15 research outputs found

    Hybrid Heuristics for Infinite Period Inventory Routing Problem

    Get PDF
    In this paper, we address a one-to-many distribution network inventory routing problem over an infinite planning horizon. Each retailer has an independent, random demand, and the distribution center uses capacitated vehicles for routing delivery. The demand at each retailer is relatively small compared to the vehicle capacity. A novel mathematical model is given to simultaneously decide the optimal routing tours to retailers and routing frequencies of each route. Several heuristics are developed to solve large scale instances of the problem

    The Tractor and Semitrailer Routing Considering Carbon Dioxide Emissions

    Get PDF
    The incorporation of the minimization of carbon dioxide (CO2) emissions in the VRP is important to logistics companies. The paper deals with the tractor and semitrailer routing problem with full truckload between any two depots of the network; an integer programming model with the objective of minimizing CO2 emissions per ton-kilometer is proposed. A two-stage approach with the same core steps of the simulated annealing (SA) in both stages is designed. The number of tractors is provided in the first stage and the CO2 emissions per ton-kilometer are then optimized in the second stage. Computational experiments on small-scale randomly generated instances supported the feasibility and validity of the heuristic algorithm. To a practical-scale problem, the SA algorithm can provide advice on the number of tractors, the routes, and the location of the central depot to realize CO2 emissions decrease

    Optimization Approaches for the Traveling Salesman Problem with Drone

    Get PDF
    The fast and cost-efficient home delivery of goods ordered online is logistically challenging. Many companies are looking for new ways to cross the last-mile to their customers. One technology-enabled opportunity that recently has rec

    Container Swap Trailer Transportation Routing Problem Based on Genetic Algorithm

    Get PDF
    In swap trailer transportation routing problems, trucks and trailers conduct swap operations at special positions called trailer points. The parallelization of stevedoring and transportation can be achieved by means of these trailer points. This logistics organization mode can be more effective than the others. In this paper, an integer programming model with capacity and time-window constraints was established. A repairing strategy is embedded in the genetic algorithm (GA) to solve the model. The repairing strategy is executed after the crossover and mutation operation to eliminate the illegal routes. Furthermore, a parameter self-adaptive adjustment policy is designed to improve the convergence. Then numerical experiments are implemented based on the generated datasets; the performance and robustness of the algorithm parameter self-adaptive adjustment policy are discussed. Finally, the results show that the improved algorithm performs better than elementary GA

    The Effects of the Tractor and Semitrailer Routing Problem on Mitigation of Carbon Dioxide Emissions

    Get PDF
    The incorporation of CO2 emissions minimization in the vehicle routing problem (VRP) is of critical importance to enterprise practice. Focusing on the tractor and semitrailer routing problem with full truckloads between any two terminals of the network, this paper proposes a mathematical programming model with the objective of minimizing CO2 emissions per ton-kilometer. A simulated annealing (SA) algorithm is given to solve practical-scale problems. To evaluate the performance of the proposed algorithm, a lower bound is developed. Computational experiments on various problems generated randomly and a realistic instance are conducted. The results show that the proposed methods are effective and the algorithm can provide reasonable solutions within an acceptable computational time

    A GRASP with evolutionary path relinking for the truck and trailer routing problem

    No full text
    International audienceIn the truck and trailer routing problem (TTRP) a heterogeneous fleet composed of trucks and trailers has to serve a set of customers, some only accessible by truck and others accessible with a truck pulling a trailer. This problem is solved using a route-first, cluster-second procedure embedded within a hybrid metaheuristic based on a greedy randomized adaptive search procedure (GRASP), a variable neighborhood search (VNS) and a path relinking (PR). We test PR as a post-optimization procedure, as an intensification mechanism, and within evolutionary path relinking (EvPR). Numerical experiments show that all the variants of the proposed GRASP with path relinking outperform all previously published methods. Remarkably, GRASP with EvPR obtains average gaps to best-known solutions of less than 1% and provides several new best solutions

