
1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

1

Abstract—Attribute reduction with rough sets is an effective

technique for obtaining a compact and informative attribute set

from a given dataset. However, traditional algorithms have no

explicit provision for handling dynamic datasets where data

present themselves in successive samples. Incremental algorithms

for attribute reduction with rough sets have been recently

introduced to handle dynamic datasets with large samples, though

they have high complexity in time and space. To address the

time/space complexity issue of the algorithms, this paper presents

a novel incremental algorithm for attribute reduction with rough

sets based on the adoption of an active sample selection process

and an insight into the attribute reduction process. This algorithm

first decides whether each incoming sample is useful with respect

to the current dataset by the active sample selection process. A

useless sample is discarded while a useful sample is selected to

update a reduct. At the arrival of a useful sample, the attribute

reduction process is then employed to guide how to add and/or

delete attributes in the current reduct. The two processes thus

constitute the theoretical framework of our algorithm. The

proposed algorithm is finally experimentally shown to be efficient

in time and space.

Index Terms—Rough sets, attribute reduction, incremental

learning, active sample selection.

I. INTRODUCTION

OUGH set theory [17]-[18] is a data analysis methodology
that is well known for its ability in handling uncertainty,

imprecision and vagueness. It has received considerable
attention in data mining, machine learning and pattern
recognition [3], [10], [57]-[59], [62]. One important application
of rough sets is attribute reduction which aims to remove
superfluous attributes from a decision table in order to obtain a
compact and informative attribute set. Attribute reduction with
rough sets can be viewed as a pure structural approach that only

Manuscript received May 18, 2015; revised September, 30, 2015 and

November, 29, 2015; accepted April 27, 2016. This work was supported by
grants of NSFC (71471060), the Fundamental Research Funds for the Central
Universities (JB2014204) and China Scholarship Council (201506730011).

Y. Y. Yang is with the School of Control and Computer Engineering, North
China Electric Power University, Beijing 102206, China (e-mail:
hrsinbba@163.com).

D. G. Chen is with the Department of Mathematics and Physics, North
China Electric Power University, Beijing 102206, China (e-mail:
chengdegang@263.net).

H. Wang is with the School of Computing and Mathematics, University of
Ulster, Northern Ireland BT37 0QB, UK (e-mail: h.wang@ulster.ac.uk).

depends on the dataset without the need of any other
knowledge. Highlighting the discernible ability of condition
attributes related to decision labels is the essential difference
between attribute reduction with rough sets and other feature
selection methods. A variety of attribute reduction algorithms
have been proposed and proven to be effective in improving the
performance of learning algorithms [50]-[51], building some
well-designed classifiers [9], [34], [39], and ranking attributes
[52]-[53].

Traditional approaches to attribute reduction fall into two
categories. The first category consists of structural methods for
discerning samples. A typical representative is discernibility
matrix based method which captures reducts with the reduced
disjunctive form of the discernibility function [25].
Discernibility matrix based methods were summarized in [40]
and the R package was used to implement these methods and
other efficient ones. However, it has been argued that
discernibility matrices are old-fashioned data structures and are
not suitable for large volumes of data. Much effort has been
made to improve this approach by trying to utilize the
discernibility information in the discernibility matrix [2], [32].
For example, sample pair selection was proposed in [2] to
locate all minimal elements without computing the whole
discernibility matrix, so that the search space and time can be
reduced. The second category consists of the significance
measure oriented methods. Different kinds of reducts were
defined by using significance measures [12], [18], [19], [20],
and heuristic algorithms were proposed based on significance
measures. For example, Shannon’s entropy was introduced in
[26] to define a new type of reduct. Wang et al. [41] proposed a
heuristic algorithm for finding a reduct based on Shannon’s
conditional entropy. Permutation based heuristic algorithms
were proposed in [42] to determine a reduct by employing an
elimination process.

However, these traditional algorithms for attribute reduction
are not designed to process datasets that are presented
dynamically in successive samples (i.e., dynamic datasets with
increasing samples), since they have no explicit principles of
fully utilizing the information of the original dataset. They have
to be run from scratch when new samples arrive, so that they
are often computationally time-consuming and even
impractical for dynamic datasets with large samples. To handle
dynamic datasets, incremental techniques have been introduced
into rough sets to address incremental rule acquisition [1], [21],

Active Sample Selection Based Incremental
Algorithm for Attribute Reduction with Rough

Sets

Yanyan Yang, Degang Chen, and Hui Wang

R

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ulster University's Research Portal

https://core.ac.uk/display/287021386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

2

[43], incremental updating approximation [11], [15], [31], [61]
and incremental attribute reduction [8], [13].

As one important research topic of rough sets, finding
reducts from dynamic datasets has been considered from the
perspective of the following three variations: attributes,
attribute values and samples [13], [29], [35]. With the variation
of attributes, there are some researches on incremental attribute
reduction. For example, Zeng et al. [35] proposed incremental
algorithms for feature selection with fuzzy rough set. Wang et
al. [28] developed a dimension incremental strategy for
attribute reduction based on the incremental computation of
three measures of information entropy. Shu et al. [23] proposed
an efficient algorithm for updating attribute reduction based on
the incremental computation of the positive region in
incomplete decision systems. With the variation of attribute
values, Wang et al. proposed in [29] an incremental algorithm
for attribute reduction based on incremental computation of
three measures of entropy. Based on the incremental
computation of positive region, Shu et al. [24] proposed two
incremental algorithms for feature selection when attribute
values of single sample and multiple samples vary.

In the sample variation type of studies, several incremental
algorithms for attribute reduction have been proposed in the
framework of rough sets. For example, an incremental
algorithm for attribute reduction was proposed in [14] to find
the minimal reduct, but it is only applicable for information
systems without decision attribute. Two incremental algorithms
were presented in [27], [54] to deal with dynamic decision
table, but experimental results in [7] show both of them are very
time-consuming. To improve the efficiency of updating one
reduct, Hu et al. [7] presented an incremental algorithm for
attribute reduction based on the positive region, which was
shown experimentally to be more efficient than the two
algorithms in [27], [54]. Based on the modified discernibility
matrix, Hu et al. [8] proposed an incremental algorithm for
finding all reducts. Yang [30] proposed an incremental
algorithm for attribute reduction by updating the discernibility
matrix. Guan [6] proposed an incremental algorithm for
updating all reducts based on the discernibility matrix. Feng et
al. [5] employed the incremental computation for attribute core
to improve the efficiency of computing one reduct in rough
sets. Shu et al. [22] presented an incremental algorithm for
attribute reduction to compute a reduct from a
dynamically-increasing incomplete decision system. To allow a
group of samples to be added into a current dataset, Liang et al.
[13] developed an efficient group incremental algorithm for
attribute reduction by introducing incremental mechanisms for
three measures of information entropy.

The above sample variation based incremental algorithms for
attribute reduction with rough sets work by incrementally
updating some intermediate steps of finding a reduct such as the
positive region, information entropy and so on. Little attention
has been paid to the issue of which attributes should be added
into or deleted from a current reduct. On the other hand, these
incremental algorithms passively employ whatever incremental
samples arrive. Actually, not all incremental samples are
contributive to the incremental computation. Some affect the

incremental process of attribute reduction so they are useful,
whereas some do not affect the incremental process so they are
useless. The useless incremental samples should be discarded
and the useful samples should be actively selected ---- this is a
process of active sample selection. Several methods of active
sample selection [44]-[48] were integrated into feature
selection by conducting search not only in the feature space but
also in the sample space. For example, Liu et al. [44]-[45]
proposed a formalism of active feature selection called
selective sampling by selecting informative samples based on
some data characteristics. Relief [46] weighs each feature by
searching two nearest samples of a randomly selected sample.
ReliefF [47], a variant of Relief, is robust to noise and handles
multiple classes. The SCRAP filter [48] is a conservative
filtering scheme that tries to identify the features changing at
two consecutive Points of Class Change and include them in the
feature subset. However, they are not related to rough sets so
they cannot be used to select samples for the incremental
computation of attribute reduction. Hence, a method for
actively selecting useful samples and filtering out useless
samples in the incremental computation process is highly
desirable to improve the space and time efficiency of the
incremental algorithms for attribute reduction, especially when
the dynamic datasets are large. The above considerations
motivate us to study the incremental process of attribute
reduction.

In this paper, we present a novel, space and time efficient
incremental algorithm for attribute reduction from dynamic
datasets with increasing samples, which consists of two
processes----active sample selection and incremental attribute
reduction. The active sample selection process is designed to
classify each incoming sample as useless or useful with respect
to a current dataset. For purpose of the space and time
efficiency, useless samples are filtered out and not considered
in the incremental computation. Useful samples are selected to
update the reduct by the incremental attribute reduction process
that determines which attributes should be added into and
deleted from a current reduct. The active sample selection
process is integrated into the attribute reduction process,
resulting in our incremental algorithm for attribute reduction
with active sample selection. Experimental evaluations
demonstrate the effectiveness of our incremental algorithm in
significant savings of memory space usage and run time.

The remainder of this paper is organized as follows. In
Section II, we briefly review the basics of rough sets in order to
facilitate subsequent discussions. In Section III, the incremental
mechanisms of attribute reduction are presented in detail. In
Section IV, our active sample selection based incremental
algorithm for attribute reduction is presented. In Section V,
experimental results are presented and analyzed. Conclusions
are presented in Section VI.

II. PRELIMINARIES

In this section, we review basic concepts related to rough sets
[17]-[18], [55]-[56] as well as the discernibility matrix based
approach to attribute reduction [2], [25].

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

3

A. Basic Concepts

Rough set theory is formally based on an information system
defined by Pawlak [17]. For classification tasks, we consider a
special information system, i.e., a decision table denoted by
(,)U C DU with C D φ=I . Here, U termed the universe, is

a non-empty finite set of samples, each sample is described by
the condition attribute set C and { }D d= is the decision

attribute set. With each non-empty attribute subset B C⊆ , we
associate an equivalence relation defined as

() {(,) : () (), }IND B x y U U a x a y a B= ∈ × = ∀ ∈ in [17]. The

equivalence relation ()IND B partitions U into a family of

equivalence classes denoted by / () {[] : }BU IND B x x U= ∈ ,

where [] { : (,) ()}Bx y U x y IND B= ∈ ∈ is called the

equivalence class of ()IND B including x .

