[50], where it was found that a necessary and sufficient condition is the distillation of a private
state, rather than a maximally entangled state. A private state is a “twisted” version of a
maximally entangled state. They proved the following theorem in [49]: a state is private in the
above sense iff it is of the following form

†
2 2m mm A BAB

U Ug y y r+ +
¢ ¢= Ä (14)

Theory and Practice of Cryptography and Network Security Protocols and Technologies132

Where |ψd =∑i=1
d | ii  and ρA ′B ′ is an arbitrary state on A ′, B ′. U  is an arbitrary unitary

controlled in the computational basis
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The operation (15) will be called “twisting” (note that only Uii
A ′B ′

 matter here, yet it will be
useful to consider general twisting later).

The main new ingredient of the above theorem is the introduction of a “shield” part to Alice
and Bob’s system. That is, in addition to the systems A and B used by Alice and Bob for key
generation, we assume that Alice and Bob also hold some ancillary systems, A ′ and B ′, often
called the shield part. Since we assume that Eve has no access to the shield part, Eve is further
limited in her ability to eavesdrop. Therefore, Alice and Bob can derive a higher key generation
rate than the case when Eve does have access to the shield part.

4.3.4. Complementary principle

Another approach to security proof is to use the complementary principle of quantum
mechanics. Such an approach is interesting because it shows the deep connection between the
foundations of quantum mechanics and the security of QKD. In fact, both Mayers’ proof [16]
and Biham, Boyer, Boykin, Mor, and Roychowdhury’s proof [44] make use of this comple‐
mentary principle. A clear and rigorous discussion of the complementary principle approach
to security proof has recently been achieved by Koashi [51]. The key insight of Koashi’s proof
is that Alice and Bob’s ability to generate a random secure key in the Z-basis (by a measurement
of the Pauli spin matrix σZ ) is equivalent to the ability for Bob to help Alice prepare an
eigenstate in the complementary, i.e., X-basis (σX ), with their help of the shield. The intuition
is that an X-basis eigenstate, for example, | + A = 1

2
(|0 A + |1 A), when measured along the

Z-basis, gives a random answer.

4.3.5. Other ideas for security proofs

Here are two other ideas for security proofs, namely, a) device-independent security proofs
and b) security from the causality constraint. Unfortunately, these ideas are still very much
under development and so far a complete version of a proof of unconditional security of QKD
based on these ideas with a finite key rate is still missing.

Let us start with a) device-independent security proofs. So far we have assumed that Alice and
Bob know what their devices are doing exactly. In practice, Alice and Bob may not know their
devices for sure. Recently, there has been much interest in the idea of device independent
security proofs. In other words, how to prove security when Alice and Bob’s devices cannot
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Incidentally, the quantum de Finnetti’s theorem [48] is often useful for simplifying security
proofs of this type.
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Where |ψd =∑i=1
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The operation (15) will be called “twisting” (note that only Uii
A ′B ′

 matter here, yet it will be
useful to consider general twisting later).

The main new ingredient of the above theorem is the introduction of a “shield” part to Alice
and Bob’s system. That is, in addition to the systems A and B used by Alice and Bob for key
generation, we assume that Alice and Bob also hold some ancillary systems, A ′ and B ′, often
called the shield part. Since we assume that Eve has no access to the shield part, Eve is further
limited in her ability to eavesdrop. Therefore, Alice and Bob can derive a higher key generation
rate than the case when Eve does have access to the shield part.

4.3.4. Complementary principle

Another approach to security proof is to use the complementary principle of quantum
mechanics. Such an approach is interesting because it shows the deep connection between the
foundations of quantum mechanics and the security of QKD. In fact, both Mayers’ proof [16]
and Biham, Boyer, Boykin, Mor, and Roychowdhury’s proof [44] make use of this comple‐
mentary principle. A clear and rigorous discussion of the complementary principle approach
to security proof has recently been achieved by Koashi [51]. The key insight of Koashi’s proof
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Here are two other ideas for security proofs, namely, a) device-independent security proofs
and b) security from the causality constraint. Unfortunately, these ideas are still very much
under development and so far a complete version of a proof of unconditional security of QKD
based on these ideas with a finite key rate is still missing.

