1,108 research outputs found

    On plane sextics with double singular points

    Get PDF
    We compute the fundamental groups of five maximizing sextics with double singular points only; in four cases, the groups are as expected. The approach used would apply to other sextics as well, given their equations.Comment: A few explanations and references adde

    Forbidden gap argument for phase transitions proved by means of chessboard estimates

    Full text link
    Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the "transitional gap" are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria.Comment: 26 page

    Periodic GMP Matrices

    Full text link
    We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic finite gap Jacobi matrices by periodic GMP matrices. Moreover, due to their structural similarity we can carry over numerous results from the direct and inverse spectral theory of periodic Jacobi matrices to the class of periodic GMP matrices. In particular, we prove an analogue of the remarkable "magic formula" for this new class

    A Portable High-Quality Random Number Generator for Lattice Field Theory Simulations

    Full text link
    The theory underlying a proposed random number generator for numerical simulations in elementary particle physics and statistical mechanics is discussed. The generator is based on an algorithm introduced by Marsaglia and Zaman, with an important added feature leading to demonstrably good statistical properties. It can be implemented exactly on any computer complying with the IEEE--754 standard for single precision floating point arithmetic.Comment: pages 0-19, ps-file 174404 bytes, preprint DESY 93-13

    Quantitative K-Theory Related to Spin Chern Numbers

    Full text link
    We examine the various indices defined on pairs of almost commuting unitary matrices that can detect pairs that are far from commuting pairs. We do this in two symmetry classes, that of general unitary matrices and that of self-dual matrices, with an emphasis on quantitative results. We determine which values of the norm of the commutator guarantee that the indices are defined, where they are equal, and what quantitative results on the distance to a pair with a different index are possible. We validate a method of computing spin Chern numbers that was developed with Hastings and only conjectured to be correct. Specifically, the Pfaffian-Bott index can be computed by the "log method" for commutator norms up to a specific constant
    corecore