Assume U is partitioned into r decision classes

1/ () { , , }rU IND D D D= L by D , where
iD is a subset of

samples with the same decision value. For / ()iD U IND D∈ ,

B − lower and B − upper approximations of
iD proposed in

[17] are defined as {[] :[] }i B B iBD x x D= ⊆U and

{[] :[] }i B B iBD x x D φ= ≠U I . The samples in each

equivalence class of
iBD share the same decision value, while

the samples in each equivalence class of
iBD may have

different decision values. This is related to the concepts of
consistent and inconsistent samples, which are the theoretical
basis of our active sample selection in this paper. The
generalized decision of a sample x U∈ proposed in [55] is
used to clearly represent the consistency and inconsistency [56]
and defined as ([]) { () : [] }B Bd x d y y x= ∈ which is actually the

set of decision values of all samples in []Bx . x U∈ is said to

be consistent on B C⊆ , if ([]) 1Bd x = ; otherwise, x U∈ is

inconsistent on B , where • is the cardinality of a set. As

illustrated in [56], (,)U C DU is a consistent decision table iff

any x U∈ is consistent on C ; otherwise, it is an inconsistent
decision table. The union of B − lower approximations of all
decision classes is called the positive region of D with respect
to B . For notational presentation in our paper, we denote the

positive region by
1

(,)
r

U kk
POS B D BD

=
=U . (,)UPOS B D is

then the set of all consistent samples of U on B .
A real-life dataset usually contains some irrelevant and

redundant attributes. The presence of such attributes may lead
to a reduction in the useful information. Attribute reduction
with rough sets proposed by Pawlak [17]-[18], can address the
above issue. A subset B C⊆ is a reduct of C if it satisfies 1)

(,) (,)U UPOS B D POS C D= ; 2) a B∀ ∈ ,

({ },) (,)U UPOS B a D POS B D− ≠ . The first condition indicates

that B can retain all consistent samples of U on C , i.e., any

sample satisfying ([]) 1Cd x = must also meet ([]) 1Bd x = ,

and vice versa. The second one means that { }B a− cannot

retain all consistent samples of U on C , i.e., for a B∀ ∈

there always exists (,)Ux POS C D∈ satisfying { }([]) 1B ad x − >

. The two conditions can guide us to add or delete attributes in
our incremental computation of attribute reduction.

B. The Discernibility Matrix Based Approach to Attribute

Reduction

As mentioned above, a variety of heuristic algorithms have
been proposed to find a reduct. However, it has been noted in
[25] that they could not find a proper reduct but an over-reduct
or sub-reduct. To find proper reducts, the method of
discernibility matrix was proposed in [25], by which a
discernibility function could be constructed and all reducts
could be found with its disjunctive form. Although finding all
reducts with this technique is an NP-hard problem, this method
provides the theoretical foundation for finding reducts from a
decision table.

Let 1{ , , }nU x x= L . For notational presentation in this

paper, we denote ((,))i j n nM c x x ×= as the discernibility matrix

of (,)U C DU where (,) { : () ()}i j i jc x x a C a x a x= ∈ ≠ if

(,)i jx x ∈ Φ , and (,)i jc x x φ= otherwise. Here, Φ is defined

in the following way:

{(,) :1) (,), (,);

2) (,) , (,);

3) , (,), () ()}.

i j i U j U

i U j U

i j U i j

x x U U x POS C D x POS C D

x POS C D x POS C D

x x POS C D d x d x

Φ = ∈ × ∈ ∉

∉ ∈

∈ ≠

For (,)i jx x∀ ∈ Φ , (,)i jc x x φ≠ clearly holds. It is necessary

to discern the sample pair, in which one of two samples at least
belongs to (,)UPOS C D and neither of them belongs to C −

lower approximation of the same decision class. For
(,)i jx x∀ ∉ Φ , (,)i jc x x φ= holds. It is unnecessary to discern

the sample pair, in which two samples belong to C − lower
approximation of the same decision class or do not belong to

(,)UPOS C D . Thus, it is sufficient for our paper to only discern

all sample pairs in Φ .
The discernibility matrix M is clearly symmetric, i.e.,

(,) (,)i j j ic x x c x x= , and (,)i ic x x φ= . Sample pairs (,)i jx x

and (,)j ix x are treated as one in this paper. An element

0 0
(,)i jc x x M∈ is a minimal element of M if there is no

(,)i jc x x M∈ such that
0 0

(,) (,)i j i jc x x c x x⊂ [2]. Other

elements can always be absorbed by the minimal elements in
the discernibility matrix.

() { (,) : (,) , (,) }U i j i j i jf C D c x x c x x M c x x φ= ∧ ∨ ∈ ≠U is

referred to as the discernibility function of (,)U C DU . By the

distribution and absorption laws,
1

() ()
t

U i
i

f C D A
=

= ∨ ∧U is the

minimal disjunctive normal form of ()Uf C DU [25].

1Re () { , , }U td C D A A=U L is then the set of all the reducts

[25]. The intersection of all the reducts is denoted as
Re ()U Ucore d C D= I U which is called the core of C . In

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

4

many real-world applications, it is enough to find one reduct.
The following theorems provide the basis for finding a reduct.

Theorem 2.1 ([25]) { : (,) { } }U i jcore a c x x a M= = ∈ .

Theorem 2.2 ([25]) B C⊆ is a reduct of C if and only if

the following conditions hold: 1) for (,)i jc x x φ∀ ≠ ,

(,)i jB c x x φ≠I ; 2) for a B∀ ∈ , there exists (,)i jc x x φ≠ such

that ({ }) (,)i jB a c x x φ− =I .

Theorem 2.1 implies the core is the union of all singletons in
the discernibility matrix, whereas Theorem 2.2 provides a
convenient way to test if a subset of attributes is a reduct [25].
In Theorem 2.2, the first condition states that it is sufficient to
employ a reduct to together distinguish all sample pairs in Φ ;
the second one states that it is necessary for each attribute in a
reduct to discern the sample pair in Φ , i.e., for a B∀ ∈ there
always exists a sample pair which can be only distinguished by

a , but cannot be distinguished by { }B a− . In a word, a reduct

is a minimal subset of attributes that together distinguishes all
sample pairs in Φ . Theorem 2.2 provides the basis for our
attribute addition and deletion criterions of this paper.

The discernibility matrix based approach has to compute and
store all elements in the discernibility matrix. As a result, it is
not suitable for large volumes of data, even when finding a
reduct. Rather than finding the whole discernibility matrix,
sample pair selection was proposed in [2] to locate all minimal
elements in the discernibility matrix by searching the
corresponding sample pairs, so that the search space and time of
reducts are reduced effectively. Experiments in [2] have shown
that this algorithm can find reducts effectively. Thus, sample
pair selection will be the springboard of our research in this
paper. Interested readers may consult [2] for more details on
how to employ sample pair selection to compute minimal
elements and reduct.

III. INCREMENTAL MECHANISMS OF ATTRIBUTE REDUCTION

As aforementioned, algorithms in [2] aim to locate all
minimal elements in the discernibility matrix by selecting
certain sample pairs and then find reducts by only using
minimal elements. This idea is the theoretical foundation of our
incremental mechanisms of attribute reduction in this section,
i.e., instead of updating the whole discernibility matrix, we only
update minimal elements in order to enhance the time
efficiency of updating one reduct.

In this section, the scheme of active sample selection is first
studied to classify each incoming sample as a useless or useful
sample with respect to a current dataset. The useless samples do
not contribute a bit to the incremental computation of attribute
reduction, so they can be ignored or filtered out to save space
and time in the incremental computation. The useful samples
are selected to update the current reduct. At the arrival of a
useful sample, the attribute reduction process is then developed
via the attribute addition and deletion criterions that reveal
which attributes should be added into and deleted from the
current reduct.

A. Notations

To precisely describe the incremental mechanisms of
attribute reduction, we introduce some symbols here.

We assume (,)U C DU is a current dataset with a reduct

red computed by Algorithm 3 in [2]. 1{ , , }rME c c= L is the

minimal element set in the discernibility matrix.

1{ , , }rKP p p= L is a family of sample pair sets corresponding

to the minimal elements, where
ip is the sample pair set

corresponding to
ic (1, ,i r= L), i.e.,

ip is the locations of the

minimal element
ic in the discernibility matrix. Now, a sample

x is added into (,)U C DU . Starting from red , we can

incrementally obtain a reduct
xred of ({ },)U x C DU U .

1 '{ , , }rME c c′ ′′ = L is the minimal element set in the

discernibility matrix of ({ },)U x C DU U . 1{ , , }rKP p p ′
′ ′′ = L

is the family of sample pair sets corresponding to the minimal

elements in ({ },)U x C DU U .

B. Useless and Useful Samples

 Suppose x is an incremental sample and []Cx is the

equivalence class of ()IND C including x in

({ },)U x C DU U , then [] { }Cx x− is the sample set in U that

shares the same condition description with x . At the arrival of
the incremental sample x , there are four possible cases:

Case 1: The new sample x shares the same condition
description with some inconsistent samples of U on C , which

implies that ([] { }) 1Cd x x− > holds for (,)U C DU .

Case 2: The new sample x shares the same condition and
decision descriptions with some consistent samples of U on C

, which implies that ([] { }) 1Cd x x− = holds for (,)U C DU

and ([]) =1Cd x holds for ({ },)U x C DU U .

Case 3: The new sample x shares the same condition
description and different decision values with some consistent

samples of U on C , which implies ([] { }) 1Cd x x− = holds

for (,)U C DU and ([]) 1Cd x > holds for ({ },)U x C DU U .

Case 4: The new sample x shares different condition
descriptions with any sample of U , which means that

[] { }Cx x= holds for ({ },)U x C DU U .

If the new sample is in Case 1 or Case 2, clearly, the minimal
elements and the reducts of the new decision table are identical
with those of the current dataset. Moreover, the new sample is
dispensable to the incremental computation of attribute
reduction, since by definition there is always a sample in the
current dataset that replaces the new sample in the incremental
computation of attribute reduction. Thus, a new sample is said
to be useless with respect to the current dataset, if it is in Case 1
or Case 2. Conversely, a new sample is useful with respect to
the current dataset if it is in Case 3 or Case 4. We will discuss in
detail how to deal with Case 3 and Case 4 in the next
subsection.