Let us start with a) device-independent security proofs. So far we have assumed that Alice and
Bob know what their devices are doing exactly. In practice, Alice and Bob may not know their
devices for sure. Recently, there has been much interest in the idea of device independent
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be trusted. See, for example, [52]. The idea is to look only at the input and output variables. A
handwaving argument goes as follows. Using their probability distribution, if one can
demonstrate the violation of some Bell inequalities, then one cannot explain the data by a
separable system. How to develop such a handwaving argument into a full proof of uncon‐
ditional security is an important question.

The second idea b) security from the causality constraint is even more ambitious. The question
that it tries to address is the following. How can one prove security when even quantum
mechanics is wrong? In [53] and references cited therein, it was suggested that perhaps a more
general physical principle such as the no-signaling requirement for space-like observables
could be used to prove the security of QKD.

5. Quantum secret sharing

“Secret sharing” refers to an important family of multi-party cryptographic protocols in both
the classical and the quantum contexts. A secret sharing protocol comprises a dealer and n
players who are interconnected by some set of classical or quantum channels. The “secret” to
be shared is a classical string or quantum state and is distributed among the players by the
dealer in such a way that it can only be recovered by certain subsets of players acting collab‐
oratively. The access structure is the set of all subsets of players who can recover the secret,
and the adversary structure corresponds to those subsets that obtain no knowledge of the
secret. There may, in addition, be external eavesdroppers who should also gain no knowledge
of the secret.

Quantum secret sharing (abbreviated QSS) is the generalization of quantum key distribution
to more than two parties [54]. In this new application of quantum communication, Alice
distributes a secret key to two other users, Bob and Charlie, in such a way that neither Bob nor
Charlie alone has any information about the key, but together they have full information. As
in traditional QC, an eavesdropper trying to get some information about the key creates errors
in the transmission data and thus reveals her presence. The motivation behind quantum secret
sharing is to guarantee that Bob and Charlie cooperate—one of them might be dishonest—in
order to obtain a given piece of information. In contrast with previous proposals using three
particle Greenberger-Horne-Zeilinger states [55], pairs of entangled photons in so-called
energy-time Bell states were used to mimic the necessary quantum correlation of three
entangled qubits, although only two photons exist at the same time. This is possible because
of the symmetry between the preparation device acting on the pump pulse and the devices
analyzing the downconverted photons. Therefore the emission of a pump pulse can be
considered as the detection of a photon with 100% efficiency, and the scheme features a much
higher coincidence rate than that expected with the initially proposed “triplephoton” schemes.

QSS which is based on the laws of quantum mechanics, instead of mathematical assumptions
can share the information unconditionally securely. According to the form of sharing infor‐
mation, QSS can be divided into QSS of classical messages and QSS of quantum informa‐
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tion.QSS of classical messages can be divided into QSS of classical messages based on
entanglement and QSS of classical messages without entanglement.

In 1999, Hillery et al. [55] used entangled three-photon GHZ states to propose the first QSS
protocol, namely the HBB99 scheme. In their scheme, the dealer (Alice) prepares a three
photons quantum system in the GHZ state |ψ = 1

