327 research outputs found

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Review of the CALIMAS Team Contributions to European Space Agency's Soil Moisture and Ocean Salinity Mission Calibration and Validation

    Get PDF
    Camps, Adriano ... et al.-- 38 pages, 22 figuresThis work summarizes the activities carried out by the SMOS (Soil Moisture and Ocean Salinity) Barcelona Expert Center (SMOS-BEC) team in conjunction with the CIALE/Universidad de Salamanca team, within the framework of the European Space Agency (ESA) CALIMAS project in preparation for the SMOS mission and during its first year of operation. Under these activities several studies were performed, ranging from Level 1 (calibration and image reconstruction) to Level 4 (land pixel disaggregation techniques, by means of data fusion with higher resolution data from optical/infrared sensors). Validation of SMOS salinity products by means of surface drifters developed ad-hoc, and soil moisture products over the REMEDHUS site (Zamora, Spain) are also presented. Results of other preparatory activities carried out to improve the performance of eventual SMOS follow-on missions are presented, including GNSS-R to infer the sea state correction needed for improved ocean salinity retrievals and land surface parameters. Results from CALIMAS show a satisfactory performance of the MIRAS instrument, the accuracy and efficiency of the algorithms implemented in the ground data processors, and explore the limits of spatial resolution of soil moisture products using data fusion, as well as the feasibility of GNSS-R techniques for sea state determination and soil moisture monitoringThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05, ESP2007-65667-C04, AYA2008-05906-C02-01/ESP and AYA2010-22062-C05 from the Spanish Ministry of Science and Innovation, and a EURYI 2004 award from the European Science FoundationPeer Reviewe

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): Mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a "dynamic mapper" of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (&lt;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance

    Applications of GNSS Slant Path Delay Data on Meteorology at Storm Scales

    Get PDF
    This chapter focuses on applications of Global Navigation Satellite Systems (GNSS) slant path delay data (SPD) to obtain signals from thunderstorms or rainbands. Current operational numerical weather prediction systems (NWPs) use water vapor distributions derived by GNSS technology as vital information for predicting convective rainfall. Mostly, zenith total delay or integrated water vapor data are used at horizontal scales of several tens of kilometers for this purpose. Beyond such operational use, SPD can be used to obtain information on storms (cumulonimbus) at horizontal scales of less than 10 km. For instance, found that SPD represents very small-scale phenomena of less than 10 km and can be used to estimate water vapor distribution around a thunderstorm with a strong tornado, and succeeded in improving the forecast skill of a rainband at 10 km scale. This chapter reviews SPD, which is invaluable for predicting thunderstorms and/or rainbands

    Investigating the Sensitivity of Spaceborne GNSS-R Measurements to Ocean Surface Winds and Rain

    Full text link
    Earth remote sensing using reflected Global Navigation Satellite System (GNSS) signals is an emerging trend, especially for ocean surface wind measurements. GNSS-Reflectometry (GNSS-R) measurements of ocean surface scattering cross section are directly related to the surface roughness at scale sizes ranging from small capillary waves to long gravity waves. These roughness scales are predominantly due to swell, surface winds and other meteorological phenomena such as rain. In this study we are interested in understanding and characterizing the impact of these phenomena on GNSS-R signals in order to develop a better understanding of the geophysical parameters retrieved from these measurements. In the first part of this work, we look at GNSS-R measurements made by the NASA Cyclone Global Navigation Satellite System (CYGNSS) for developing an effective wind retrieval model function for GNSS-R measurements. In a fully developed sea state, the wind field has a constant speed and direction. In this case, a single Fully Developed Seas (FDS) Geophysical Model Function (GMF) is constructed which relates the scattering cross-section to the near surface wind speed. However, the sea age and fetch length conditions inside a hurricane are in general not consistent with a fully developed sea state. Therefore, a separate empirical Young Sea Limited Fetch (YSLF) GMF is developed to represent the conditions inside a hurricane. Also, the degree of under development of the seas is not constant inside hurricanes and conditions vary significantly with azimuthal location within the hurricane due to changes in the relative alignment of the storms forward motion and its cyclonic rotation. The azimuthal dependence of the scattering cross-section is modelled and a modified azimuthal YSLF GMF is constructed using measurements by CYGNSS over 19 hurricanes in 2017 and 2018. Next, we study the impact of rain on CYGNSS measurements. At L-band rain has a negligible impact on the transmitted signal in terms of path attenuation. However, there are other effects due to rain, such as changes in surface roughness and rain induced local winds, which can significantly alter the measurements. In this part of the study we propose a 3-fold rain model for GNSS-R signals which accounts for: 1) attenuation; 2) surface effects of rain; and 3) rain induced local winds. The attenuation model suggests a total of 96% or greater transmissivity at L-Band up to 30mm/hr of rain. A perturbation model is used to characterize the other two rain effects. It suggests that rain is accompanied by an overall reduction in the scattering cross-section of the ocean surface and, most importantly, this effect is observed only up to 15 m/s of surface winds, beyond which the gravity capillary waves dominate the scattering in the quasi-specular direction. This work binds together several rain-related phenomena and enhances our overall understanding of rain effects on GNSS-R measurements. Finally, one of the important objectives for the CYGNSS mission is to provide high quality global scale GNSS-R measurements that can reliably be used for ocean science applications. In this part of the work we develop a Neural Network based quality control filter for automated outlier detection for CYGNSS retrieved winds. The primary merit of the proposed Machine Learning (ML) filter is its ability to better account for interactions between the individual engineering, instrument and measurement conditions than can separate threshold quality flags for each one.PHDClimate and Space Sciences and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/166140/1/rajibala_1.pd