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

5

Based on the definition of useless sample, a scheme named
active sample selection will be designed in Section IV to decide
whether each incoming sample can be filtered out prior to
performing the incremental computation. It seems that the
conditions satisfied by the useless sample are simple, but it is of
great significance to discard these useless samples. The reason
is as follows. For one thing, the space can be saved, and the
time efficiency of the incremental computation can be also
improved, which will be demonstrated by experimental results
in Section V. For another, such a mechanism to filter out
useless samples has not yet been developed in the incremental
computation of attribute reduction, since the existing
incremental attribute reduction algorithms passively employ all
incoming samples. Therefore, it is highly desirable to design
such a scheme of active sample selection.

C. Incremental Mechanism of Attribute Reduction for Case 3

In this section we study the incremental mechanism of
attribute reduction when a new sample satisfying Case 3
arrives. We first discuss how to incrementally compute the
minimal elements of the new decision table and their
corresponding sample pairs. Based on the updated minimal
elements, we then develop the attribute addition and deletion
criterions that determine how to add attributes into and delete
attributes from the current reduct.
1) Incremental computing of minimal elements

When an incremental sample x in Case 3 is added into a
current dataset, we first determine which elements in ME may
not be the minimal elements in the discernibility matrix of the
new decision table. We then locate all possible new minimal
elements in the discernibility matrix of the new decision table.

For Case 3, samples in [] { }Cx x− are inconsistent in

({ },)U x C DU U , but they are consistent in (,)U C DU . This

fact implies { } (,) (,) ([] { })U x U CPOS C D POS C D x x= − −
U

. By

the definition of discernibility matrix, it is unnecessary for

({ },)U x C DU U to discern (,)i jx x , where [] { }i Cx x x∀ ∈ −

and (,)j Ux U POS C D∀ ∈ − . However, it is necessary for

(,)U C DU to discern the sample pairs, and they may also

determine some minimal elements in ME . Let

1 {(,) : [] { }, (,)}i j i C j Ux x x x x x U POS C Dω = ∈ − ∈ − and
*

1k kp p ω= − for
kp KP∀ ∈ . Then sample pairs in *

kp need to

be discerned and can still determine
kc ME∈ in

({ },)U x C DU U . *
kp φ= implies it is unnecessary for

({ },)U x C DU U to discern all sample pairs in
kp , i.e., the

element
kc ME∈ determined by

kp is not a minimal element

in the discernibility matrix of ({ },)U x C DU U . Let
* *{ : }k kM ME c ME p φ= − ∈ = , then it is necessary for

({ },)U x C DU U to discern sample pairs corresponding to

each element in *M , i.e., elements in *M may still be the
minimal elements in the discernibility matrix of the new
decision table.

Next, we locate all possible new minimal elements in the
discernibility matrix of the new decision table. For Case 3,
samples in []Cx are inconsistent on C , which means it is

necessary for ({ },)U x C DU U to discern the sample pair

(,)i jx x where { }(,)j U xx POS C D∀ ∈
U

 and []i Cx x∀ ∈ . Since

by definition (,) (,)j k jc x x c x x= holds for []k Cx x∀ ∈ , we only

compute (,) { : () ()}j jc x x a C a x a x= ∈ ≠ for

2 { }(,) {(,) : (,) }j j j U xx x x x x POS C Dω∀ ∈ = ∈
U

. Moreover, by

definition, the minimal elements of 2{ (,) : (,) }i ic x x x x ω∈ can

be computed as ** **
1{c , , }scL , and **

2ip ω⊆ is the sample pair

set corresponding to **
ic (1, ,i s= L). Obviously, the minimal

element set in the discernibility matrix of ({ },)U x C DU U is

contained in * ** **
1{c , , }sM cU L , i.e., * ** **

1{c , , }sME M c′ ⊆ U L .

To obtain the new minimal element set ME ′ , the following
theorem is given based on the definition of minimal element.

Theorem 3.1 For **
ic∀ , the following statements hold:

1) If *
kc M∃ ∈ such that **

k ic c⊂ ,
kc ME′∈ and **

ic ME′∉

hold for ({ },)U x C DU U ;

2) If *
kc M∃ ∈ such that **

i kc c⊂ ,
kc ME′∉ and **

ic ME′∈

hold for ({ },)U x C DU U ;

3) For *
kc M∀ ∈ , **

i kc c⊄ and **
k ic c⊄ imply that

** ,i kc c ME′∈ hold for ({ },)U x C DU U ;

4) If *
kc M∃ ∈ such that **

i kc c= ,
kc ME′∈ and its

corresponding sample pair set is * **
k ip pU .

In Theorem 3.1, Statement 1) states that **
ic can be absorbed

by an element in *M ME⊆ , so that it is not a minimal element

of ({ },)U x C DU U ; Statement 2) means that **
ic can absorb a

minimal element
kc in *

M ME ′⊆ , so that
kc is not a minimal

element of ({ },)U x C DU U , but **
ic is a minimal element of

({ },)U x C DU U ; Statement 3) means both **
ic and

kc are

minimal elements of ({ },)U x C DU U ; Statement 4) implies

that **
ic is identical with

kc .

The concrete steps of the incremental computing of the
minimal elements are as follows.

Step 1: Find

1 {(,) : [] { }, (,)}i j i C j Ux x x x x x U POS C Dω = ∈ − ∈ − and
*

1k kp p ω= − for
kp KP∀ ∈ , and let

* *{ : }k kM ME c ME p φ= − ∈ = ;

Step 2: Find (,) { : () ()}i ic x x a C a x a x= ∈ ≠ for

{ }(,)i U xx POS C D∀ ∈
U

, and then compute their minimal

elements ** **
1{c , , }scL and the corresponding sample pairs

** **
1{ , , }sp pL ;

Step 3: By Theorem 3.1, compute the minimal elements
* ** **

1{c , , }sME M c′ ⊆ U L and KP′ .

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

6

2) Attribute addition and deletion criterions

Based on the incremental computing of minimal elements,
this subsection develops the attribute addition and deletion
criterions to reveal which attributes should be added into and
deleted from a current reduct.

For Case 3, the current reduct red either keeps the
discernibility of all condition attributes, or does not, i.e.

{ } { }(,) (,)U x U xPOS C D POS red D=
U U

 or

{ } { }(,) (,)U x U xPOS C D POS red D⊃
U U

. This fact implies that

there are two possibilities: [] []C redx x= and [] []C redx x⊂ . In

terms of the two possibilities, we study the incremental
mechanisms of attribute reduction for Case 3.

Theorem 3.2 For Case 3, [] []C redx x= indicates red contains

a reduct of ({ },)U x C DU U .

Proof: For Case 3, we have

{ } (,) (,) ([] { })U x U CPOS C D POS C D x x= − −
U

, (1)

{ }(,) (,) ([] { })U x U redPOS red D POS C D x x= − −
U

. (2)

[] []C redx x= implies that { } { }(,) (,)U x U xPOS C D POS red D=
U U

holds for ({ },)U x C DU U . Thus, red contains a reduct of

({ },)U x C DU U .

Theorem 3.2 shows that the current reduct red is either a reduct
of the new decision table, or properly contains a reduct of the new
decision table. The following criterion derived from Theorem 2.2,
is used to find a reduct

xred of the new decision table.

Attribute Deletion Criterion 1: Attribute a red∈ can be
deleted from red if the following statement holds:

({ }) kred a c φ′− ≠I for
kc ME′ ′∀ ∈ .

Attribute Deletion Criterion 1 means that { }red a− can

discern sample pairs that need to be discerned in the new decision
table, so that the attribute a can be deleted from red according
to Theorem 2.2. If the attribute deletion criterion does not hold for

a red∀ ∈ , i.e., red is a minimal attribute subset discerning
sample pairs that need to be discerned in the new decision table,
red is just a reduct of the new decision table. Otherwise, if the
criterion holds for a red∈ , any sample pair discerned by the

attribute a can be also discerned by the attributes in { }red a− ,

which implies that a can be deleted from red . We can continue
applying the attribute deletion criterion until the criterion does not
hold. Thus, a reduct

xred can be obtained.

For Case 3 and [] []C redx x⊂ , the incremental mechanism of

attribute reduction is analyzed below. By equations (1) and (2),

{ } { }(,) (,) ([] [])U x U x red CPOS C D POS red D x x= −
U U

U and

{ }(,) ([] [])U x red CPOS red D x x φ− =
U

I hold for

({ },)U x C DU U . This fact implies that red can keep samples

in { }(,)U xPOS red D
U

 consistent on C , but cannot keep

samples in [] []red Cx x− consistent on C . To find
xred starting

from red , we need to add attributes into red until samples in

[] []red Cx x− are consistent in ({ },)U x C DU U . Since

[] ([] []) []red red C Cx x x x= − U holds and []redx can be divided

into some smaller equivalence classes by adding attributes into
red , we only need to add attributes into red until the positive
region of the decision sub-table ([] ,)redx C DU are just

[] []red Cx x− . Thus, we have the following attribute addition

criterion.
Attribute Addition Criterion 1: Attribute subset B C red⊆ −

can be added to red if B is a minimal addition subset

satisfying [] (,) [] []
redx red CPOS B red D x x= −U .

According to the above criterion, [] []red Cx x− is all consistent

samples of []redx with respect to B redU . Since samples in

{ }(,)U xPOS red D
U

 are also consistent on B redU ,

{ } { }(,) (,) ([] [])U x U x red CPOS B red D POS red D x x= −
U U

U U

holds, which implies { } { }(,) (,)U x U xPOS C D POS B red D=
U U

U .

Thus, a reduct
xred of the new decision table is a subset of

B redU , i.e.,
xred B red⊆ U . Since B is a minimal addition

attribute set satisfying the condition that samples in [] []red Cx x−

are consistent after adding attributes into red , there always exists

0 [] []red Cx x x∈ − satisfying 0 ({ })([]) 1red B ad x − >
U

 for a B∀ ∈ .

This fact implies that each attribute in B is necessary, i.e.,

xB red⊆ . However, there may be redundant attributes in red

due to the addition of attribute subset B . Thus, we only need to
delete redundant attributes from red . According to Theorem 2.2,
we have the following attribute deletion criterion.

Attribute Deletion Criterion 2: Attribute a red∈ can be
deleted from red if the following statement holds:

(({ })) kB red a c φ′− ≠U I for
kc ME′ ′∀ ∈ .