2
(|000 + |111 )ABC  and sends the photon

B and C to Bob and Charlie, respectively. The three parties all choose randomly one of two
measuring bases to measure the photons in their hands independently. They keep the correlate
results for generating the key KA. In the same year, Cleve et al. utilized the properties of
quantum error-correcting code to propose the first (k , n) threshold of QSS protocol. In a (k , n)
threshold scheme, any subset of k or more parties can reconstruct the secret, while any subset
of k −1 or fewer parties can obtain no information [56]. In 2001, Tittel et al. used the experiment
to realize quantum secret sharing for the first time [54]. In 2002, Tyc et al. developed the theory
of continuous variable quantum secret sharing and propose its interferometric realization
using passive and active optical elements [57]. In 2003, Gou et al. presented a quantum secret
sharing scheme where only product states are employed [58]. Xiao et al. showed that in the
Hillery-Bužek-Berthiaume QSS scheme [59], and the secret information is shared in the parity
of binary strings formed by the measured outcomes of the participants in 2004. With the rapid
development of QSS, people are researching to achieve unconditional security.

5.1. QSS based on entanglement states

Quantum entanglement is an indispensable physical resource in QSS. Many application fields
of QSS such as this entanglement feature, so the study of entanglement is the core issue of
quantum information theory.

Let’s see the QSS based on entanglement. The entanglement states are all generated by the
sender, and the order of two or more photons sent to the same agent is randomly changed.
After the photons send to the receiver, for the detection mode, the order of the two photons is
announced, so that the two parties detected the security of the quantum channel, for the
information mode, the two receivers respectively does Bell measurement on the two photons
they owned, and then communicate through classical channel to share the secret key with the
sender. This protocol ensures the validity and security of the shared information.

We can see an example of QSS based on entanglement state GHZ [55].

Let us suppose that Alice, Bob, and Charlie each have one particle from a GHZ triplet that is
in the state |ψ = 1

2
(|000 + |111 ). They each choose at random whether to measure their

particle in the x or y direction. They then announce publicly in which direction they have made
a measurement, but not the results of their measurements. Half the time, Bob and Charlie, by
combining the results of their measurements, can determine what the result of Alice’s meas‐
urement was. This allows Alice to establish a joint key with Bob and Charlie, which she can
then use to send her message. Let us see how this works in more detail. Define the x and y
eigenstates
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energy-time Bell states were used to mimic the necessary quantum correlation of three
entangled qubits, although only two photons exist at the same time. This is possible because
of the symmetry between the preparation device acting on the pump pulse and the devices
analyzing the downconverted photons. Therefore the emission of a pump pulse can be
considered as the detection of a photon with 100% efficiency, and the scheme features a much
higher coincidence rate than that expected with the initially proposed “triplephoton” schemes.
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photons quantum system in the GHZ state |ψ = 1

2
(|000 + |111 )ABC  and sends the photon

B and C to Bob and Charlie, respectively. The three parties all choose randomly one of two
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of binary strings formed by the measured outcomes of the participants in 2004. With the rapid
development of QSS, people are researching to achieve unconditional security.

5.1. QSS based on entanglement states

Quantum entanglement is an indispensable physical resource in QSS. Many application fields
of QSS such as this entanglement feature, so the study of entanglement is the core issue of
quantum information theory.

Let’s see the QSS based on entanglement. The entanglement states are all generated by the
sender, and the order of two or more photons sent to the same agent is randomly changed.
After the photons send to the receiver, for the detection mode, the order of the two photons is
announced, so that the two parties detected the security of the quantum channel, for the
information mode, the two receivers respectively does Bell measurement on the two photons
they owned, and then communicate through classical channel to share the secret key with the
sender. This protocol ensures the validity and security of the shared information.

We can see an example of QSS based on entanglement state GHZ [55].