    Meta-RaPS Hybridization with Machine Learning Algorithms

    Get PDF
    This dissertation focuses on advancing the Metaheuristic for Randomized Priority Search algorithm, known as Meta-RaPS, by integrating it with machine learning algorithms. Introducing a new metaheuristic algorithm starts with demonstrating its performance. This is accomplished by using the new algorithm to solve various combinatorial optimization problems in their basic form. The next stage focuses on advancing the new algorithm by strengthening its relatively weaker characteristics. In the third traditional stage, the algorithms are exercised in solving more complex optimization problems. In the case of effective algorithms, the second and third stages can occur in parallel as researchers are eager to employ good algorithms to solve complex problems. The third stage can inadvertently strengthen the original algorithm. The simplicity and effectiveness Meta-RaPS enjoys places it in both second and third research stages concurrently. This dissertation explores strengthening Meta-RaPS by incorporating memory and learning features. The major conceptual frameworks that guided this work are the Adaptive Memory Programming framework (or AMP) and the metaheuristic hybridization taxonomy. The concepts from both frameworks are followed when identifying useful information that Meta-RaPS can collect during execution. Hybridizing Meta-RaPS with machine learning algorithms helped in transforming the collected information into knowledge. The learning concepts selected are supervised and unsupervised learning. The algorithms selected to achieve both types of learning are the Inductive Decision Tree (supervised learning) and Association Rules (unsupervised learning). The objective behind hybridizing Meta-RaPS with an Inductive Decision Tree algorithm is to perform online control for Meta-RaPS\u27 parameters. This Inductive Decision Tree algorithm is used to find favorable parameter values using knowledge gained from previous Meta-RaPS iterations. The values selected are used in future Meta-RaPS iterations. The objective behind hybridizing Meta-RaPS with an Association Rules algorithm is to identify patterns associated with good solutions. These patterns are considered knowledge and are inherited as starting points for in future Meta-RaPS iteration. The performance of the hybrid Meta-RaPS algorithms is demonstrated by solving the capacitated Vehicle Routing Problem with and without time windows

    The minimum length corridor problem : exact, approximative and heuristic algorithms

    Get PDF
    Orientador: Cid Carvalho de SouzaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Esta dissertação tem como foco a investigação experimental de algoritmos exatos, aproximativos e heurísticos aplicados na resolução do chamado problema do corredor de comprimento mínimo (PCCM). No PCCM recebemos um polígono retilinear P e um conjunto de polígonos retilineares menores formando uma subdivisão S planar conexa de P. Uma solução para este problema, também chamada de corredor, é formada por um conjunto conexo de arestas de S, e tal que cada face interna em S possui pelo menos um ponto em sua borda que pertence a alguma aresta deste conjunto. O objetivo então é encontrar um corredor tal que a soma total dos comprimentos das arestas seja a menor possível. Trata-se de um problema NP-difícil com aplicações em áreas diversas, tais como telecomunicações, engenharia civil e projeto de circuitos VLSI. O PCCM pode ser reduzido polinomialmente a um problema em grafos denominado problema da árvore de Steiner com grupos (PASG). Considerando esta transformação, estudamos e implementamos dois métodos aproximativos, um método exato de branch-and-cut, e um método heurístico baseado na metaheurística GRASP combinada com um evolutionary path relinking (GRASP+EPR). Além disso, propomos três heurísticas de busca local que visam melhorar a qualidade de soluções do PASG. Instâncias do PCCM foram geradas aleatoriamente, nas quais aplicamos os métodos implementados. Analisamos os resultados, e apresentamos as situações onde é interessante utilizar cada método. Verificamos que o método branch-and-cut foi capaz de encontrar soluções ótimas para instâncias que julgamos ser de grande porte em tempos computacionalmente aceitáveis. O melhor algoritmo aproximativo obteve corredores que na média têm comprimento 17% maior que o comprimento ótimo. Se combinarmos este algoritmo com as heurísticas de melhoria propostas este percentual cai para a média de 3,5%. Finalmente, o GRASP+EPR consome mais tempo que este algoritmo aproximativo, entretanto, o comprimento dos corredores obtidos por ele é em média 0,9% maior que o comprimento ótimoAbstract: This dissertation focuses on the experimental investigation of exact, approximation and heuristic algorithms applied to solve the so-called minimum length corridor problem (MLCP). In the MLCP we receive a rectilinear polygon P and a set of minor rectilinear polygons forming a connected planar subdivision S of P. A solution for this problem, also called corridor, is formed by a set of connected edges of S, and such that each inner face of S has at least one point on its your border which belongs to an edge in this set. The goal is to find a corridor such that the sum of lengths of the edges is as small as possible. This is an NP-hard problem with applications in several areas such as telecommunications, civil engineering and design of VLSI circuits. The MLCP can be polynomially reduced to a graph problem known as group Steiner tree problem (GSTP). Based on this transformation, we studied and implemented two approximation methods, an exact branch-and-cut method, and a heuristic method based on the metaheuristic GRASP combined with an evolutionary path relinking (GRASP+EPR). Furthermore, we propose three local search heuristics to improve the quality of GSTP solutions. MLCP instances were randomly generated, in which we apply the methods implemented. We analyzed the results, and present situations where it is interesting to use each method. We found that the branch-and-cut has been able to find optimal solutions for instances that we consider to be large in acceptable computational times. The best approximation algorithm obtained corridors having average length 17% higher than the optimum length. If we combine this algorithm with the improvement heuristics proposed this percentage drops to an average of 3.5%. Finally, the GRASP+EPR spent more time than this approximation algorithm, however, the length of the corridors obtained by the method is, on average, 0.9% higher than the optimum lengthMestradoCiência da ComputaçãoMestre em Ciência da Computaçã
    corecore