If the criterion above does not hold for a red∀ ∈ , there always
exists a sample pair (,)i jx x that can be only distinguished by the

attribute a . This fact indicates that there are no redundant

attributes in red , i.e., B redU is a reduct of the new decision

table. If the criterion holds for a red∈ , the attribute a should be
deleted from red . By continuing applying the attribute deletion

criterion, we can obtain
xred that is the union of B and the

remaining attributes in red .
To sum up, if a new sample is in Case 3 and [] []C redx x= , we

can apply Attribute Deletion Criterion 1 to obtain a reduct of the
new decision table; if it is in Case 3 and [] []C redx x⊂ , we first

employ Attribute Addition Criterion 1 to add some attributes into
the current reduct and then use Attribute Deletion Criterion 2 to
delete redundant attributes from the current reduct until a reduct of
the new decision table is obtained. The flowchart of the
incremental attribute reduction mechanism for Case 3 is shown in
Fig. 1.

In the following, we employ an example to illustrate the above
incremental mechanisms of attribute reduction for Case 3.

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

7

Example 3.1 A decision table is shown in Table I, where

1 8{ , , }U x x= L is the set of samples, 1 6{ , , }C a a= L is the set

of condition attributes and { }D d= is the decision attribute set.

By the method of [2], the minimal element set and their
corresponding sample pair family are computed as

1 1 2 2 3 3 6 4 2 4{ { }, { , }, { }, { , }}ME c a c a a c c a c a a= = = = = and

1 2 3 4{ , , , }KP p p p p= , where 1 2 1{(,)}p x x= ,

2 3 1 4 1{(,), (,)}p x x x x= , 3 6 1{(,)}p x x= , 4 8 6{(,)}p x x= . By

Algorithm 3 in [2], we can obtain a reduct 1 2 6{ , , }red a a a= .

Suppose [1,0,1,1,0,1,0]x = is added to Table I. Then we

have 1[] { , }Cx x x= and ([]) 2Cd x = , which implies that x is

in Case 3. By Step 1, we have 1 3 1 4 1{(,), (,)}x x x xω = ,
*

1 3 4{ , , }M c c c= , *
1 1p p= , *

2p φ= , *
3 3p p= and *

4 4p p= .

By Step 2, we find 2 1(,) { }c x x a= , 5 1 3 4 5 6(,) { , , , , }c x x a a a a a= ,

6 6(,) { }c x x a= , 7 3 4 5(,) { , , }c x x a a a= and

8 2 4 6(,) { , , }c x x a a a= . By the definition of minimal element, we

have **
1 1{ }c a= , **

2 6{ }c a= , **
3 3 4 5{ , , }c a a a= , **

1 2{(,)}p x x= ,
**
2 6{(,)}p x x= and **

3 7{(,)}p x x= . By Step 3, we obtain
' ' ' '
1 2 3 4{ , , , }ME c c c c′ = , where '

1 1{ }c a= , '
2 6{ }c a= , '

3 2 4{ , }c a a=

, 4 3 4 5{ , , }c a a a′ = . ' ' ' '
1 2 3 4{ , , , }KP p p p p′ = is the sample pair

family, where '
1 2 1 2{(,), (,)}p x x x x= , '

2 6 1 6{(,), (,)}p x x x x= ,
'
3 8 6{(,)}p x x= , '

4 7{(,)}p x x= .

Furthermore, we have [] []C redx x⊂ . Thus, we first apply

Attribute Addition Criterion 1 to obtain the minimal addition
subset 3{ }B a= . By applying Attribute Deletion Criterion 2,

we then find any attribute in red cannot be deleted, which
implies 1 2 3 6{ , , , }xred B red a a a a= =U is a reduct of the new

decision table.

D. Incremental Mechanism of Attribute Reduction for Case 4

In this section we study the incremental mechanism of
attribute reduction when a new sample satisfying Case 4
arrives. We discuss how to incrementally compute the minimal
elements. On the basis of the updated minimal elements, we
also develop the attribute addition and deletion criterions that
reveal how to add attributes into and delete attributes from a
current reduct.
1) Incremental computing of minimal elements

When a new sample x satisfying Case 4 is added into

(,)U C DU , the positive region of D with respect to C is

{ }(,) (,) { }U x UPOS C D POS C D x=
U

U . In ({ },)U x C DU U ,
*=M ME is thus the minimal elements of the discernibility

attribute sets corresponding to sample pairs in
{(,) : , }i j i jx x x x U∀ ∈ . Besides, it is necessary for

({ },)U x C DU U to discern (,)ix x ψ∈ , where {(,) :ix xψ =

(,) (,) , () ()}U i U iU POS C D or x POS C D d x d x− ∈ ≠ . Thus, we

need to compute (,) { : () ()}i ic x x a C a x a x= ∈ ≠ for

(,)ix x ψ∀ ∈ . By definition, the minimal elements of

{ (,) : (,) }i ic x x x x ψ∈ can be computed as ** **
1{ , , }sc cL , and

**
ip ψ⊆ is the sample pair set corresponding to **

ic (1, ,i s= L

). So, the minimal element set ME′ of the new decision table is

contained in * ** **
1{ , , }sM c cU L . By Theorem 3.1, we can find

minimal elements of the new decision table.
For completeness, we also develop the following steps to

find ME ′ .
Step 1: For (,) {(,) : (,)i i i Ux x x x x U POS C D orψ∀ ∈ = ∈ −

(,) , () ()}i U ix POS C D d x d x∈ ≠ , calculate

(,) { : () ()}i ic x x a C a x a x= ∈ ≠ , and then compute their

minimal elements ** ** **
1 2{c , , , }sc cL and the corresponding

sample pairs ** ** **
1 2{ , , , }sp p pL ;

Step 2: By Theorem 3.1, compute the minimal elements
** ** **
1 2{c , , , }sME ME c c′ ⊆ U L and KP′ .

2) Attribute addition and deletion criterions

In this section we discuss which attributes should be added
into and deleted from a current reduct based on the updated
minimal elements, when a new sample satisfying Case 4 is
added. For Case 4, the current reduct red either keeps the
discernibility of all condition attributes, or does not, i.e.,

{ } { }(,) (,)U x U xPOS C D POS red D=
U U

or

{ } { }(,) (,) []U x U x redPOS red D POS C D x= −
U U

. Therefore, there

are two possibilities: ([]) 1redd x = and ([]) 1redd x > . We

consider the two possibilities below.

Theorem 3.3 If a new sample is in Case 4 and ([]) 1redd x = ,

red is just a reduct of ({ },)U x C DU U .

[] []C redx x= [] []C redx x⊂

x
red

x
red

Fig. 1. Incremental mechanism of attribute reduction for Case 3.

TABLE I
A DECISION TABLE

U 1a 2a 3a 4a 5a 6a d

1x 1 0 1 1 0 1 1

2x 0 0 1 1 0 1 0

3x 1 1 0 1 0 1 0

4x 1 1 0 1 0 1 1

5x 0 0 0 0 1 0 0

6x 1 0 1 1 0 0 0

7x 1 0 0 0 1 1 1

8x 1 1 1 0 0 0 1

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

8

Proof: On the one hand, [] { }Cx x= implies

{ }(,) (,) { }U x UPOS C D POS C D x=
U

U and ([]) 1redd x =

implies { }(,) (,) { }U x UPOS red D POS red D x=
U

U . Thus, we

have { } { }(,) (,)U x U xPOS C D POS red D=
U U

. On the other hand,

since red is a reduct of (,)U C DU , there exists

{ }(,) (,)i U U xx POS C D POS C D∈ ⊂
U

satisfying

{ }([]) 1i red ad x − > for a red∀ ∈ . Therefore, red is also a

reduct of ({ },)U x C DU U .

According to Theorem 3.3, the current reduct is just the reduct
of the new decision table when the new sample is in Case 4 and

([]) 1redd x = . Now we discuss the variation of attribute reduction

when adding a new sample satisfying Case 4 and ([]) 1redd x > .

For Case 4, ([]) 1redd x > implies x is inconsistent on red . To

find
xred starting from red , we first need to add attributes into

red until x is consistent. Thus, the following attribute addition
criterion is given.

Attribute Addition Criterion 2: An attribute subset
B C red⊆ − can be added to red if B is a minimal addition

subset satisfying ([]) 1B redd x =
U

.

According to this criterion, x is consistent on B redU , which

implies { } { }(,) (,)U x U xPOS C D POS B red D=
U U

U . Therefore, a

reduct
xred of the new decision table is a subset of B redU , i.e.,

xred B red⊆ U . Since B is a minimal addition attribute set that

keeps the sample x consistent, ({ })([]) 1B a redd x − >
U

 holds for

a B∀ ∈ . This fact implies each attribute in B is necessary, i.e.,

xB red⊆ . In addition, there may be redundant attributes in red

due to the addition of B . By using Attribute Deletion Criterion 2,
we can delete redundant attributes from red to obtain a reduct

xred that is the union of B and the remaining attributes in red .

In Case 4, if ([]) 1redd x = , the current reduct red is just the

reduct
xred of the new decision table; if ([]) 1redd x > , we can

first use Attribute Addition Criterion 2 to add attributes into red

until the new sample is consistent, and then apply Attribute
Deletion Criterion 2 to delete redundant attributes from red until

xred is obtained. The flowchart of the attribute reduction process

is shown in Fig.2.
The following example is given to illustrate the above

incremental mechanisms.
Example 3.2 Consider Example 3.1. Suppose the new sample

[1,1,1,1,0,1,0]x = is added into Table I. Then, we have

[] { }Cx x= , which implies that the new sample is in Case 4.

By Step 1, we have 1 2(,) { }c x x a= , 3 4 3(,) (,) { }c x x c x x a= =

, 7 2 3 4 5(,) { , , , }c x x a a a a= , 8 4 6(,) { , }c x x a a= . By the definition

of minimal element, we have **
1 2{ }c a= , **

2 3{ }c a= ,
**
3 4 6{ , }c a a= , **

1 1{(,)}p x x= , **
2 3 4{(,), (,)}p x x x x= and

**
3 8{(,)}p x x= . By Step 2, the updated minimal elements are

computed as ' ' ' '
1 2 3 4{ , , , }ME c c c c′ = , where '

1 1{ }c a= , '
2 2{ }c a= ,

'
3 3{ }c a= , '

4 6{ }c a= . The corresponding sample pair family is
' ' ' '
1 2 3 4{ , , , }KP p p p p= , where '

1 2 1{(,)}p x x= , '
2 1{(,)}p x x= ,

'
3 3 4{(,), (,)}p x x x x= and '

4 6 1{(,)}p x x= .