Let us suppose that Alice, Bob, and Charlie each have one particle from a GHZ triplet that is
in the state |ψ = 1
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particle in the x or y direction. They then announce publicly in which direction they have made
a measurement, but not the results of their measurements. Half the time, Bob and Charlie, by
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We can see the effects of measurements by Alice and Bob on the state of Charlie’s particle if
we express the GHZ state in different ways. Noting that

1 1
2 2

0 ( ), 1 ( ),x x x x= + + - = + - - (17)

we can write
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( )( 0 1 )].
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(18)

This decomposition of |ψ  tells us what happens if both Alice and Bob make measurements
in the x direction. If they both get the same result, then Charlie will have the state
1

2
(|0 c + |1 c); if they get different results, he will have the state 1

2
( |0 c − |1 c). He can

determine which of these states he has by performing a measurement along the x direction.
The following table summarizes the effects of Alice’s and Bob’s measurements on Charlie’s
state:

Alice

Bob

+x -x +y -y

+x | 0 + | 1 | 0 − | 1 | 0 − i | 1 | 0 + i | 1

-x | 0 − | 1 | 0 + | 1 | 0 + i | 1 | 0 − i | 1

+y | 0 − i | 1 | 0 + i | 1 | 0 − | 1 | 0 + | 1

-y | 0 + i | 1 | 0 − i | 1 | 0 + | 1 | 0 − | 1

Table 2. QSS based on entanglement state [55].

Alice’s measurements are given in the columns and Bob’s are given in the rows. Charlie’s state,
up to normalization, appears in the boxes. From the table it is clear that if Charlie knows what
measurements Alice and Bob made (that is, x or y), he can determine whether their results are
the same or opposite and also that he will gain no knowledge of what their results actually
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are. Similarly, Bob will not be able to determine what Alice’s result is without Charlie’s
assistance because he does not know if his result is the same as Alice’s or the opposite of hers.

To improve the efficiency of QSS, a protocol share the message directly among the users was
proposed. The scheme made full use of entanglement swapping of Bell states and local
operations. For detection of eavesdropping, the EPR pairs were divided into two parts: the
checking parts and the encoding parts. After insuring the security of the quantum channel by
measuring the checking particles in conjugate bases, the sender encoded her bits via the local
unitary operations on the encoding parts. And the protocol is secure, and two Bell states can
be used to share two bits message. And there is a scheme for multiparty quantum secret sharing
which is based on EPR entangled state. In the scheme, the secret messages are imposed on the
auxiliary particles, and the transmitted particles of EPR pairs do not carry any secret messages
during the whole process of transmission. After both of the communicators reliably share the
EPR entangled states, all the participants can securely share the secret messages of the sender.
Because there is no particles that carrying the secret message being transmitted on the quantum
channel during the process of transmission, the scheme can efficiently resist the eavesdropper’s
attack on secret message.

So, entanglement makes an important role in quantum secret sharing and many application
fields of quantum information theory such as quantum teleportation, QKD, quantum com‐
puting need to use this entanglement feature. But the quantification of the entanglement
receives a better solution only for bipartite quantum system, and the quantification of multi‐
partite entanglement is still open even for a pure multipartite state. Until now, a variety of
different entanglement measures have been proposed for multipartite setting, such as the
robustness of entanglement, the relative entropy of entanglement, and the geometric measure.

However, all these methods involve variable complexity problem, which make the quantifi‐
cation of multipartite entanglement very difficult. Fortunately, it is hopeful to obtain the exact
value of the multipartite entanglement of graph states, which are very useful multipartite
quantum states in quantum information processing. Graph states are the specific algorithm
resources for one-way quantum computing model, and they are subsets of stabilizer states
which are widely used in quantum error correction.

5.2. QSS with qudit graph states

The quantification of entanglement has attracted wide attention in recent years, but the
quantification of the entanglement receives a better solution only for bipartite quantum system.
And the quantification of multipartite entanglement is still open even for a pure multipartite
state. Until now, a variety of different entanglement measures have been proposed for
multipartite setting, such as the robustness of entanglement, the relative entropy of entangle‐
ment, and the quantification of multipartite entanglement is still open even for a pure multi‐
partite state. Fortunately, it is hopeful to obtain the exact value of the multipartite entanglement
of graph states, which are useful multipartite quantum states in quantum information
processing.
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are. Similarly, Bob will not be able to determine what Alice’s result is without Charlie’s
assistance because he does not know if his result is the same as Alice’s or the opposite of hers.

