2,215 research outputs found

    READUP BUILDUP. Thync - instant α-readings

    Get PDF

    Empirical analysis of ensemble methods for the classification of robocalls in telecommunications

    Get PDF
    With the advent of technology, there has been an excessive use of cellular phones. Cellular phones have made life convenient in our society. However, individuals and groups have subverted the telecommunication devices to deceive unwary victims. Robocalls are quite prevalent these days and they can either be legal or used by scammers to trick one out of their money. The proposed methodology in the paper is to experiment two ensemble models on the dataset acquired from the Federal Trade Commission(DNC Dataset). It is imperative to analyze the call records and based on the patterns the calls can classify as a robocall or not a robocall. Two algorithms Random Forest and XgBoost are combined in two ways and compared in the paper in terms of accuracy, sensitivity and the time taken

    Shared Nearest-Neighbor Quantum Game-Based Attribute Reduction with Hierarchical Coevolutionary Spark and Its Application in Consistent Segmentation of Neonatal Cerebral Cortical Surfaces

    Full text link
    © 2012 IEEE. The unprecedented increase in data volume has become a severe challenge for conventional patterns of data mining and learning systems tasked with handling big data. The recently introduced Spark platform is a new processing method for big data analysis and related learning systems, which has attracted increasing attention from both the scientific community and industry. In this paper, we propose a shared nearest-neighbor quantum game-based attribute reduction (SNNQGAR) algorithm that incorporates the hierarchical coevolutionary Spark model. We first present a shared coevolutionary nearest-neighbor hierarchy with self-evolving compensation that considers the features of nearest-neighborhood attribute subsets and calculates the similarity between attribute subsets according to the shared neighbor information of attribute sample points. We then present a novel attribute weight tensor model to generate ranking vectors of attributes and apply them to balance the relative contributions of different neighborhood attribute subsets. To optimize the model, we propose an embedded quantum equilibrium game paradigm (QEGP) to ensure that noisy attributes do not degrade the big data reduction results. A combination of the hierarchical coevolutionary Spark model and an improved MapReduce framework is then constructed that it can better parallelize the SNNQGAR to efficiently determine the preferred reduction solutions of the distributed attribute subsets. The experimental comparisons demonstrate the superior performance of the SNNQGAR, which outperforms most of the state-of-the-art attribute reduction algorithms. Moreover, the results indicate that the SNNQGAR can be successfully applied to segment overlapping and interdependent fuzzy cerebral tissues, and it exhibits a stable and consistent segmentation performance for neonatal cerebral cortical surfaces

    An Unsupervised Cluster: Learning Water Customer Behavior Using Variation of Information on a Reconstructed Phase Space

    Get PDF
    The unsupervised clustering algorithm described in this dissertation addresses the need to divide a population of water utility customers into groups based on their similarities and differences, using only the measured flow data collected by water meters. After clustering, the groups represent customers with similar consumption behavior patterns and provide insight into ‘normal’ and ‘unusual’ customer behavior patterns. This research focuses upon individually metered water utility customers and includes both residential and commercial customer accounts serviced by utilities within North America. The contributions of this dissertation not only represent a novel academic work, but also solve a practical problem for the utility industry. This dissertation introduces a method of agglomerative clustering using information theoretic distance measures on Gaussian mixture models within a reconstructed phase space. The clustering method accommodates a utility’s limited human, financial, computational, and environmental resources. The proposed weighted variation of information distance measure for comparing Gaussian mixture models places emphasis upon those behaviors whose statistical distributions are more compact over those behaviors with large variation and contributes a novel addition to existing comparison options

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    Active Sample Selection Based Incremental Algorithm for Attribute Reduction with Rough Sets

    Get PDF
    Attribute reduction with rough sets is an effective technique for obtaining a compact and informative attribute set from a given dataset. However, traditional algorithms have no explicit provision for handling dynamic datasets where data present themselves in successive samples. Incremental algorithms for attribute reduction with rough sets have been recently introduced to handle dynamic datasets with large samples, though they have high complexity in time and space. To address the time/space complexity issue of the algorithms, this paper presents a novel incremental algorithm for attribute reduction with rough sets based on the adoption of an active sample selection process and an insight into the attribute reduction process. This algorithm first decides whether each incoming sample is useful with respect to the current dataset by the active sample selection process. A useless sample is discarded while a useful sample is selected to update a reduct. At the arrival of a useful sample, the attribute reduction process is then employed to guide how to add and/or delete attributes in the current reduct. The two processes thus constitute the theoretical framework of our algorithm. The proposed algorithm is finally experimentally shown to be efficient in time and space
    • …
    corecore