Moreover, since ([]) 2redd x = holds, we can use Attribute

Addition Criterion 2 to compute the addition attribute subset
that is 3{ }B a= . Applying Attribute Deletion Criterion 2, we

then find no attribute in red can be deleted. Therefore, a reduct
of ({ },)U x C DU U is 1 2 3 6{ , , , }xred B red a a a a= =U .

IV. ACTIVE SAMPLE SELECTION BASED INCREMENTAL

ALGORITHM FOR ATTRIBUTE REDUCTION

In this section we present our active sample selection based
incremental algorithm for attribute reduction which works by
integrating a scheme of actively selecting samples into the
attribute reduction process. The scheme of active sample
selection is first designed to determine whether each incoming
sample is useless or useful with respect to a current dataset. The
incremental attribute reduction algorithm is then developed,
which actively filters out useless samples and selects useful
samples to perform the incremental computation.

A. Active Sample Selection

Based on the definition of the useless sample, our active
sample selection algorithm is designed as follows.
Algorithm 4.1. Active sample selection

Input: An original dataset (,)U C DU , a new sample x .

Output: cr , which is 0 if x is a useless sample, or is 1 if it is a useful sample.

Initialize: 1cr = .

1. Compute ([] { })Cd x x− and ([])Cd x ;

2. If ([] { }) 1Cd x x− > , %Case 1

3. 0cr = ;

4. Elseif ([] { }) 1Cd x x− = and ([]) 1Cd x = , %Case 2

5. 0cr = ;
6. End if.
7. Return cr .

The time complexity of Algorithm 4.1 is ()O U , where U

is the number of samples in the current dataset. 0cr = implies
the new sample is a useless sample with respect to the current

([]) 1redd x = ([]) 1redd x >

x
red red=

xred

Fig. 2. Incremental mechanism of attribute reduction for Case 4.

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

9

dataset, and thus it will be discarded before performing the
incremental computation; 1cr = implies it is a useful sample,
so it will be selected to perform the incremental computation.

B. Active Sample Selection Based Incremental Algorithm for

Attribute Reduction

In this section, we first present the incremental algorithm for
computing minimal elements, which is the basis of our
incremental algorithm for attribute reduction. We then present
our active sample selection based incremental algorithm for
attribute reduction. In this algorithm only useful samples are
selected to perform the incremental computation of attribute
reduction, while useless samples will be filtered out.
Algorithm 4.2. Incremental algorithm for computing minimal elements

Input: An original dataset (,)U C DU , (,)UPOS C D , 1{ , , }rME c c= L ,

1{ , , }rKP p p= L , and a new sample x .

Output: ' '
1 '{ , , }rME c c′ = L , ' '

1 '{ , , }rKP p p′ = L and { }(,)U xPOS C DU
.

Initialize: *
M ME= , *

K KP= .

1. Compute []
C

x , ([] { })
C

d x x− and ([])
C

d x ;

2. If ([] { }) 1
C

d x x− = and ([]) 1
C

d x > , %Case 3

3. Compute 1 {(,) : [] { }, (,)}i j i C j Ux x x x x x U POS C Dω = ∈ − ∈ − and

{ }(,) (,) ([] { })U x U CPOS C D POS C D x x= − −U
;

4. For each *
ip K∈ , let 1i ip p ω= − ;

5. Let * * *{ : }k kM M c M p φ= − ∈ = ;

6. For each { }(,)i U xx POS C D∈
U

, compute (,) { : () ()}i ic x x a C a x a x= ∈ ≠ ;

7. Let { }{ (,) : (,)}i i U xM c x x x POS C D= ∀ ∈ U
 and turn to Step 16;

8. End if

9. If [] { }Cx x= , %Case 4

10. Let { }(,) (,) { }U x UPOS C D POS C D x=
U

U ;

11. Compute 2 { } { }{ : (,); (,) ,i i U x i U xx x U POS C D or x POS C Dω = ∈ − ∈U U

() ()}id x d x≠ ;

12. For each 2ix ω∈ , compute (,) { : () ()}i ic x x a C a x a x= ∈ ≠ ;

13. Let 2{ (,) : }i iM c x x x ω= ∀ ∈ and turn to Step 16;

14. End if.

15. Let **M φ= , **KP φ= ;

16. While (M φ≠),

17. Select
0

(,)ic x x satisfying
0

(,) min{ (,) : (,) }i i ic x x c x x c x x M= ∈ ;

18. Let
0

** **[; (,)]
i

M M c x x= and
0

** (,)
i

p x x= ;

19. For each (,)
i

c x x M∈ ,

20. If
0

(,) (,)i ic x x c x x⊃ , let (,)
i

c x x φ= ; if
0

(,) (,)i ic x x c x x= , let

** ** {(,)}
i

p p x x= U and (,)
i

c x x φ= ;

21. End for.
22. End while.

23. Let * **ME M M′ = U and * **KP K KP′ = U ;

24. For each ** **
ic M∈ ,

25. For each *
jc M∈ ,

26. If **
i j

c c⊂ , let
j

ME ME c′ ′= − and
j

KP KP p′ ′= − ;

27. If **
i jc c⊃ , let **

i
ME ME c′ ′= − and **

i
KP KP p′ ′= − ;

28. If **
i jc c= , let **

i
ME ME c′ ′= − , **

i
KP KP p′ ′= − , and **

j j ip p p= U .

29 End for.
30. End for.

31. Output ME′ , KP′ and { }(,)
U x

POS C D
U

.

The time complexity of Algorithm 4.2 is (())O U ME U+ .

By the incremental computing of minimal elements, our active
sample selection based incremental algorithm for attribute
reduction is developed as follows.
Algorithm 4.3. Active sample selection based incremental algorithm for
attribute reduction (ASS-IAR)

Input: An original dataset (,)U C DU , (,)
U

POS C D , 1{ , , }
r

ME c c= L ,

1{ , , }
r

KP p p= L , and a new sample x .

Output: A new reduct
x

red .

Initialize:
x

red red= .

1. Compute cr by Algorithm 4.1;

2. If 0cr = ,

3. Let U U= ,
x

red red= , and return
x

red ;

4. Else

5. Compute []
C

x , ([] { })
C

d x x− , ([])
C

d x , []
xred

x and ([])
xredd x ;

6. Compute the minimal elements ME′ by Algorithm 4.2 and let { }U U x= U ;

7. Let
x

A red= , B φ= and
x

S C red= − ;

8. If ([] { }) 1
C

d x x− = and ([]) 1
C

d x > , %Case 3

9. If [] []
UC red

x x= ,

10. If a A∃ ∈ satisfying '({ })x ired a c φ− ≠I for '
ic ME′∀ ∈ ,

11. Let { }
x x

red red a= − , and turn to Step 10;

12. Else

13. Return
x

red ;

14 End if.
15. Else

16. While ([] (,) [] []
red xx

x x red CPOS B red D x x≠ −U),

17. For each ia S∈ , compute [] ({ },)
redx

x x iPOS B red a DU U ;

18. Select ka satisfying

[] []({ },) max{ ({ },)}
red redx x

i

x x k x x i
a S

POS B red a D POS B red a D
∈

=U U U U ;

19. Let [,]kB B a= and { }kS S a= − ;

20. End while.
21. Turn to Step 35.
22. End if.
23. End if.

24. If [] { }Cx x= , %Case 4

25. If ([]) 1
Uredd x = ,

26. Return xred ;

27. Else

28. While (([]) 1
xB redd x >

U
),

29. For each
ia S∈ , compute { }([])

i xa B redd x
U U

;

30. Select
ka such that { }([])

k xa B redd x U U
 is minimum, and let [,]kB B a=

and { }kS S a= − ;

31. End while.
32. Turn to Step 35;
33. End if.
34. End if.

35. If a A∃ ∈ satisfying '(({ }))x iB red a c φ− ≠U I for '
ic ME′∀ ∈ ,

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

10

36. Let { }x xred red a= − and turn to Step 35;

37. Else

38. Let
x xred B red= U and return

xred ;

39. End if.

In Algorithm 4.3 (i.e., ASS-IAR), each incremental sample is
first vetted as to whether it is useless or useful with respect to the
current dataset. If it is useless, it will be filtered out without being
involved in the incremental computation. If it is useful, it will be
used in the incremental computation. The time complexity of

ASS-IAR is ()O U in most optimistic case where the new

sample is useless. Its time complexity is (())O U U C ME+ in

the most pessimistic case where the new sample is useful. The
flowchart of ASS-IAR is shown in Fig. 3.

Remark: Bireduct [36]-[37] is an attempt in rough sets to mix
the process of reducing attributes and the process of selecting
samples that are discernible by those attributes. In [38], it has been
successfully applied to data stream, where data samples occur
consecutively. It seems that the bireduct method resembles
ASS-IAR since they both share the scheme of adding/removing
samples and attributes. However, there are mainly the following
differences between bireduct and ASS-IAR. The first one is they
select samples in different fashions. Bireduct adds the newly
joined sample with removing the oldest samples (i.e., samples of a
current dataset), which cannot be discerned with the new sample
by using the attribute set of the temporal bireduct. ASS-IAR,
which employs our active sample selection to evaluate each newly
joined sample based on its usefulness, filters out useless incoming
samples and selects useful incoming samples to perform the
incremental computation. The second one is they reduce attributes
in different modes. Bireduct selects a minimal attribute subset
discerning the sample set of a temporal bireduct, i.e., a reduct for
the sample set in the bireduct. ASS-IAR adds attributes when a
current reduct is incapable to keep the consistency of new dataset
(i.e., the dataset after adding the newly joined sample), and
removes redundant attributes in a current reduct due to the addition
of attributes. The third one is the attribute subset obtained by the
bireduct method is a temporal reduct, while the reduct obtained by
ASS-IAR is a reduct of the whole dataset.

ASS-IAR can filter out useless samples to save memory space
as well as runtime. As illustrated in B of Section III, active sample
selection is very simple but highly effective. In order to
demonstrate the effectiveness of active sample selection, we
experimentally compare it with a variant of the algorithm, denoted

by IAR. IAR passively employs all incremental samples and is
constructed by only changing Step 3 of ASS-IAR into "Let

{ }U U x= U , ME ME′ = , KP KP′ = and return
xred red= ".

Obviously, the only difference between ASS-IAR and IAR is that
ASS-IAR filters out useless samples, whereas IAR does not.