To improve the efficiency of QSS, a protocol share the message directly among the users was
proposed. The scheme made full use of entanglement swapping of Bell states and local
operations. For detection of eavesdropping, the EPR pairs were divided into two parts: the
checking parts and the encoding parts. After insuring the security of the quantum channel by
measuring the checking particles in conjugate bases, the sender encoded her bits via the local
unitary operations on the encoding parts. And the protocol is secure, and two Bell states can
be used to share two bits message. And there is a scheme for multiparty quantum secret sharing
which is based on EPR entangled state. In the scheme, the secret messages are imposed on the
auxiliary particles, and the transmitted particles of EPR pairs do not carry any secret messages
during the whole process of transmission. After both of the communicators reliably share the
EPR entangled states, all the participants can securely share the secret messages of the sender.
Because there is no particles that carrying the secret message being transmitted on the quantum
channel during the process of transmission, the scheme can efficiently resist the eavesdropper’s
attack on secret message.

So, entanglement makes an important role in quantum secret sharing and many application
fields of quantum information theory such as quantum teleportation, QKD, quantum com‐
puting need to use this entanglement feature. But the quantification of the entanglement
receives a better solution only for bipartite quantum system, and the quantification of multi‐
partite entanglement is still open even for a pure multipartite state. Until now, a variety of
different entanglement measures have been proposed for multipartite setting, such as the
robustness of entanglement, the relative entropy of entanglement, and the geometric measure.

However, all these methods involve variable complexity problem, which make the quantifi‐
cation of multipartite entanglement very difficult. Fortunately, it is hopeful to obtain the exact
value of the multipartite entanglement of graph states, which are very useful multipartite
quantum states in quantum information processing. Graph states are the specific algorithm
resources for one-way quantum computing model, and they are subsets of stabilizer states
which are widely used in quantum error correction.

5.2. QSS with qudit graph states

The quantification of entanglement has attracted wide attention in recent years, but the
quantification of the entanglement receives a better solution only for bipartite quantum system.
And the quantification of multipartite entanglement is still open even for a pure multipartite
state. Until now, a variety of different entanglement measures have been proposed for
multipartite setting, such as the robustness of entanglement, the relative entropy of entangle‐
ment, and the quantification of multipartite entanglement is still open even for a pure multi‐
partite state. Fortunately, it is hopeful to obtain the exact value of the multipartite entanglement
of graph states, which are useful multipartite quantum states in quantum information
processing.
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The entanglement quantification of graph state is relatively simple, for it can be described by
graph language. So far, the study of graph state entanglement has just started, the latest
research results is determining the upper and lower bounds of graph state entanglement by
using local operation and classical communication, which can only confirm the entanglement
of graph states that have equal bounds. But for graph states which have unequal bounds, it
can only give a range of entanglement but not the exact value.

In quantum computing, a graph state is a special type of multi-qubit state that can be repre‐
sented by a graph. Each qubit is represented by a vertex of the graph, and there is an edge
between every interacting pair of qubits. In particular, they are a convenient way of repre‐
senting certain types of entangled states.

Given a graph G =(V , E )with the set of vertices V  and the set of edges E , the corresponding
graph

{ , }

( , )
,Va b

a b E
G U Ä

Î

= +Õ (19)

where the operator U {a,b} is the controlled-Z interaction between the two vertices (qubits) a, b,

U {a,b} =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

.

And | + = 1

2
(|0 + |1 ). With each graph G =(V , E ), we associate a graph state. A graph

state is a certain pure quantum state on a Hilbert space HV =(C 2)⊗V .

