1,920 research outputs found

    micromachined flow sensors in biomedical applications

    Get PDF
    Application fields of micromachined devices are growing very rapidly due to the continuous improvement of three dimensional technologies of micro-fabrication. In particular, applications of micromachined sensors to monitor gas and liquid flows hold immense potential because of their valuable characteristics (e.g., low energy consumption, relatively good accuracy, the ability to measure very small flow, and small size). Moreover, the feedback provided by integrating microflow sensors to micro mass flow controllers is essential to deliver accurately set target small flows. This paper is a review of some application areas in the biomedical field of micromachined flow sensors, such as blood flow, respiratory monitoring, and drug delivery among others. Particular attention is dedicated to the description of the measurement principles utilized in early and current research. Finally, some observations about characteristics and issues of these devices are also reported

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    Characterization and modeling of CMOS-compatible acoustical particle velocity sensors for applications requiring low supply voltages

    Get PDF
    Acoustic particle velocity sensors have been obtained applying simple low resolution micromachining steps to chips fabricated using a standard microelectronic process. Each sensor consists of four silicided polysilicon wires, suspended over cavities etched into the substrate, and connected to form a heatstone bridge. Full compatibility of the micromachining procedure with the original process is demonstrated by integrating a simple pre-amplifier on the same chip as the sensors and showing that both blocks are functional. Proper design of the sensing structures allows them to operate with a single 3.3 V power supply. Sensitivity and noise measurements, performed to estimate the sensor detection limit, are described. Excess noise with a flicker-like behavior, not ascribable to the amplifier, is found when the bridges are biased in working conditions. In addition, the dependence of the sensitivity on the dc bias voltage of the bridges is investigated, comparing the experimental data with the results of a simple analytical model and finite element method simulations

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    Gas Flows in Microsystems

    Get PDF
    International audienc
    • …
    corecore