V. EXPERIMENTAL COMPARISONS

In this section, we experimentally evaluate the time
efficiency of ASS-IAR by comparing with several feature
selection methods on nine UCI datasets. These methods can be
roughly divided into two types. One type is rough-set-based
feature selection methods. They are two incremental attribute
reduction algorithms, i.e., IAR and GIARC [13]. The other type
is non-rough-set feature selection methods. They are RELIEFF
[47], SCRAP [48], and CONSISTENCY [49].

Before presenting our experiments, the following fact is
noted. As the preprocessing step of the incremental algorithms
in our experiments, Algorithm 3 in [2] is only run on the
original dataset to obtain the original minimal elements, their
sample pairs and the original reduct, which are applied to the
incremental algorithms. ASS-IAR will not be compared with
Algorithm 3 in [2] since it has been shown experimentally that
this algorithm is often stopped due to out of memory in current
software and hardware environments when dealing with large
datasets.

A. Experimental Setup

The experiments in this section are set up as follows.
The hardware environment: Windows 7PC and Intel (R)

Xeon (R) CPU E5-2620 0 @ 2.00 GHz 2.00 GHz and 80 GB
memory.

Dataset: Nine datasets from University of California, Irvine
(UCI) Machine Learning Repository [16] are used (Table II),
where we replace the missed values with the most frequently
value of an symbolic attribute and the mean value of a
real-valued attribute on two missing-valued datasets ‘Soybean’
and ‘Spam’.

Dataset discretization: The fuzzy C-mean clustering
algorithm proposed in [33] is used to discretize real-valued
condition attributes.

Dataset Split: When using algorithms ASS-IAR, IAR and
GIARC, each dataset in Table II is divided into several parts
(see the 4th and 5th columns of Table II), where the 4th column
refers to the number of samples in the original dataset and the
5th column means the number of parts of equal size in the
remaining set of samples. The first m samples of each dataset in
Table II are chosen as the original dataset, and the remaining
samples are divided into n parts of equal size. The first part is
viewed as the 1st incremental dataset to be added into the
original dataset, resulting in an updated original dataset, or the
current dataset; the second part is regarded as the 2nd
incremental dataset to be added into the updated original
dataset, resulting in another updated original dataset; and so on.

B. Comparison of ASS-IAR and rough-set-based-methods

In this section, we compare ASS-IAR with IAR and GIARC.
We first point out the main differences among the three

x

(,)U C DU red ME KP

Fig. 3. The process of ASS-IAR.

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

11

methods. One is that IAR and GIARC have no the scheme of
active sample selection, whereas ASS-IAR has. The other is
that GIARC has no an insight into the attribute reduction
process that reveals which attributes should be added into and
deleted from a current reduct, whereas IAR and ASS-IAR have.

The experimental results are summarized in Table III, Table
IV and Fig. 4. Fig. 4 shows the runtime of ASS-IAR, IAR and
GIARC with the arrival of each incremental dataset. In view of
paper length, the results of the three methods on each dataset
are shown in one figure. The x-coordinate is the index of each
incremental dataset, while the y-coordinate is the runtime of
each method. In each subfigure, GIARC-L, GIARC-S and

GIARC-C refer to the GIARC algorithm based on Liang’s
entropy, Shannon’s entropy and Combination entropy,
respectively.

Fig. 4 displays that ASS-IAR is faster than GIARC on most
datasets. Moreover, with the arrival of each incremental dataset,
the runtime of GIARC basically grows monotonically. The
reason is that GIARC adds and removes attributes by
computing incremental entropies of all possible feature subsets
at each loop. The incremental entropy is obtained by
considering the combinative cases of equivalence classes and
decision classes between the current dataset and the
incremental dataset. With the increment of samples, it takes

TABLE II
DATASET DESCRIPTION

Data Data type Samples Ori_samples Parts Feature Class

Soybean Symbolic 683 342 5 35 19
Yeast Mixed 1484 742 5 8 10

Contraceptive Method Choice (Cmc) Real 1473 737 5 9 3
Sick Symbolic 2800 1400 5 28 2

Kr-vs-kp Symbolic 3196 1598 5 36 2
Spambase (Spam) Real 4601 2301 5 57 2

Magic Real 78823 39412 5 10 2
Letter-recognition (Letter) Symbolic 20000 5000 5 16 26

Poker-hand (Poker) Real 1025010 25010 10 10 10

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Running time of ASS-IAR, IAR and GIARC with the arrival of an incremental dataset. (a) Cmc, (b) Soybean, (c) Kr-vs-kp, (d) Yeast, (e) Sick,
(f) Spam, (g) Magic, (h) Letter, (i) Poker.

1 2 3 4 5
0

0.5

1

1.5

2

2.5

Index of the incremental dataset

R
u
n

n
in

g
 t

im
e

/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1 2 3 4 5
0

2

4

6

8

10

12

14

16

Index of the incremental dataset

R
u
n

n
in

g
 t

im
e

/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1 2 3 4 5
0

20

40

60

80

100

120

Index of the incremental dataset

R
u
n

n
in

g
 t

im
e

/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Index of the incremental dataset

R
u
n
n

in
g
 t

im
e

/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1 2 3 4 5
0

5

10

15

20

25

Index of the incremental dataset

R
u
n
n

in
g
 t

im
e

/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1 2 3 4 5
0

20

40

60

80

100

120

Index of the incremental dataset

R
u
n

n
in

g
 t

im
e

/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1 2 3 4 5
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

Index of the incremental dataset

R
u
n
n

in
g
 t

im
e
/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1 2 3 4 5
100

200

300

400

500

600

700

800

900

Index of the incremental dataset

R
u
n

n
in

g
 t

im
e
/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
x 10

4

Index of the incremental dataset

R
u
n

n
in

g
 t

im
e
/s

ASS-IAR

IAR

GIARC-C

GIARC-S

GIARC-L

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

12

much time to find the incremental entropy, which results in the
increasing of the runtime of GIARC. In contrast, the runtime of
ASS-IAR is basically stable, since it can discard useless
samples to save the memory space and improve the time
efficiency of updating reduct.

 Table III shows the total runtime of the three methods. Here,
the total runtime of each method is obtained by the sum of the
runtime on the original dataset and each incremental dataset. It
can be observed that the average runtime of ASS-IAR
(8616.987 seconds) is much less than that of IAR (41691.79
seconds) and GIARC (GIARC-L: 45073.31 seconds; GIARC-S:
45418.49 seconds; GIARC-C: 45223.34 seconds). Moreover,
ASS-IAR is much more efficient than IAR and GIARC on
large-scale datasets. For example, on ‘Poker’, the runtime of
ASS-IAR is 57774.12 seconds, which is much lower than that
of IAR (352437.76 seconds) and GIARC (GIARC-L:
383827.56 seconds; GIARC-S: 384963.24 seconds; GIARC-C:
385089.78 seconds). The facts imply the time efficiency of
ASS-IAR when finding a reduct.

Table IV shows the number of useless samples. Here,
‘Remaining samples’ represents the number of all incremental
samples, ‘Filtered samples’ is the number of useless samples in
all incremental samples and ‘Ratio’ denotes the ratio of Filtered
samples and Remaining samples. It is clear from Table IV that
the number of useless samples is very big, even over 80% in
some cases. For example, on 'Magic', useless samples account
for 98.05% of all incremental samples; on 'Poker', the
percentage of all useless samples is 81.19%. These facts
suggest useless samples do take up a huge amount of memory
space. From Table III, we can also see that filtering out useless
samples can indeed improve the time efficiency of updating one
reduct. Therefore it is worthwhile to design a scheme of active

sample selection to filter out useless samples while retaining
useful samples to perform the incremental computation.

To sum up, our ASS-IAR can update a reduct in much less
time by comparing with IAR and GIARC. The reason is
twofold. The first one is ASS-IAR has an insight into the
attribute reduction process that efficiently guides how to add
and delete attributes, while GIARC does not have. The second
one is that ASS-IAR has the scheme of active sample selection
which actively selects useful samples to update the reduct and
discards useless samples to save the space memory, while IAR
and GIARC do not have. Therefore, it is highly efficient to
employ our ASS-IAR to deal with dynamic datasets with
successive samples.

C. Comparison of ASS-IAR and non-rough-set-based feature

selection methods

In this section, three state-of-the-art non-rough-set-based
methods, i.e., CONSISTENCY, RELIEFF and SCRAP, are
compared with our ASS-IAR. Here, RELIEFF and SCRAP can
be considered as feature selection methods including active
sample selection mechanisms, since they obtain a feature subset
by conducting search not only in the feature space but also in
the sample space.

CONSISTENCY is a consistency-based feature selection
method of searching the minimal subset that separates classes
as consistently as the full set can under best first search strategy.
It is similar to rough-set-based attribute reduction method. So,
it is necessary to compare ASS-IAR with CONSISTENCY.

RELIEFF weighs each feature according to how well their
values distinguish between the instances that are near to each
other. Given a randomly selected sample, RELIEFF searches
the whole dataset for its two nearest samples: one from the
same class called nearest hit, and the other from a different
class called nearest miss. It then updates the weight of each
attribute depending on the two nearest samples. The process is
repeated m times, where m is specified as the number of
samples on the first eight datasets and m is set as 5000 on
‘Poker’. RELIEFF depends on randomly selecting samples,
which implies RELIEFF can be considered as a feature
selection method including sample selection. Hence, it is
compared with ASS-IAR.

SCRAP is a conservative filtering scheme that tries to
identify the features changing at two consecutive Points of
Class Change and include them in the feature subset. It searches

TABLE III
TOTAL RUNNING TIME OF ASS-IAR, IAR AND GIARC

Data ASS-IAR/s IAR/s GIARC-L/s GIARC-S/s GIARC-C/s

Soybean 10.6745 10.5722 57.5454 57.0801 59.9627
Yeast 0.7014 0.7666 3.6113 3.6314 3.1360
Cmc 1.1083 1.1896 6.1806 6.1913 8.1761
Sick 6.5829 7.614 69.2331 86.1752 55.7862

Kr-vs-kp 36.9302 36.5188 305.4245 282.4433 262.4014
Spam 41.9085 54.4849 240.8804 416.5303 242.2943
Magic 16537.83 19204.92 19129.06 19773.00 18650.0
Letter 3143.03 3472.26 2020.25 3178.15 2638.16
Poker 57774.12 352437.76 383827.56 384963.24 385089.78

Average 8616.987 41691.79 45073.31 45418.49 45223.34

TABLE IV

TOTAL NUMBER OF USELESS SAMPLES

Data Remaining samples Filtered samples Ratio

Soybean 341 46 0.1349
Yeast 742 716 0.96
Cmc 736 617 0.8383
Sick 1400 1212 0.8657

Kr-vs-kp 1598 0 0
Spam 2300 2013 0.8752
Magic 39411 38644 0.9805
Letter 15000 1191 0.0794
Poker 1000000 811945 0.8119

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

13

for the next Point of Class Change after discarding the samples
in the neighborhood of the current Point of Class Change,
which implies SCRAP has a scheme of filtering out samples.
Therefore, SCRAP is compared with ASS-IAR.