An alternative and equivalent definition is the following. Hence each vertex labels a two-level
quantum system or qubit — a notion that can be extended to quantum systems of finite
dimension d . To every vertex a ∈V  of the graph G =(V , E ) is attached a Hermitian operator

( ) ( ) ( ).
a

a a b
G x z

b N
K s s

Î

= Õ (20)

In terms of the adjacency matrix, this can be expressed as

( ) ( ) ( )( ) .aba a b
G x z

b V
K s s G

Î

= Õ (21)

As usual, the matrices σx
(a), σy

(a), σz
(a) are the Pauli matrices, where the upper index specifies

the Hilbert space on which the operator acts KG
(a) is an observable of the qubits associated with
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the vertex a and all of its neighbors b ∈ Na. The graph state |G  is then defined as the simul‐

taneous eigenstate of the N = |V |  operators {KG
(a)}a∈V  with eigenvalue 1:

( ) .a
GK G G= (22)

Here they consider three specific varieties of such schemes previously demonstrated in graph
states. They note that all existing forms of secret sharing that have been proposed fall into one
of these categories. [60]

1. CC scheme: The secret is classical, the dealer is connected to the player via private
quantum channels and all players are connected by private classical channels.

2. CQ scheme: The secret is classical, the dealer shares public quantum channels with each
player and the players are connected to each by private classical channels.

3. QQ scheme: The secret is quantum, the dealer shares either private or public quantum
channels with each player and the players are connected to each other by private quantum
or classical channels.

Now let’s see an example of QSS with graph states. It is the third scenario presented in the
previous QQ scheme. This QQ scheme proposed is readily generalisable to qudits. In this
scheme, the secret to be shared is a quantum state | s  in a d-dimensional Hilbert space now,
initially possessed by the dealer, who distributes it to the other parties via a joint operation on
the secret state and parties’ shared graph state, in a manner analogous to quantum teleporta‐
tion. We describe the general protocol explicitly below.

Denoting the dealer’s secret qudit as
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The dealer prepares the state | s D |G D,V . Corresponding to some graph state G for the
dealer’s qudit D and all the players’ qudits V . The dealer distributes the player’s qudits to
them. The dealer then measures her two qudits in the generalized Bell basis {|ψ mn}, where

1: jn
mn

j
j j m

d
y w= +å (24)

If the dealer’s measurement result is (m, n), corresponding to the state |ψ mn, then it follows
from the rules for projective measurement that the resultant state for all parties is

Introduction to Quantum Cryptography
http://dx.doi.org/10.5772/56092

139



The entanglement quantification of graph state is relatively simple, for it can be described by
graph language. So far, the study of graph state entanglement has just started, the latest
research results is determining the upper and lower bounds of graph state entanglement by
using local operation and classical communication, which can only confirm the entanglement
of graph states that have equal bounds. But for graph states which have unequal bounds, it
can only give a range of entanglement but not the exact value.

In quantum computing, a graph state is a special type of multi-qubit state that can be repre‐
sented by a graph. Each qubit is represented by a vertex of the graph, and there is an edge
between every interacting pair of qubits. In particular, they are a convenient way of repre‐
senting certain types of entangled states.

Given a graph G =(V , E )with the set of vertices V  and the set of edges E , the corresponding
graph

{ , }

( , )
,Va b

a b E
G U Ä

Î

= +Õ (19)
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In terms of the adjacency matrix, this can be expressed as
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As usual, the matrices σx
(a), σy

(a), σz
(a) are the Pauli matrices, where the upper index specifies

the Hilbert space on which the operator acts KG
(a) is an observable of the qubits associated with
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where | gz  is the encoded reduced graph state on the players 1, ⋯ , n with labels z.

If the dealer informs the players of their measurement result (m, n), then a set of players ∈V
can apply a correction operator

1

: Da D
nN mA

mn aU K Z
-- -= (26)

to obtain the state

1, 2( , , ) .
D D DN

V
g j z j A A A Vj

s ga ==å L (27)

The access properties of this final state depend on the graph state used. Qualitatively, for
certain initial graph states, the state | sg

V  can be regarded as a superposition of orthogonal
labelled graph states whose labels have the same access structure as CC protocols. Thus, the
ability to recover the quantum secret corresponds to the ability to recover these classical labels,
providing a natural extension of the classical protocols to the quantum case.

