research

Forbidden gap argument for phase transitions proved by means of chessboard estimates

Abstract

Chessboard estimates are one of the standard tools for proving phase coexistence in spin systems of physical interest. In this note we show that the method not only produces a point in the phase diagram where more than one Gibbs states coexist, but that it can also be used to rule out the existence of shift-ergodic states that differ significantly from those proved to exist. For models depending on a parameter (say, the temperature), this shows that the values of the conjugate thermodynamic quantity (the energy) inside the "transitional gap" are forbidden in all shift-ergodic Gibbs states. We point out several models where our result provides useful additional information concerning the set of possible thermodynamic equilibria.Comment: 26 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020