Each method in this section is run 10 times on each selected
dataset. The average runtime of each method on each dataset is
summarized in Table V. For each dataset, we conduct Student’s
paired two tailed t-Test in order to evaluate the statistical
significance of the difference between two runtime: one
resulted from ASS-IAR and the other resulted from one of
CONSISTECY, RELIEFF and SCRAP. The p-value is
recorded in Table V to show the probability associated with the
t-Test. The last row (L/W/T) in Table V summarizes over all
selected datasets the losses/wins/ties in the runtime of three
feature selection methods over that of ASS-IAR.

From Table V, we can observe that ASS-IAR (6776.342
seconds) achieves the fastest average runtime comparing to the
baseline algorithms (CONSISTENCY: 11669.67 seconds;
RELIEFF: 13223.37 seconds; SCRAP: 18721.14 seconds).
More specially, ASS-IAR is much more efficient than the
baseline algorithms on the large-scale datasets. For example, on
‘Poker’, the runtime of ASS-IAR is 86.6% of that of
CONSISTENCY, 53.67% of that of RELIEFF, and 34.25% of
that of SCRAP, respectively. Moreover, the L/W/T records
show ASS-IAR statistically outperforms CONSISTENCY 8
times, RELIEFF 6 times, and SCRAP 6 times respectively.

To be brief, in comparison with CONSISTENCY, RELIEFF
and SCRAP, ASS-IAR also shows the time efficiency,
especially for large-scale datasets. The reason is as follows.
CONSISTENCY searches for a feature subset by scanning the
whole sample space to obtain the inconsistency rate at each
loop. Although the time complexity of RELIEFF is
proportional to the iteration time m, it has to weigh each feature
by searching for the whole sample space to obtain two nearest
neighbors of a randomly selected sample. Hence,
CONSISTENCY and RELIEFF are clearly time-consuming to
select a feature subset from datasets with large-scale samples.
Besides, SCRAP is very costly to obtain a feature subset, which
is because although SCRAP discards the samples in the
neighborhood of a current Point of Class Change, it has to
reduce the weight for the irrelevant features by scanning the

discarded neighborhood. In contrast, ASS-IAR can forever
filter out useless samples to compress the sample space, so that
the memory space is saved and the time efficiency of finding a
feature subset is also improved.

Hence, our ASS-IAR can not only improve the time
efficiency of the existing incremental attribute reduction
algorithms, but also is highly effective to deal with large-scale
datasets.

VI. CONCLUSIONS

In this paper, we present an active sample selection based
incremental algorithm for attribute reduction, which actively
filters out useless samples and retains useful samples to
perform the incremental computation of attribute reduction.
Our algorithm has the following two advantages. One
advantage is that through active sample selection, our
incremental algorithm actively responds only to useful samples
rather than passively using all incremental samples in the
incremental computation of attribute reduction, so that the
memory space usage and computation time are both reduced
which is particularly effective in dealing with dynamic, large
datasets. The other advantage is that our incremental algorithm
exploits deeper insights into the attribute reduction process so
that it knows correctly which attributes should be added into or
deleted from an existing reduct. Experimental comparisons
show that our incremental algorithm is indeed very efficient,
especially when dealing with large datasets. Our future work
will concentrate on how to extend our idea in this paper to other
rough set models such as fuzzy rough sets and covering rough
sets.

REFERENCES

[1] W.C. Bang, Z. Bien, "Incremental inductive learning algorithm in the
framework of rough set theory and its application," Int. J. Fuzzy Syst., vol.
1, no. 1, pp. 25-36, 1999.

[2] D.G. Chen, S.Y. Zhao, L. Zhang, Y.P. Yang, X. Zhang, "Sample pair
selection for attribute reduction with rough set," IEEE Trans. Knowl.

Data Eng., vol. 24, no. 11, pp. 2080-2093, 2012.
[3] D.G. Chen, Y.Y. Yang, "Attribute reduction for heterogeneous data based

on the combination of classical and fuzzy rough set models," IEEE Trans.

Fuzzy Syst., vol. 22, no. 5, pp. 1325-1334, 2014.
[4] Y. Cheng, "The incremental method for fast computing the rough fuzzy

approximations," Data Knowl. Eng., vol. 70, no. 1, pp. 84-100, 2011.

TABLE V
RUNTIME OF ASS-IAR, CONSISTENCY, RELIEFF AND SCARP.

Data ASS-IAR CONSISTENCY RELIEFF SCARP

 Time/s Time/s p-val Time/s p-val Time/s p-val

Soybean 14.5759 66.5532 0.00 - 14.5451 0.9738 11.7844 0.0071 +
Yeast 0.5510 0.3734 0.00 + 1.5760 0.00 - 1.0559 0.00 -
Cmc 0.9671 1.8448 0.00 - 1.5075 0.00 - 4.8602 0.00 -
Sick 3.0932 17.2767 0.00 - 5.8923 0.00 - 4.1962 0.00 -

Kr-vs-kp 61.6507 251.7640 0.00 - 10.4290 0.00 + 7.8638 0.00 +
Spam 10.5399 273.5061 0.00 - 36.0602 0.00 - 41.1449 0.00 -
Magic 2467.78 36789.58 0.00 - 12726.19 0.00 - 5893.14 0.0453 -
Letter 2839.69 3434.99 0.00 - 2638.11 0.0018 + 226.4985 0.00 +
Poker 55588.23 64191.18 0.0034 - 103576.01 0.00 - 162299.68 0.00 -

Average 6776.342 11669.67 13223.37 18721.14

L/W/T 8/1/0 6/2/1 6/3/0

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

14

[5] S.R. Feng, D.Z. Zhang, "Incremental algorithm for attribute reduction
based on improvement of discernibility matrix," J. Shenzhen University

Sci. Eng., vol. 29, no. 5, 2012.
[6] L.H. Guan, "An incremental updating algorithm of attribute reduction set

in decision tables," in Proc. 6th Int. Conf. Fuzzy Syst. Knowl. Dis., pp.
421-425, 2009.

[7] F. Hu, G.Y. Wang, H. Huang, Y. Wu, "Incremental attribute reduction
based on elementary sets," in Proc. 10th Int. Conf. Rough Sets, Fuzzy

Sets, Data Mining and Granular Computing, Regina, Canada, pp.
185-193, 2005.

[8] F. Hu, J.H. Dai, G.Y. Wang, "Incremental algorithms for attribute
reduction in decision table," Control Decis., vol. 22, no. 3, pp. 268-272,
2007.

[9] Q.H. Hu, D.R. Yu, Z.X. Xie, X.D. Li, "EROS: ensemble rough
subspaces," Pattern Recognit., vol. 40, no. 12, pp. 3728-3739, 2007.

[10] Q.H. Hu, D.R. Yu, J.F. Liu, C.X. Wu, "Neighborhood rough set based
heterogeneous feature subset selection," Inf. Sci., vol. 178, no. 18, pp.
3577-3594, 2008.

[11] T.R. Li, D. Ruan, W. Geert, "A rough sets based characteristic relation
approach for dynamic attribute generalization in data mining,"
Knowl.-Based Syst., vol. 20, no. 5, pp. 485-494, 2007.

[12] J.Y. Liang, Z.B. Xu, "The algorithm on knowledge reduction in
incomplete information systems," Int. J. Uncertainty, Fuzziness and

Knowledge-Based Systems, vol. 10, no. 1, pp. 95-103, 2002.
[13] J.Y. Liang, F. Wang, C.Y. Dang, Y.H. Qian, "A group incremental

approach to feature selection applying rough set technique," IEEE Trans.

Knowl. Data Eng., vol. 26, no. 2, pp. 294-308, 2014.
[14] Z.T. Liu, "An incremental arithmetic for the smallest reduction of

attributes," Acta Electronica Sinica, vol. 27, no. 11, pp. 96-98, 1999.
[15] C. Luo, T.R. Li, H.M. Chen, D. Liu, "Incremental approaches for

updating approximations in set-valued ordered information systems,"
Knowl-Based Syst., vol. 50, pp. 218-233, 2013.

[16] UCI Machine Learning Repository. (2005). [Online]. Available:
http://www.ics.uci.edu/~mlearn//MLRepository.html.

[17] Z. Pawlak, "Rough sets," Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp.
341-356, 1982.

[18] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data

[M]. Dordrecht, The Netherlands: Kluwer, 1991.
[19] Y.H. Qian, J.Y. Liang, "Combination entropy and combination

granulation in rough set theory," Int. J. Uncertainty, Fuzziness and

Knowledge-Based Systems, vol. 16, no. 2, pp. 179-193, 2008.
[20] Y.H. Qian, J.Y. Liang, W. Pedrycz, C.Y. Dang, "Positive approximation:

an accelerator for attribute reduction in rough set theory," Artificial

Intelligence, vol. 174, no. 9, pp. 597-618, 2010.
[21] N. Shan, W. Ziarko, "Data-based acquisition and incremental

modification of classification rules," Computat. Intell., vol. 11. no.2, pp.
357-370, 1995.

[22] W.H. Shu, H. Shen, "A rough-set based incremental approach for
updating attribute reduction under dynamic incomplete decision
systems," in Proc. 2013 Int. Conf. Fuzzy Syst., pp. 1-7, 2013.

[23] W.H. Shu, H. Shen, "Updating attribute reduction in incomplete decision
systems with the variation of attribute set," Int. J. Approx. Reason., vol.
55, no. 3, pp. 867-884, 2014.

[24] W.H. Shu, H. Shen, "Incremental feature selection based on rough set in
dynamic incomplete data," Pattern Recognit., vol. 47, no. 12, pp.
3890-3906, 2014.