6. Post-quantum cryptography

Post-quantum cryptography deals with cryptosystems that run on conventional computers
and are secure against attacks by quantum computers. This field came about because most
currently popular public-key cryptosystems rely on the integer factorization problem or
discrete logarithm problem, both of which would be easily solvable on large enough quantum
computers using Shor’s algorithm. Even though current publicly known experimental
quantum computing is nowhere near powerful enough to attack real cryptosystems, many
cryptographers are researching new algorithms, in case quantum computing becomes a threat
in the future.

In contrast, most current symmetric cryptography (symmetric ciphers and hash functions) is
secure from quantum computers. The quantum Grover’s algorithm can speed up attacks
against symmetric ciphers, but this can be counteracted by increasing key size. Thus post-
quantum cryptography does not focus on symmetric algorithms. Post-quantum cryptogra‐
phy is also unrelated to quantum cryptography, which refers to using quantum phenomena
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to achieve secrecy. Currently post-quantum cryptography is mostly focused on four differ‐
ent approaches:

28 

                                          Functioning cryptographic systems: 
                                  DES, Triple DES, AES, 
                                  RSA, McEliece encryption, 
                                  Merkle hash-tree signatures, 
                                  Merkle–Hellman knapsack encryption, 
                                  Buchmann - Williams class-group encryption, 

                                  ECDSA, HFE v , NTRU, etc. 

                                 Unbroken cryptographic systems: 
                                 AES (for 128b ), 
                                 McEliece with code length )1(1 b , 
                                 Merkle signatures with “strong” )1(1 b -bit hash, 
                                 HFE v

 with )1(1 b  polynomials, 
                                 NTRU with )1(1 b  bits, etc. 

                                 Most efficient unbroken cryptosystems: 
                                 e.g., can verify signature in time 3 (1)b 

 

                                 using HFE v
 with )1(1 b  polynomials 

 
 

Cryptographers: 
How can we encrypt, decrypt, sign, 

verify, etc.?

Cryptanalysts: 

What can an attacker do using 

b2 operations on a quantum computer? 

Algorithm designers and implementors: 
Exactly how small and fast are the 

unbroken cryptosystems?

Users

Figure 4. Post-quantum cryptography. Sizes and times are simplified to b 1+ο(1), b 2+ο(1), etc. Optimization of any specif‐
ic b requires a more detailed analysis.

1. Lattice-based cryptography such as NTRU and GGH;

2. Multivariate cryptography such as unbalanced oil and vinegar;

3. Hash-based signatures such as Lamport signatures and Merkle signature scheme;
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4. Code-based cryptography that relies on error-correcting codes, such McEliece encryption
and Niederreiter signatures.

We can use the following figure to show the content of post-quantum cryptography clearly [7].

Post-quantum cryptography is, in general, a quite different topic from quantum cryptography:

• Post-quantum cryptography, like the rest of cryptography, covers a wide range of secure-
communication tasks, ranging from secret-key operations, public-key signatures, and
public-key encryption to high-level operations such as secure electronic voting. Quantum
cryptography handles only one task, namely expanding a short shared secret into a long
shared secret.

• Post-quantum cryptography, like the rest of cryptography, includes some systems proven
to be secure, but also includes many lower-cost systems that are conjectured to be secure.
Quantum cryptography rejects conjectural systems — begging the question of how Alice
and Bob can securely share a secret in the first place.

• Post-quantum cryptography includes many systems that can be used for a noticeable
fraction of today’s Internet communication—Alice and Bob need to perform some compu‐
tation and send some data but do not need any new hardware. Quantum cryptography
requires new network hardware that is, at least for the moment, impossibly expensive for
the vast majority of Internet users.
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