    The ESPAS e-infrastructure

    Get PDF
    ESPAS provides an e-Infrastructure to support access to a wide range of archived observations and model derived data for the near-Earth space environment, extending from the Earth's middle atmosphere up to the outer radiation belts. To this end, ESPAS will serve as a central access hub for researchers who wish to exploit multi-instrument multipoint data for scientific discovery, model development and validation, and data assimilation, among others. Observation based and model enhanced scientific understanding of the physical state of the Earth's space environment and its evolution is critical to advancing space weather and space climate studies, two very active branches of current scientific research. ESPAS offers an interoperable data infrastructure that enables users to find, access, and exploit near-Earth space environment observations from ground-based and spaceborne instruments and data from relevant models, obtained from distributed repositories. In order to facilitate efficient user queries ESPAS allows a highly flexible workflow scheme to select and request the desired data sets. ESPAS has the strategic goal of making Europe a leading player in the efficient use and dissemination of near-Earth space environment information offered by institutions, laboratories and research teams in Europe and worldwide, that are active in collecting, processing and distributing scientific data. Therefore, ESPAS is committed to support and foster new data providers who wish to promote the easy use of their data and models by the research community via a central access framework. ESPAS is open to all potential users interested in near-Earth space environment data, including those who are active in basic scientific research, technical or operational development and commercial applications

    A non-linear optimal estimation inverse method for radio occultation measurements of temperature, humidity and surface pressure

    Get PDF
    An optimal estimation inverse method is presented which can be used to retrieve simultaneously vertical profiles of temperature and specific humidity, in addition to surface pressure, from satellite-to-satellite radio occultation observations of the Earth's atmosphere. The method is a non-linear, maximum {\it a posteriori} technique which can accommodate most aspects of the real radio occultation problem and is found to be stable and to converge rapidly in most cases. The optimal estimation inverse method has two distinct advantages over the analytic inverse method in that it accounts for some of the effects of horizontal gradients and is able to retrieve optimally temperature and humidity simultaneously from the observations. It is also able to account for observation noise and other sources of error. Combined, these advantages ensure a realistic retrieval of atmospheric quantities. A complete error analysis emerges naturally from the optimal estimation theory, allowing a full characterisation of the solution. Using this analysis a quality control scheme is implemented which allows anomalous retrieval conditions to be recognised and removed, thus preventing gross retrieval errors. The inverse method presented in this paper has been implemented for bending angle measurements derived from GPS/MET radio occultation observations of the Earth. Preliminary results from simulated data suggest that these observations have the potential to improve NWP model analyses significantly throughout their vertical range.Comment: 18 (jgr journal) pages, 7 figure

    On the correlation between GNSS-R reflectivity and L-band microwave radiometry

    Get PDF
    This work compares microwave radiometry and global navigation satellite systems-reflectometry (GNSS-R) observations using data gathered from airborne flights conducted for three different soil moisture conditions. Two different regions are analyzed, a crops region and a grassland region. For the crops region, the correlation with the I/2 (first Stokes parameter divided by two) was between 0.74 and 0.8 for large incidence angle reflectivity data (30°-50°), while it was between 0.51 and 0.61 for the grassland region and the same incidence angle conditions. For the crops region, the correlation with the I/2 was between 0.64 and 0.69 for lower incidence angle reflectivity data (<;30°), while it was between 0.41 and 0.6 for the grassland region. This indicates that for large incidence angles the coherent scattering mechanism is dominant, while the lower incidence angles are more affected by incoherent scattering. Also a relationship between the reflectivity and the polarization index (PI) is observed. The PI has been used to remove surface roughness effects, but due to its dependence on the incidence angle only the large incidence angle observations were useful. The difference in ground resolution between microwave radiometry and GNSS-R and their strong correlation suggests that they might be combined to improve the spatial resolution of microwave radiometry measurements in terms of brightness temperature and consequently soil moisture retrievals.This work was supported in part by the Spanish Ministry of Science and Innovation, “AROSA-Advanced Radio Ocultations and Scatterometry Applications using GNSS and other opportunity signals,” under Grant AYA2011-29183-C02-01/ESP and “AGORA: Tecnicas Avanzadas en Teledetección Aplicada Usando Señales GNSS y Otras Señales de Oportunidad,” under Grant ESP2015-70014-C2-1-R (MINECO/FEDER), in part by the Monash University Faculty of Engineering 2013 Seed Grant, and in part by the Advanced Remote Sensing Ground-Truth Demo and Test Facilities and Terrestrial Environmental Observatories funded by the German Helmholtz-Association. The work of A. A.-Arroyo was supported by the Fulbright Commission in Spain through a Fulbright grant.Peer ReviewedPostprint (author's final draft
    corecore