[25] A. Skowron, C. Rauszer, "The discernibility matrices and functions in
information systems," Intelligent Decision Support-Handbook of

Applications and Advances of the Rough Sets Theory, R. Slowinski, ed.,
pp. 331-362, Kluwer Academic Publishers, 1992.

[26] D. Slezak, "Approximate entropy reducts," Fundam. Inf., vol. 53, nos.
3-4, pp. 365-390, 2002.

[27] R. Susmaga, "Experiments in incremental computation of reducts,"
Rough Sets in Data Mining and Knowledge Discovery, A. Skowron and
L. Polkowski, eds., Springer-Verlag, 1998.

[28] F. Wang, J.Y. Liang, Y.H. Qian, "Attribute reduction: a dimension
incremental strategy," Knowl-Based Syst., vol. 39, pp. 95-108, 2013.

[29] F. Wang, J.Y. Liang, C.Y. Dang, "Attribute reduction for dynamic data
sets," Appl. Soft Comput., vol. 13, no. 1, pp. 676-689, 2013.

[30] M. Yang, "An incremental updating algorithm for attributes reduction
based on the improved discernibility matrix," Chinese J. Computers, vol.
30, no. 5, pp. 815-822, 2007.

[31] X.B. Yang, Y. Qi, H.L. Yu, X.N. Song, J.Y. Yang, "Updating
multigranulation rough approximations with increasing of granular
structures," Knowl-Based Syst., vol. 64, pp. 59-69, 2014.

[32] Y.Y. Yao, Y. Zhao, "Discernibility matrix simplification for constructing
attribute reducts," Inf. Sci., vol. 179, no. 7, pp. 867-882, 2009.

[33] D.R. Yu, Q.H. Hu, W. Bao, "Combining rough set methodology and
fuzzy clustering for knowledge discovery from quantitative data," in
Proc. Chin. Soc. Electr. Eng., vol. 24, no. 6, pp. 205-210, 2004.

[34] S.Y. Zhao, Eric C.C. Tsang, D.G. Chen, X. Z. Wang, "Building a
rule-based classifier—a fuzzy-rough set approach," IEEE Trans. Knowl.

Data Eng., vol. 22, no. 5, pp. 624-638, 2010.
[35] A.P. Zeng, T.R. Li, D. Liu, J.B. Zhang, H.M. Chen, "A fuzzy rough set

approach for incremental feature selection on hybrid information
systems," Fuzzy Sets Syst., vol. 258, pp. 39-60, 2015.

[36] D. Ślęzak, A. Janusz, "Ensembles of bireducts: towards robust
classification and simple representation," Future generation information

technology, vol. 7105, pp. 64-77, 2011.
[37] S. Stawicki, S. Widz, "Decision bireducts and approximate decision

reducts: Comparison of two approaches to attribute subset ensemble
construction," in Proc. Fed. Conf. Computer Science and Information

Systems (FedCSIS), pp. 331-338, 2012.
[38] S. Stawicki, D. Ślęzak, "Recent advances in decision bireducts:

complexity, heuristics and streams," Rough Sets and Knowledge

Technology, pp. 200-212, 2013.
[39] S.Y. Zhao, H. Chen, C.P. Li, X.Y. Du, H. Sun, “A novel approach to

building a robust fuzzy rough classifier,” IEEE Trans. Fuzzy Syst., vol. 23,
no. 4, pp. 769-786, 2015.

[40] L.S. Riza, A. Janusz, C. Bergrmeir, C. Cornelis, F. Herrera, D. Slezak,
J.M. Benitez, “Implementing algorithms of rough set theory and fuzzy
rough set theory in the R package “RoughSets”,” Inf. Sci., vol. 287, pp.
68-89, 2014.

[41] G.Y. Wang, H. Yu, D.C. Yang, “Decision table reduction based on
conditional information entropy,” Chinese J. Computer, vol. 25, no. 7, pp.
759-766, 2002.

[42] A. Janusz, D. Slezak, “Rough set methods for attribute clustering and
selection,” Appl. Artif. Intell., vol. 28, no. 3, pp. 220-242, 2014.

[43] H.M. Chen, T.R. Li, C. Luo, S.J. Horng, G.Y. Wang, “A rough set-based
method for updating decision rules on attribute values’ coarsening and
refining,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 12, pp. 2886-2899,
2014.

[44] H. Liu, H. Motoda, L. Yu, “A selective sampling approach to active
feature selection,” Artificial Intelligence, vol. 159, no. 1, pp. 49-74, 2004.

[45] H. Liu, H. Motoda, L. Yu, “Feature selection with selective sampling,” in
Proc. 19th Int. Conf. Mach. Learning, 2002, pp. 395-402.

[46] K. Kira, L.A. Rendell, “A practical approach to feature selection,” in Proc.

9th Int. Conf. Mach. Learning, 1992, pp. 249-256.
[47] I. Kononenko, “Estimating attributes: analysis and extensions of RELIEF,”

Machine Learning: ECML-94, L. De Raedt and F. Bergadano, eds., pp.
171-182, Springer Verlag, 1994.

[48] B. Raman, T.R. Ioerger, “Instance based filter for feature selection,” J.

Machine Learning Research, vol. 1, no. 3, pp. 1-23, 2002.
[49] M. Dash, H. Liu, “Consistency-based search in feature selection,”

Artificial Intelligence, vol. 151, nos. 1-2, pp. 155-176, 2003.
[50] S.Y. Zhao, E.C.C., Tsang, D.G. Chen, “The model of fuzzy variable

precision rough sets,” IEEE Trans. Fuzzy Syst., vol. 17, no. 2, pp. 451-467,
2009.

[51] S.Y. Zhao, H. Chen, C.P. Li, M.Y. Zhai, X.Y. Du, “RFRR: robust fuzzy
rough reduction,” IEEE Trans. Fuzzy Syst., vol. 21, no.5, pp.825-841,
2013.

[52] Q.H. Hu, L. Zhang, D.G. Chen, W. Pedrycz, D.R. Yu, “Gaussian kernel
based fuzzy rough sets: model, uncertainty measures and applications,”
Int. J. Approx. Reason., vol. 51, no. 4, pp. 453-471, 2010.

[53] Q.H. Hu, D.R. Yu, W. Pedrycz, D.G. Chen, “Kernelized fuzzy rough sets
and their applications,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 11,
pp.1649-1667, 2011.

[54] M. Orlowska, M. Orlowski, "Maintenance of knowledge in dynamic
information systems," Intelligent Decision Support: Handbook of

Applications and Advances of the Rough Set Theory, R. Slowinski, ed.,
pp. 315-330, Kluwer Academic Publishers, 1992.

[55] A. Skowron, “Boolean reasoning for decision rules generation,” in Proc.

Int. Symposium on Methodologies for Intelligent Systems, pp. 295-305,
1993.

[56] D.Q. Miao, Y, Zhao, Y.Y. Yao, H.X. Li, F.F., Xu, “Relative reducts in
consistent and inconsistent decision tables of the Pawlak rough set
model,” Inf. Sci., vol. 179, no.24, pp. 4140-4150, 2009.

[57] X. Z. Wang, H. J. Xing, Y. Li, Q. Hua, C. R. Dong, W. Pedrycz, “A Study
on Relationship between Generalization Abilities and Fuzziness of Base

1063-6706 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2016.2581186, IEEE
Transactions on Fuzzy Systems

> TFS-2015-0320<

15

Classifiers in Ensemble Learning,” IEEE Trans. Fuzzy Syst., vol. 23, no. 5,
pp. 1638-1654, 2015.

[58] M. Aggarwal, “Probabilistic variable precision fuzzy rough sets,” IEEE

Trans. Fuzzy Syst., vol. 24, no. 1, pp. 29-39, 2016.
[59] J. T. Yao, N. Azam, “Web-Based Medical Decision Support Systems for

Three-Way Medical Decision Making With Game-Theoretic Rough Sets, ”
IEEE Trans. Fuzzy Syst., vol. 23, no. 1, pp. 3-15, 2015.

[60] D. C. Liang, D. Liu, “A Novel Risk Decision Making Based on
Decision-Theoretic Rough Sets Under Hesitant Fuzzy Information,”
IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 237-247. 2015.

[61] H. M. Chen, T. R. Li, C. Luo, S. J. Horng, G. Y. Wang, “A
Decision-Theoretic Rough Set Approach for Dynamic Data Mining,”
IEEE Trans. Fuzzy Syst., vol. 23, no. 6, pp. 1958-1970, 2015.

[62] Y. Han, P. Shi, S. Chen, “Bipolar-Valued Rough Fuzzy Set and Its
Applications to the Decision Information System,” IEEE Trans. Fuzzy

Syst., vol. 23, no. 6, pp. 2358-2370, 2015.

Yanyan Yang received the BSc degree
from the School of Science, North
University of China, Taiyuan, China, in
2010 and the MSc degree from the
Department of Mathematics and Physics,
North China Electric Power University,
Beijing, China, in 2013. She is currently
working toward the Ph.D. degree with the
School of Control and Computer
Engineering, North China Electric Power
University. Since October, 2015, she has

visited University of Ulster as a Joint Ph.D. student sponsored
by China Scholarship Council for one year.

Her current research interests include rough sets, fuzzy sets
and machine learning.

Degang Chen received the MSc degree
from Northeast North University,
Changchun, Jilin, China, in 1994 and
the Ph.D. degree from the Harbin
Institute of Technology, Harbin, China,
in 2000.

He was a Postdoctoral Fellow with
Xi’an Jiaotong University, Xi’an,
China, from 2000 to 2002, and with
Tsinghua University, Beijing, China,

from 2002 to 2004. Since 2006, he has been a Professor with
North China Electric Power University, Beijing, China. He has
authored or coauthored more than 140 research publications.
His research interests include fuzzy groups, fuzzy algebra,
fuzzy analysis, rough sets, machine learning.

Hui Wang received BSc degree in
computer science from Jilin University of
China in 1985 and then went on a
three-year MSc program in artificial
intelligence. From 1988 to 1992, he
worked at Jilin University as a lecturer. In
early 1993, he went to Northern Ireland to
begin a doctoral program and completed
the DPhil degree in informatics in 1996.

He is currently a Professor in Computer
Science and the head of Artificial Intelligence and Applications
Research Group, University of Ulster. His research interests are
machine learning, logics and reasoning, combinatorial data
analytics, and their applications in image, video, spectra and
text analysis. He has over 200 publications in these areas.

